WorldWideScience

Sample records for fuel cells anodes

  1. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  2. Oxide anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-07-15

    A major advantage of solid oxide fuel cells (SOFCs) over polymer electrolyte membrane (PEM) fuel cells is their tolerance for the type and purity of fuel. This fuel flexibility is due in large part to the high operating temperature of SOFCs, but also relies on the selection and development of appropriate materials - particularly for the anode where the fuel reaction occurs. This paper reviews the oxide materials being investigated as alternatives to the most commonly used nickel-YSZ cermet anodes for SOFCs. The majority of these oxides form the perovskite structure, which provides good flexibility in doping for control of the transport properties. However, oxides that form other crystal structures, such as the cubic fluorite structure, have also shown promise for use as SOFC anodes. In this paper, oxides are compared primarily in terms of their transport properties, but other properties relative to SOFC anode performance are also discussed. (author)

  3. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  4. Impact of anode microstructure on solid oxide fuel cells.

    Science.gov (United States)

    Suzuki, Toshio; Hasan, Zahir; Funahashi, Yoshihiro; Yamaguchi, Toshiaki; Fujishiro, Yoshinobu; Awano, Masanobu

    2009-08-14

    We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600 degrees C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600 degrees C just by optimizing the microstructure of the anode electrode and operating conditions.

  5. Fabrication of anode supported PEN for solid oxide fuel cell

    Institute of Scientific and Technical Information of China (English)

    谢淑红; 崔崑; 夏风; 肖建中

    2004-01-01

    Fabrication process for anode supported planar PEN of intermediate temperature solid oxide fuel cell (SOFC) was introduced, in which tape casting and screen printing methods were used. Gd2O3 doped CeO2(GDC) powders were prepared by solid reaction method. Anode tape was produced by tape casting. Electrolyte and cathode were produced by screen printing. The GDC powder's component, thermal expand coefficient, the porosity, density and microstructure of anode and electrolyte were investigated . It was shown that an bi-layer with dense thin electrolyte film and porous anode support and with good coherency of the electrolyte film to the anode could be realized after co-sintering the green tape at 1 350℃ by optimizing the power characteristics of the starting materials in the slurry.

  6. Direct borohydride fuel cell using Ni-based composite anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2010-08-01

    In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm{sup -2} Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm{sup -2} for NaBH{sub 4}/O{sub 2} fuel cell at 60 C, 665 mW cm{sup -2} for NaBH{sub 4}/H{sub 2}O{sub 2} fuel cell at 60 C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded. (author)

  7. Reactivity descriptors for direct methanol fuel cell anode catalysts

    DEFF Research Database (Denmark)

    Ferrin, Peter; Nilekar, Anand Udaykumar; Greeley, Jeff

    2008-01-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, self-consistent, density functional theory (DFT-GGA). This database, combined with a simple...

  8. ANODE CATALYST MATERIALS FOR USE IN FUEL CELLS

    DEFF Research Database (Denmark)

    2002-01-01

    Catalyst materials having a surface comprising a composition M¿x?/Pt¿3?/Sub; wherein M is selected from the group of elements Fe, Co, Rh and Ir; or wherein M represent two different elements selected from the group comprising Fe, CO, Rh, Ir, Ni, Pd, CU, Ag, Au and Sn; and wherein Sub represents...... a substrate material selected from Ru and Os; the respective components being present within specific ranges, display improved properties for use inanodes for low-temperature fuel cell anodes for PENFC fuel cells and direct methanol fuel cells....

  9. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of

  10. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  11. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  12. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  13. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  14. The impact of anode design on fuel crossover of direct ethanol fuel cell

    Indian Academy of Sciences (India)

    Sethu Sundar Pethaiah; Jayakumar Arunkumar; Maximiano Ramos; Ahmed Al-Jumaily; Natarajan Manivannan

    2016-02-01

    Direct-ethanol fuel cells (DEFCs) hold a promising future owing to its simple balance of plant operation and potential high-energy density. The significant challenges associated with it is the fuel crossover, which limits its performance and durability. In the present work, Pt–Pd nanocomposites were fused so as to find its impact on the anode design of DEFC. The current paper aimed to address these issues optimally and it also investigated the ethanol crossover by various electrochemical characterization techniques.

  15. Improved anode catalysts for coal gas-fueled phosphoric acid fuel cells

    Science.gov (United States)

    Kackley, N. D.; McCatty, S. A.; Kosek, J. A.

    1990-07-01

    The feasibility of adapting phosphoric acid fuel cells to operate on coal gas fuels containing significant levels of contaminants such as CO, H2S and COS was investigated. The overall goal was the development of low-cost, carbon-supported anode fuel cell catalysts that can efficiently operate with a fossil fuel-derived hydrogen gas feed contaminated with carbon monoxide and other impurities. This development would reduce the cost of gas cleanup necessary in a coal gas-fueled PAFC power plant, thereby reducing the final power cost of the electricity produced. The problem to date was that the contaminant gases typically adsorb on catalytic sites and reduce the activity for hydrogen oxidation. An advanced approach investigated was to modify these alloy catalyst systems to operate efficiently on coal gas containing higher levels of contaminants by increasing the alloy catalyst impurity tolerance and ability to extract energy from the CO present through (1) generation of additional hydrogen by promoting the CO/H2 water shift reaction or (2) direct oxidation of CO to CO2 with the same result. For operation on anode gases containing high levels of CO, a Pt-Ti-Zn and Pt-Ti-Ni anode catalyst showed better performance over a Pt baseline or G87A-17-2 catalyst. The ultimate aim was to allow PAFC-based power plants to operate on coal gas fuels containing increased contaminant concentrations, thereby decreasing the need for and cost of rigorous coal gas cleanup procedures.

  16. Nanotextured metal copper substrates as powerful and long-lasting fuel cell anodes.

    Science.gov (United States)

    Filanovsky, Boris; Granot, Eran; Dirawi, Rawi; Presman, Igor; Kuras, Iliya; Patolsky, Fernando

    2011-04-13

    Fuel cells (FCs) are promising electrochemical devices that convert chemical energy of fuels directly into electrical energy. We present a new anode material based on nanotextured metal copper for fuel cell applications. We have demonstrated that low-cost copper catalyst anodes act as highly efficient and ultra-long-lasting materials for the direct electro-oxidation of ammonia-borane and additional amine derivatives. High power densities of ca. 1W·cm(-2) (ca. -1 V vs Ag/AgCl at 1 A) are readily achieved at room temperature. We fabricate fuel cell devices based on our nanotextured Cu anodes in combination with commercial air cathodes.

  17. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  18. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    Science.gov (United States)

    2008-04-09

    demonstrated the ability of the Liquid Tin Anode Solid Oxide Fuel Cell (LTA SOFC) to direct convert logistic fuel, JP-8. The demonstration of direct JP-8...conversion without fuel processing or reforming was unprecedented in fuel cell technology. The DOD has a broad interest in power generation using

  19. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    Science.gov (United States)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  20. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    Science.gov (United States)

    Zhang, Hao; Xuan, Jin; Leung, Dennis Y. C.; Wang, Huizhi; Xu, Hong; Zhang, Li

    2017-10-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µl min‑1. Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design.

  1. Calcium-doped ceria materials for anode of solid oxide fuel cells running on methane fuel

    Science.gov (United States)

    Zhao, Kai; Du, Yanhai

    2017-04-01

    A calcium-doped ceria with nominal compositions of Ce1-xCaxO2-δ (0.00 ≤ x ≤ 0.30) has been developed as an anode component for solid oxide fuel cells running on methane fuel. Crystal phases of Ce1-xCaxO2-δ are investigated with respect to the amount of calcium dopant. The Ce1-xCaxO2-δ shows single fluorite phase when the calcium is within 15 mol.%, and higher calcium doping levels lead to the appearance of a secondary phase (CaO). Conductivities of Ce1-xCaxO2-δ ceramics are studied by a four-probe method in air and the composition of Ce0.9Ca0.1O2-δ (x = 0.10) is found exhibiting the highest conductivity among the samples investigated in this work. Electrocatalytic properties of Ce0.9Ca0.1O2-δ are evaluated based on Ni-Ce1-xCaxO2-δ anode supported single cell running on methane fuel. At 800 °C, the single cell with Ni-Ce0.9Ca0.1O2-δ (x = 0.10) anode exhibits an optimum maximum powder density (618 mW cm-2) and good performance stability during 30 h operation in methane fuel. The promising findings substantiate the good performance of Ni-Ce0.9Ca0.1O2-δ anode for electrochemical oxidation of methane fuel.

  2. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  3. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates of the ca...

  4. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the dead-end anode operation

    Science.gov (United States)

    Hu, Zhe; Yu, Yi; Wang, Guangjin; Chen, Xuesong; Chen, Pei; Chen, Jun; Zhou, Su

    2016-07-01

    Dead-ended anode (DEA) mode is commonly applied in fuel cell vehicles for the hydrogen purge at the anode side, to reduce fuel waste and enhance fuel cell efficiency. Anode purge is necessary and is definitely important with respect to removing liquid water and accumulated nitrogen in the gas diffusion layer and the flow field of the DEA-mode fuel cell. In this paper, the effect of different purge strategies on the stack performance and system efficiency is investigated experimentally using fast data acquisition and advanced tools, such as the fast cell voltage measurement (CVM) system and the mass spectrum. From the fast data acquisition, the voltage stability, liquid water and nitrogen concentration measurement in the anode exhaust are compared and analyzed under different purge strategy designs and using different purge valves. The results show that under the optimal purge strategy, the DEA fuel cell stack can achieve the desired stability and system efficiency based on the analysis of the cell voltage and purge volume. Moreover, the diameter of the purge valve has a great impact on the voltage stability because a diameter change will result in a different pressure drop and purge volume when the purge valve is open.

  5. Modeling and simulation of the anode in direct ethanol fuels cells

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Ruy Jr.; dos Anjos, Daniela Marques [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense, 400, C. P. 780, 13560-970 Sao Carlos, SP (Brazil); Laboratoire de Catalyse en Chimie Organique, Universite de Poitiers, 40, Av. du Recteur Pineau, 86022 Poitiers (France); Tremiliosi-Filho, Germano; Gonzalez, Ernesto Rafael [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense, 400, C. P. 780, 13560-970 Sao Carlos, SP (Brazil); Coutanceau, Christophe; Sibert, Eric; Leger, Jean-Michel; Kokoh, Kouakou Boniface [Laboratoire de Catalyse en Chimie Organique, Universite de Poitiers, 40, Av. du Recteur Pineau, 86022 Poitiers (France)

    2008-05-15

    Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics {sup registered} (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics {sup registered} is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (author)

  6. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...

  7. Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Arenillas, A.; Menendez, J.A.

    2015-01-01

    A 3-electrode half-cell setup consisting of a yttria-stabilized zirconia (YSZ) electrolyte support was employed to investigate the chemical and electrochemical processes occurring in the vicinity of a model hybrid direct carbon fuel cell (HDCFC) anode (Ni-YSZ) in contact with a molten carbon...

  8. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  9. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    CERN Document Server

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  10. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  11. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    Science.gov (United States)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  12. Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H 2-CO syngas fuels

    Science.gov (United States)

    Ye, Xiao-Feng; Wang, S. R.; Zhou, J.; Zeng, F. R.; Nie, H. W.; Wen, T. L.

    Anode-supported Solid Oxide Fuel Cells (SOFCs) with Ni-yttria-stabilized zirconia (YSZ) anode have been fabricated and studied using H 2-CO syngas fuels. Syngas fuels with different compositions of H 2-CO are supplied and the cell performance is measured at 750 °C. A high CO content has caused carbon deposition and crack formation in the Ni-YSZ anode after long-term operation, even though it is diluted with H 2O and N 2. However, it was found that a Cu-CeO 2 coating on Ni-YSZ can greatly improve the anode stability in syngas by facilitating the water gas shift reaction. The optimized single cell has run in sygas with a composition of 65%H 2-32%CO-3%H 2O for 1050 h without obvious degradation of its performance.

  13. Anode Material Testing for Marine Sediment Microbial Fuel Cells

    Science.gov (United States)

    2013-09-26

    the plumping centered over billet, and the electrical feed through fitting with connecting wire. The solid graphite plate will be tested by...state conditions, using a liquid bath of glucose as the substrate (17). Chaudhuri and Lovley 2005, showed that the graphite foam increased production...Microbial fuel cells: performances and perspectives. Biofuels for fuel cells: biomass fermentation towards usage in fuel cells. IWA Publishing, London

  14. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  15. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    Science.gov (United States)

    Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…

  16. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...... collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector...

  17. Ceramic anode catalyst for dry methane type molten carbonate fuel cell

    Science.gov (United States)

    Tagawa, T.; Yanase, A.; Goto, S.; Yamaguchi, M.; Kondo, M.

    Oxide catalyst materials for methane oxidation were examined in order to develop the anode electrode for molten carbonate type fuel cell (MCFC). As a primary selection, oxides such as lanthanum (La 2O 3) and samarium (Sm 2O 3) were selected from screening experiments of TPD, TG and tubular reactor. Composite materials of these oxides with titanium fine powder were assembled into a cell unit for MCFC as the anode electrode. Steady-state activities were observed with these anode electrode materials when hydrogen was used as a fuel. When methane was directly charged to anode as a fuel (dry methane operation), a power generation with steady state was observed on both lanthanum and samarium composites after gradual decrease of open circuit electromotive force (OCV) and closed circuit current (CCI). The steady-state activity held as long as 144 h of continuous operation.

  18. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.;

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  19. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell,...

  20. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  1. Solvent effects on the morphology and performance of the anode substrates for solid oxide fuel cells

    Science.gov (United States)

    Liu, Tong; Ren, Cong; Zhang, Yanxiang; Wang, Yao; Lei, Libin; Chen, Fanglin

    2017-09-01

    Solvents effects on the microstructure of anode substrates as well as the electrochemical performance of the respective cells are systematically evaluated. The solubility parameters are used to interpret the relationship between the rheological properties of phase inversion slurries and pore formation mechanism of the anode substrates. When N-methyl-2-pyrrolidone (NMP) is chosen as the solvent, a dual-layered anode substrates with hierarchically oriented pores is achieved, while a sponge-like homogeneous anode substrate is obtained using dimethyl sulfoxide (DMSO) as the solvent, indicating that solvent is a key factor to affect the anode substrate microstructure. Two-dimensional and three-dimensional microstructures of the anode substrates prepared using NMP are analyzed by scanning electron microscopy and X-ray microscopy, respectively. Solid oxide fuel cells (SOFCs) with different microstructured anode substrates are prepared, and the maximum power density is significantly enhanced from 320.3 to 719.2 mWcm-2 by varying the anode substrate from homogeneous sponge-like microstructure to dual-layered microstructure, revealing that the finger-like macro-voids layer can facilitate H2-H2O mass diffusion, while the thin sponge-like pores layer can serve as anode functional layer and provide sufficient active reaction sites for H2 oxidation. This study demonstrates that NMP is a promising solvent to fabricate hierarchically oriented anode for high-performance SOFCs application.

  2. Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2003-10-01

    A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

  3. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...

  4. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2012-01-01

    A high-performance microbial fuel cell (MFC) anode was constructed from inexpensive materials. Key components were a graphene-sponge (G-S) composite and a stainless-steel (SS) current collector. Anode fabrication is simple, scalable, and environmentally friendly, with low energy inputs. The SS current collector improved electrode conductivity and decreased voltage drop and power loss. The resulting G-S-SS composite electrode appears promising for large-scale applications. © 2012 The Royal Society of Chemistry.

  5. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    CERN Document Server

    Mosquera, Martín A

    2010-01-01

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

  6. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...... and 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  7. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2012-08-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  8. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2016-09-27

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  9. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    Science.gov (United States)

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m(2) and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.

  10. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    Science.gov (United States)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  11. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.

    Science.gov (United States)

    Kim, Jisu; Kim, Bongkyu; An, Junyeong; Lee, Yoo Seok; Chang, In Seop

    2016-08-01

    To prevent the occurrence of the organic crossover in membraneless microbial fuel cells (ML-MFCs), dual-anode MFC (DA-MFC) was designed from multi-anode concept to ensure anode zone. The anode zone addressed increase the utilization of organic matter in ML-MFCs, as the result, the organic crossover was prevented and performance of MFCs were enhanced. The maximum power of the DA-MFC was 0.46mW, which is about 1.56 times higher than the ML-MFC (0.29mW). Furthermore, the DA-MFC had advantage in correlation of organic substance concentration and dissolved oxygen concentration, and even electric over-potential. In addition, in terms of cathode fouling, the DA-MFC showed clearer surface. Hence, the anode zone should be considered in the advanced ML-MFC for practically use in wastewater treatment process, and also for scale-up of MFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yinhai, E-mail: yinhai.zhu@gmail.co [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Li Yanzhong, E-mail: yzli-epe@mail.xjtu.edu.c [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Cai Wenjian [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2011-04-15

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    Science.gov (United States)

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Effects of the Use of Pore Formers on Performance of an Anode supported Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Pham, A; Chung, B W; DiCarlo, J F; Glass, R S

    2003-12-04

    The effects of amount of pore former used to produce porosity in the anode of an anode supported planar solid oxide fuel cell were examined. The pore forming material utilized was rice starch. The reduction rate of the anode material was measured by Thermogravimetric Analysis (TGA) to qualitatively characterize the gas transport within the porous anode materials. Fuel cells with varying amounts of porosity produced by using rice starch as a pore former were tested. The performance of the fuel cell was the greatest with an optimum amount of pore former used to create porosity in the anode. This optimum is believed to be related to a trade off between increasing gas diffusion to the active three-phase boundary region of the anode and the loss of performance due to the replacement of active three-phase boundary regions of the anode with porosity.

  15. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

    Science.gov (United States)

    Chen, Yu; Zhang, Yanxiang; Baker, Jeffrey; Majumdar, Prasun; Yang, Zhibin; Han, Minfang; Chen, Fanglin

    2014-04-09

    Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications.

  16. Fracture properties of nickel-based anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Frandsen, Henrik Lund; Sørensen, Bent F.

    2010-01-01

    such as the anode material (NiO–YSZ) in a fuel cell. The approach involves a new specimen geometry which consists of a thin ceramic glued onto thick steel beams to form a double cantilever beam (DCB) specimen. The fracture toughness values, measured from truly sharp cracks, are obtained over a range of applied...

  17. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    NARCIS (Netherlands)

    Michaelidou, U.; Heijne, ter A.; Euverink, G.J.W.; Hamelers, H.V.M.; Stams, A.J.M.; Geelhoed, J.S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and

  18. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment.

    Science.gov (United States)

    Mardanpour, Mohammad Mahdi; Nasr Esfahany, Mohsen; Behzad, Tayebeh; Sedaqatvand, Ramin

    2012-01-01

    This study reports on the fabrication of a novel annular single chamber microbial fuel cell (ASCMFC) with spiral anode. The stainless steel mesh anode with graphite coating was used as anode. Dairy wastewater, containing complex organic matter, was used as substrate. ASCMFC had been operated for 450 h and results indicated a high open circuit voltage (about 810 mV) compared with previously published results. The maximum power density of 20.2 W/m(3) obtained in this study is significantly greater than the power densities reported in previous studies. Besides, a maximum coulombic efficiency of 26.87% with 91% COD removal was achieved. Good bacterial adhesion on the spiral anode is clearly shown in SEM micrographs. High power density and a successful performance in wastewater treatment in ASCMFC suggest it as a promising alternative to conventional MFCs for power generation and wastewater treatment. ASCMFC performance as a power generator was characterized based on polarization behavior and cell potentials.

  19. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    Science.gov (United States)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  20. A novel Ni/ceria-based anode for metal-supported solid oxide fuel cells

    Science.gov (United States)

    Rojek-Wöckner, Veronika A.; Opitz, Alexander K.; Brandner, Marco; Mathé, Jörg; Bram, Martin

    2016-10-01

    For optimization of ageing behavior, electrochemical performance, and sulfur tolerance of metal-supported solid oxide fuel cells a new anode concept is introduced, which is based on a Ni/GDC cermet replacing the established Ni/YSZ anodes. In the present work optimized processing parameters compatible with MSC substrates are specified by doing sintering studies on pressed bulk specimen and on real porous anode structures. The electrochemical performance of the Ni/GDC anodes was characterized by means of symmetrical electrolyte supported model-type cells. In this study, three main objectives are pursued. Firstly, the effective technical realization of the Ni/GDC concept is demonstrated. Secondly, the electrochemical behavior of Ni/GDC porous anodes is characterized by impedance spectroscopy and compared with the current standard Ni/YSZ anode. Further, a qualitative comparison of the sulfur poisoning behavior of both anode types is presented. Thirdly, preliminary results of a successful implementation of the Ni/GDC cermet into a metal-supported single cell are presented.

  1. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Directory of Open Access Journals (Sweden)

    Jan Van herle

    2012-08-01

    Full Text Available Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted.

  2. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    Science.gov (United States)

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  3. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae

    2013-01-17

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  4. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    Science.gov (United States)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  5. An investigation of anode and cathode materials in photomicrobial fuel cells.

    Science.gov (United States)

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC.

  6. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  7. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

    Science.gov (United States)

    Yu, Yang-Yang; Guo, Chun Xian; Yong, Yang-Chun; Li, Chang Ming; Song, Hao

    2015-12-01

    Nitrogen doped carbon nanoparticles (NDCN) were applied to modify the carbon cloth anodes of microbial fuel cells (MFCs) inoculated with Shewanella oneidensis MR-1, one of the most well-studied exoelectrogens. Experimental results demonstrated that the use of NDCN increased anodic absorption of flavins (i.e., the soluble electron mediator secreted by S. oneidensis MR-1), facilitating shuttle-mediated extracellular electron transfer. In addition, we also found that NDCN enabled enhanced contact-based direct electron transfer via outer-membrane c-type cytochromes. Taken together, the performance of MFCs with the NDCN-modified anode was enormously enhanced, delivering a maximum power density 3.5 times' higher than that of the MFCs without the modification of carbon cloth anodes.

  8. Evaluation of multi-brush anode systems in microbial fuel cells

    KAUST Repository

    Lanas, Vanessa

    2013-11-01

    The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.

  9. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  10. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  11. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  12. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Kouzuma

    Full Text Available In sediment-type microbial fuel cells (sMFCs operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  13. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants.

    Science.gov (United States)

    Liu, Xian-Wei; Sun, Xue-Fei; Li, Dao-Bo; Li, Wen-Wei; Huang, Yu-Xi; Sheng, Guo-Ping; Yu, Han-Qing

    2012-09-15

    The electro-Fenton process is efficient for degradation of organic pollutants, but it suffers from the high operating costs due to the need of power investment. Here, a new anodic Fenton system is developed for energy-saving and efficient treatment of organic pollutants by incorporating microbial fuel cell (MFC) into an anodic Fenton process. This system is composed of an anodic Fenton reactor and a two-chamber air-cathode MFC. The power generated from a two-chamber MFC is used to drive the anodic Fenton process for Acid Orange 7 (AO7) degradation through accelerating in situ generation of Fe(2+) from sacrificial iron. The kinetic results show that the MFC-assisted anodic Fenton process system had a significantly higher pseudo-first-order rate constant than those for the chemical Fenton methods. The electrochemical analysis reveals that AO7 did not hinder the corrosion of iron. The anodic Fenton process was influenced by the MFC performance. It was also found that increasing dissolved oxygen in the cathode improved the MFC power density, which in turn enhanced the AO7 degradation rate. These clearly demonstrate that the anodic Fenton process could be integrated with MFC to develop a self-sustained system for cost-effective and energy-saving electrochemical wastewater treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. [Electricity generation by the microbial fuel cells using carbon nanotube as the anode].

    Science.gov (United States)

    Liang, Peng; Fan, Ming-zhi; Cao, Xiao-xin; Huang, Xia; Peng, Yin-ming; Wang, Shuo; Gong, Qian-ming; Liang, Ji

    2008-08-01

    The characteristic of anode plays an important role in the performance of the microbial fuel cell (MFC). Thus, carbon nanotube (CN), flexible graphite (FG) and activated carbon (AC) were used as anode material in this study, and the performances of three MFCs (CN-MFC, FG-MFC and AC-MFC) were studied. The results show that CN is a kind of suitable material to be used as anode in the MFC. The maximal power densities of CN-MFC, FG-MFC and AC-MFC are 402,354 and 274 mW/m2, respectively. The CN-MFC shows a higher power density and coulombic efficiency compared with FG-MFC and AC-MFC. The CN-anode can reduce the internal resistance obviously. The internal resistances of CN-MFC, AC-MFC and FG-MFC are 263, 301 and 381 omega, respectively. The protein contents on the CN-anode, AC-anode and FG-anode are 149, 132 and 92 microg/cm2 after stable operation, and there is a positive relation between the protein content and internal resistance. The conductivity of the three types of MFCs from high to low was FG-MFC, CN-MFC and AC-MFC, which was accordant with the ohmic resistance. The stable times of CN-MFC, FG-MFC and AC-MFC, which were needed to measure the internal resistances, were 1800, 1200 and 300 s respectively.

  15. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  16. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    Science.gov (United States)

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  17. Ni3Mo3C as anode catalyst for high-performance microbial fuel cells.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-03-01

    Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm(-2) Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.

  18. Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

    Science.gov (United States)

    Cheng, Zhe

    Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs. In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with

  19. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode

    Science.gov (United States)

    Tang, Hao; Qi, Zhigang; Ramani, Manikandan; Elter, John F.

    The impacts of unprotected start up and shut down on fuel cell performance degradation was investigated using both single cell and dual cell configurations. It was found that the air/fuel boundary developed at the anode side after a fuel cell shut down or during its restart caused extremely quick degradation of the cathode. The thickness, the electrochemical active surface area, and the performance of the cathode catalyst layer were significantly reduced. By using a dual cell configuration, cathode potential as high as two times of open circuit voltage was measured, and the corrosion current flowing externally between the two cells was detected and quantified. Carbon catalyst-support corrosion/oxidation at such a high potential was largely responsible for the accelerated fuel cell performance degradation.

  20. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  1. Manganese titanium perovskites as anodes for solid oxide fuel cells

    OpenAIRE

    2008-01-01

    A new family of perovskite titanates with formulae La4+nSr8-nTi12-nMnnO38 and La4Sr8Ti12-nMnnO38-δ have been investigated as potential fuel electrode materials for SOFCs. The series La4+nSr8-nTi12-nMnnO38 present layered domains within their structure. As such layers appear to have a large negative effect over the electrochemical properties only a few compounds have been characterised. The series La4Sr8Ti12-nMnnO38-δ present a rhombohedral (R-3c) unit cell at room temperature which bec...

  2. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    Science.gov (United States)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin; Hjelm, Johan; Bonanos, Nikolaos

    2012-10-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3-δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell, consisting of a Ni-yttria stabilized zirconia (YSZ) anode support, a Ni-scandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell was tested at 700 °C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current-voltage relationships. No measurable degradation in the cell voltage or increase in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79 W cm-2 at a cell voltage of 0.6 V at 750 °C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference to that of a nominally identical untested counterpart.

  3. Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell

    Science.gov (United States)

    Morgan, Robert D.; Haan, John L.; Masel, Richard I.

    Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage-current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

  4. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  5. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Anil V. Virkar

    2001-09-26

    Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

  6. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  7. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    Science.gov (United States)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  8. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    Science.gov (United States)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  9. Potential oscillations in a proton exchange membrane fuel cell with a Pd-Pt/C anode

    Science.gov (United States)

    Lopes, Pietro P.; Ticianelli, Edson A.; Varela, Hamilton

    We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H 2/100 ppm CO, and operated at 30 °C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V, which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H 2/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output.

  10. Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells.

    Science.gov (United States)

    Wang, Wei; Wang, Feng; Chen, Yubo; Qu, Jifa; Tadé, Moses O; Shao, Zongping

    2015-09-07

    For practical solid oxide fuel cells (SOFCs) operated on hydrocarbon fuels, the facile coke formation over Ni-based anodes has become a key factor that limits their widespread application. Modification of the anodes with basic elements may effectively improve their coking resistance in the short term; however, the easy loss of basic elements by thermal evaporation at high temperatures is a new emerging problem. Herein, we propose a new design to develop coking-resistant and stable SOFCs using Li(+) -conducting Li0.33 La0.56 TiO3 (LLTO) as an anode component. In the Ni/LLTO composite, any loss of surface lithium can be efficiently compensated by lithium diffused from the LLTO bulk under operation. Therefore, the SOFC with the Ni/LLTO anode catalyst layer yields excellent power outputs and operational stability. Our results suggest that the simple adoption of a Li(+) conductor as a modifier for Ni-based anodes is a practical and easy way to solve the coking problem of SOFCs that operate on hydrocarbons.

  11. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yongjin; Xiang, Cuili; Yang, Lini [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Sun, Li-Xian [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); School of Chemistry and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076 (China); Xu, Fen [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cao, Zhong [School of Chemistry and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076 (China)

    2008-09-15

    A microbial fuel cell (MFC) was constructed using polypyrrole (PPy) coated carbon nanotubes (CNTs) composite as an anode material and Escherichia coli as the biocatalyst. The composite PPy-CNTs were synthesized by the in situ chemical polymerization of pyrrole on the CNTs using ammonium persulfate as an oxidant. The electrocatalytic behaviors of the composite modified anode were investigated by means of cyclic voltammetry, electrochemical impedance spectroscopy and discharge experiments. The PPy-CNTs modified anode showed better electrochemical performance than that of plain carbon paper. The amount of the loading of the composite on the anode was also investigated. The power output of the MFC increased along with the increase of the composite loading. In the absence of exogenous electron mediators, the MFC with the composite modified anode contained 5 mg cm{sup -2} PPy-CNTs exhibited a maximum power density 228 mW m{sup -2}, which is much higher than those reported in the literature so far for E. coli using efficient electron mediators. These results show that the PPy-CNTs composite anode is promising for MFC application. (author)

  12. Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-09-01

    Full Text Available The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes in microbial fuel cells (MFCs. In this paper, different amounts of hydrophilic graphene oxide (GO were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg−1 to 0.2 mg·mg−1 and 0.25 mg·mg−1, the static water contact angle (θc of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg−1 exhibited the optimal performance and the maximum power density (Pmax of the corresponding MFC was 1100.18 mW·m−2, 1.51 times higher than that of the MFC with the G anode.

  13. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.

    Science.gov (United States)

    Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D

    2017-02-28

    Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m(-2) at a current density of 69±7 mA m(-2) . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications.

  14. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  15. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes

    Science.gov (United States)

    Shi, Weiyu; Yi, Baolian; Hou, Ming; Jing, Fenning; Yu, Hongmei; Ming, Pingwen

    The effect of hydrogen sulfide on proton exchange membrane fuel cell (PEMFC) anodes was studied by cyclic voltammetry (CV), potential steps and electrochemical impedance spectroscopy (EIS). The severity of the effect of H 2S varies depending on the H 2S concentration, current density and the cell temperature. The anode humidification does not impact the poisoning rate much when the anode is exposed to H 2S. The adsorption of H 2S on the anode is dissociative and this dissociation can produce adsorbed sulfur. The dissociation potential of H 2S was studied by potential steps, and the values of the dissociation potential are about 0.4 V at 90 °C, 0.5 V at 60 °C and 0.6 V at 30 °C, respectively. The adsorbed sulfur can be oxidized at a higher potential. During CV scans, two oxidation peaks for the adsorbed sulfur at 1.07 and 1.2 V were observed at 90 °C, however a single oxidation peak could be observed at 1.2 V at 60 °C and at 1.27 V at 30 °C. Application of EIS to a H 2S|H 2 half-cell shows that the charge transfer resistance increases when the anode is exposed to H 2S because of H 2S adsorption.

  16. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.

    Science.gov (United States)

    Kang, Sungjin; Lee, Jaeyoung; Lee, Jae Kwang; Chung, Seung-Young; Tak, Yongsug

    2006-04-13

    The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).

  17. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  18. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society....

  19. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud

    1994-01-01

    Samples of CeO2 doped with oxides such as CaO and Gd2O3 were prepared. Their conductivities and expansions onreduction were measured at 1000°C, and the thermal expansion coefficients in the range 50 to 1000°C were determined. Theionic and electronic conductivity were derived from curves of total...... for solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  20. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    Science.gov (United States)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 dry reforming and cracking reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  1. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  2. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells

    Science.gov (United States)

    Park, Jung Hoon; Han, Seung Min; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won

    2016-05-01

    The impact of a nanostructured Ni-yttria-stabilized zirconia (Ni-YSZ) anode on low-temperature solid oxide fuel cell (LT-SOFC) performance is investigated. By modifying processing techniques for the anode support, anode-supported SOFCs based on thin-film (∼1 μm) electrolytes (TF-SOFCs) with and without the nanostructured Ni-YSZ (grain size ∼100 nm) anode are fabricated and a direct comparison of the TF-SOFCs to reveal the role of the nanostructured anode at low temperature is made. The cell performance of the nanostructured Ni-YSZ anode significantly increases as compared to that of the cell without it, especially at low temperatures (500 °C). The electrochemical analyses confirm that increasing the triple-phase boundary (TPB) density near the electrolyte and anode interface by the particle-size reduction of the anode increases the number of sites available for charge transfer. Thus, the nanostructured anode not only secures the structural integrity of the thin-film components over it, it is also essential for lowering the operating temperature of the TF-SOFC. Although it is widely considered that the cathode is the main factor that determines the performance of LT-SOFCs, this study directly proves that anode performance also significantly affects the low-temperature performance.

  3. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  4. Oxidation of H2 and CO in a fuel cell with a Platinum-tin Anode

    Directory of Open Access Journals (Sweden)

    Javier González

    2010-06-01

    Full Text Available This report describes the construction and evolution of a fuel cell with a bi-metallic anode of Pt-Sn supported on carbon, as catalysts for oxidation of pure hydrogen, pure CO and a 2% CO in H2 mixture. Both, cathode and anode were made with a structure composed by a diffusive layer and a catalytic layer. The diffusive layer was made with a carbon cloth while the catalytic layer contained the platinum and tin supported on carbon. To test the performance of the catalytic mixture, a proton exchange membrane fuel cell (PEMFC was developed with an original design for the gas distributation plates. The reactants were feed to ambient temperature and 3 psig in the anode side, while 5 psig pure oxygen was used in the cathode. The anode catalytic load was 0.57 mg/cm2 of platinum and 0.08 mg/cm2 of tin. The catalytic load in cathode was 0.85 mg/cm2 of pure platinum. It was found that this caralytic mixture is tolerant to CO presence.

  5. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  6. Microbial fuel cells as discontinuous portable power sources: syntropic interactions with anode-respiring bacteria.

    Science.gov (United States)

    Gao, Yaohuan; An, Junyeong; Ryu, Hodon; Lee, Hyung-Sool

    2014-04-01

    For microbial fuel cells (MFCs) to work as portable power sources used in a discontinuous manner, anode-respiring bacteria (ARB) should survive for at least several days in the absence of exogenous electron donors, and immediately generate current upon addition of an electron donor. Here, we proved that biopolymer-accumulating bacteria provide substrate (fuel) for ARB to generate current in lack of exogenous electron donor in 4 days, which allows MFCs to be used as portable power sources. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fuel supply of direct carbon fuel cells via thermal decomposition of hydrocarbons inside a porous Ni anode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hak Gyu; Li, Cheng Guo; Jalalabadi, Tahereh; Lee, Dong Geun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-06-15

    This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at 700 degree Celsius with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

  8. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  9. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  10. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    Science.gov (United States)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  11. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  12. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    Science.gov (United States)

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms.

  14. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  15. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  16. Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC).

    Science.gov (United States)

    Srikanth, S; Venkata Mohan, S

    2012-11-01

    The electrogenic activity of microbial fuel cell (MFC) with the function of anode placement from the terminal electron acceptor (TEA) was evaluated. Shorter anode distances from TEA showed higher electrogenesis due to the feasibility of higher electron acceptance as well as their discharge towards TEA. Substrate degradation was also higher at shorter anode placements from TEA due to the optimum substrate availability to the anodic biofilm. Bio-electro kinetics showed significant variation in the catalytic currents and exchange current densities with the function of anode placement indicating its role in electron acceptance and their transfer to the cathode. Anode placement of 3cm showed higher electrogenesis (406.38mW/m(2)) and substrate degradation (63.12%) along with significantly reduced polarization (6.72Ω) and charge transfer resistances compared to other anodic placements. The spacing between electrodes is crucial in accepting electrons as well as their discharge towards TEA which ultimately governs the power generation efficacy.

  17. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  18. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950 °C

    Science.gov (United States)

    De Marco, Vincenzo; Grazioli, Alberto; Sglavo, Vincenzo M.

    2016-10-01

    Copper-based anode supported planar Intermediate Temperature Solid Oxide Fuel Cells are produced and characterized in the present work. The most important advancement is related to the use of copper within the anodic layer, this giving promising results for feeding Intermediate Temperature Solid Oxide Fuel Cells with carbon and sulphur containing fuels. Both anode and Li2O containing-Gadolinia Doped Ceria based electrolyte are produced by water based tape casting process. The supporting anode is coupled to the electrolyte by thermopressing, the cathode being obtained by screen printing. A 3 h isotherm at 950 °C allows to obtain the cosintering of the three layers. The electrochemical test performed on such cells reveals a 0.8 V open circuit voltage and a power density higher than 26 mW cm-2 at 650 °C.

  19. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.

    Science.gov (United States)

    Picioreanu, C; van Loosdrecht, M C M; Katuri, K P; Scott, K; Head, I M

    2008-01-01

    This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power-current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  20. Fracture toughness of solid oxide fuel cell anode substrates determined by a double-torsion technique

    Science.gov (United States)

    Pećanac, G.; Wei, J.; Malzbender, J.

    2016-09-01

    Planar solid oxide fuel cell anode substrates are exposed to high mechanical loads during assembly, start-up, steady-state operation and thermal cycling. Hence, characterization of mechanical stability of anode substrates under different oxidation states and at relevant temperatures is essential to warrant a reliable operation of solid oxide fuel cells. As a basis for mechanical assessment of brittle supports, two most common anode substrate material variants, NiO-3YSZ and NiO-8YSZ, were analyzed in this study with respect to their fracture toughness at room temperature and at a typical stack operation temperature of 800 °C. The study considered both, oxidized and reduced materials' states, where also an outlook is given on the behavior of the re-oxidized state that might be induced by malfunctions of sealants or other functional components. Aiming at the improvement of material's production, different types of warm pressed and tape cast NiO-8YSZ substrates were characterized in oxidized and reduced states. Overall, the results confirmed superior fracture toughness of 3YSZ compared to 8YSZ based composites in the oxidized state, whereas in the reduced state 3YSZ based composites showed similar fracture toughness at room temperature, but a higher value at 800 °C compared to 8YSZ based composites. Complementary microstructural analysis aided the interpretation of mechanical characterization.

  1. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  2. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  3. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.

    2011-11-01

    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  4. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m2. Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated atmore positive potentials, indicating that bacterial activitywas significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associatedwith a decreasing electroactivity of the anodic biofilm in the high potential region,which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials. © 2012 Elsevier B.V.

  5. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.

    Science.gov (United States)

    Zhu, Xiuping; Tokash, Justin C; Hong, Yiying; Logan, Bruce E

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m(2). Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated at more positive potentials, indicating that bacterial activity was significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associated with a decreasing electroactivity of the anodic biofilm in the high potential region, which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials.

  6. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    Science.gov (United States)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  7. Studies of Modified Hydrogen Storage Intermetallic Compounds Used as Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Rui F. M. Lobo

    2011-12-01

    Full Text Available The possibility of substituting Pt/C with the hydrogen storage alloy MlNi3.6Co0.85Al0.3Mn0.3 as the anode active material of a proton exchange membrane fuel cell system has been analyzed. The electrochemical properties indicate that a much more electrochemically active anode is obtained by impregnating the active material loaded anode in a Nafion proton conducting polymer. Such performance improvement might result from the increase of three-phase boundary sites or length in the gas diffusion electrode where the electrochemical reaction occurs. The experimental data revealed that the membrane electrode assembly (MEA shows better results when the anode active material, MlNi3.6Co0.85Al0.3Mn0.3, is treated with a hot alkaline KBH4 solution, and then chemically coated with 3 wt.% Pd. The MEA with the aforesaid modification presents an enhanced surface capability for hydrogen adsorption, and has been studied by molecular beam-thermal desorption spectrometry.

  8. The Catalysis of NAD+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; PAN Mu; YUAN Run-zhang

    2004-01-01

    A tentative idea of developing a liquid-catalytic system on methanol anode oxidation was proposed by analyzing the characteristics of methanol anode oxidation in direct methanol fuel cell. The kinetics of methanol oxidation at a glassy carbon electrode in the presence of nicotinamide adenine dinucleotide (NAD+) was investigated. It is found that the current density of methanol oxidation increases greatly and the electrochemical reaction impedance reduces obviously in the presence of NAD+ compared with those in the absence of NAD+. The catalytic activity of NAD+ is sensitive to temperature. When the temperature preponderates over 45℃, NAD+ is out of function of catalysis for methanol oxidation, which is probably due to the denaturation of NAD+ at a relatively high temperature.

  9. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    Science.gov (United States)

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Marcel

    2009-05-27

    In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)

  11. On the impact of water activity on reversal tolerant fuel cell anode performance and durability

    Science.gov (United States)

    Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn

    2016-10-01

    Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.

  12. Segregation of the anodic microbial communities in a microbial fuel cell cascade

    Directory of Open Access Journals (Sweden)

    Douglas eHodgson

    2016-05-01

    Full Text Available Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulphur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs, bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analysed the evolution of the microbial community structure in a cascade of microbial fuel cells (MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.

  13. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes

    Science.gov (United States)

    Ji, Xiulei; Lee, Kyu Tae; Holden, Reanne; Zhang, Lei; Zhang, Jiujun; Botton, Gianluigi A.; Couillard, Martin; Nazar, Linda F.

    2010-04-01

    Shape- and size-controlled supported metal and intermetallic nanocrystallites are of increasing interest because of their catalytic and electrocatalytic properties. In particular, intermetallics PtX (X = Bi, Pb, Pd, Ru) are very attractive because of their high activity as fuel-cell anode catalysts for formic acid or methanol oxidation. These are normally synthesized using high-temperature techniques, but rigorous size control is very challenging. Even low-temperature techniques typically produce nanoparticles with dimensions much greater than the optimum formic acid oxidation reported to date, and over double that of Pt-Au.

  14. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    Science.gov (United States)

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 mW.cm-2 (L4ST) to 161 mW.cm -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦O.cm 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  15. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  16. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    Science.gov (United States)

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, pmicrobial communities.

  17. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    Science.gov (United States)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  18. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode

    Science.gov (United States)

    Guo, Fen; Cao, Dianxue; Du, Mengmeng; Ye, Ke; Wang, Guiling; Zhang, Wenping; Gao, Yinyi; Cheng, Kui

    2016-03-01

    A novel three-dimensional (3D) porous nickel-cobalt (Ni-Co) film on nickel foam is successfully prepared and further used as an efficient anode for direct urea-hydrogen peroxide fuel cell (DUHPFC). By varying the cobalt/nickel mole ratios into 0%, 20%, 50%, 80% and 100%, the optimized Ni-Co/Ni foam anode with a ratio of 80% is obtained in terms of the best cell performance among five anodes. Effects of the KOH and urea concentrations, the flow rate and operation temperature on the fuel cell performance are investigated. Results show DUHPFC with the 3D Ni-Co/Ni foam anode exhibits a higher performance than those reported direct urea fuel cells. The cell gives an open circuit voltage of 0.83 V and a peak power density as high as 17.4 and 31.5 mW cm-2 at 20 °C and 70 °C, respectively, when operating on 7.0 mol L-1 KOH and 0.5 mol L-1 urea as the fuel at a flow rate of 15 mL min-1. Besides, when the human urine is directly fed as the fuel, direct urine-hydrogen peroxide fuel cell reaches a maximum power density of 7.5 mW cm-2 with an open circuit voltage of 0.80 V at 20 °C, showing a good application prospect in wastewater treatment.

  19. Direct-mode glucose fuel cells with near-neutral-state electrolytes : anode electrode studies with different catalysts and electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Spets, J.P.; Noponen, T.; Kuosa, M.A.; Lampinen, M.J.; Saari, K. [Helsinki Univ. of Technology, Sahkomiehentie (Finland). Dept. of Energy Technology, Applied Thermodynamics; Kiros, Y. [Royal Inst. of Technology-KTH, Stockholm (Sweden). Dept. of Chemical Engineering and Technology; Rantanen, J. [Hydrocell Ltd, Jarvenpaa (Finland)

    2009-07-01

    Interest in direct-mode glucose fuel cells is growing because glucose can be readily produced by hydrolysis of complex storage carbohydrates such as starch and cellulose. This paper reported on the testing of a direct-mode glucose anode half-cell with three different catalyst materials. A direct-mode glucose cathode half-cell was also tested with one catalyst material. The purpose of the study was to produce both effective and simple direct-mode glucose fuel cell either with a neutral or near-neutral-state electrolyte, which could operate with a moderate electric power production capacity. The paper discussed the experiment with particular reference to the chemical compositions of the near-neutral state electrolytes in the anode half cell tests; comparison of test methods to an earlier test method; and the limitations of the scope of the results. Results were presented in terms of properties of the aqueous electrolytes before the operation in the anode half cell; polarization curves for glucose in an anode half-cell in two concentrations and in two electrolytes at pH value of 7.4 using anode catalyst material Raney-Nickel; polarization curves for glucose in an anode half-cell in two concentrations and in two electrolytes at pH value of 7.4 using anode catalyst material Nickel-Porphyrin; and polarization curves with glucose in two concentrations in the Krebs-Ringer electrolyte for the anode and cathode direct-mode half-cells at RT. It was concluded that one target for future research could be the development of new electrocatalysts, which enable the use of direct-mode fuel cells with the near-neutral-state electrolyte for bio-organics. 22 refs., 4 tabs., 4 figs.

  20. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications.

  1. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes

    Science.gov (United States)

    Lee, Daehee; Myung, Jaeha; Tan, Jeiwan; Hyun, Sang-Hoon; Irvine, John T. S.; Kim, Joosun; Moon, Jooho

    2017-03-01

    Solid oxide fuel cells (SOFCs) can oxidize diverse fuels by harnessing oxygen ions. Benefited by this feature, direct utilization of hydrocarbon fuels without external reformers allows for cost-effective realization of SOFC systems. Superior hydrocarbon reforming catalysts such as nickel are required for this application. However, carbon coking on nickel-based anodes and the low efficiency associated with hydrocarbon fueling relegate these systems to immature technologies. Herein, we present methane-fueled SOFCs operated under conditions of catalytic partial oxidation (CPOX). Utilizing CPOX eliminates carbon coking on Ni and facilitates the oxidation of methane. Ni-gadolinium-doped ceria (GDC) anode-based cells exhibit exceptional power densities of 1.35 W cm-2 at 650 °C and 0.74 W cm-2 at 550 °C, with stable operation over 500 h, while the similarly prepared Ni-yttria stabilized zirconia anode-based cells exhibit a power density of 0.27 W cm-2 at 650 °C, showing gradual degradation. Chemical analyses suggest that combining GDC with the Ni anode prevents the oxidation of Ni due to the oxygen exchange ability of GDC. In addition, CPOX operation allows the usage of stainless steel current collectors. Our results demonstrate that high-performance SOFCs utilizing methane CPOX can be realized without deterioration of Ni-based anodes using cost-effective current collectors.

  2. Synthesis of Au/C and Au/Pani for anode electrodes in glucose microfluidic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Balcazar, M.; Morales-Acosta, D.; Castaneda, F.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, 76703 Queretaro (Mexico); Ledesma-Garcia, J. [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, 76010 Queretaro (Mexico)

    2010-06-15

    Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm{sup -} {sup 2}) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions. (author)

  3. Electric current generation by sulfur-reducing bacteria in microbial-anode fuel cell

    Science.gov (United States)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2012-10-01

    Sulfur - reducing bacteria are a part of normal microflora of natural environment. Their main function is supporting of reductive stage of sulfur cycle by hydrogen sulfide production in the process of dissimilative sulfur-reduction. At the same time these bacteria completely oxidize organic compounds with CO2 and H2O formation. It was shown that they are able to generate electric current in the two chamber microbial-anode fuel cell (MAFC) by interaction between these two processes. Microbial-anode fuel cell on the basis of sulfur- and ferric iron-reducing Desulfuromonas acetoxidans bacteria has been constructed. It has been shown that the amount of electricity generation by investigated bacteria is influenced by the concentrations of carbon source (lactate) and ferric iron chloride. The maximal obtained electric current and potential difference between electrodes equaled respectively 0.28-0.29 mA and 0.19-0.2 V per 0.3 l of bacterial suspension with 0.4 g/l of initial biomass that was grown under the influence of 0.45 mM of FeCl3 and 3 g/l of sodium lactate as primal carbon source. It has also been shown that these bacteria are resistant to different concentrations of silver ions.

  4. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    The efficiency and lifetime of solid oxide fuel cells (SOFCs) is compromised by mechanical failure of cells in the system. Improving the mechanical reliability is a major step in ensuring feasibility of the technology. To quantify the stress in a cell, mechanical properties of the different layers...... need to be accurately known. Since the mechanical properties are heavily dependent on the microstructures of the materials, it is highly advantageous to understand the impact of microstructures and to be able to determine accurate effective mechanical properties for cell or stack scale analyses...... are computed by the finite element method. The macroscopic creep response of the porous anode support is determined based on homogenization theory. It is shown that micromechanical modeling provides an effective tool to study the effect of microstructures on the macroscopic properties....

  5. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    Science.gov (United States)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  6. Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors

    Directory of Open Access Journals (Sweden)

    Jiseon You

    2015-12-01

    Full Text Available Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for 20–25 days, reached steady states and produced 80–87 μW and 20–29 μW consistently for 3 weeks, respectively. When the substrates were swapped, the casein-enriched group showed faster response to acetate and higher power output, compared to the acetate-enriched group. Also when the substrates were switched back to their original groups, the power output of both groups returned to the previous levels more quickly than when the substrates were swapped the first time. During the substrate change, both MFC groups showed stable power output once they reached their steady states and the output of each group with different substrates was reproducible within the same group. Community level physiological profiling also revealed the possibility of manipulating anodic biofilm metabolisms through exposure to different feedstock conditions.

  7. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  8. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells

    Science.gov (United States)

    Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong

    One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.

  9. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit [Iowa State University, Department of Mechanical Engineering, 2034 Black Engineering Building, Ames, IA 50011 (United States)

    2010-10-15

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 {mu}m and 21-52%, respectively. (author)

  10. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Science.gov (United States)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce 0.9Gd 0.1O 1.95 on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 μm and 21-52%, respectively.

  11. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells

    Science.gov (United States)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; Gullo, L. R.; Rosa, D. La; Antonucci, V.

    A La 0.6Sr 0.4Fe 0.8Co 0.2O 3-Ce 0.8Gd 0.2O 1.9 (LSFCO-CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm -2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.

  12. Accelerated creep in solid oxide fuel cell anode supports during reduction

    Science.gov (United States)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  13. Enhancement in open-circuit voltage of implantable CMOS-compatible glucose fuel cell by improving the anodic catalyst

    Science.gov (United States)

    Niitsu, Kiichi; Ando, Takashi; Kobayashi, Atsuki; Nakazato, Kazuo

    2017-01-01

    This paper presents an implantable CMOS-compatible glucose fuel cell that generates an open-circuit voltage (OCV) of 880 mV. The developed fuel cell is solid-catalyst-based and manufactured from biocompatible materials; thus, it can be implanted to the human body. Additionally, since the cell can be manufactured using a semiconductor (CMOS) fabrication process, it can also be manufactured together with CMOS circuits on a single silicon wafer. In the literature, an implantable CMOS-compatible glucose fuel cell has been reported. However, its OCV is 192 mV, which is insufficient for CMOS circuit operation. In this work, we have enhanced the performance of the fuel cell by improving the electrocatalytic ability of the anode. The prototype with the newly proposed Pt/carbon nanotube (CNT) anode structure successfully achieved an OCV of 880 mV, which is the highest ever reported.

  14. Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells

    Science.gov (United States)

    Liu, Zhangbo; Ding, Dong; Liu, Beibei; Guo, Weiwei; Wang, Wendong; Xia, Changrong

    2011-10-01

    Impregnated nanoparticles are very effective in improving the electrochemical performance of solid oxide fuel cell (SOFC) anodes possibly due to the extension of reaction sites and/or the enhancement of catalytic activity. In this work, samaria-doped ceria (SDC), pure ceria, samaria, and alumina oxides impregnated Ni-based anodes are fabricated to compare the site extending and the catalytic effects. Except for alumina, the impregnation of the other three nano-sized oxides could substantially enhance the performance of the anodes for the hydrogen oxidation reactions. Moreover, single cells with CeO2 and Sm2O3 impregnated anodes could exhibit as great performance as those with SDC impregnated anodes. When the impregnation loading reached the optimal value, 1.7 mmol cm-3, these cells exhibit very high performance, with peak power densities around 750 mW cm-2. The high performance of CeO2 and Sm2O3 impregnated anodes demonstrates that the improved performance are mainly attributed to the significantly improved electrochemical activities of the anodes, but not to the extension of triple-phase-boundary, and wet impregnation is indeed an alternative and effective technique to introduce these nano-sized catalytic active oxides into the anode configuration of SOFCs to enhance cell performance, stability and reliability.

  15. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune

    2008-01-01

    are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work......, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused......-reforming catalysis. In the context of electrochemically tested and technologically relevant cells, the majority of the microstructural work is performed on a cell tested at 850°C under relatively severe conditions for 17,500 hours. It is demonstrated that the major Ni rearrangements take place at the interface...

  16. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN; Liangliang; ZHENG; Tao; HU; Zhimin; LUO; Linghong; WU; Yefan; XU; Xu; CHENG; Liang; SHI; Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3 stabilized zirconia(Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells(DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuC l3 solvent at pH =4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98 MnO 3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy, energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 m W/cm at 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  17. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Liangliang; ZHENG Tao; HU Zhimin; LUO Linghong; WU Yefan; XU Xu; CHENG Liang; SHI Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3stabilized zirconia (Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells (DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuCl3solvent at pH=4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98MnO3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy,energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 mW/cmat 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  18. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    Science.gov (United States)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  19. Correlated resistor network study of porous solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Abel, J.; Kornyshev, A.A.; Lehnert, W. [Forschungszentrum Juelich (Germany). Inst. fuer Energieverfahrenstechnik

    1997-12-01

    A resistor network model is developed for solid oxide fuel cell (SOFC) composite anodes, in which solid electrolyte grains, metal particles, and pores are considered on the same footing. The model is studied by a Monte Carlo simulation on a face-centered cubic lattice, with a random distribution of the three components over the lattice sites. The concept of active bonds is used; the bond between a metal and an electrolyte site is conductive (reaction-active) if the sites belong to clusters connected to the solid-electrolyte membrane or metal current collector, respectively, and if the bond has at least one neighbor site which is a part of a pore cluster connected with the fuel supplying gas channels. Active bonds are characterized by an elementary reaction resistance, inactive bonds are blocking. The total inner resistance of the anode is calculated as a function of composition and the elementary reaction resistance, R{sub r}, vs. ion transport resistance, R{sub e} (of a bond between two solid-electrolyte grains). Compositions which provide the lowest inner resistance for a given R{sub r}/R{sub e} ratio are revealed. Across-the-sample distribution of the current through the three-phase boundary is investigated. The higher the R{sub r}/R{sub e} ratio, the larger areas of the three-phase boundary are used; however, if the ratio is low, the reaction occurs only very close to the anode/membrane interface to avoid ion transport limitations. A scaling law for the reaction penetration depth in side the anode, N{sub f} {proportional_to} (R{sub r}/R{sub e}){sup {beta}} (where {beta} {le} 0.5) is suggested in accordance with the Monte Carlo results. In line with the existing experimental data, the simulation and scaling estimates reveal the interplay between the reaction penetration depth and the anode thickness, which determines the thickness effect on the inner resistance.

  20. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants.

    Science.gov (United States)

    Li, Jie; Liu, Guangli; Zhang, Renduo; Luo, Yong; Zhang, Cuiping; Li, Mingchen

    2010-06-01

    The effect of nitrobenzene (NB) on electricity generation and simultaneous biodegradation of NB were studied with two types of microbial fuel cells (MFCs): a ferricyanide-cathode MFC with NB as the anodic reactant and a NB-cathode MFC. Compared to controls without NB, the presence of NB in the anode of the first MFC decreased maximum voltage outputs, maximum power densities and Coulombic efficiencies. No electricity was generated from the first MFC using NB as the sole fuel; however, the second MFC using NB as the electron acceptor generated electricity successfully with a maximum voltage of 400mV. NB was degraded completely within 24h in both anode and cathode chambers. Denaturing gradient gel electrophoresis (DGGE) profiles demonstrated that the presence of NB caused changes in relative abundance of the dominant bacterial species and emergence of new bacteria on the anodes.

  1. Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants ▿ †

    Science.gov (United States)

    De Schamphelaire, Liesje; Cabezas, Angela; Marzorati, Massimo; Friedrich, Michael W.; Boon, Nico; Verstraete, Willy

    2010-01-01

    By placing the anode of a sediment microbial fuel cell (SMFC) in the rhizosphere of a rice plant, root-excreted rhizodeposits can be microbially oxidized with concomitant current generation. Here, various molecular techniques were used to characterize the composition of bacterial and archaeal communities on such anodes, as influenced by electrical circuitry, sediment matrix, and the presence of plants. Closed-circuit anodes in potting soil were enriched with Desulfobulbus-like species, members of the family Geobacteraceae, and as yet uncultured representatives of the domain Archaea. PMID:20097806

  2. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  3. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  4. Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Na; Lue, Zhe; Chen, Kongfa; Huang, Xiqiang [Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Su, Wenhui [Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); International Center for Material Physics, Academia, Shenyang 110015 (China)

    2008-10-15

    Anode functional layers (AFLs) were fabricated using slurry spin coating method on anode substrates to improve the performance of cells based on samaria-doped ceria (SDC) films. The effects of the chemical compositions of AFL and AFL thickness on the performance of solid oxide fuel cell anodes were investigated by studying their effect on the ohmic loss, electrode overpotential, and output performance of cells in different atmospheres. With humidified hydrogen used as fuel and oxygen as oxidant, the cell with an 8-{mu}m-thick AFL (NiO:SDC = 6:4) exhibited excellent maximum power densities of 3.41, 2.89, 1.46 and 0.80 W cm{sup -2} at 650, 600, 550 and 500 C, respectively. (author)

  5. Anode reaction mechanism and crossover in direct dimethyl ether fuel cell

    Science.gov (United States)

    Mizutani, Itsuko; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-ichiro; Kamiya, Nobuyuki

    The anode reaction mechanism and the crossover of a direct dimethyl ether fuel cell (DDMEFC) have been investigated. This was done by considering the anode products of the half-cell and DDMEFC experiments. It was found that the CO 2 current efficiency of the DDMEFC was almost 1 at 30-80 °C and that this value was higher than that of a DMFC. The main by-products of the DDMEFC were methyl formate and methanol whose amounts are negligibly small compared to CO 2. With respect to crossover, the influence of DME on the oxygen reduction reaction (ORR) was examined with a half-cell, and the amount of crossover of DME was measured while operating an actually constructed DDMEFC. From these experiments, it was found that DME does not influence the ORR as much as methanol under similar conditions. Furthermore, the amount of crossover of DME decreased with an increase in temperature and current density and it was one-half that of methanol on open circuit and at 80 °C. The CO 2 current efficiency of the DDMEFC is higher than that of a DMFC, and the influence of crossover in the DDMEFC is less than that in the DMFC. Since the temperature dependence of the reactivity of DME is larger than that of methanol, the higher output is expected for the DDMEFC at the elevated temperature. Therefore, the DDMEFC has a promising potential as a portable power source in the future.

  6. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.

    Science.gov (United States)

    Liu, Jing; Qiao, Yan; Guo, Chun Xian; Lim, Sierin; Song, Hao; Li, Chang Ming

    2012-06-01

    Graphene was electrochemically deposited on carbon cloth to fabricate an anode for a Pseudomonas aeruginosa mediatorless microbial fuel cell (MFC). The graphene modification improved power density and energy conversion efficiency by 2.7 and 3 times, respectively. The improvement is attributed to the high biocompatibility of graphene which promotes bacteria growth on the electrode surface that results in the creation of more direct electron transfer activation centers and stimulates excretion of mediating molecules for higher electron transfer rate. A parallel bioelectrocatalytic mechanism consisting of simultaneous direct electron transfer and cell-excreted mediator-enabled electron transfer was established in the P. aeruginosa-catalyzed MFC. This study does not only offer fundamental insights into MFC reactions, but also suggests a low cost manufacturing process to fabricate high power MFCs for practical applications.

  7. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  8. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2V produced the highest power of 1330±60mWm-2 for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2V consistently improves power production compared to use of a more positive potential or the lack of a set potential. © 2013 Elsevier Ltd.

  9. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  10. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Primdahl, S.

    1999-08-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700 deg. C to 1000 deg. C, and the most important technological parameters are the polarization resistance and the long-term stability. The polarization resistance can be measured by a number of techniques, in the present work impedance spectroscopy has been used extensively. By impedance spectroscopy limiting processes in the anode polarization resistance may often be separated and characterized individually, provided they have a reasonable separation in time constants. Three limiting processes are recognized in impedance spectra obtained on technological Ni/YSZ cermet anodes characterized against a stable reference electrode atmosphere. By parameter studies and illustrative experiments, the two contributions at low and medium frequency have been identified as gas conversion and diffusion limitations, respectively. Both of these effects are concentration limitations relating to the inefficient exchange of fuel gas in the test setup outside the porous cermet. A test setup geometry where these concentration effects are avoided for high-performance electrodes is recommended. The high frequency limitation is demonstrated to relate to the cermet structure. The dependence on gas composition, temperature, adsorbed species (sulfur), isotopes (H/D), sintering temperature and cermet thickness is investigated. Despite these studies and several similar studies by others, the exact chemical or physical nature of the limiting step has not been incontestably identified. However, these is a general consensus in literature about the hydrogen oxidation process taking place on or near to the triple phase boundary (TPB) line, where open gas-filled pores, the continuous electrolyte phase (oxide ion cunductor) and the continuous Ni phase (electronic conductor) meet. The physical thickness

  11. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    Science.gov (United States)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  12. Initial development and structure of biofilms on microbial fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Keller Jürg

    2010-04-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET. The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing, in contrast to when the anode was in open circuit (soluble electron acceptor where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively, which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram

  13. Developing a Thermal- and Coking-Resistant Cobalt-Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Yan, N.; Pandey, J.; Zeng, Y.; Amirkhiz, B.S.; Hua, B.; Geels, N.J.; Luo, J.L.; Rothenberg, G.

    2016-01-01

    We report the development of a novel Co–W bimetallic anode catalyst for solid oxide fuel cells (SOFCs) via a facile infiltration-annealing process. Using various microscopic and spectroscopic measurements, we find that the formed intermetallic nanoparticles are highly thermally stable up to 900 °C

  14. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this microbial community is established from inoculation of the MFC anode chamber....... The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs....

  15. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  16. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LUO Zhong-yang; YU Chun-jiang; LUO Dan; XU Zhu-an; CEN Ke-fa

    2005-01-01

    Ni-Ce0.8Sm0.2O1.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800 ℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.sSm0.2O1.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3·2Ni(OH)2.4H2O or Ni(NO3)2.6H2O decomposition technique.

  17. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance

    DEFF Research Database (Denmark)

    Min, Booki; Romàn, Ó.B.; Angelidaki, Irini

    2008-01-01

    The performance of a microbial fuel cell (MFC) was investigated at different temperatures and anodic media. A lag phase of 30 h occurred at 30°C which was half that at room temperature (22°C). The maximum power density at 30°C was 70 mW/m2 and at 22°C was 43 mW/m2. At 15°C, no successful operation...... was observed even after several loadings for a long period of operation. Maximum power density of 320 mW/m2 was obtained with wastewater medium containing phosphate buffer (conductivity: 11.8 mS/cm), which was approx. 4 times higher than the value without phosphate additions (2.89 mS/cm)....

  18. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  19. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hagen, Anke

    2009-01-01

    Biomass-derived fuel, e.g. biogas, is a potential fuel for solid oxide fuel cells (SOFCs). At operating temperature (850 °C) reforming of the carbon-containing biogas takes place over the Ni-containing anode. However, impurities in the biogas, e.g. H2S, can poison both the reforming...... the polarization resistance increased when adding H2S. These changes in resistance were found to happen at 1212 Hz, which is related to reactions at the anode–electrolyte interface. These findings can be used to identify S-related effects on the performance, when an SOFC is fuelled with biogas or other fuels...

  20. An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells.

    Science.gov (United States)

    Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei; Hu, Xile

    2014-01-03

    The direct formic acid fuel cell is an emerging energy conversion device for which palladium is considered as the state-of-the-art anode catalyst. In this communication, we show that the activity and stability of palladium for formic acid oxidation can be significantly enhanced using nickel phosphide (Ni(2)P) nanoparticles as a cocatalyst. X-ray photoelectron spectroscopy (XPS) reveals a strong electronic interaction between Ni(2)P and Pd. A direct formic acid fuel cell incorporating the best Pd–Ni(2)P anode catalyst exhibits a power density of 550 mWcm(-2), which is 3.5 times of that of an analogous device using a commercial Pd anode catalyst.

  1. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  2. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    Science.gov (United States)

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples.

  3. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  4. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    Institute of Scientific and Technical Information of China (English)

    Guotao Sun; Diogo de Sacadura Rodrigues; Anders Thygesen; Geoffrey Daniel; Dinesh Fernando; Anne S Meyer

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor-mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usual y this micro-bial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were eval-uated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in al inocula and its abundance during MFC operation was positively linked to the MFC performance. The LS inoculated MFCs showed highest abundance (18%± 1%) of G. sulfurreducens, maximum current density [Imax=(690 ± 30) mA·m−2] and coulombic efficiency (CE=29%± 1%) with acetate as the substrate. Imax and CE increased to (1780 ± 30) mA·m−2 and 58%± 1%, respectively, after decreasing the Rext from 1000Ωto 200Ω, which also correlated to a higher abundance of G. sulfurreducens (21%± 0.7%) on the MFC anodic biofilm. The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs.

  5. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  6. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  7. Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer

    Science.gov (United States)

    Liu, Tong; Wang, Yao; Ren, Cong; Fang, Shumin; Mao, Yating; Chen, Fanglin

    2015-10-01

    Influence of the air-gap, the distance from the tube-in-orifice spinneret to the upper surface of the external coagulant bath during the extrusion/phase-inversion process, on the microstructure of nickel - yttria-stabilized zirconia (Ni-YSZ) hollow fibers has been systematically studied. When the air-gap is 0 cm, the obtained Ni-YSZ hollow fiber has a sandwich microstructure. However, when the air-gap is increased to 15 cm, a bi-layer Ni-YSZ hollow fiber consisting of a thin layer with small pores and a thick support with highly porous fingerlike macrovoids has been achieved. The output power density of microtubular solid oxide fuel cells (MT-SOFCs) with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM increases from 594 mW cm-2 for the cells with the Ni-YSZ anode of sandwich microstructure to 832 mW cm-2 for the cells with the Ni-YSZ anode of bi-layer microstructure at 750 °C, implying that to achieve the same output power density, the weight of the cells with the bi-layer anode support can be reduced to 41.5% compared with that of the cells with the sandwich anode support. Thermal-cycling test shows no obvious degradation on the open-circuit-voltage (OCV), indicating that the MT-SOFCs have robust resistance to thermal cycling.

  8. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  9. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C

    2012-01-03

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  10. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells

    Science.gov (United States)

    Demirci, Umit B.

    The present paper reviews the best anode electrocatalysts, mainly the alloys, which have been tested in direct liquid-feed fuel cells fed with methanol, ethanol or formic acid. It attempts to interpret the alloys catalytic behaviours by using the Nørskov and co-workers' theoretical work [A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, J. Mol. Catal. A 115 (1997) 421; B. Hammer, J.K. Nørskov, Adv. Catal. 45 (2000) 71; J. Greeley, J.K. Nørskov, M. Maurikakis, Annu. Rev. Phys. Chem. 53 (2002) 319], who proposed surface theories and databases about the metals d-band centre shift and the segregation. It also attempts to suggest new alloys combinations. For example, for the methanol oxidation, the best catalyst is Pt-Ru and the following features make this catalyst stand out: the d-band centre of Pt shifts down what supposes weaker molecules adsorption and Pt strongly segregates. From this analysis, it is suggested that the Pd-Ni alloy may be a potentially good catalyst. Similar interpretations are given for the three fuel cell systems regarded in the present paper.

  11. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    CERN Document Server

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

    2012-01-01

    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  12. In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jeangros, Q. [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Faes, A. [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [Laboratory of Industrial Energy Systems, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Wagner, J.B.; Hansen, T.W. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Aschauer, U. [Chemistry Department, Princeton University, Princeton, NJ 08544 (United States); Van herle, J. [Laboratory of Industrial Energy Systems, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Hessler-Wyser, A., E-mail: aicha.hessler@epfl.ch [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Dunin-Borkowski, R.E. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2010-08-15

    Environmental transmission electron microscopy is used in combination with density functional theory calculations to study the redox stability of a nickel/yttria-stabilized zirconia solid oxide fuel cell anode. The results reveal that the transfer of oxygen from NiO to yttria-stabilized zirconia triggers the reduction reaction. During Ni reoxidation, the creation of a porous structure, due to mass transport, accounts for the redox instability of the Ni-based anode. Both the expansion of NiO during a redox cycle and the presence of stress in the yttria-stabilized zirconia grains are observed directly. Besides providing an understanding of the Ni-YSZ anode redox degradation, the observations are used to propose an alternative anode design for improved redox tolerance.

  13. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    Science.gov (United States)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  14. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  15. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system

    Science.gov (United States)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei

    2016-09-01

    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  16. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  17. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  18. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Science.gov (United States)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 °C. The single cell with the painted cathode generates a maximum power density of 405 mW cm -2 at 850 °C, when operating with humidified hydrogen.

  19. Solid oxide fuel cell anode surface modification by magnetron sputtering of NiO/YSZ thin film

    Science.gov (United States)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Smolyanskiy, E. A.; Lauk, A. L.; Kovalchuk, A. N.; Remnev, G. E.; Lebedynskiy, A. M.

    2017-05-01

    NiO/ZrO2-Y2O3 (NiO/YSZ) anode functional layers (AFL) with 16-60 vol.% of NiO were deposited onto NiO/YSZ anode substrates by magnetron sputtering, followed by annealing in air at 1200 °C. The optimal deposition conditions for NiO/YSZ were determined. NiO content in the films was varied by changing the oxygen flow rate during the sputtering process. The microstructure and phase composition of NiO/YSZ anode functional layer were studied by SEM and XRD methods. Anode functional layers were fully crystallized and comprised of grains up to 500 nm in diameter after reduction in hydrogen. Anode-supported solid oxide fuel cells (SOFC) with the diameter of 20 mm including the magnetron sputtered AFL, 4-microns thick YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Electrochemical properties of the single fuel cells were investigated as a function of NiO volume content in AFL and AFL thickness.

  20. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  1. Multi-Fuel oxidation in Solid Oxide Fuel Cells: Model anodes and system studies

    NARCIS (Netherlands)

    Patel, H.C.

    2015-01-01

    With the evolution of renewable energy technologies it has become necessary that a balance is found between power production with conventional energy sources and other long term solutions. SOFCs offer an alternative for utilising conventional fossil fuels as well as sustainable biomass derived fuels

  2. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    Science.gov (United States)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  3. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    Science.gov (United States)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  4. Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether

    Science.gov (United States)

    Liu, Yu; Guo, Youmin; Wang, Wei; Su, Chao; Ran, Ran; Wang, Huanting; Shao, Zongping

    This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr 0.4Ce 0.4Y 0.2O 3-δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH 4 and CO 2 as the only gaseous carbon-containing products. An O 2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH 4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm -2 are achieved for the cells operating on pure DME, a DME + H 2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H 2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H 2O than on H 2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.

  5. In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Faes, Antonin; Wagner, Jakob Birkedal

    2010-01-01

    Environmental transmission electron microscopy is used in combination with density functional theory calculations to study the redox stability of a nickel/yttria-stabilized zirconia solid oxide fuel cell anode. The results reveal that the transfer of oxygen from NiO to yttria-stabilized zirconia...... triggers the reduction reaction. During Ni reoxidation, the creation of a porous structure, due to mass transport, accounts for the redox instability of the Ni-based anode. Both the expansion of NiO during a redox cycle and the presence of stress in the yttria-stabilized zirconia grains are observed...

  6. Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pusz, Jakub; Smirnova, Alevtina; Mohammadi, Alidad; Sammes, Nigel M. [Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, 44 Weaver Road, Storrs, CT 06269 (United States)

    2007-01-01

    The maximum fracture strength of Ni/8YSZ anodes exposed to several redox cycles is compared. The anodes were fabricated using fine and coarse particle size powders. Fine-structured powders show a 77% increase in mechanical strength after exposure to three redox cycles. The coarse-structured material did not produce similar results and redox cycling resulted in gradual decrease in the mechanical stability of the supports. The impact of redox cycling on the microstructure was evaluated using SEM. Fine-structured anodes tend to agglomerate leading to decreased porosity. Coarse anodes did not show any significant changes in microstructure while exposed to redox cycling. The electrochemical performance evaluated under load conditions, and after the first redox cycle, indicates a 40% improvement for the cell fabricated using a fine-structured anode powder. The increase in performance is believed to be due to better adhesion between the anode material and the Ni current collector. The cell fabricated using a coarse-structured anode powder did not recover after the redox cycle. (author)

  7. Preparation and influence of performance of anodic catalysts for direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenbo; YIN Geping; SHI Pengfei

    2007-01-01

    This research aims at increasing the utilization of platinum-ruthenium alloy (Pt-Ru) catalysts and thus lowering the catalyst loading in anodes for methanol electrooxidation.The direct methanol fuel cell's (DMFC) anodic catalysts,Pt-Ru/C,were prepared by chemical reduction with a reducing agent added in two kinds of solutions under different circumstances.The reducing agent was added in hot solution with the protection of inert gases or just air,and in cold solution with inert gases.The catalysts were treated at different temperatures.Their performance was tested by cyclic voltammetry and potentiostatic polarization by utilizing their inherent powder microelectrode in 0.5 mol/L CH3OH and 0.5 mol/L H2SO4 solution.The structures and micro-surface images ofthe catalysts were determined and observed by X-ray diffraction and transmission electron microscopy,respectively.The catalyst prepared in inert gases showed a better catalytic performance for methanol electrooxidation than that prepared in air.It resulted in a more homogeneous distribution of the Pt-Ru alloy in carbon.Its size is small,only about 4.5 nm.The catalytic performance is affected by the order of the reducing agent added.The performance of the catalyst prepared by adding the reductant at constant temperature of the solution is better than that prepared by adding it in the solution at 0℃ and then heating it up to the reducing temperature.The structure of the catalyst was modified,and there was an increase in the conversion of ruthenium into the alloyed state and an increase in particle size with the ascension of heat treatment temperature.In addition,the stability of the catalyst was improved after heat treatment.

  8. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    Science.gov (United States)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  9. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  10. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  11. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells.

    Science.gov (United States)

    Marchionni, Andrea; Bevilacqua, Manuela; Bianchini, Claudio; Chen, Yan-Xin; Filippi, Jonathan; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish; Wang, Lianqin; Vizza, Francesco

    2013-03-01

    The electrooxidation of ethylene glycol (EG) and glycerol (G) has been studied: in alkaline media, in passive as well as active direct ethylene glycol fuel cells (DEGFCs), and in direct glycerol fuel cells (DGFCs) containing Pd-(Ni-Zn)/C as an anode electrocatalyst, that is, Pd nanoparticles supported on a Ni-Zn phase. For comparison, an anode electrocatalyst containing Pd nanoparticles (Pd/C) has been also investigated. The oxidation of EG and G has primarily been investigated in half cells. The results obtained have highlighted the excellent electrocatalytic activity of Pd-(Ni-Zn)/C in terms of peak current density, which is as high as 3300 A g(Pd)(-1) for EG and 2150 A g(Pd)(-1) for G. Membrane-electrode assemblies (MEA) have been fabricated using Pd-(Ni-Zn)/C anodes, proprietary Fe-Co/C cathodes, and Tokuyama A-201 anion-exchange membranes. The MEA performance has been evaluated in either passive or active cells fed with aqueous solutions of 5 wt % EG and 5 wt % G. In view of the peak-power densities obtained in the temperature range from 20 to 80 °C, at Pd loadings as low as 1 mg cm(-2) at the anode, these results show that Pd-(Ni-Zn)/C can be classified amongst the best performing electrocatalysts ever reported for EG and G oxidation.

  12. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell.

    Science.gov (United States)

    Kimura, Zen-ichiro; Chung, Kyung Mi; Itoh, Hiroaki; Hiraishi, Akira; Okabe, Satoshi

    2014-04-01

    A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB(T), was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB(T) was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB(T) was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB(T) represented a distinct lineage within the genus Raoultella (98.5-99.4 % 16S rRNA gene sequence similarity and 94.0-96.5 % sequence similarity based on the three concatenated housekeeping genes gyrA, rpoB and parC. Strain 1GB(T) exhibited DNA-DNA hybridization relatedness of 7-43 % with type strains of all established species of the genus Raoultella. On the basis of these phenotypic, phylogenetic and genotypic data, the name Raoultella electrica sp. nov. is proposed for strain 1GB(T). The type strain is 1GB(T) ( = NBRC 109676(T) = KCTC 32430(T)).

  13. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ

    Science.gov (United States)

    Hanifi, Amir Reza; Laguna-Bercero, Miguel A.; Sandhu, Navjot Kaur; Etsell, Thomas H.; Sarkar, Partha

    2016-06-01

    In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/Nd2NiO4+δ-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ratio of 65:35 wt% (Ni:YSZ 50:50 vol.%) with 30 vol.% graphite as the pore former. As received Tosoh YSZ or its calcined form (heated at 1500 °C for 3 hours) was used in the anode support as the YSZ source. Electrochemical results showed that optimization of the fuel electrode microstructure is essential for the optimal distribution of gas within the support of the cell, especially under electrolysis operation where the performance for an optimized cell (calcined YSZ) was enhanced by a factor of two. In comparison with a standard cell (containing as received YSZ), at 1.5 V and 800 °C the measured current density was -1380 mA cm-2 and -690 mA cm-2 for the cells containing calcined and as received YSZ, respectively. The present study suggests that the anode porosity for improved cell performance under SOEC is more critical than SOFC mode due to more complex gas diffusion under electrolysis mode where large amount of steam needs to be transfered into the cell.

  14. Improving the performance of microbial fuel cells by reducing the inherent resistivity of carbon fiber brush anodes

    Science.gov (United States)

    Xie, Yang'en; Ma, Zhaokun; Song, Huaihe; Wang, Huiyao; Xu, Pei

    2017-04-01

    This study investigated the effect of carbon fibers as brush anode materials on the performance of microbial fuel cells (MFCs). Two types of carbon fibers with different electrical resistivity and functionality - polyacrylonitrile (PAN) (ρ: 28.0 μΩ m) and pitch (ρ: 2.05 μΩ m) were investigated. X-ray photoelectron spectroscopy analysis showed that the PAN- and pitch-based carbon fibers presented almost the same surface elements and functional groups, and there was no significant difference in microbial growth on the brush anodes. Current interrupt and steady discharging methods demonstrated the pitch-based carbon brush anodes had lower ohmic resistance and generated higher power density. After nitric acid treatment, the power density generated by the PAN- and pitch-based anodes increased by 29.3% and 26.7%, achieving 816 and 895 mW m-2, respectively. Using pitch-based carbon fiber brush as anode attained better performance than the widely used PAN-based carbon brush. The acid treated pitch-based carbon fibers provide a promising alternative to highly efficient anode materials for the extensive application of MFCs.

  15. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.

    Science.gov (United States)

    Sonawane, Jayesh M; Yadav, Abhishek; Ghosh, Prakash C; Adeloju, Samuel B

    2017-04-15

    Microbial fuel cells (MFCs) are novel bio-electrochemical device for spontaneous or single step conversion of biomass into electricity, based on the use of metabolic activity of bacteria. The design and use of MFCs has attracted considerable interests because of the potential new opportunities they offer for sustainable production of energy from biodegradable and reused waste materials. However, the associated slow microbial kinetics and costly construction materials has limited a much wider commercial use of the technology. In the past ten years, there has been significant new developments in MFCs which has resulted in several-fold increase in achievable power density. Yet, there is still considerable possibility for further improvement in performance and development of new cost effective materials. This paper comprehensively reviews recent advances in the construction and utilization of novel anodes for MFCs. In particular, it highlights some of the critical roles and functions of anodes in MFCs, strategies available for improving surface areas of anodes, dominant performance of stainless-steel based anode materials, and the emerging benefits of inclusion of nanomaterials. The review also demonstrates that some of the materials are very promising for large scale MFC applications and are likely to replace conventional anodes for the development of next generation MFC systems. The hurdles to the development of commercial MFC technology are also discussed. Furthermore, the future directions in the design and selection of materials for construction and utilization of MFC anodes are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    Directory of Open Access Journals (Sweden)

    Yoo Seok Lee

    Full Text Available We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs, by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB. The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2 than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  17. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  18. Preparation and electrochemistry of Pd-Ni/Si nanowire nanocomposite catalytic anode for direct ethanol fuel cell.

    Science.gov (United States)

    Miao, Fengjuan; Tao, Bairui; Chu, Paul K

    2012-04-28

    A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells.

  19. Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles.

    Science.gov (United States)

    Cucinotta, Clotilde S; Bernasconi, Marco; Parrinello, Michele

    2011-11-11

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  20. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    Science.gov (United States)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  1. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell

    Science.gov (United States)

    Wang, Xin; Tang, Yawen; Gao, Ying; Lu, Tianhong

    It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode. This is attributed to that Ir can promote the oxidation of formic acid at Pd through the direct pathway because Ir can decrease the adsorption strength of CO on Pd. However, when the content of Ir in the Pd-Ir/C catalyst is too high the electrocatalytic activity of the Pd-Ir/C catalyst would be decreased because Ir has no electrocatalytic activity for the oxidation of formic acid.

  2. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC).

    Science.gov (United States)

    Zhang, Jiqiang; Zheng, Ping; Zhang, Meng; Chen, Hui; Chen, Tingting; Xie, Zuofu; Cai, Jing; Abbas, Ghulam

    2013-12-01

    Effect of substrate concentration on substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC) was investigated over a broad range of substrate concentrations. Substrate degradation rates and power generation could be promoted with increasing substrate concentration in a certain range, but both of them would be inhibited at high substrate concentrations. Maximum denitrification rate of 1.26 ± 0.01 kg NO(-)-N/m(3)d and maximum output voltage of 1016.75 ± 4.74 mV could be achieved when initial NO3(-)-N concentration was 1999.95 ± 2.86 mg/L. Based on Han-Levenspiel model, kinetics of substrate degradation and power generation in the AD-MFC were established. According to the kinetic model, the half-saturation coefficient and the critical inhibitory concentration for nitrate were more than 200 and 4300 mg/L, respectively. The results demonstrated that AD-MFC was capable of treating nitrate-containing wastewater and generating electricity simultaneously, and tolerant to high strength nitrate-containing wastewater.

  3. Electrocatalysis of fuel cells reaction on Pt and Pt-bimetallic anode catalysts: A selective review

    Directory of Open Access Journals (Sweden)

    Stamenković Vojislav

    2002-01-01

    Full Text Available In this review we selectively summarize recent progress, primarily from our laboratory, in the development of interrelationships between the kinetics of the fuel cells reactions and the structure/composition of anode catalysts. The focus is placed on two types of metallic surfaces: platinum single crystals and bimetallic surfaces based on Pt. In the first part it was illustrated that the hydcogen reaction is structure sensitive process, with Pt(110 being an order of magnitude more active than either of the atomically "flatter" (100 and (111 surfaces. The hydrogen reaction on Pt(hkl modified by pseudomorphic Pd (submonolayers shows the "volcano-like" behavior, having the maximum rate on Pt(111 modified by 1 ML of Pd. The Pt(111-Pd system is used to demonstrate how the energetics of intermediates formed in the hydrogen reaction is affected by interfacial bonding and energetic constraints produced between pseudomorphic Pd films and the Pt(111 substrate. In the second part it was shown that the oxidation of Ha in the presence of CO occurs concurrently with CO oxidation on Pt and Pt bimetallic surfaces. The Pt-Ru system is used to demonstrate that both the bifunctional effect and the ligand effect contribute to the influence of Ru on the CO oxidation rate and for Hz oxidation process in the presence of CO. The knowledge is then used to create the real-life catalyst with the catalytic activities which are, to the greatest extend possible similar to the tailor-made surface.

  4. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  5. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  6. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development.

  7. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  8. Effect of adding urea on performance of Cu/CeO{sub 2}/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenyuan [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Lue Zhe, E-mail: lvzhe@hit.edu.c [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Zhu Xingbao; Guan Bo; Wei Bo; Guan Chengzhi; Su Wenhui [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China)

    2011-02-01

    Anode microstructure has a great influence on the cell performance. The addition of urea into impregnated solution has been proposed to tailor the distribution and/or morphology of Cu when fabricating the Cu-based anodes by impregnation method. While the previous reports demonstrated the single cell performance has not been improved in this route, in this paper, fuel cells with Cu/yttria-stabilized zirconia (YSZ) and Cu-CeO{sub 2}/YSZ anodes were fabricated and evaluated with improved outputs. The microstructure of Cu in anodes appeared significantly different after the addition of urea. The electronic conductivity obtained from the anodes impregnated with adding urea was twice as high as the ones without. Performance of fuel cells increases by 12% while operating on H{sub 2} at 700 {sup o}C upon adding urea. Furthermore, the performance improvement was more prominent when such method was adopted in the fabrication of Cu-CeO{sub 2}/YSZ composite anodes. Cells with Cu-CeO{sub 2}/YSZ composite anodes operating in H{sub 2} at 700 {sup o}C exhibited an increase of cell performance by 37%, from 337 to 462 mW cm{sup -2}, by simply adding urea to the impregnated solution. And the performance enhancement for such fuel cells is also as high as 28% when using CH{sub 4} as fuel.

  9. Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2011-10-15

    A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel-based composite anode is reported. Carbon-supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane-based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion registered membrane electrolytes under identical conditions. The borohydride-oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm{sup -2} at 60 C. The peak power densities of the PVA hydrogel membrane-based DBFCs were comparable or a little higher than those using Nafion registered 212 membranes at 60 C. The fuel efficiency of borohydride-oxygen fuel cell based on PVA hydrogel membrane and Ni-based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  11. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons.

  12. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells

    Science.gov (United States)

    Du, Qing; An, Jingkun; Li, Junhui; Zhou, Lean; Li, Nan; Wang, Xin

    2017-03-01

    The bacterial anode material is important to the performance of microbial fuel cells (MFCs) because its characteristics affect the biofilm formation and extracellular electron transfer. Here we find that a superhydrophilic semiconductor, polydopamine (PDA), is an effective modification material for the anode to accelerate startup and improve power density. When the activated carbon anode is added with 50% (wt.) PDA, the startup time is 14% shorter than the control (from 88 h to 76 h), with a 31% increase in maximum power density from 613 ± 9 to 803 ± 6 mW m-2, and the Columbic efficiency increases from 19% to 48%. These can be primarily attributed to the abundant functional groups (such as amino group, and catechol functions) introduced by PDA that improve hydrophilicity and extracellular electron transfer. PDA also increases proportions of Proteobacteria and Firmicutes families, indicating that PDA has a selective effect on anode microbial community. Our findings provide a new approach to accelerate anode biofilm formation and enhance MFC power output by modification of biocompatible PDA.

  13. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.

    Science.gov (United States)

    Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

    2015-09-01

    Catalytic effect of goethite recovered from iron-ore mining mud was studied in microbial fuel cells (MFCs). Characterization of material recovered from mining mud confirms the recovery of iron oxide as goethite. Heat treated goethite (550 °C) and untreated raw goethite were coated on stainless-steel anode of MFC-1 and MFC-2, respectively; whereas, unmodified stainless-steel anode was used in MFC-3 (control). Fivefold increment in power was obtained in MFC-1 (17.1 W/m(3) at 20 Ω) than MFC-3 (3.5 W/m(3)). MFC with raw goethite coated anode also showed enhanced power (11 W/m(3)). Higher Coulombic efficiency (34%) was achieved in MFC-1 than control MFC-3 (13%). Decrease in mass-transport losses and higher redox current during electrochemical analyses support improved electron transfer with the use of goethite on anode. Cheaper goethite coating kinetically accelerates the electron transfer between bacteria and anode, proving to be a novel approach for enhancing the electricity generation along with organic matter removal in MFC.

  14. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  15. Degradation of some ceria electrolytes under hydrogen contact nearby anode in solid oxide fuel cells (SOFCs

    Directory of Open Access Journals (Sweden)

    Malta Luiz Fernando Brum

    2004-01-01

    Full Text Available This work is concerned with thermodynamic analysis of the stability of some ceria electrolytes under contact with hydrogen gas nearby anode in fuel cells. It was considered the following types of ceria-electrolytes: pure ceria, strontium-doped ceria, calcium-doped ceria and calcium-bismuth-doped ceria. The equilibrium Log (pH2O/pH2 vs. T diagrams were constructed for x = 0.1 and 0.01, where x is the fraction of initial ceria converted to Ce2O3 (proportional to the ratio between activities of Ce3+ and Ce4+ in the ceria electrolyte, which is proportional to the fraction of electronic conduction in the electrolyte at a given temperature. The predictions of the diagrams are as follows: (a Ce1.9Ca0.1Bi0.8O5.1 and Ce0.9Sr0.1O1.9 are less stable than pure ceria for the whole temperature range (from 0 to 1000 °C; (b Ce0.9Ca0.1O1.9 is more stable than pure ceria below about 650 °C for x = 0.1 and below about 400 °C for x = 0.01; (c at each temperature in the considered range the pressure ratio pH2O(g/pH2(g has to be higher than thermodynamically predicted in order to keep CeO2 stable in the electrolyte contacting hydrogen gas. Thermodynamic predictions are entirely capable of explaining experimental data published on the subject (irreversible cell degradation in the case of SrO-doped ceria; weight loss from doped-ceria electrolyte above 700 °C; oxygen gas release during sintering of ceria.

  16. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  17. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  18. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-09-01

    Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450°C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, powerincreased to 1015 mW/m2 (51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes. © 2009 American Chemical Society.

  19. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Schroeder, M. [Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstrasse 21, 79104 Freiburg (Germany); Braemer, R. [Hochschule Offenburg- University of Applied Sciences, Badstrasse 24, 79652 Offenburg (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universitaet Freiburg (Germany)

    2010-10-01

    We present a novel fabrication route yielding Raney-platinum film electrodes intended as glucose oxidation anodes for potentially implantable fuel cells. Fabrication roots on thermal alloying of an extractable metal with bulk platinum at 200 C for 48 h. In contrast to earlier works using carcinogenic nickel, we employ zinc as potentially biocompatible alloying partner. Microstructure analysis indicates that after removal of extractable zinc the porous Raney-platinum film (roughness factor {proportional_to}2700) consists predominantly of the Pt{sub 3}Zn phase. Release of zinc during electrode operation can be expected to have no significant effect on physiological normal levels in blood and serum, which promises good biocompatibility. In contrast to previous anodes based on hydrogel-bound catalyst particles the novel anodes exhibit excellent resistance against hydrolytic and oxidative attack. Furthermore, they exhibit significantly lower polarization with up to approximately 100 mV more negative electrode potentials in the current density range relevant for fuel cell operation. The anodes' amenability to surface modification with protective polymers is demonstrated by the exemplary application of an approximately 300 nm thin Nafion coating. This had only a marginal effect on the anode long-term stability and amino acid tolerance. While in physiological glucose solution after approximately 100 h of operation gradually increasing performance degradation occurs, rapid electrode polarization within 24 h is observed in artificial tissue fluid. Optimization approaches may include catalyst enhancement by adatom surface modification and the application of specifically designed protective polymers with controlled charge and mesh size. (author)

  20. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    Science.gov (United States)

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  1. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode

    KAUST Repository

    Mink, Justine E.

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m2 and 19 mW/m2 the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. © 2013 American Chemical Society.

  2. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Andreas; Haanappel, Vincent A.C.; Uhlenbruck, Sven; Tietz, Frank; Stoever, Detlev [Institute for Materials and Processes in Energy Systems, Forschungszentrum Juelich, IWV-1, D-52425 Juelich (Germany)

    2005-05-12

    The properties and the applicability of iron- and cobalt-containing perovskites were evaluated as cathodes for solid oxide fuel cells (SOFCs) in comparison to state-of-the-art manganite-based perovskites. The materials examined were La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (x=0.2 and 0.4; y=0-0.05), La{sub 0.8}Sr{sub 0.2}FeO{sub 3-{delta}}, La{sub 0.7}Ba{sub 0.3}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and Ce{sub 0.05}Sr{sub 0.95}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}. The main emphasis was placed on the electrochemical properties of the materials, which were investigated on planar anode-supported SOFCs with 8 mol% yttria-stabilised zirconia (8YSZ) electrolytes. An interlayer of the composition Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} was placed between the electrolyte and the cathode to prevent undesired chemical reactions between the materials. The sintering temperatures of the cathodes were adapted for each of the materials to obtain similar microstructures. In comparison to the SOFCs with state-of-the-art manganite-based cathodes, SOFCs with La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes achieved much higher current densities. Small A-site deficiency and high strontium content had a particularly positive effect on cell performance. The measured current densities of cells with these cathodes were as high as 1.76 A/cm{sup 2} at 800 {sup o}C and 0.7 V, which is about twice the current density of cells with LSM/YSZ cathodes. SOFCs with La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes have been operated for more than 5000 h in endurance tests with a degradation of 1.0-1.5% per 1000 h.

  3. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  4. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  5. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode...... was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg...

  6. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  7. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

    Directory of Open Access Journals (Sweden)

    Chieh-Chun Wu

    2014-10-01

    Full Text Available Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60–170 nm and 100–140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed.

  8. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance.

    Science.gov (United States)

    Wu, Chieh-Chun; Tang, Ling; De Guire, Mark R

    2014-01-01

    Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60-170 nm and 100-140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed.

  9. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

    Science.gov (United States)

    Wu, Chieh-Chun; Tang, Ling

    2014-01-01

    Summary Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60–170 nm and 100–140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed. PMID:25383282

  10. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode

    Science.gov (United States)

    Cui, Hui-Fang; Du, Lin; Guo, Peng-Bo; Zhu, Bao; Luong, John H. T.

    2015-06-01

    Polyaniline (PANI) was electropolymerized on the surface of macroporous graphite felt (GF) followed by the electrophoretic deposition of carbon nanotubes (CNTs). The as-prepared macroporous material was characterized by scanning electron microscopy, water contact angle goniometry and electrochemical techniques. Upon the modification of PANI, a rough and nano-cilia containing film is coated on the surface of the graphite fibers, transforming the surface from hydrophobic to hydrophilic. The subsequent modification by CNTs increases the effective surface area and electrical conductivity of the resulting material. The power output of a mediator-free dual-chamber microbial fuel cell (MFC) constructed from the GF anode and an exoelectrogen Shewanella putrefaciens increases drastically with the CNT modification. The CNT/PANI/GF MFC attains an output voltage of 342 mV across an external resistor of 1.96 kΩ constant load, and a maximum power density of 257 mW m-2, increased by 343% and 186%, compared to that of the pristine GF MFC and the PANI/GF MFC, respectively. More bacteria are attached on the CNT/PANI/GF anode than on the PANI/GF anode during the working of the MFC. This strategy provides an easy scale-up, simple and controllable method for the preparation of high-performance and low-cost MFC anodes.

  11. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  12. Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters.

    Science.gov (United States)

    Kiseleva, Larisa; Garushyants, Sofya K; Ma, Hongwu; Simpson, David J W; Fedorovich, Viatcheslav; Cohen, Michael F; Goryanin, Igor

    2015-10-06

    The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of whole-genome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.

  13. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  14. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  15. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  16. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes.

    Science.gov (United States)

    Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Ajayi, Folusho F; Jang, Am; Kim, Chang-Won; Kim, In S

    2011-03-01

    Glucose-fed microbial fuel cells (MFCs) have displayed low Coulombic efficiency (CE); one reason for a low CE is metabolite generation, causing significant electron loss within MFC systems. In the present study, notable electron loss (15.83%) is observed in glucose-fed MFCs due to residual propionate, a glucose metabolite. In order to enhance the low CE caused by metabolite generation, a dual-anode MFC (DAMFC) is constructed, which are separately enriched by dissimilar substrates (glucose and propionate, respectively) to effectively utilize both glucose and propionate in one-anode chamber. In the DAMFC, propionate ceases to exist as a source of electron loss, and thus the CE increased from 33 ± 6 to 59 ± 4%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2008-01-01

    Surfactant-assisted infiltration of Gd-doped ceria (CGO) in Nb-doped SrTiO3 (STN) was investigated as a potential fuel electrode for solid oxide fuel cells (SOFC). An electronically conductive backbone structure of STN was first fabricated at high temperatures and then combined with the mixed con...

  18. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  19. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part I: Impact of water diffusion and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Operating a PEMFC with a dead-ended anode may lead to local fuel-starvation because of water and possibly nitrogen accumulation in the anode compartment. In previous works, we used a segmented linear cell with reference electrodes to monitor simultaneously the local potentials and current densities during dead-ended anode operation. The results indicated that water transport as well as nitrogen crossover through the membrane were most probably the two key factors governing fuel starvation. In this first from a set of two papers, we evaluated with more details the contributions of nitrogen crossover and water transport to hydrogen starvation. To assess nitrogen contribution, the fuel cell cathode compartment was first supplied with pure oxygen instead of air. The results showed that in the absence of nitrogen (in the cathode side) the fuel starvation was much slower than with air, suggesting that nitrogen contribution cannot be neglected. On the other hand, the contribution of water flooding to hydrogen starvation was investigated by using different cooling temperature on the cathode and anode sides in order to drive water toward the colder plate. The results showed that with a colder anode side, fuel starvation was faster. In the opposite case of a hotter anode plate, water accumulation in the anode compartment was limited, nitrogen crossover through the membrane was the main reason for hydrogen starvation in this case. To fully assess the impact of the thermal configurations on membrane-electrode assembly (MEA) degradation, aging protocols with a dead-ended anode and a fixed closing time were also performed. The results showed that operation with a hotter anode could help to limit significantly cathode ElectroChemical Surface Area (ECSA) losses along the cell area and performance degradation induced by hydrogen starvation.

  20. Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells

    Science.gov (United States)

    Ma, Xiaoxiao; Feng, Chunhua; Zhou, Weijia; Yu, Hui

    2016-03-01

    The demand for efficient and cost-effective anode materials in microbial fuel cells (MFCs) provides the impetus to use carbon derived from solid waste to support bacterial growth and proliferation. Here we show that the municipal sludge-derived carbon (SC) with a porous structure and abundant surface functional groups is effective in improving performance of MFCs. The SC is coated on the 3-D graphite felt (GF) surface by pyrrole electropolymerization in order to increase the surface cites that are interacted with bacteria, resulting in the formation of PPy/SC-modified GF anode. The scanning electron microscopy analysis indicates that the PPy/SC-modified GF can substantially increase anode surface area. The X-ray photoelectron spectroscopy (XPS) results suggest that the PPy/SC-modified GF anode possesses higher surface N/C ratio and higher relative contents of Odbnd C-NH2 and Odbnd C-O functional groups than other counterpart anodes. These characteristics are essential for increasing bacterial attachment to the anode surface, electron-transfer rate and thus anode performance and power performance. The maximum power density resulting from the PPy/SC-modified GF anode was 568.5 mW m-2 (13.6 W m-3) increased by 1.9, 2.7 and 3.5 times as compared to the PPy/AC-modified GF anode, the PPy alone-modified GF anode and the unmodified GF anode, respectively.

  1. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.

    Science.gov (United States)

    Venkata Mohan, S; Veer Raghavulu, S; Sarma, P N

    2008-09-15

    The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29 mW/kg COD(R) (CW and DSW)], specific energy yield [100.46 J/kg VSS (CW)], specific power yield [0.245 W/kg VSS (DSW); 0.282 W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903 kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5 komega (DSW); 14.9 komega (CW)] correspond to sustainable power [0.008 mW (DSW); 0.021 mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812 mJ) to PDB (10.666 mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856 mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates.

  2. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  3. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  4. Investigating the effect of water vapor and residual methanol on the anode of high temperature pem fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Araya, Samuel Simon; Kær, Søren Knudsen

    2015-01-01

    The objective is to understand the effect of methanol and water vapor separately on a high temperature PEM fuel cell. An investigation was performed with different anode fuel compositions and results in terms of performance and impedance analyzed. During the initial 1000 h, cell was tested...... with pure hydrogen under varying current densities of 0.2 A cm-2 and 0.6 A cm-2, followed by hydrogen mixed with 15 % water vapor and then with 1 % methanol. The degradation rates at two current densities 0.2 A cm-2 and 0.6 A cm-2 were analyzed and discussed. The degradation at higher current density...... is more severe than at lower current density. However, on switching from higher to lower current density, the effect is reversible and the performance is improved. This suggests that some degradation is reversible. The addition of water vapor in the feed improves the performance at high current densities...

  5. Investigating the Effect of Water Vapor and Residual Methanol on the Anode of High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Araya, Samuel Simon; Kær, Søren Knudsen

    The objective is to understand the effect of methanol and water vapor separately on a high temperature PEM fuel cell. An investigation was performed with different anode fuel compositions and results in terms of performance and impedance analyzed. During the initial 1000 h, cell was tested...... with pure hydrogen under varying current densities of 0.2 A cm-2 and 0.6 A cm-2, followed by hydrogen mixed with 15 % water vapor and then with 1 % methanol. The degradation rates at two current densities 0.2 A cm-2 and 0.6 A cm-2 were analyzed and discussed. The degradation at higher current density...... is more severe than at lower current density. However, on switching from higher to lower current density, the effect is reversible and the performance is improved. This suggests that some degradation is reversible. The addition of water vapor in the feed improves the performance at high current densities...

  6. AB5-type Hydrogen Storage Alloy Modified with Ti/Zr Used as Anodic Materials in Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang WANG; Chunan MA; Xinbiao MAO; Yuanming SUN; Seijiro SUDA

    2005-01-01

    Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.

  7. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Catalytic activity of Ni-YSZ anodes in a single-chamber solid oxide fuel cell reactor

    Science.gov (United States)

    Savoie, Sylvio; Napporn, Teko W.; Morel, Bertrand; Meunier, Michel; Roberge, Réal

    The importance of heterogeneous catalysis in single-chamber solid oxide fuel cells (SC-SOFC) is universally recognized, but little studied. This work presents a thorough investigation of the catalytic activity of three Ni-YSZ half-cells in a well-described single-chamber reactor. One in-house electrolyte-supported and two commercially available anode-supported half-cells composed of anodes with thicknesses ranging from 50 μm to 1.52 mm are investigated. They are exposed to methane and oxygen gas mixtures within CH 4:O 2 flow rate ratios (R in) of 0.8-2.0 and furnace temperatures of 600-800 °C. The conversion of methane always results in the formation of syngas species (H 2 and CO). However, their yields vary considerably based on the individual anode, the operating temperature, and R in. The SC-reactor design and the presence of hot-spots at the reactor entrance bring the methane and oxygen conversion rates well above the limit expected from experiments carried out with anode half-cells only. Major variations in the H 2/CO ratio are observed. In lowering the temperature from 800 °C to 600 °C, it spreads from well below to well above the stoichiometric value of 2.0 expected for the partial oxidation reaction. To optimize the SC-SOFC any further, the findings stress the need to undertake even more catalytic studies of its electrode materials under actual structure and morphology as well as final reactor configuration.

  9. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells

    Science.gov (United States)

    Zheng, Suqi; Yang, Fangfang; Chen, Shuiliang; Liu, Lang; Xiong, Qi; Yu, Ting; Zhao, Feng; Schröder, Uwe; Hou, Haoqing

    2015-06-01

    Carbon black/stainless steel mesh (CB/SSM) composite electrodes were developed as high-performance anodes of microbial fuel cell (MFC) by using a binder-free dipping/drying method. The acid-treatment and thin layer of CB coating greatly improved the microbial adhesion of the electrode surface and facilitated the electron transfer between the bacteria and the electrode surface. As a result, a single-layer CB/SSM anode with thickness of 0.3 mm could generate a projected current density of about 1.53 ± 0.15 mA cm-2 and volumetic current density of 51.0 ± 5.0 mA cm-3, which was much higher than that of the bare SSM anode and conventional carbon felt anode with thickness of 2 mm. Moreover, three-dimensional (3D) CB/SSM electrode could be prepared by simple folding the singe-layer SSM, and produced a projected current density to 10.07 ± 0.88 mA cm-2 and a volumetric current density of 18.66 ± 1.63 mA cm-3. The MFC equipped with the 3D-CB/SSM anode produced a high maximum power density of 3215 ± 80 mW m-2. The CB/SSM electrodes showed good mechanical and electrical properties, excellent microbial adhesion; it represented a high-performance, low-cost electrode material that is easy to fabricate and scale-up.

  10. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested with a single (two-sided) cathode module with a specific surface area of 29 m2 m−3 based on a total liquid volume (1.4 L; 20 m2 m−3 using the total reactor volume of 2 L), and two brush anode modules. Three different types of spacers were used in the cathode module to provide structural stability, and enhance air flow relative to previous cassette (combined anode–cathode) designs: a low-profile wire spacer; a rigid polycarbonate column spacer; and a flexible plastic mesh spacer. The best performance was obtained using the wire spacer that produced a maximum power density of 1100 ± 10 mW m−2 of cathode (32 ± 0.3 W m−3 based on liquid volume) with an acetate-amended wastewater (COD = 1010 ± 30 mg L−1), compared to 1010 ± 10 mW m−2 for the column and 650 ± 20 mW m−2 for the mesh spacers. Anode potentials were unaffected by the different types of spacers. Raw domestic wastewater produced a maximum of 400 ± 8 mW m−2 under fed batch conditions (wire-spacers), which is one of the highest power densities for this fuel. Over time the maximum power was reduced to 300 ± 10 mW m−2 and 275 ± 7 mW m−2 for the two anode compartments, with only slightly less power of 250 ± 20 mW m−2 obtained under continuous flow conditions. In fixed-resistance tests, the average COD removal was 57 ± 5% at a hydraulic retention time of 8 h. These results show that this modular MFC design can both simplify reactor construction and enable relatively high power generation from even relatively dilute wastewater.

  11. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  12. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  13. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  14. Influence of nano zirconia on NiAl anodes for molten carbonate fuel cell: Characterization, cell tests and post-analysis

    Science.gov (United States)

    Accardo, Grazia; Frattini, Domenico; Moreno, Angelo; Yoon, Sung Pil; Han, Jong Hee; Nam, Suk Woo

    2017-01-01

    Anode materials in Molten Carbonate Fuel Cells should have high creep resistance and good mechanical behavior to endure in high temperature-corrosive environments. In this work, zirconia nanoparticles (1-10% wt.) are added to NiAl anodes in order to investigate their effects on mechanical properties and single cell performances. Results show that nanoparticles strongly adhere to metal particles and bending strength increases from 6.08 to 11.33 kgf cm-2 while creep strain is reduced from 7.55% to 3.25%. In the case of the anode with ZrO2 3% wt., the stable and high output voltage of 0.81 V at 150 mA cm-2 is a promising result, compared to the literature. In addition, the solid contact angles between melted electrolyte and anode, for the NiAl reference sample and the ZrO2 3% wt. are 37.6° and 17°, respectively, showing the improved wettability of the modified anode. However, it seems to be a limit to the effective zirconia content as the contact angle of the anode with ZrO2 10% wt. is 58.1°, which indicates a low wetting ability. When zirconia content is too high, single cells have low performances due to high internal resistance and porosity reduction. The formation of a zirconate phase also occurs during operations.

  15. Triple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode.

    Science.gov (United States)

    Ebrahim, Rabi; Yeleuov, Mukhtar; Issova, Ainur; Tokmoldin, Serekbol; Ignatiev, Alex

    2014-01-01

    Fabrication of microporous structures for the anode of a thin film solid oxide fuel cell (SOFC(s)) using controlled etching process has led us to increased power density and increased cell robustness. Micropores were etched in the nickel anode by both wet and electrochemical etching processes. The samples etched electrochemically showed incomplete etching of the nickel leaving linked nickel islands inside the pores. Samples which were wet- etched showed clean pores with no nickel island residues. Moreover, the sample with linked nickel islands in the anode pores showed higher output power density as compared to the sample with clean pores. This enhancement is related to the enlargement of the surface of contact between the fuel-anode-electrolyte (the triple-phase boundary).

  16. Application of 8YSZ Nanopowder Synthesized by the Modified Solvothermal Process for Anode Supported Solid Oxide Fuel Cells.

    Science.gov (United States)

    Meepho, Malinee; Wattanasiriwech, Suthee; Angkavatana, Pavadee; Wattanasiriwech, Darunee

    2015-03-01

    Thin electrolyte yttria-stabilized zirconia (8YSZ) films were coated on the porous solid oxide fuel cell (SOFC) anode substrates for the use at an intermediate temperature range. Nano-8YSZ powder with a particle size of about 5 nm was synthesized using the modified solvothermal process. The electrolyte suspension was prepared by dispersion the synthesized 8YSZ nanopowder in ethanol, with PVB and 1,3-propanediol as a binder and a charging agent respectively. The 8YSZ suspension was subsequently deposited on the pre-sintered NiO-YSZ porous substrates by the electrophoretic deposition (EPD) technique. In order to obtain high quality electrolyte films, preparation process was optimized through two strategic approaches; (i) adjustment of suspension's rheological property and (ii) compatibility of anode-electrolyte sintering shrinkage. Rheological property of the suspension was improved with an addition of 1,3-propanediol. The zeta potential of this suspension was increased and reached the value of +24 mV so the well-dispersed slurry was finally obtained. The second approach was achieved by using a proper composite anode powders. Dense and uniform 8YSZ electrolyte films with a thickness of about 1 thickness successfully be formed on the NiO-YSZ porous substrates after co-sintering at 1400 °C for 2 h.

  17. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  18. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  19. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  20. Preparation and characterization of anode catalysts for the direct alcohol fuel cells (DAFC): methanol and ethanol

    CSIR Research Space (South Africa)

    Modibedi, M

    2007-11-01

    Full Text Available The development of high performance electrode materials has been the key research objective in the field of direct alcohol fuel cells (DAFC) [1, 2, and 3]. A promising way to attain higher catalytic performance is to add a third element to the best...

  1. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...

  2. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    Science.gov (United States)

    Briault, Pauline; Rieu, Mathilde; Laucournet, Richard; Morel, Bertrand; Viricelle, Jean-Paul

    2014-12-01

    This project deals with the development and the electrochemical characterization of anode supported single chamber SOFC in a simulated environment of thermal engine exhaust gas. In the present work, a gas mixture representative of exhaust conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water. Only oxygen content is varied leading to different gas mixtures characterized by three ratios R = HC/O2. Concerning the cell components, a cermet made of nickel and an electrolyte material, Ce0.9Gd0.1O1.95 (CGO) is used as anode and two cathode materials, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Pr2NiO4+δ (PNO), are evaluated. The prepared cells are investigated in the various gas mixtures for temperatures ranging from 450 °C to 600 °C. Ni-CGO/CGO/LSCF-CGO cell has delivered a maximum power density of 15 mW cm-2 at 500 °C with R = HC/O2 = 0.21, while lower power densities are obtained for the other ratios, R = 0.44 and R = 0.67. Afterwards, LSCF and PNO cathode materials are compared and LSCF is found to deliver the highest power densities. Finally, by improving the electrolyte microstructure, some cells presenting a maximum power density of 25 mW cm-2 at 550 °C are produced. Moreover, up to 17% of initial HC are eliminated in the gas mixture.

  3. Modelling of CH4 multiple-reforming within the Ni-YSZ anode of a solid oxide fuel cell

    Science.gov (United States)

    Tran, Dang Long; Tran, Quang Tuyen; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2017-08-01

    A new approach for the modelling of the simultaneous dry and steam reforming of CH4 (methane multiple-reforming (MMR)) within the Ni-YSZ anode of a solid oxide fuel cell (SOFC) is introduced in this paper. MMR is modelled by using artificial neural network (ANN) and fuzzy inference system (FIS) that can express the gas composition and temperature dependences of the consumption or the production rate of gaseous species involved in MMR. The necessary parameters for this approach are determined from the measured reforming kinetics for an anode-supported cell (ASC) fuelled by a CH4-CO2-H2O-N2 mixture. The developed MMR model is incorporated into a 3D-CFD planar ASC model to calculate the SOFC performance, and the calculated results match well with experimental values for the feed of simulated biogas (CH4/CO2 = 1) and H2. The established SOFC model considering MMR is a powerful tool to simulate the performance of internal reforming SOFC.

  4. PdCo supported on multiwalled carbon nanotubes as an anode catalyst in a microfluidic formic acid fuel cell

    Science.gov (United States)

    Morales-Acosta, D.; Morales-Acosta, M. D.; Godinez, L. A.; Álvarez-Contreras, L.; Duron-Torres, S. M.; Ledesma-García, J.; Arriaga, L. G.

    This work reports the synthesis of Pd-based alloys of Co and their evaluation as anode materials in a microfluidic formic acid fuel cell (μFAFC). The catalysts were prepared using the impregnation method followed by thermal treatment. The synthesized catalysts contain 22 wt.% Pd on multiwalled carbon nanotubes (Pd/MWCNT) and its alloys with two Co atomic percent in the sample with 4 at.% Co (PdCo1/MWCNT) and 10 at.% Co (PdCo2/MWCNT). The role of the alloying element was determined by XRD and XPS techniques. Both catalysts were evaluated as anode materials in a μFAFC operating with different concentrations of HCOOH (0.1 and 0.5 M), and the results were compared to those obtained with Pd/MWCNT. A better performance was obtained for the cell using PdCo1/MWCNT (1.75 mW cm -2) compared to Pd/MWCNT (0.85 mW cm -2) in the presence of 0.5 M HCOOH. By means of external electrode measurements, it was also possible to observe shifts in the formic acid oxidation potential due to a fuel concentration increment (ca. 0.05 V for both PdCo1/MWCNT and PdCo2/MWCNT catalysts and 0.23 V for Pd/MWCNT) that was attributed to deactivation of the catalyst material. The maximum current densities obtained were 8 mA cm -2 and 5.2 mA cm -2 for PdCo2/MWCNT and Pd/MWCNT, respectively. In this way, the addition of Co to the Pd catalyst was shown to improve the tolerance of intermediates produced during formic acid oxidation that tend to poison Pd, thus improving the catalytic activity and stability of the cell.

  5. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  6. A Preliminary Study on WO3‐Infiltrated W–Cu–ScYSZ Anodes for Low Temperature Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Reddy Sudireddy, Bhaskar; Høgh, Jens Valdemar Thorvald

    2012-01-01

    Preparation and electrochemical characterization of WO3‐infiltrated 0.48W–0.52Cu–ScYSZ (WCS) anode for solid oxide fuel cell are reported. The DC conductivity of a WO3 ceramic was 1,200 and 24 S cm–1 in reducing and oxidizing atmospheres, respectively, at 650 °C. WCS porous backbones in the form ...

  7. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater

    Science.gov (United States)

    Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.

    2017-07-01

    Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.

  8. Fabrication of anode-supported zirconia thin film electrolyte based core-shell particle structure for intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Peng Li; John T.S.Irvinen

    2013-01-01

    With a view to produce intermediate temperature SOFCs, yttria and scandia doped zirconia with a core-shell structure was prepared, then an anode supported fuel cell was fabricated by a spray method. The influences of the scandia content in the electrolyte and atmosphere conditions used in the testing experiments on phase composition, microstructure and fuel cell performance were investigated. The electrolyte was composed of cubic and tetragonal phases and SEM pictures revealed very fine grain sizes and a smooth surface of the electrolyte film, though some defects were observed in samples with high Scandia content. Coating scandia on partially stabilized zirconium particles improves both ionic conductivity of the electrolyte and power density of the fuel cell distinctly below 750 1C. Anodes were pre-sintered at 1200 1C before co-sintering with the electrolyte film to ensure that the shrinkage percentage was close to that of the electrolyte during co-sintering, avoiding warping of cell.

  9. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    Science.gov (United States)

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  10. Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials

    Science.gov (United States)

    Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

    2013-11-01

    The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

  11. Development and manufacturing of tape casted, anode-supported solid oxide fuel cells; Entwicklung und Herstellung von foliengegossenen, anodengestuetzten Festoxidbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schafbauer, Wolfgang

    2010-07-01

    Solid oxide fuel cells offer high potential in transforming the chemical energy of hydrogen or natural gas into electrical energy. Due to the high efficiency of fuel cells, lots of effort has been made in the improvement of net efficiency and in materials development during the last years. Recently, the introduction of high performance, low-cost production technologies become more and more important. At the Institute of Energy Research IEF-1 of Forschungszentrum Julich, standard SOFCs were processed by time and work consuming methods. On the way to market entrance, product costs have to be reduced drastically. The aim of this thesis is the introduction of a high efficient low-cost processing route for the SOFC manufacturing. Therefore, the well-known and well established shaping technology tape casting was used for generating the anode substrates. As the first goal of this approach, two different tape casting slurries were developed in order to get substrates in the thickness range from 300 to 500 {mu}m after sintering. After shaping of the substrates, sinter regimes for the different necessary coatings were adapted to the novel substrate types in order to obtain cells with high performance and strength. Therefore, the different coating technologies like screen printing and vacuum slip casting were used for cell manufacturing. The optimization of the different coating steps during cell manufacturing led to high performance SOFCs with a 10% higher power output compared to the Julich state-of-the-art SOFC. Additional experiments verified the workability of the novel tape cast substrates for the manufacturing of near-net-shape SOFC. Finally, the novel cell types based on tape cast substrates were assembled to stacks with up to ten repeating units. Stack tests showed identical performance and degradation compared to stacks containing state-of-the-art SOFCs. Thus, the complete lifetime circle of a SOFC starting from powder preparation to stack assembly has been

  12. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R.I.; Hopkins, S.C. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Krauz, M.; Kluczowski, J.R. [Institute of Power Engineering, Ceramic Department CEREL, 36-040 Boguchwala (Poland); Jewulski, J. [Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland); Glowacka, D.M. [Detector Physics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Glowacki, B.A. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland)

    2010-11-01

    Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ ({proportional_to}6 {mu}m)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm{sup -2} at 800 C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 {mu}m and comparable in quality to those fabricated by more conventional ceramic processing methods. (author)

  13. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel

    Science.gov (United States)

    Luna, Julio; Ocampo-Martinez, Carlos; Serra, Maria

    2015-05-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the concentrations of the different gas species inside a Proton Exchange Membrane Fuel Cell (PEMFC) anode gas channel. The purpose of the regulation relies on the rejection of the unmeasurable perturbations that affect the system: the hydrogen reaction and water transport terms. The model of the anode channel is derived from the discretisation of the partial differential equations that define the nonlinear dynamics of the system, taking into account spatial variations along the channel. Forward and backward discretisations of the distributed model are employed to take advantage of the boundary conditions of the problem. A linear observer is designed and implemented to perform output-feedback control of the plant. This information is fed to the controller to regulate the states towards their desired values. Simulation results are presented to show the performance of the proposed control method over a given case study. Different cost functions are compared and the one with minimum state-regulation error is identified. Suitable dynamic responses are obtained facing the different considered disturbances.

  14. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    2010-09-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most ({proportional_to}30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m{sup 2}, whereas the original mixed culture produced up to 10 mW/m{sup 2}. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m{sup 2}) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. (orig.)

  15. Design and optimization of anode flow field of a large proton exchange membrane fuel cell for high hydrogen utilization

    Science.gov (United States)

    Yesilyurt, Serhat; Rizwandi, Omid

    2016-11-01

    We developed a CFD model of the anode flow field of a large proton exchange membrane fuel cell that operates under the ultra-low stoichiometric (ULS) flow conditions which intend to improve the disadvantages of the dead-ended operation such as severe voltage transient and carbon corrosion. Very small exit velocity must be high enough to remove accumulated nitrogen, and must be low enough to retain hydrogen in the active area. Stokes equations are used to model the flow distribution in the flow field, Maxwell-Stefan equations are used to model the transport of the species, and a voltage model is developed to model the reactions kinetics. Uniformity of the distribution of hydrogen concentration is quantified as the normalized area of the region in which the hydrogen mole fraction remains above a certain level, such as 0.9. Geometry of the anode flow field is modified to obtain optimal configuration; the number of baffles at the inlet, width of the gaps between baffles, width of the side gaps, and length of the central baffle are used as design variables. In the final design, the hydrogen-depleted region is less than 0.2% and the hydrogen utilization is above 99%. This work was supported by The Scientific and Technolo-gical Research Council of Turkey, TUBITAK-213M023.

  16. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  17. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    Science.gov (United States)

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m(3) was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m(3) by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m(3) with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  18. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Springer

    1998-01-30

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of

  19. Anode protection system for shutdown of solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  20. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    Science.gov (United States)

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm-2 and was greatly enhanced to the range from 308 to 1220 mW cm-2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm-2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.

  1. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  2. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  3. Intermediate-Temperature Solid-Oxide Fuel Cells with a Gadolinium-Doped Ceria Anodic Functional Layer Deposited via Radio-Frequency Sputtering.

    Science.gov (United States)

    Tanveer, Waqas Hassan; Ji, Sanghoon; Yu, Wonjong; Cho, Gu Young; Lee, Yoon Ho; Cha, Suk Won

    2015-11-01

    We investigated the effects of the insertion of a gadolinium-doped ceria (GDC) anodic functional layer (AFL) on the electrochemical performance of intermediate-temperature solid-oxide fuel cells (SOFCs). Fully stabilized yttria-stabilized zirconia (YSZ) was used as an oxygen-ion-conducting and support material. Nickel-Samaria-doped ceriathin film was used as an anode material, while screen-printed lanthanum strontium magnetite served as a cathode material. In order to enhance the interfacial reaction on the anode side, a GDC-AFL with a thickness of about 140 nm, deposited via radio-frequency sputtering, was inserted into the anode-electrolyte interface. SOFCs with and without a GDC-AFL were electrochemically characterized. In an intermediate temperature range of about 700 - 800 degrees C, the application of the GDC-AFL led to an increase in the peak power density of approximately 16%.

  4. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  5. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-04-01

    In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

  6. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.

    Science.gov (United States)

    Cabezas, Angela; Pommerenke, Bianca; Boon, Nico; Friedrich, Michael W

    2015-06-01

    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC.

  7. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells

    Science.gov (United States)

    Wei, Huan; Wu, Xiao-Shuai; Zou, Long; Wen, Guo-Yun; Liu, Ding-Yu; Qiao, Yan

    2016-05-01

    An amine-terminated ionic liquid (IL-NH2) is applied to functionalize carbon nanotubes (CNTs) for improving the interfacial electron transfer of Shewanella putrefaciens (S. putrefaciens) anode in Microbial fuel cells (MFCs). The introduction of thin layer of ILs does not change the morphology of CNTs a lot but increases surface positive charges as well as nitrogen functional groups of the CNTs based anode. The CNT-IL composite not only improves the adhesion of S. putrefaciens cells but also promotes both of the flavin-mediated and the direct electron transfer between the S. putrefaciens cells and the anode. It is interesting that the CNT-IL is more favorable for the mediated electron transfer than for the direct electron transfer. The CNT-IL/carbon cloth anode delivers 3-fold higher power density than that of CNT anode and shows great long-term stability in the batch-mode S. putrefaciens MFCs. This CNT-IL could be a promising anode material for high performance MFCs.

  8. Impact of gas products around the anode on the performance of a direct carbon fuel cell using a carbon/carbonate slurry

    Science.gov (United States)

    Watanabe, Hirotatsu; Umehara, Daisuke; Hanamura, Katsunori

    2016-10-01

    This paper investigates the impact of gas products around the anode on cell performance via an in situ observation. In a direct carbon fuel cell used this study, the anode is inserted into the carbon/carbonate slurry. The current-voltage (I-V) curves are measured before and after a long discharge in the constant current discharge mode. An in situ observation shows that the anode is almost completely covered by gas bubbles when the voltage becomes nearly 0 V in the constant current discharge at 40 mA/cm2; this indicates that gas products such as CO2 prevent the carbon particles and ions from reaching the anode. Meanwhile, the long discharge at 20 mA/cm2 is achieved for 30 min, even though the anode is covered by the CO2 bubbles at 15 min. The I-V curves at 1 min after the termination of the long discharge at 20 mA/cm2 are lower than those prior to the long discharge. The overpotential significantly increases at higher current densities, where mass transport becomes the limiting process. The cell performance is significantly influenced by the gas products around the anode.

  9. A robust NiO-Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell

    KAUST Repository

    Tian, Dong

    2015-07-02

    In order to directly use methane without a reforming process, NiO-Sm0.2Ce0.8O1.9 (NiO-SDC) nanocomposite anode are successfully synthesized via a one-pot, surfactant-assisted co-assembly approach for direct-methane solid oxide fuel cells. Both NiO with cubic phase and SDC with fluorite phase are obtained at 550 °C. Both NiO nanoparticles and SDC nanoparticles are highly monodispersed in size with nearly spherical shapes. Based on the as-synthesized NiO-SDC, two kinds of single cells with different micro/macro-porous structure are successfully fabricated. As a result, the cell performance was improved by 40%-45% with the new double-pore NiO-SDC anode relative to the cell performance with the conventional NiO-SDC anode due to a wider triple-phase-boundary (TPB) area. In addition, no significant degradation of the cell performance was observed after 60 hours, which means an increasing of long term stability. Therefore, the as-synthesized NiO-SDC nanocomposite is a promising anode for direct-methane solid oxide fuel cells.

  10. The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S-Pt/C interaction products

    Science.gov (United States)

    Lopes, Thiago; Paganin, Valdecir A.; Gonzalez, Ernesto R.

    2011-08-01

    The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H2, ∼20% N2, and 8 ppm hydrogen sulfide (H2S). Cell performance losses are calculated by evaluating cell potential reduction due to H2S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H2S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H2S-contaminated anode feeding stream.

  11. Synthesis of Octahedral-Shaped NiO and Approaches to an Anode Material of Manufactured Solid Oxide Fuel Cells Using the Decalcomania Method

    Directory of Open Access Journals (Sweden)

    Haeran Cho

    2013-01-01

    Full Text Available Micrometer-sized and octahedral-shaped NiO particles were synthesized by microwave thermal treatment at 300 watt power for 15 min in a microwave chamber to be used as an anode material in solid oxide fuel cells. SEM image and particle size distribution revealed near-perfect octahedral NiO microparticle with sizes ranging from 4.0~11.0 μm. The anode functional layer (AFL, 60 wt% NiO synthesized: commercial 40 wt% YSZ, electrolyte (commercial Yttria-stabilized zirconia, YSZ, and cathode (commercial La0.8Sr0.2MnO3, LSM layers were manufactured using the decalcomania method on a porous anode support, sequentially. The sintered electrolyte at 1450°C for 2 h using the decalcomania method was dense and had a thickness of about 10 μm. The cathode was sintered at 1250°C for 2 h, and it was porous. Using humidified hydrogen as a fuel, a coin cell with a 15 μm thick anode functional layer exhibited maximum power densities of 0.28, 0.38, and 0.65 W/cm2 at 700, 750, and 800°C, respectively. Otherwise, when a commercial YSZ anode functional layer was used, the maximum power density was 0.55 W/cm2 at 800°C.

  12. Characterisation of the Ni/ScYSZ interface in a model solid oxide fuel cell anode

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Hansen, Karin Vels; Norrman, Kion;

    2008-01-01

    A nickel point electrode setup was used as a model of an SOFC anode on three slightly different electrolytes of zirconia stabilised by co-doping with scandia and yttria. The effect of electrolyte impurities on the electrode polarisation resistance was investigated by correlating electrochemical i...

  13. Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia - nickel anodes for application in solid electrolyte fuel cells

    Science.gov (United States)

    Garcia-Garcia, F. J.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R.; Lambert, R. M.

    2016-08-01

    We report on the synthesis of undoped ∼5 μm YSZ-Ni porous thin films prepared by reactive pulsed DC magnetron sputtering at an oblique angle of incidence. Pre-calcination of the amorphous unmodified precursor layers followed by reduction produces a film consisting of uniformly distributed tilted columnar aggregates having extensive three-phase boundaries and favorable gas diffusion characteristics. Similarly prepared films doped with 1.2 at.% Au are also porous and contain highly dispersed gold present as Ni-Au alloy particles whose surfaces are strongly enriched with Au. With hydrogen as fuel, the performance of the undoped thin film anodes is comparable to that of 10-20 times thicker typical commercial anodes. With a 1:1 steam/carbon feed, the un-doped anode cell current rapidly falls to zero after 60 h. In striking contrast, the initial performance of the Au-doped anode is much higher and remains unaffected after 170 h. Under deliberately harsh conditions the performance of the Au-doped anodes decreases progressively, almost certainly due to carbon deposition. Even so, the cell maintains some activity after 3 days operation in dramatic contrast with the un-doped anode, which stops working after only three hours of use. The implications and possible practical application of these findings are discussed.

  14. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  15. Highly redox-resistant solid oxide fuel cell anode materials based on La-doped SrTiO3 by catalyst impregnation strategy

    Science.gov (United States)

    Shen, X.; Sasaki, K.

    2016-07-01

    An anode backbone using 40 wt% (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ)-Sr0.9La0.1TiO3 (SLT) cermet was prepared for SSZ electrolyte-supported SOFC single cells. 15 mgcm-2 Ce0.9Gd0.1O2 (GDC) was impregnated to totally cover the SSZ-SLT anode backbone surface acting as a catalyst, and the cell voltage achieved 0.865 V at 200 mAcm-2 using (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode in 3%-humidified hydrogen fuel at 800 °C. Cell performance was substantially improved from 0.865 V to >0.97 V when 0.03 mgcm-2 Pd or Ni was further incorporated as a secondary catalyst into the anode layer. 50 redox cycles were performed to investigate redox stability of this high performance anode. It was found that even after the 50 redox cycle long-term degradation test, cell voltage at 200 mAcm-2 was retained around 0.94 V, higher than the cell performance using the conventional Ni-SSZ cermet anode. The catalytically-active reaction sites at ceria-Pd or ceria-Ni may account for the excellent performance, and the extremely low metal catalyst concentration prevent serious metal aggregation in achieving excellent redox stability.

  16. Interleaved mesoporous copper for the anode catalysis in direct ammonium borane fuel cells.

    Science.gov (United States)

    Auxilia, Francis M; Tanabe, Toyokazu; Ishihara, Shinsuke; Saravanan, Govindachetty; Ramesh, Gubbala V; Matsumoto, Futoshi; Ya, Xu; Ariga, Katsuhiko; Dakshanamoorthy, Arivuoli; Abe, Hideki

    2014-06-01

    Mesoporous materials with tailored microstructures are of increasing importance in practical applications particularly for energy generation and/or storage. Here we report a mesoporous copper material (MS-Cu) can be prepared in a hierarchical microstructure and exhibit high catalytic performance for the half-cell reaction of direct ammonium borane (NH3BH3) fuel cells (DABFs). Hierarchical copper oxide (CuO) nanoplates (CuO Npls) were first synthesized in a hydrothermal condition. CuO Npls were then reduced at room temperature using water solution of sodium borohydride (NaBH4) to yield the desired mesoporous copper material, MS-Cu, consisting of interleaved nanoplates with a high density of mesopores. The surface of MS-Cu comprised high-index facets, whereas a macroporous copper material (MC-Cu), which was prepared from CuO Npls at elevated temperatures in a hydrogen stream, was surrounded by low-index facets with a low density of active sites. MS-Cu exhibited a lower onset potential and improved durability for the electro-oxidation of NH3BH3 than MC-Cu or copper particles because of the catalytically active mesopores on the interleaved nanoplates.

  17. Ni-(Ce0.8-xTix)Sm0.2O2-δ anode for low temperature solid oxide fuel cells running on dry methane fuel

    Science.gov (United States)

    Han, Bing; Zhao, Kai; Hou, Xiaoxue; Kim, Dong-Jin; Kim, Bok-Hee; Ha, Su; Norton, M. Grant; Xu, Qing; Ahn, Byung-Guk

    2017-01-01

    A titanium-doped Ce0.8Sm0.2O1.9 composite is developed as an anode component of low temperature solid oxide fuel cells running on methane fuel. Crystallographic parameters of (Ce0.8-xTix)Sm0.2O2-δ (0.00 cell consisting of Ni-(Ce0.8-xTix)Sm0.2O2-δ anode/Ce0.8Sm0.2O1.9 electrolyte/La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. Catalytic properties of Ni-(Ce0.8-xTix)Sm0.2O2-δ are inspected with the electrochemical performance and performance stability of the cells in dry methane fuel. The cell with Ni-(Ce0.73Ti0.07)Sm0.2O2-δ (x = 0.07) anode displays a low polarization resistance and an optimum maximum power density (679 mW cm-2 at 600 °C). A performance stability investigation indicates that the cell exhibits a fairly low degradation rate of 3 mV h-1 during a 31 h operation in dry methane. These findings suggest the application potential of the titanium doped Ce0.8Sm0.2O1.9 for the anode of solid oxide fuel cells.

  18. Novel co-extruded electrolyte-anode hollow fibres for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Droushiotis, Nicolas; Othman, Mohd Hafiz Dzarfan; Doraswami, Uttam; Wu, Zhentao; Kelsall, Geoff; Li, Kang [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2009-09-15

    Novel CGO/NiO-CGO dual-layer hollow fibres (HFs) have been fabricated in a single-step co-extrusion and co-sintering process. LSCF-CGO cathodes layers were then deposited onto the dual-layer HFs to construct micro-tubular SOFCs. The NiO in the micro-tubular HF-SOFCs was reduced at 550 C using hydrogen gas to form Ni anodes. Scanning electron microscope images showed that the dual-layer HFs have porous anodes and dense electrolyte layers. Preliminary measurements with a HF-SOFC fed with H{sub 2} and atmospheric oxygen, produced maximum power densities of 420 W m{sup -2} and 800 W m{sup -2} at 450 C and 550 C, respectively. (author)

  19. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  20. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  1. Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, S.; Coutanceau, C.; Lamy, C.; Leger, J.-M. [Laboratoire de Catalyse en Chimie Organique, -Equipe Electrocatalyse- UMR-CNRS 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)

    2006-07-14

    Ethanol electro-oxidation at different Pt-based electrodes was investigated in a single direct ethanol fuel cell (DEFC) in terms of reaction product distribution depending on the anode catalyst. In DEFC experiments, only three reaction products were detected using HPLC: acetaldehyde (AAL), acetic acid (AA) and CO{sub 2}. The addition of tin to platinum increases the activity of the catalyst by several order of magnitude and the electrical performance of the DEFC are greatly enhanced from a few mWcm{sup -2} to 30mWcm{sup -2} at 80{sup o}C, with Pt/C and Pt-Sn/C catalysts, respectively. Moreover, at Pt-Sn/C and Pt-Sn-Ru/C the formation of CO{sub 2} and AAL is lowered whereas the formation of AA is increased in comparison to what happens at a Pt/C catalyst. The addition of Ru to Pt-Sn only leads to enhance the electrical performance of the DEFC, i.e. the activity of the catalyst, but does not modify the product distribution. Very good stability in the open circuit voltage of the DEFC (close to 0.75V) was observed over a period of 2 weeks at 90{sup o}C, the cell undergoing start-run-stop cycles each day. Good stability under operating conditions at a given current density was also observed over 6h. (author)

  2. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells

    Science.gov (United States)

    Deshpande, Kishori; Mukasyan, Alexander; Varma, Arvind

    Liquid feed direct methanol fuel cells (DMFC) are promising candidates for portable power applications. However, owing to the problems associated with expensive Pt-based catalysts, viz., CO poisoning, a promising approach is to use complex oxides of the type ABO 3 (A = Sr, Ce, La, etc. and B = Co, Fe, Ni, Pt, Ru, etc.). In the current work, a variety of ABO 3 and A 2BO 4 type non-noble and partially substituted noble metal high surface area compounds were synthesized by an effective and rapid aqueous combustion synthesis (CS). Their catalytic activity was evaluated by using "High Throughput Screening Unit"-NuVant System, which compares up to 25 compositions simultaneously under DMFC conditions. It was found that the Sr-based perovskites showed performance comparable with the standard Pt-Ru catalyst. Further, it was observed that the method of doping SrRuO 3 with Pt influenced the activity. Specifically, platinum added during aqueous CS yielded better catalyst than when added externally at the ink preparation stage. Finally, it was also demonstrated that the presence of SrRuO 3 significantly enhanced the catalytic properties of Pt, leading to superior performance even at lower noble metal loadings.

  3. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot.

  4. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu; Liu, Meilin; Yang, Guan-Jun

    2016-08-01

    Porous metal-supported solid oxide fuel cells (SOFCs) have attracted much attention because their potential to dramatically reduce the cost while enhancing the robustness and manufacturability. In particular, 430 ferritic steel (430L) is one of the popular choice for SOFC support because of its superior performance and low cost. In this study, we investigate the oxidation and diffusion behavior of the interface between a Ni-based anode and porous 430L support exposed to a humidified (3% H2O) hydrogen atmosphere at 700 °C. The Ni-GDC (Ce0.8Gd0.2O2-δ) cermet anodes are deposited on the porous 430L support by atmospheric plasma spraying (APS). The effect of exposure time on the microstructure and phase structure of the anode and the supports is studied and the element diffusion across the support/anode interface is characterized. Results indicate that the main oxidation product of the 430L support is Cr2O3, and that Cr and Fe will diffuse to the anode and the diffusion thickness increases with the exposure time. The diffusion thickness of Cr and Fe reach about 5 and 2 μm, respectively, after 1000 h exposure. However, the element diffusion and oxidation has little influence on the area-specific resistance, indicating that the porous 430L steel and plasma sprayed Ni-GDC anode are promising for durable SOFCs.

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. Development of Biologically Modified Anodes for Energy Harvesting Using Microbial Fuel Cells

    Science.gov (United States)

    2012-09-01

    media and mediators. The media for Shewanella can be either LB broth , fresh M9 with lactate added as the fuel or spent M9 from yeast cultures. The...include: Inexpensive electrodes, catalysts, scale-up designs, field tests, electron transfer mechanisms, fermentation control, designed consortia...Current Generation and Cellulose Fermentation in a Microbial Fuel Cell”, Applied Microbiology and Biotechnology 76(3), 561- 568 (2007). [9] Lowy, D.A

  7. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    Science.gov (United States)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  8. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  9. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells

    KAUST Repository

    Feng, Yujie

    2010-04-02

    Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m-2, which is 34% larger than the untreated control (CF-C, 1020 mW m-2). This power density is 25% higher than using only acid treatment (1100 mW m-2) and 7% higher than that using only heat treatment (1280 mW m-2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications. © 2009 Elsevier B.V. All rights reserved.

  10. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  11. Graphene/Fe3 O4 Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells.

    Science.gov (United States)

    Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2017-02-01

    The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe3 O4 (G/Fe3 O4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe3 O4 with high affinity and their growth could be supported by Fe3 O4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe3 O4 anode were much higher than those of each individual component as an anode.

  12. Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells

    Science.gov (United States)

    2010-01-14

    applications. Hydrogen is not an energy sources and has to be produced via electrolysis or reforming of other hydrocarbon fuels. On the other hand, liquid...500h at 850oC [26]. In recent years, researchers tried to improve sulfur tolerance of SOFCs via substituting nickel with copper . For example, He et

  13. Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells.

    Science.gov (United States)

    Harris, William M; Lombardo, Jeffrey J; Nelson, George J; Lai, Barry; Wang, Steve; Vila-Comamala, Joan; Liu, Mingfei; Liu, Meilin; Chiu, Wilson K S

    2014-06-10

    Following exposure to ppm-level hydrogen sulfide at elevated temperatures, a section of a solid oxide fuel cell (SOFC) Ni-YSZ anode was examined using a combination of synchrotron-based x-ray nanotomography and x-ray fluorescence techniques. While fluorescence measurements provided elemental identification and coarse spatial mapping, x-ray nanotomography was used to map the detailed 3-D spatial distribution of Ni, YSZ, and a nickel-sulfur poisoning phase. The nickel-sulfur layer was found to form a scale covering most of the exposed nickel surface, blocking most fuel reformation and hydrogen oxidation reaction sites. Although the exposure conditions precluded the ability to develop a detailed kinetic description of the nickel-sulfur phase formation, the results provide strong evidence of the detrimental effects of 100 ppm hydrogen sulfide on typical Ni-YSZ anode materials.

  14. Three-Dimensional Microstructural Imaging of Sulfur Poisoning-Induced Degradation in a Ni-YSZ Anode of Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, William M.; Lombardo, Jeffrey J.; Nelson, George J.; Lai, Barry; Wang, Steve; Vila-Comamala, Joan; Liu, Mingfei; Liu, Meilin; Chiu, Wilson K. S.

    2014-06-01

    Following exposure to ppm-level hydrogen sulfide at elevated temperatures, a section of a solid oxide fuel cell (SOFC) Ni-YSZ anode was examined using a combination of synchrotron-based x-ray nanotomography and x-ray fluorescence techniques. While fluorescence measurements provided elemental identification and coarse spatial mapping, x-ray nanotomography was used to map the detailed 3-D spatial distribution of Ni, YSZ, and a nickel-sulfur poisoning phase. The nickel-sulfur layer was found to form a scale covering most of the exposed nickel surface, blocking most fuel reformation and hydrogen oxidation reaction sites. Although the exposure conditions precluded the ability to develop a detailed kinetic description of the nickel-sulfur phase formation, the results provide strong evidence of the detrimental effects of 100 ppm hydrogen sulfide on typical Ni-YSZ anode materials.

  15. Mechanistic investigation and modelling of anode reaction in the molten carbonate fuel cell; Mechanistische Untersuchung und Modellierung der Anodenreaktion in der Karbonat-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Markus Roman

    2011-04-27

    Considering distributed energy generation, molten carbonate fuel cells (MCFCs) have best prospects to fulfil the demands of the highly competing energy market. To establish MCFC technology in the market, various requirements need to be met. These are on the one hand the reduction of the specific costs per kW and the simultaneous increase in efficiency of the MCFCs. On the other hand, an extended lifetime of MCFC stacks in general and especially when biofuels are used is required. Detailed knowledge of electrodes' reaction mechanisms is essential for successful technical improvements or cost reduction measures. In this thesis, the complex anodic reaction mechanism in the molten carbonate fuel cell is studied in detail, with the objective to develop a fundamental understanding of the physical and electrochemical processes taking place at the anode, and to identify the factors influencing the performance of fuel cell stacks. These include a detailed study of the simultaneously performed oxidation reactions of hydrogen and carbon monoxide and its kinetic parameters, the detailed analysis of mass transport, adsorption and charge transfer and the observation of degradation phenomena, which have a declining effect on cell performance and lifetime. In order to gain this knowledge, several testing facilities have been used: anode half-cells and single cells. Electrochemical impedance spectroscopy (EIS) has been applied as analyzing tool for physical and electrochemical phenomena, whose results have been integrated in the development of an equivalent circuit. Linking the elements of the equivalent circuit with physical process parameters has been done by using a numerical model for the MCFC-anode. The impedance measurements of the MCFC anodes result in four characteristic resistances: ohmic resistance, high-frequency resistance, low-frequency resistance and cumulative resistance. The strongly temperature dependent high-frequency resistance is influenced by the electrode

  16. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    Science.gov (United States)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  17. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anode in solid oxide fuel cells

    Science.gov (United States)

    Li, Yiqian; Zhang, Yaohui; Zhu, Xingbao; Wang, Zhihong; Lü, Zhe; Huang, Xiqiang; Zhou, Yongjun; Zhu, Lin; Jiang, Wei

    2015-07-01

    In this study, comparison experiments are conducted based on yttria-stabilized zirconia (YSZ) electrolyte supported single solid oxide fuel cells (SOFCs) with pure La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCrM) or Ni/CeO2 impregnated LSCrM anodes. The single cells are tested in dry H2 and H2/H2S (50 ppm) mixture, respectively. Compared with the pure LSCrM anode, the cell with Ni/CeO2 impregnated LSCrM presents a significant performance improvement when the pure H2 is fueled to the anode, and shows a good stability during a constant-current discharge testing (398 mA cm-2). When the fuel is switched to H2/H2S mixture, the cell with Ni/CeO2 impregnated LSCrM anode still shows a remarkable constant-current discharge (120 mA cm-2) performance compared with pure LSCrM anode. The Ni/CeO2 impregnation can improve the electrochemical performance of the LSCrM anode without any sacrifice of sulfur tolerance ability. The Ni/CeO2 impregnated LSCrM might be a potential anode material for solid oxide fuel cell operating in sulfur-containing fuels. The XRD and XPS results demonstrate that the anode poisoning product is composed of adsorbed sulfur, metal sulfides and sulfate radical. The mass spectrum result confirms that the poisoning mechanism involves the reaction of sulfur with anode rather than the direct reaction between H2S gas and anode.

  19. Ethane dehydrogenation over nano-Cr 2O 3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Science.gov (United States)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R.; Krzywicki, Andrzej

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr 2O 3 nanoparticles as anode catalyst, BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr 2O 3 nanoparticles are synthesized by a combustion method. BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm -2 to 118 mW cm -2 and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 °C to 750 °C. The fuel cell reactor and process are stable at 700 °C for at least 48 h. Cr 2O 3 anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 °C.

  20. Effects of adding alumina to the nickel-zirconia anode materials for solid oxide fuel cells and a two-step sintering method for half-cells

    Science.gov (United States)

    Song, Xiao; Dong, Xiaolei; Li, Ming; Wang, Haiqian

    2016-03-01

    The co-sintering process of half-cells has an important effect on the flatness and performance of solid oxide fuel cells. In this study, we report a two-step sintering method to fabricate flat three-layer half-cells. The first sintering step is a freestanding sintering process at a low temperature (1280 °C). The second sintering step is a constrained sintering process at 1400 °C. The shrinkage of the anode support layer (ASL) and the curvature of the half-cell can be adjusted by adding Al2O3 into the ASL in the first sintering step. Effects of Al2O3 addition on the NiO-YSZ anode material are also studied. We find that NiO reacts with Al2O3 to form NiAl2O4 spinel at the early sintering stage. This reaction transiently promotes the grain growth of NiO. Once the reaction terminates and the NiAl2O4 spinel is formed, the grain growth of NiO will be suppressed, even at higher sintering temperatures. Our results indicate that by a proper amount (approximately 0.2 wt%) of Al2O3 addition, smaller NiO grains can be obtained while the side effects of NiAl2O4 are negligible, which is favorable to increase the conductivity and stability of the ASL, and can enhance the performance of SOFC.

  1. Fabrication and tests of anode supported solid oxide fuel cell; Fabricacao e testes de celula a combustivel de oxido solido suportada no anodo

    Energy Technology Data Exchange (ETDEWEB)

    Florio, D.Z. de [UNESP, Araraquara, SP (Brazil)], e-mail: dzflorio@ipen.br; Fonseca, F.C.; Franca, Y.V.; Muccillo, E.N.S.; Muccillo, R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Berton, M.A.C.; Garcia, C.M. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)

    2006-07-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). Ceramic single cells were fabricated by low-cost methods, and emphasis was given to the use of ready available raw materials. The whole project consisted of the preparation of the component materials - anode, cathode, and electrolyte - and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3} + NiO) anode / (ZrO{sub 2}:Y{sub 2}O{sub 3}) electrolyte / (La{sub 0.65}Sr{sub 0.35}MnO{sub 3} + ZrO{sub 2}:Y{sub 2}O{sub 3}) cathode have been prepared and tested at 700 deg C and 800 deg C after in situ H{sub 2} anode reduction. The main results show that the slurry coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  2. Effect of Adding Zinc Oxide Particles to the Anode Catalyst Layer on the Performance of a Proton-Exchange Membrane Fuel Cell

    Science.gov (United States)

    Fang, Sheng-Yu; Teoh, Lay Gaik; Huang, Rong-Hsin; Chao, Wen-Kai; Lin, Tien-Jen; Yang, Kai-Chun; Hsueh, Kan-Lin; Shieu, Fuh-Sheng

    2014-09-01

    Commercial and home-made hygroscopic zinc oxide (ZnO) particles were added to the anode catalyst layer of a membrane electrode assembly (MEA) to improve its wettability, and thus the performance of a proton-exchange membrane fuel cell under low-humidity conditions. Scanning electron microscopy revealed that the size of the home-made ZnO particles calcined at 300°C ranged from 20 nm to 30 nm. Single-cell performance with different types of ZnO particle in the anode catalyst layer was investigated at anode humidifier temperatures of 25, 45, and 65°C; the cell and cathode humidifier temperatures were fixed at 65°C. MEA with the ZnO particles calcined at 300°C had maximum power densities of 0.26, 0.33, and 0.34 W/cm2 at anode humidifier temperatures of 25, 45, and 65°C, respectively; these were 30, 37.5, and 36% higher, respectively, than for MEA without ZnO particles.

  3. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell

    Science.gov (United States)

    Zheng, Minghao; Wang, Shuang; Li, Mei; Xia, Changrong

    2017-03-01

    Cu-ceria cermets have been widely investigated as the anode materials for solid oxide fuel cells (SOFCs) that operated with hydrocarbon fuels. However, the anode reaction processes are not clear yet, especially those at the ceria-Cu-gas three phase boundary (3 PB). This work investigates samaria-doped ceria (SDC)-Cu-gas 3 PB reaction kinetics for the oxidation of H2 and CO, the products from hydrocarbons via external and internal reforming. Electrochemical conductivity relaxation measurement demonstrates that Cu is a synergistic catalyst that can significantly increase the reaction rate. The reaction at 3 PB contributes 81.3/66.8% of H2/CO oxidation when 5.4% SDC surface is covered with Cu particles. Combining with AC impedance analysis, elementary steps are proposed for the reaction at 3 PB. Water vapor combining to oxygen vacancy and carbon monoxide transforming to carbonate are the rate-determining steps for the oxidation of H2 and CO, respectively. Cu-SDC has shown much higher catalytic activity, i.e. about fivefold reaction rate, for the oxidation of CO than H2. In addition, Cu-SDC electrodes exhibit lower interfacial polarization resistance and lower activation energy for the electrochemical oxidation of CO than H2. Consequently, CO is easier to be oxidized than H2 when the Cu-ceria anode is fueled with syngas, the reforming product from hydrocarbons.

  4. Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum

    Science.gov (United States)

    Li, Ping; Yu, Baolong; Li, Jiang; Yao, Xueli; Zhao, Yicheng; Li, Yongdan

    2016-07-01

    Ni-Mo-Ce0.8Sm0.2O1.9 (SDC) composites are prepared and investigated as anodes of solid oxide fuel cells with methanol as fuel. The addition of Mo improves the catalytic activity for methanol pyrolysis and the resistance to carbon deposition of Ni-SDC anode. The anode with a mole ratio of Mo to Ni of 0.03:1 exhibits the lowest polarization resistance. The cell with that anode and SDC-carbonate composite electrolyte shows a maximum power density of 680 mW cm-2 at 700 °C. The stability of the cell is enhanced with the increase of the content of Mo in the anode, which is mainly attributed to the decreased amount of carbon deposits with a high graphitization degree.

  5. Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing

    Energy Technology Data Exchange (ETDEWEB)

    Guisard Restivo, Thomaz A.; Mello-Castanho, Sonia R.H. [IPEN, Inst. of Energetic and Nuclear Research, Sao Paulo, SP (Brazil)

    2010-01-15

    The work shows some results concerning a new cermet material 40 vol.% [(Cu)-Ni]-YSZ processed by mechanical alloying followed by Sintering by Activated Surface method. The projected cermet microstructure for this application is expected to possess microstructural characteristics that lead to better electric and ionic percolating, higher electrocatalytic activity and fuel reforming. The powder samples prepared by mechanical alloying optimized conditions show a homogeneous mixture. Transmission and scanning electron microscope analysis have demonstrated the powder particles are nanosized after 2 h of milling, showing lamellar internal structure aggregates. Suitable sintered pellets are obtained from these powders, within the required porosity and microstructure. Sintering kinetics studies for pellets of Ni-YSZ and Ni-Cu-YSZ indicate 2-step sintering processes. Copper additive promotes sintering and refines the microstructure. (orig.)

  6. A solid oxide fuel cell with a gadolinia-doped ceria anode: Preparation and performance

    DEFF Research Database (Denmark)

    Marina, O.A.; Bagger, C.; Primdahl, S.

    1999-01-01

    /N-2 = 33/3/64. No carbon deposition was found on CG4 after cell operation at a steam-to-carbon ratio of 0.3 for 1000 h. Cells sustained several rapid thermal cycles in the temperature interval 200-1000 degrees C and a full redox cycle without degradation. (C) 1999 Elsevier Science B.V. All rights...

  7. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  8. Mechanistic investigation and modelling of anode reaction in the molten carbonate fuel cell; Mechanistische Untersuchung und Modellierung der Anodenreaktion in der Karbonat-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Markus Roman

    2011-04-27

    Considering distributed energy generation, molten carbonate fuel cells (MCFCs) have best prospects to fulfil the demands of the highly competing energy market. To establish MCFC technology in the market, various requirements need to be met. These are on the one hand the reduction of the specific costs per kW and the simultaneous increase in efficiency of the MCFCs. On the other hand, an extended lifetime of MCFC stacks in general and especially when biofuels are used is required. Detailed knowledge of electrodes' reaction mechanisms is essential for successful technical improvements or cost reduction measures. In this thesis, the complex anodic reaction mechanism in the molten carbonate fuel cell is studied in detail, with the objective to develop a fundamental understanding of the physical and electrochemical processes taking place at the anode, and to identify the factors influencing the performance of fuel cell stacks. These include a detailed study of the simultaneously performed oxidation reactions of hydrogen and carbon monoxide and its kinetic parameters, the detailed analysis of mass transport, adsorption and charge transfer and the observation of degradation phenomena, which have a declining effect on cell performance and lifetime. In order to gain this knowledge, several testing facilities have been used: anode half-cells and single cells. Electrochemical impedance spectroscopy (EIS) has been applied as analyzing tool for physical and electrochemical phenomena, whose results have been integrated in the development of an equivalent circuit. Linking the elements of the equivalent circuit with physical process parameters has been done by using a numerical model for the MCFC-anode. The impedance measurements of the MCFC anodes result in four characteristic resistances: ohmic resistance, high-frequency resistance, low-frequency resistance and cumulative resistance. The strongly temperature dependent high-frequency resistance is influenced by the electrode

  9. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    Science.gov (United States)

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  10. Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas

    Science.gov (United States)

    Walters, Kevin M.; Dean, Anthony M.; Zhu, Huayang; Kee, Robert J.

    Direct electrochemical oxidation (DECO) solid-oxide fuel cells (SOFCs) offer the potential to generate electrical power from hydrocarbon fuels without the need for upstream fuel processing, such as reforming. However, with pure hydrocarbon fuel entering the flow channels at temperatures typically above 700 °C, fuel pyrolysis can cause molecular-weight growth and the formation of deleterious carbonaceous deposits. This paper, which develops a plug-flow model for fuel (natural gas surrogate) within the anode channels, considers the elementary gas-phase chemical kinetics of fuel pyrolysis and oxidation. It also considers the limiting case of local chemical equilibrium. Formation of cyclic hydrocarbon species is used to indicate deposit propensity. Results show that the likelihood of deposit formation depends strongly on cell temperature, current density, and residence time. Generally speaking, equilibrium favors deposit formation early in the channel whereas, owing to limited residence time, the homogeneous finite-rate kinetics predicts relatively low levels of deposit precursors. In the downstream portions, because of electrochemical oxygen flux though the electrode-electrolyte membrane, chemical equilibrium shifts strongly away from deposit formation to volatile carbon-oxygen species. However, the homogeneous finite-rate kinetics predictions show a continuing increase in coking propensity.

  11. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging

    Science.gov (United States)

    Meyer, Quentin; Ashton, Sean; Curnick, Oliver; Reisch, Tobias; Adcock, Paul; Ronaszegi, Krisztian; Robinson, James B.; Brett, Daniel J. L.

    2014-05-01

    Dead-ended anode operation, with intermittent purge, is increasingly being used in polymer electrolyte fuel cells as it simplifies the mass flow control of feed and improves fuel efficiency. However, performance is affected through a reduction in voltage during dead-ended operation, particularly at high current density. This study uses electrochemical impedance spectroscopy (EIS), off-gas analysis and high resolution thermal imaging to examine the source of performance decay during dead-ended operation. A novel, 'reconstructed impedance' technique is applied to acquire complete EIS spectra with a temporal resolution that allows the dynamics of cell processes to be studied. The results provide evidence that upon entering dead-ended operation, there is an initial increase in performance associated with an increase in anode compartment pressure and improved hydration of the membrane electrolyte. Subsequent reduction in performance is associated with an increase in mass transport losses due to a combination of water management issues and build-up of N2 in the anode. The purge process rapidly recovers performance. Understanding of the processes involved in the dead-end/purge cycle provides a rationale for determining the optimum cycle frequency and duration as a function of current density.

  12. Bilayer electrolyte-anode for solid oxide fuel cell; Obtencao de bicamadas eletrolito-anodo para pilhas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Crochemore, G.B.; Marcomini, R.F.; Souza, D.P.F. de [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais], Email: dulcina@ufscar.br; Rabelo, A.A. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Fac. de Engenharia de Materiais

    2010-07-01

    Solid oxide fuel cell is a high efficient device hence it plays a very important role in the hydrogen economy. However, the cell operation temperature must be lower than 800 deg C, what is attainable for thin Yttria stabilized zirconia (YSZ) electrolytes. The tape casting process is the most used technique because it allows a very fine tuning of the tape thickness. In this work it were investigated the processing conditions for obtaining electrolyte-anode (YSZ/ YSZ-NiO) bilayers with no lamination after the sintering process. (author)

  13. Diffusion Impedance on Nickel/Gadolinia-Doped Ceria Anodes for Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Aravind, P.V.; Ouweltjes, J.P.; Schoonman, J.

    2009-01-01

    Electrochemical impedance measurements were carried out on symmetrical nickel/gadolinia-doped ceria test cells. For H2, N2, and H2O mixtures, the diffusion length obtained based on the impedance measurements is on the order of centimeters. This high value of the diffusion length is attributed to the

  14. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  15. The Evolution of Solid Oxide Fuel Cell Nickel-Yttria Stabilized Zirconia Anodes Studied Using Electrochemical and Three-Dimensional Microstructural Characterizations

    Science.gov (United States)

    Kennouche, David O.

    This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was

  16. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) .

  17. Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels

    Science.gov (United States)

    Liang, Junsheng; Luo, Ying; Zheng, Sheng; Wang, Dazhi

    2017-05-01

    Capillary blocking caused by CO2 bubbles in anode flow field (AFF) is one of the bottlenecks for performance improvement of a micro direct methanol fuel cell (μDMFC). In this work, we present a novel AFF structure with nested layout of hydrophilic fuel channels and superhydrophobic degassing channels which can remove most of CO2 from AFF before it is released to the fuel channels. The new AFFs are fabricated on Ti substrates by using micro photochemical etching combined with anodization and fluorination treatments. Performance of the μDMFCs with and without superhydrophobic degassing channels in their AFF is comparatively studied. Results show that the superhydrophobic degassing channels can significantly speed up the exhaust of CO2 from the AFF. CO2 clogging is not observed in the new AFFs even when their comparison AFFs have been seriously blocked by CO2 slugs under the same operating conditions. 55% and 60% of total CO2 produced in μDMFCs with N-serpentine and N-spiral AFF can be respectively removed by the superhydrophobic degassing channels. The power densities of the μDMFCs equipped with new serpentine and spiral AFFs are respectively improved by 30% and 90% compared with those using conventional AFFs. This means that the new AFFs developed in this work can effectively prevent CO2-induced capillary blocking in the fuel channels, and finally significantly improve the performance of the μDMFCs.

  18. Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang Wang; Guobin Wu; Zhenzhen Yang; Yunfang Gao; Xinbiao Mao; Chun'an Ma

    2011-01-01

    Fuel cells using borohydride as the fuel have received much attention because of high energy density and theoretical working potential. In this work, LaNi4.5Al0.5 hydrogen storage alloy used as the anodic material has been investigated. It was found that the increasing; operation temperature was helpful to the open-circuit potential, the discharge potential and the power density, but showed a negative effect on the utilization of the fuel due to the accelerated hydrogen evolution. The high KOH concentration was favorable for high-rate discharge capability. The adsorption and transformation of hydrogen on LaNi4.5Al0.5 alloy electrode has been observed, but its contribution to the discharge capability during a high-rate discharge was small.

  19. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    Science.gov (United States)

    Paradis, Hedvig; Andersson, Martin; Sundén, Bengt

    2016-08-01

    A 3D model at microscale by the lattice Boltzmann method (LBM) is proposed for part of an anode of a solid oxide fuel cell (SOFC) to analyze the interaction between the transport and reaction processes and structural parameters. The equations of charge, momentum, heat and mass transport are simulated in the model. The modeling geometry is created with randomly placed spheres to resemble the part of the anode structure close to the electrolyte. The electrochemical reaction processes are captured at specific sites where spheres representing Ni and YSZ materials are present with void space. This work focuses on analyzing the effect of structural parameters such as porosity, and percentage of active reaction sites on the ionic current density and concentration of H2 using LBM. It is shown that LBM can be used to simulate an SOFC anode at microscale and evaluate the effect of structural parameters on the transport processes to improve the performance of the SOFC anode. It was found that increasing the porosity from 30 to 50 % decreased the ionic current density due to a reduction in the number of reaction sites. Also the consumption of H2 decreased with increasing porosity. When the percentage of active reaction sites was increased while the porosity was kept constant, the ionic current density increased. However, the H2 concentration was slightly reduced when the percentage of active reaction sites was increased. The gas flow tortuosity decreased with increasing porosity.

  20. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality.

  1. Non-invasive real time gas composition and flow measurement for the anode recirculation subsystem of a hydrogen operated PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, T. [IAV GmbH, Gifhorn (Germany); Turek, T.; Kunz, U. [TU Clausthal, Clausthal-Zellerfeld (Germany)

    2009-07-01

    Many specific balance of plant issues must be addressed before full commercialization of automotive fuel cell systems can occur. One problem involves significant nitrogen crossover from the cathode to the anode as a result of membrane permeability. The limitation of nitrogen concentration in the anode subsystem causes purging when sufficient gas recirculation is provided. Unused hydrogen is also vented. Therefore, nitrogen buildup and concentration control is needed to optimize system efficiency. The non-invasive determination of the recirculated anode gas flow and its composition under system operating conditions is problematic. The available sensor technology cannot perform a real time measurement of these parameters without affecting the recorded system value. A robust and reliable sensor system was therefore developed in order to overcome this problem. This paper discussed the principle of ultrasonic flow measurement, gas recirculation, and determination of gas composition. It also presented an investigation of the sensor system that was integrated into a full size lab. The system was designed to investigate concentration oscillation within the anode recirculation subsystem and dynamic responses during purge cycles. It was concluded that system operation with high nitrogen concentration promote further improvement in system efficiency. 3 refs., 2 tabs., 10 figs.

  2. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers.

  3. Multi-metallic anodes for solid oxide fuel cell applications; Anodos multi-metalicos para aplicacoes em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, T.A. Guisard; Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia dos Materiais; Leite, D. Will [Instituto de Pesquisas e Estudos Industriais (IPEI/FEI), Sao Bernardo do Campo, SP (Brazil). Fac. de Engenharia Industrial

    2009-07-01

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  4. Modeling mass transfer in solid oxide fuel cell anode: II. H2/CO co-oxidation and surface diffusion in synthesis-gas operation

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2016-08-01

    Following the previous work on comparing performance of Fickian, Stefan-Maxwell and dusty-gas model for mass transfer in single fuel system, this article is focused on the electrochemistry and transport in the anode of solid oxide fuel cell using H2sbnd H2Osbnd COsbnd CO2sbnd N2 hybrid fuel. Under the standard framework of the dusty-gas model combined with the Butler-Volmer equation, it carries out a macroscopic area-specific modeling work. More specifically, two variables of hydrogen current fraction and enhancement factor are well defined and solved for the electrochemical co-oxidation of H2 and CO, and the diffusion equivalent circuit model is introduced to describe more comprehensively the resistance of mass transfer including molecular/Knudsen diffusion and surface diffusion. The model has been validated well in full region of Vsbnd I performance of an experimental anode-supported button cell. An approximate analytical solution of the hydrogen current fraction is also presented for explicit computation. Comparison between the results by different approaches for the effective diffusivity shows the importance of right mass-transfer modeling.

  5. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  6. A novel Nickel-Aluminum alloy with Titanium for improved anode performance and properties in Molten Carbonate Fuel Cells

    Science.gov (United States)

    Frattini, Domenico; Accardo, Grazia; Moreno, Angelo; Yoon, Sung Pil; Han, Jong Hee; Nam, Suk Woo

    2017-06-01

    The anode materials of MCFC require more investigations in order to boost performances at long term. In literature, many NiAl modified alloys have been proposed but not always enhanced cell performance and improved mechanical properties are achieved together. In this work, differently from previous literature, the use of Ti in a NiAl/Ti system is proposed as an effective strategy to enhance both mechanical and electrochemical properties. Results show that bending strength and stiffness increase whereas creep deformation under high pressure-temperature is lower, i.e. around 5-6%, compared to 7.5% of the standard benchmark. The preliminary cell tests carried out show also how the performance, in terms of current and voltage output, is better for anodes with Ti addition with a maximum power density of 165 mW cm-2 at 300 mA cm-2 for Ti 5% compared to 149 mW cm-2 of Ni5Al at the same current density. Finally, the best electrochemical behavior is found for the Ti 5% sample as it achieved the lowest internal and charge transfer resistance at the end of tests. These results suggest that NiAl/Ti systems can be eligible anode materials and are worthy to be investigated more in order to attract a renewed interest for development of MCFCs.

  7. Bioelectricity Production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells Using Indigenous Anode-Reducing Bacterial Community from Wastewater of Rice-Based Industries

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Jadhav

    2017-03-01

    Full Text Available Microbial fuel cells (MFCs are the electrochemical systems that harness the electricity production capacity of certain microbes from the reduction of biodegradable compounds. The present study aimed to develop mediator-less MFC without using expensive proton exchange membrane. In the present study, a triplicate of dual-chamber, mediator-less MFCs was operated with two local rice based industrial wastewater to explore the potential of this wastewater as a fuel option in these electrochemical systems. 30 combinations of 6 electrodes viz. Carbon (14 cm × 1.5 cm, Zn (14.9 cm × 4.9 cm, Cu (14.9 cm × 4.9 cm, Sn (14.1cm × 4.5cm, Fe (14cm × 4cm and Al (14cm × 4.5 cm were evaluated for each of the wastewater samples. Zn-C as anode-cathode combination produced a maximum voltage that was 1.084±0.016V and 1.086±0.028 and current of 1.777±0.115mA and 1.503±0.120 for KRM and SSR, respectively. In the present study, thick biofilm has been observed growing in MFC anode. Total 14 bacterial isolates growing in anode were obtained from two of the wastewater. The dual chambered, membrane-less and mediator-less MFCs were employed successfully to improve the economic feasibility of these electrochemical systems to generate bioelectricity and wastewater treatment simultaneously. Keywords: Membrane-less, Microbial Fuel Cells, Biofilm, Wastewater, Electrogenic. Article History: Received June 25th 2016; Received in revised form Dec 15th 2016; Accepted January 5th 2017; Available online How to Cite This Article: Reena, M. and Jadhav, S. K. (2017 Bioelectricity production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells using Indigenous Anode-reducing Bacterial Community from Wastewater of Rice-based Industries. International Journal of Renewable Energy Develeopment, 6(1, 83-92. http://dx.doi.org/10.14710/ijred.6.1.83-92

  8. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    Science.gov (United States)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  9. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    Science.gov (United States)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  10. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    Science.gov (United States)

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli.

  11. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Ni, De Wei; Charlas, Benoit; Kwok, Kawai

    2016-01-01

    Solid Oxide Fuel Cells are subjected to significant stresses during production and operation. The various stress-generating conditions impose strength requirements on the cell components, and thus the mechanical properties of the critical load bearing materials at relevant operational conditions ...

  12. A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O{sub 3} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Watanabe, Kimitaka; Arakawa, Masayasu; Arai, Hajime [NTT Corporation, NTT Energy and Environment Systems Laboratories, Morinosato-Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2009-09-05

    The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm{sup -2} and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP). (author)

  13. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell

    Science.gov (United States)

    Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-12-01

    A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.

  14. Efficient and stable iron based perovskite La0.9Ca0.1Fe0.9Nb0.1O3-δ anode material for solid oxide fuel cells

    Science.gov (United States)

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei; Gong, Xiaobo; Guo, Zhanhu

    2016-06-01

    A novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite for solid oxide fuel cells (SOFCs) anode is prepared by means of the citrate-nitrate route and composited with Ce0.8Sm0.2O1.9 (SDC) by impregnation method to form nano-scaled LCFNb/SDC anode catalytic layers. The single cells with LCFNb and LCFNb/SDC impregnated anodes both achieve relatively high power output with maximum power densities (MPDs) reaching up to 610, 823 mW·cm-2 in H2 at 800 °C, respectively, presenting a high potential of LCFNb for use as SOFCs anode. The power outputs of the single cells with LCFNb/SDC composite anode in CO and syngas (COsbnd H2 mixture) are almost identical to that in H2 at each testing temperature. This composite anode also presents excellent durability in both H2 and CO for as long as 50 h, showing desirable anti-reduction and carbon deposition resistance abilities. Besides, the cell output is stable in 100 ppm H2Ssbnd H2 atmospheres for 20 h at a current density of 600 mA·cm-2 with negligible sulfur accumulation on the anode surface. Hence, a novel iron based perovskite LCFNb anode with remarkable cell performance, carbon deposition resistance and sulfur poisoning tolerance for SOFCs is successfully obtained.

  15. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  16. In situ X-ray Rietveld analysis of Ni-YSZ solid oxide fuel cell anodes during NiO reduction in H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Rojas, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Toluca (Mexico); Esparza-Ponce, H E [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); Fuentes, L [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); Lopez-Ortiz, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); Keer, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); Reyes-Gasga, J [Instituto de Fisica, UNAM. Apartado Postal 20-364. 01000 Mexico DF (Mexico)

    2005-07-07

    A synthesis and characterization of solid oxide fuel cell (SOFC) anodes of nickel with 8%mol yttrium stabilized zirconia (Ni-YSZ) is presented. Attention was focused on the kinetics and phase composition associated with the transformation of NiO-YSZ to Ni-YSZ. The anodes were prepared with an alternative synthesis method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 deg. C and oxide reduction (NiO-YSZ {yields} Ni-YSZ) at 800 deg. C for 8 h in a tubular reactor furnace using 10% H{sub 2}/N{sub 2}. The obtained material was compressed by unidirectional axial pressing into 1 cm-diameter discs with 15-66 wt% Ni and calcinated from room temperature to 800 deg. C. A heating rate of 1 deg. C min{sup -1} showed the best results to avoid any anode cracking. Their structural and chemical characterization during the isothermal reduction were carried out by in situ time-resolved X-ray diffraction, refined with the Rietveld method (which allowed knowing the kinetic process of the reduction), scanning electron microscopy and X-ray energy dispersive spectroscopy. The results showed the formation of tetragonal YSZ 8%mol in the presence of nickel, a decrement in the unit cell volume of Ni and an increment of Ni in the Ni-YSZ anodes during the temperature reduction. The analysis indicated that the Johnson-Mehl-Avrami equation is unable to provide a good fit to the kinetics of the phase transformation. Instead, an alternative equation is presented.

  17. Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions.

    Science.gov (United States)

    Pandit, Soumya; Khilari, Santimoy; Roy, Shantonu; Pradhan, Debabrata; Das, Debabrata

    2014-08-01

    Three different approaches were employed to improve single chambered microbial fuel cell (sMFC) performance using Shewanella putrefaciens as biocatalyst. Taguchi design was used to identify the key process parameter (anolyte concentration, CaCl₂ and initial anolyte pH) for maximization of volumetric power. Supplementation of CaCl₂ was found most significant and maximum power density of 4.92 W/m(3) was achieved. In subsequent approaches, effect on power output by riboflavin supplementation to anolyte and anode surface modification using nano-hematite (Fe₂O₃) was observed. Volumetric power density was increased by 44% with addition of 100 nM riboflavin to anolyte while with 0.8 mg/cm(2) nano-Fe₂O₃ impregnated anode power density and columbic efficiency increased by 40% and 33% respectively. Cyclic voltammetry revealed improvement in electrochemical activity of Shewanella with nano-Fe₂O₃ loading and electrochemical impedance depicted inverse relationship between charge transfer resistance and nano-Fe₂O₃ loading. This study suggests anodic improvement strategies for maximization of power output. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Calculating the Energy Cost of CO2 Removal in a Coal Based Gas Turbine Fuel Cell Hybrid Power Generation System with an Isolated Anode Stream

    Energy Technology Data Exchange (ETDEWEB)

    Vanosdol, J G; Gemmen, R S; Liese, E A

    2007-10-01

    In recent years there has been significant interest in identifying carbon capturing technologies that can be applied to fossil fuel power generation plants.CO2 capture technologies seek to reduce the amount of CO2 that would normally be emitted into the atmosphere from the daily operation of these plants. In terms of system efficiency and operating costs, this carbon capture is expensive. Further, the additional equipment that would be used to capture CO2 emissions greatly adds to the complexity of the system. There has also been significant interest in coal based gas turbine fuel cell hybrid power plants. A hybrid power plant can have much greater system efficiency than a normal gas turbine power plant because the heat that is normally unused in a standalone solid oxide fuel cell (SOFC) is recovered and used to drive a power producing turbine. It is thought that the increased system efficiency of the hybrid system might compensate for the increased expense of performing carbon capture. In order to provide some analytical insight on this tradeoff we present a 100 MW class coal fired gas turbine SOFC hybrid power generation system. The hybrid system operates at a pressure ratio of 6, and uses heat recuperation and cathode air recirculation to control the SOFC inlet temperature and the temperature change across the SOFC. A carbon capture scheme is added to this system in order to calculate the relative energy cost in terms of system efficiency due to CO2 compression. The carbon capture is performed by burning the unused fuel from the SOFC in an isolated anode stream using pure O2 injection. The resulting heat that is generated from this process is then used to drive a secondary turbine that is placed in the anode exhaust stream where more work is extracted. With an isolated anode stream, the products of combustion from this secondary combustion process are mostly water and carbon dioxide. The water by-product is

  19. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    Science.gov (United States)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  20. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  1. SrMo0.9Co0.1O3-δ: A potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC)

    Science.gov (United States)

    Martínez-Coronado, R.; Alonso, J. A.; Fernández-Díaz, M. T.

    2014-07-01

    SrMo0.9Co0.1O3-δ oxide has been prepared, characterized and tested as anode material in single solid-oxide fuel cells (SOFC), yielding output powers close to 800 mW cm-2 at 850 °C with pure H2 as a fuel. This excellent performance is accounted for the results of an "in-situ" neutron powder diffraction (NPD) experiment, at the working conditions of a SOFC, showing the presence of a sufficiently high oxygen deficiency, with large displacement factors for oxygen atoms that suggest a large lability and mobility, combined with a huge metal-like electronic conductivity, as high as 386 S cm-1 at T = 50 °C. Besides, the oxidation of the perovskite gives rise to a new oxygen deficient scheelite-like phase with formula SrMo0.9Co0.1O4-δ with Mo(VI), which has been studied by NPD and thermal analysis as far as crystal structure and composition are concerned. An adequate thermal expansion coefficient for both (oxidized and reduced) phases, an excellent reversibility upon cycling in oxidizing-reducing atmospheres and a good chemical compatibility with the electrolyte (La0.8Sr0.2Ga0.83Mg0.17O3-δ; LSGM) make this oxide a good candidate for anode in intermediate-temperature SOFC (IT-SOFCs).

  2. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  3. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  4. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell.

    Science.gov (United States)

    Kumar, Smita S; Malyan, Sandeep K; Basu, Suddhasatwa; Bishnoi, Narsi R

    2017-07-01

    Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m(3) and volumetric current density was 16.17 A/m(3). Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.

  5. Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850 °C

    Science.gov (United States)

    Wu, P. C.; Shy, S. S.

    2017-09-01

    We report a novel pressurized solid oxide fuel cell (SOFC) rig that overcomes the stagnation flow problem in classic button cell setups, allowing fuel and air to distribute uniformly over anode and cathode surfaces. Power and impedance measurements of an anode-supported full button cell (ASC; NiO-YSZ/YSZ/LSM-GDC-LSM) operated at p = 1-5 atm and T = 750-850 °C show that both pressurization and increasing temperature enhance the cell performance, which are explained by the Nyquist plots consisted of a high frequency arc with characteristic frequencies (fc) around 100-1000 Hz relating to the cathode activation overvoltage and a low frequency arc with fc around 10-30 Hz corresponding to the anode concentration overvoltage. The activation overvoltage decreases with increasing p and/or T, while the concentration overvoltage decreases with increasing p but rather insensitive to T. We find that the activation overvoltage is the major source for the polarization resistances contributing 63%-82% depending on pressure, temperature, and current density, while the concentration overvoltage is a minor one contributing 18%-37% for the present ASC. These results and the rig should be useful for our understanding and further studies of pressurized SOFCs.

  6. Microbial fuel cell treatment of fuel process wastewater

    Science.gov (United States)

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  7. Modeling Analysis of Bi-Layer Ni-(ZrO2x(Y2O31−x Anodes for Anode-Supported Intermediate Temperature-Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Anna Enrico

    2014-08-01

    Full Text Available Intermediate temperature-solid oxide fuel cell (IT-SOFC Ni-(ZrO2x(Y2O31−x (Ni-YSZ anodes formed by two layers, with different thicknesses and morphologies, offer the possibility of obtaining adequate electrochemical performance coupled to satisfactory mechanical properties. We investigate bi-layered Ni-YSZ anodes from a modeling point of view. The model includes reaction kinetics (Butler-Volmer equation, mass transport (Dusty-Gas model, and charge transport (Ohm’s law, and allows to gain an insight into the distribution of the electrochemical reaction within the electrode. Additionally, the model allows to evaluate a reciprocal overall electrode resistance 1/Rp ≈ 6 S·cm−2 for a bi-layer electrode formed by a 10 µm thick active layer (AL composed of 0.25 µm radius Ni and YSZ particles (34% vol. Ni, coupled to a 700 µm thick support layer (SL formed by 0.5 µm radius Ni and YSZ particles (50% vol. Ni, and operated at a temperature of 1023 K. Simulation results compare satisfactorily to literature experimental data. The model allows to investigate, in detail, the effect of morphological and geometric parameters on the various sources of losses, which is the first step for an optimized electrode design.

  8. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    Science.gov (United States)

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  9. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    Science.gov (United States)

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth.

  10. Investigation of sulfur interactions on a conventional nickel-based solid oxide fuel cell anode during methane steam and dry reforming

    Science.gov (United States)

    Jablonski, Whitney S.

    Solid oxide fuel cells (SOFC) are an attractive energy source because they do not have undesirable emissions, are scalable, and are feedstock flexible, which means they can operate using a variety of fuel mixtures containing H2 and hydrocarbons. In terms of fuel flexibility, most potential fuel sources contain sulfur species, which severely poison the nickel-based anode. The main objective of this thesis is to systematically evaluate sulfur interactions on a conventional Ni/YSZ anode and compare sulfur poisoning during methane steam and dry reforming (SMR and DMR) to a conventional catalyst (Sud Chemie, Ni/K2O-CaAl2O4). Reforming experiments (SMR and DMR) were carried out in a packed bed reactor (PBR), and it was demonstrated that Ni/YSZ is much more sensitive to sulfur poisoning than Ni/K2O-CaAl2O4 as evidenced by the decline in activity to zero in under an hour for both SMR and DMR. Adsorption and desorption of H2S and SO2 on both catalysts was evaluated, and despite the low amount of accessible nickel on Ni/YSZ (14 times lower than Ni/K2O-CaAl2O4), it adsorbs 20 times more H2S and 50 times more SO2 than Ni/K 2O-CaAl2O4. A one-dimensional, steady state PBR model (DetchemPBED) was used to evaluate SMR and DMR under poisoning conditions using the Deutschmann mechanism and a recently published sulfur sub-mechanism. To fit the observed deactivation in the presence of 1 ppm H2S, the adsorption/desorption equilibrium constant was increased by a factor 16,000 for Ni/YSZ and 96 for Ni/K2O-CaAl2O4. A tubular SAE reactor was designed and fabricated for evaluating DMR in a reactor that mimics an SOFC. Evidence of hydrogen diffusion through a supposedly impermeable layer indicated that the tubular SAE reactor has a major flaw in which gases diffuse to unintended parts of the tube. It was also found to be extremely susceptible to coking which leads to cell failure even in operating regions that mimic real biogas. These problems made it impossible to validate the tubular SAE

  11. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells.

    Science.gov (United States)

    Liao, Zhi-Hong; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2015-09-01

    The feasibility to use tartaric acid doped PANI for MFC anode modification was determined. Uniform PANI nanowires doped with tartaric acid were synthesized and formed mesoporous networks on the carbon cloth surface. By using this tartaric acid doped PANI modified carbon cloth (PANI-TA) as the anode, the voltage output (435 ± 15 mV) and power output (490 ± 12 mW/m(2)) of MFC were enhanced by 1.6 times and 4.1 times compared to that of MFC with plain carbon cloth anode, respectively. Strikingly, the performance of PANI-TA MFC was superior to that of the MFCs with inorganic acids doped PNAI modified anode. These results substantiated that tartaric acid is a promising PANI dopant for MFC anode modification, and provided new opportunity for MFC performance improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    Science.gov (United States)

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment.

  13. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  14. Electrochemical evaluation of Ti/TiO{sub 2}-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic-wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Benetton, X.D.; Navarro-Avila, S.G. [Univ. Autonoma de Yucatan, Yucatan (Mexico). Biotecnologia y Bioingenieria; Carrera-Figueiras, C. [Univ. Autonoma de Yucatan, Yucatan (Mexico). Quimica Fundamental y Aplicada

    2010-07-01

    This paper described the development of a titanium (Ti/TiO{sub 2}) polyaniline composite electrode. The electrode was designed for use with a microbial fuel cell (MFC) that generated electricity through the microbial biodegradation of organic compounds. A modified NBAF medium was used with a 20 mM acetate as an electron donor and 53 mM fumarate as an electron acceptor for a period of 96 hours at 37 degrees C. Strains were cultured under strict anaerobic conditions. Two microbial cultures were used: (1) pure cultures of Geobacter sulfur-reducens; and (2) an uncharacterized stable microbial consortia isolated from hypersaline swamp sediments. The anodes were made with an emeraldine form of PANI deposited over Ti/TiO{sub 2} electrodes. Electrochemical impedance spectroscopy (EIS) monitoring was used to determine the open circuit potential of the MFC. Negative real impedances were obtained and reproduced in all systems studied with the Ti/TiO{sub 2}-PANI anodes. The highest power density was obtained using the Geobacter sulfur-reducens culture. Further research is needed to study the mechanisms that contribute to the occurrence of negative real impedances. 23 refs., 1 tab., 5 figs.

  15. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    Science.gov (United States)

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  16. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  17. Transient Response and Steady-State Analysis of the Anode of Direct Methanol Fuel Cells Based on Dual-Site Kinetics

    Directory of Open Access Journals (Sweden)

    Lei Xing

    2011-01-01

    Full Text Available An intrinsic time-dependent one-dimensional (1D model and a macro two-dimensional (2D model for the anode of the direct methanol fuel cell (DMFC are presented. The two models are based on the dual-site mechanism, which includes the coverage of intermediate species of methanol, OH, and CO (θM, θOH,Ru, and θCO,Pt on the surface of Pt and Ru. The intrinsic 1D model focused on the analysis of the effects of operating temperature, methanol concentration, and overpotential on the transient response. The macro 2D model emphasises the dimensionless distributions of methanol concentration, overpotential and current density in the catalyst layer which were affected by physical parameters such as thickness, specific area, and operating conditions such as temperature, bulk methanol concentration, and overpotential. The models were developed and solved in the PDEs module of COMSOL Multiphysics, giving good agreement with experimental data. The dimensionless distributions of methanol concentration, overpotential, and current density and the efficiency factor were calculated quantitatively. The models can be used to give accurate simulations for the polarisations of methanol fuel cell.

  18. La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jelvehnaz Mirzababaei

    2014-05-01

    Full Text Available Direct methane solid oxide fuel cells, operated by supplying methane to a Ni/YSZ anode, suffer from degradation via accumulation of carbon deposits on the Ni surface. Coating a 40 µm thin film of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF perovskite on the Ni/YSZ anode surface decreased the amount of carbon deposits, slowing down the degradation rate. The improvement in anode durability could be related to the oxidation activity of LSCF which facilitates oxidation of CH4 and carbon deposits. Analysis of the crystalline structure of LSCF revealed that LSCF was stable in the reducing anode environment under H2 and CH4 flow at 750 °C and retained its perovskite structure throughout the 475 h long-term stability test.

  19. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-δ double perovskite as anode material

    Science.gov (United States)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Yang, Yating

    2016-09-01

    Development of high-performing and redox-stable ceramic oxide electrode materials is a crucial technical step for direct hydrocarbon solid oxide fuel cells (SOFCs) operating at intermediate temperatures (550-700 °C). Here we report a nickel-free double perovskite, Sr2FeNb0.2Mo0.8O6-δ (SFNM20), for SOFC anode, and this anode shows outstanding performances with high resistance against carbon build-up and redox cycling in hydrocarbon fuels. At 800 °C, the SFNM20 anode shows electrical conductivity of 5.3 S cm-1 in 5% H2 and peak power densities of 520 and 380 mW cm-2 using H2 and CH4 as the fuel, respectively. The cell exhibits a very stable performance under different constant current loads in H2 and CH4 at 700 °C and high redox stability against the gas environment changes in the anode chamber. In addition, the electrode is structurally stable in various fuels, suggesting that it is a feasible material candidate for the electrode of high-performing SOFCs.

  20. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell

    Science.gov (United States)

    Feng, Ligang; Yan, Liang; Cui, Zhiming; Liu, Changpeng; Xing, Wei

    2011-03-01

    Pd nanoparticles supported on the WO3/C hybrid are prepared by a two-step procedure and the catalysts are studied for the electrooxidation of formic acid. For the purpose of comparison, phosphotungstic acid (PWA) and sodium tungstate are used as the precursor of WO3. Both the Pd-WO3/C catalysts have much higher catalytic activity for the electrooxidation of formic acid than the Pd/C catalyst. The Pd-WO3/C catalyst prepared from PWA shows the best catalytic activity and stability for formic acid oxidation; it also shows the maximum power density of approximately 7.6 mW cm-2 when tested with a small single passive fuel cell. The increase of electrocatalytic activity and stability is ascribed to the interaction between the Pd and WO3, which promotes the oxidation of formic acid in the direct pathway. The precursors used for the preparation of the WO3/C hybrid support have a great effect on the performance of the Pd-WO3/C catalyst. The WO3/C hybrid support prepared from PWA is beneficial to the dispersion of Pd nanoparticles, and the catalyst has potential application for direct formic acid fuel cell.

  1. Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Phuong Tran

    2016-01-01

    Full Text Available Microbial fuel cells are a recently emerging technology that promises a number of applications in energy recovery, environmental treatment and monitoring. In this study, we investigated the effect of inoculating sources on the enrichment of electrochemically active bacterial consortia in sensor-typed microbial fuel cells (MFCs. Several MFCs were constructed, operated with modified artificial wastewater and inoculated with different microbial sources from natural soil, natural mud, activated sludge, wastewater and a mixture of those sources. After enrichment, the MFCs inoculated with the natural soil source generated higher and more stable currents (0.53±0.03 mA, in comparisons with the MFCs inoculated with the other sources. The results from denaturing gradient gel electrophoresis (DGGE showed that there were significant changes in bacterial composition from the original inocula to the enriched consortia. Even more interestingly, Pseudomonas sp. was found dominant in the natural soil source and also in the corresponding enriched consortium. The interactions between Pseudomonas sp. and other species in such a community are probably the key for the effective and stable performance of the MFCs.

  2. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  3. Development of mats composed by TiO{sub 2} and carbon dual electrospun nanofibers: A possible anode material in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gomez, Nora A.; Balderas-Renteria, Isaias [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Garcia-Gutierrez, Domingo I. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, PIIT, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Mosqueda, Hugo A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); and others

    2015-03-15

    Highlights: • Dual nanofiber of TiO{sub 2}–C/C showed excellent electrical performance. • TiO{sub 2}–C/C dual nanofiber can host a dense biofilm of electroactivated Escherichia coli. • Dual nanofibers can be applied as anode to obtain electricity in microbial fuel cells. - Abstract: A new material based on TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} dual nanofiber mats is presented, whose composition and synthesis methodology are fundamental factors for the development of exoelectrogenic biofilms on its surface. Therefore, this material shows the required characteristics for possible applications in the bioconversion process of an organic substrate to electricity in a microbial fuel cell. Chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrical conductivity analyses showed excellent electrical performance of the material for the application intended; a resistance as low as 3.149 Ω was able to be measured on this material. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirmed the morphology sought on the material for the application intended, dual nanofibres TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} with a side by side configuration. The difference in composition of the fibers forming the dual nanofibers was clearly observed and confirmed by energy dispersive X-ray spectroscopy (EDXS), and their crystal structure was evident in the results obtained from selected area electron diffraction (SAED) studies. This nanostructured material presented a high surface area and is biocompatible, given that it can host a dense biofilm of electroactivated Escherichia coli. In this study, the maximum current density obtained in a half microbial fuel cell was 8 A/m{sup 2} (0.8 mA/cm{sup 2})

  4. Microbial fuel cell anode modified by chemical oxidation%化学氧化改性微生物燃料电池阳极

    Institute of Scientific and Technical Information of China (English)

    周宇; 刘中良; 侯俊先; 杨斯琦; 李艳霞; 邱文革

    2015-01-01

    浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(—OH)和羧基(—COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏安曲线(CV)和交流阻抗曲线(EIS)测试表明,经过改性后的碳布具有良好的电化学特性。分别以经过浓HNO3和酸性K2Cr2O7改性处理后的碳布作为微生物燃料电池(MFC)的阳极,获得的最大功率密度分别为291.11 mW·m−2和438.08 mW·m−2,比未经过改性处理的碳布阳极的功率密度分别提升了21%和82%。%Oxidants of nitric acid and acidic potassium dichromate were used to modify anode carbon cloths. Modification was completed by first putting the carbon cloth into nitric acid or acidic potassium dichromate at a given temperature, soaking for 30 min and then rinsing with de-ionized water until no variation in pH and finally putting into a vacuum dryer, drying for 12 h. Fourier transform infrared spectroscopy measurements indicated that many hydroxyls and carboxyls were attached on the carbon cloth surface after modification. SEM results showed that the surface of carbon cloth became rougher than the unmodified one. In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements demonstrated that both modified anodes had excellent electrochemical properties. Using the modified carbon cloths as microbial fuel cell (MFC) anodes respectively, such MFCs yielded maximum power densities of 291.11 mW·m−2 and 438.08 mW·m−2, 21%and 82%higher than that of the MFC with unmodified carbon cloth anode respectively.

  5. Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes

    Directory of Open Access Journals (Sweden)

    Massimiliano Cimenti

    2009-06-01

    Full Text Available Solid oxide fuel cells (SOFC have the advantage of being able to operate with fuels other than hydrogen. In particular, liquid fuels are especially attractive for powering portable applications such as small power generators or auxiliary power units, in which case the direct utilization of the fuel would be convenient. Although liquid fuels are easier to handle and transport than hydrogen, their direct use in SOFC can lead to anode deactivation due to carbon formation, especially on traditional nickel/yttria stabilized zirconia (Ni/YSZ anodes. Significant advances have been made in anodic materials that are resistant to carbon formation but often these materials are less electrochemically active than Ni/YSZ. In this review the challenges of using liquid fuels directly in SOFC, in terms of gas-phase and catalytic reactions within the anode chamber, will be discussed and the alternative anode materials so far investigated will be compared.

  6. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

    Directory of Open Access Journals (Sweden)

    Kelly P Nevin

    Full Text Available The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

  7. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  8. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  9. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  10. Electrolysis cell for reprocessing plutonium reactor fuel

    Science.gov (United States)

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  11. MASS TRANSFER LIMITATION IN DIFFERENT ANODE ELECTRODE SURFACE AREAS ON THE PERFORMANCE OF DUAL CHAMBER MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Majid Sadeqzadeh

    2012-01-01

    Full Text Available In this study, the effect of different electrode surface areas on the performance of dual chamber Microbial Fuel Cells (MFC was investigated. Four different electrodes with 12, 16, 20 and 24 cm2 surface areas were tested in an MFC system. The 20 cm2 electrode generated an output power of 76.5 mW/m2 was found to be the highest among all the electrodes tested. This might be due to better interactions with microorganism and less mass transfer limitation. In addition, this indicates that the chances for attachment of bacteria and generation of electricity in larger electrode surface areas might be limited by mass transport and by higher surface area. The output power generation was then followed by the 16, 12 and 24 cm2 electrodes which generated 69.6, 64.7 and 61.25 mW/m2 electricity, respectively.

  12. A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m-3

    Science.gov (United States)

    Ren, Hao; Tian, He; Gardner, Cameron L.; Ren, Tian-Ling; Chae, Junseok

    2016-02-01

    A microbial fuel cell (MFC) is a bio-inspired renewable energy converter which directly converts biomass into electricity. This is accomplished via the unique extracellular electron transfer (EET) of a specific species of microbe called the exoelectrogen. Many studies have attempted to improve the power density of MFCs, yet the reported power density is still nearly two orders of magnitude lower than other power sources/converters. Such a low performance can primarily be attributed to two bottlenecks: (i) ineffective electron transfer from microbes located far from the anode and (ii) an insufficient buffer supply to the biofilm. This work takes a novel approach to mitigate these two bottlenecks by integrating a three-dimensional (3D) macroporous graphene scaffold anode in a miniaturized MFC. This implementation has delivered the highest power density reported to date in all MFCs of over 10 000 W m-3. The miniaturized configuration offers a high surface area to volume ratio and improved mass transfer of biomass and buffers. The 3D graphene macroporous scaffold warrants investigation due to its high specific surface area, high porosity, and excellent conductivity and biocompatibility which facilitates EET and alleviates acidification in the biofilm. Consequently, the 3D scaffold houses an extremely thick and dense biofilm from the Geobacter-enriched culture, delivering an areal/volumetric current density of 15.51 A m-2/31 040 A m-3 and a power density of 5.61 W m-2/11 220 W m-3, a 3.3 fold increase when compared to its planar two-dimensional (2D) control counterparts.A microbial fuel cell (MFC) is a bio-inspired renewable energy converter which directly converts biomass into electricity. This is accomplished via the unique extracellular electron transfer (EET) of a specific species of microbe called the exoelectrogen. Many studies have attempted to improve the power density of MFCs, yet the reported power density is still nearly two orders of magnitude lower than

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  14. Study of the Ni-NiAl{sub 2}O{sub 4}-YSZ cermet for its possible application as an anode in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Toluca (Mexico); Esparza-Ponce, H E [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Reyes-Gasga, J [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico DF (Mexico)

    2006-05-17

    Nanocrystalline Ni-NiAl{sub 2}O{sub 4}-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 {sup o}C and oxide reduction (NiO -Al{sub 2}O{sub 3}-YSZ {yields} Ni-NiAl{sub 2}O{sub 4}-YSZ) at 800 {sup o}C for 8 h in a tubular reactor furnace using 10% H{sub 2}/N{sub 2}. Eight samples with 45% Ni and 55% Al{sub 2}O{sub 3}-YSZ in concentrations of Al{sub 2}O{sub 3} oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 {sup o}C. Good results were registered using a heating rate of 1 {sup o}C min{sup -1} and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al{sub 2}O{sub 3} present a crystal size around 200 nm. An inversion degree (I) in the NiAl{sub 2}O{sub 4} spinel structure of the cermets Ni-NiAl{sub 2}O{sub 4}-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation.

  15. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  16. The surface evolution of La0.4Sr0.6TiO3+δ anode in solid oxide fuel cells: Understanding the sulfur-promotion effect

    Science.gov (United States)

    Yan, Ning; Zanna, Sandrine; Klein, Lorena H.; Roushanafshar, Milad; Amirkhiz, Babak S.; Zeng, Yimin; Rothenberg, Gadi; Marcus, Philippe; Luo, Jing-Li

    2017-03-01

    The ideal solid oxide fuel cells (SOFCs) can be powered by readily available hydrocarbon fuels containing impurities. While this is commonly recognized as a key advantage of SOFC, it also, together with the elevated operating temperature, becomes the main barrier impeding the in-situ or operando investigations of the anode surface chemistry. Here, using a well-designed quenching experiment, we managed to characterize the near-surface structure of La0.4Sr0.6TiO3+δ (LST) anode in SOFCs fuelled by H2S-containing methane. This new method enabled us to clearly observe the surface amorphization and sulfidation of LST under simulated SOFC operating conditions. The ∼1 nm-thick two dimensional sulfur-adsorbed layer was on top of the disordered LST, containing -S, -SH and elemental sulfur species. In SOFC test, such "poisoned" anode showed increased performances: a ten-fold enhanced power density enhancement (up to 30 mW cm-2) and an improved open circuit voltage (from 0.69 V to 1.17 V). Moreover, its anodic polarization resistance in methane decreased to 21.53 Ω cm2, a difference of 95% compared with the sulfur-free anode. Control experiments confirmed that once the adsorbed sulfur species were removed electrochemically, methane conversion slowed down simultaneously till full stop.

  17. Performance of alternative oxide anodes for the electrochemical oxidation of hydrogen and methane in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tu, H.; Apfel, H.; Stimming, U. [Department of Physics E19, Technical University of Munich, James-Franck-Strasse 1, D-85748 Garching (Germany)

    2006-07-15

    The electrode performances of the alternative oxides: La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ and Ce{sub 0.8}TM{sub 0.2}O{sub 2-{delta}}(TM=Mn, Co) for the direct electrochemical oxidation of methane are investigated to assess their potential as anode materials for efficient methane conversion in a SOFC. The electrochemical oxidation of hydrogen was also studied, for comparison. The oxides are characterised electrochemically with impedance spectroscopy in the frequency range from 10 mHz to 1MHz, using a three-electrode geometry. They are compared to a standard Ni/8YSZ anode for the electrochemical oxidation of hydrogen. It is found that La{sub 0.05}Ca{sub 0.95}Cr{sub 0.05}Ti{sub 0.95}O{sub 3-{delta}}-8YSZ demonstrates a poor electrochemical activity in both hydrogen and methane. However, the electrochemical activity of Ce{sub 0.8}Mn{sub 0.2}O{sub 2-{delta}} is promising, but the electronic conductivity needs to be increased, e.g., by adding a conducting oxide, before it can be used as an anode material in a SOFC. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  19. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2016-01-01

    stainless steel (FeCr) and showed excellent performance characteristics at 650°C with fuel utilization corrected area specific resistances of 0.35 Ωcm2 and 0.7 Ωcm2 respectively. The sulfur tolerance testing was performed by periodic addition of 2, 5, and 10 ppm H2S in hydrogen based fuel under...

  20. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Science.gov (United States)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-04-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW12-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15-20 and 3-4 nm, respectively, were formed on the surface of CS/PW12-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H3PW12O40 (PW12) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW12-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW12-GNs exhibit the forward peak current density of 445 mA mg-1, which is much higher than that (220 mA mg-1) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  1. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  2. TiO{sub 2} nanotubes promoted PT-NI/C catalyst with low PT content as anode catalyst for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.; Jiang, Q.Z.; Gan, T.G.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering; Shen, M. [Oklahoma Univ., Norman, OK (United States). School of Chemical, Biological and Materials Engineering, Sarkeys Energy Center; Rodriguez Varela, F.J. [Cinvestav Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Naturales y Energeticos; Ocampo, A.L. [Univ. Nacional Autonoma, Mexico City (Mexico). Dept. de Quimica Analitica

    2010-07-15

    Although direct ethanol fuel cells (DEFC) have more energy density than direct methanol fuel cells (DMFC), their widespread use has been hampered by the fact that metallic platinum (Pt) catalysts are readily poisoned by strongly absorbed reaction intermediates such as CO{sub ads} at low operating temperatures. The addition of a second transition metal or a metal oxide component has been considered as a means to improve performance of DEFCs by forming a binary anode based on Pt. In this study, titanium oxide (TiO{sub 2}) nanotubes (TiO{sub 2}NTs) were added into a low-platinum content Pt-Ni/C catalyst to improve its catalytic activity for the ethanol oxidation reaction (EOR). The promotion effect of TiO{sub 2}NTs on Pt-Ni/C catalyst was examined. Cyclic voltametry (CV) and chronoamperometry showed that TiO{sub 2}NTs can improve the catalytic activity of the Pt-Ni/C catalyst considerably. Compared to a commercial Pt-Ru/C catalyst, the Pt-Ni-TiO{sub 2}NT/C catalyst has a larger electrochemical active surface (EAS) and has lower onset potential for the EOR. The elemental composition and electronic structure of the catalyst were characterized by X-ray photoelectron spectroscopy, energy dispersive X-ray spectrometry, inductively coupled plasma-optical emission spectrometry and X-ray diffraction. High resolution transmission electron microscopy was used to characterize the morphological properties of these catalysts. The study showed that onset oxidation potential can be lowered by the presence of TiO{sub 2}NTs because they retain more of the Pt metallic species and provide more hydroxides groups. 35 refs., 2 tabs., 10 figs.

  3. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B., E-mail: blesiak-orlowska@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Mazurkiewicz, M.; Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Zemek, J.; Jiricek, P. [Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague 6, Cukrovarnicka 10 (Czech Republic)

    2016-11-30

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC{sub x.}. • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH{sub 4}). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH{sub 4} (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC{sub x} phase, i.e. x = 4 at.% may also affect the observed.

  4. The thermochemical of cerias in anodic conditions of fuel cell; A termoquimica de cerias nas condicoes anodicas de pilha a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Caffarena, Valeska da Rocha; Malta, Luiz Fernando Brum; Ogasawara, Tsuneharu [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais]. E-mail: valeska@metalmat.ufrj.br; Santos, Jorge Gomes dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: jg@ien.gov.br

    2003-07-01

    Gibbs' free energies of cerias doped with rare earths estimated from experimental data on hydrothermal synthesis allowed to calculate and construct diagrams of log{sub 10} pH{sub 2}O/pH{sub 2} versus temperature and log{sub 10} pCO{sub 2}/pCO versus temperature, for x = 0.1 and x = 0.01 (where x = fraction of the original ceria converted to Ce{sub 2}O{sub 3}). These diagrams show that cerias doped with rare-earths are more stable than pure ceria, under contact with hydrogen gas or hydrogen-carbon monoxide gaseous mixture which is found in anode region of solid oxide fuel cells operated with pure hydrogen or in situ reformed hydrocarbons. Among doped cerias, the chemical stability increases in the order:: Ce{sub 1.7}Eu{sub .0.}3O{sub 3.85} , Ce{sub 7.47}Sm{sub 1.53}TbO{sub 18.735} , Ce{sub 0.8}La{sub 0.2}O{sub 1.9} e Ce{sub 0.8}Pr{sub 0.4}O{sub 1.8}. In the case of fuel cell operation with CO +H{sub 2} mixture, the Boudouard's equilibrium determines the operational conditions in log{sub 10} pCO{sub 2}/pCO versus temperature domain. (author)

  5. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  6. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ e

  7. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  8. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.

    Science.gov (United States)

    Guo, Ting; Dong, Xiaolei; Shirolkar, Mandar M; Song, Xiao; Wang, Meng; Zhang, Lei; Li, Ming; Wang, Haiqian

    2014-09-24

    The effects of cobalt (Co) addition in the Ni-YSZ anode functional layer (AFL) on the structure and electrochemical performance of solid oxide fuel cells (SOFCs) are investigated. X-ray diffraction (XRD) analyses confirmed that the active metallic phase is a Ni(1-x)Co(x) alloy under the operation conditions of the SOFC. Scanning electron microscopy (SEM) observations indicate that the grain size of Ni(1-x)Co(x) increases with increasing Co content. Thermogravimetric analyses on the reduction of the Ni(1-x)Co(x)O-YSZ powders show that there are two processes: the chemical-reaction-controlled process and the diffusion-controlled process. It is found that the reduction peak corresponding to the chemical-reaction-controlled process in the DTG curves moves toward lower temperatures with increasing Co content, suggesting that the catalytic activity of Ni(1-x)Co(x) is enhanced by the doping of Co. It is observed that the SOFC shows the best performance at x = 0.03, and the corresponding maximum power densities are 445, 651, and 815 mW cm(-2) at 700, 750, and 800 °C, respectively. The dependence of the SOFC performance on the Co content can be attributed to the competing results between the decreased three-phase-boundary length in the AFL and the enhanced catalytic activity of the Ni(1-x)Co(x) phase with increasing Co content.

  9. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Science.gov (United States)

    Lesiak, B.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A.; Zemek, J.; Jiricek, P.

    2016-11-01

    Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH4 (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdCx phase, i.e. x = 4 at.% may also affect the observed.

  10. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu; Chen, Fanglin; zur Loye, Hans-Conrad; Heyden, Andreas

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.

  11. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  12. The interaction of biomass gasification syngas components with tar in a solid oxide fuel cell and operational conditions to mitigate carbon deposition on nickel-gadolinium doped ceria anodes

    Science.gov (United States)

    Mermelstein, J.; Millan, M.; Brandon, N. P.

    The combination of biomass gasification with solid oxide fuel cells (SOFCs) is gaining increasing interest as an efficient and environmentally benign method of producing electricity and heat. However, tars in the gas stream arising from the gasification of biomass material can deposit carbon on the SOFC anode, having detrimental effects to the life cycle and operational characteristics of the fuel cell. This work examines the impact of biomass gasification syngas components combined with benzene as a model tar, on carbon formation on Ni/CGO (gadolinium-doped ceria) SOFC anodes. Thermodynamic calculations suggest that SOFCs operating at temperatures > 750 °C are not susceptible to carbon deposition from a typical biomass gasification syngas containing 15 g m -3 benzene. However, intermediate temperature SOFCs operating at temperatures tar levels of 2-15 g m -3 benzene at 765 °C for 3 h at a current density of 300 mA cm -2, with negligible impact on the electrochemical performance of the anode. Furthermore, no carbon could be detected on the anode at this current density when benzene levels were <5 g m -3.

  13. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  14. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  15. Performance evaluation of a fuel cell with NiO-YSV anode operating with natural gas; Avaliacao do desempenho de uma celula a combustivel com anodo de NiO YSZ operando com gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Vasconcelos, Carmel Suzarte Ayres; Lima, Luiz Rogerio Pinho de Andrade [Universidade Federal da Bahia (UFBa), Salvador, BA (Brazil). Escola Politecnica. Dept. de Ciencia e Tecnologia dos Materiais]. E-mail: shayennedn@yahoo.com.br

    2008-07-01

    Fuel cell is an electrochemical device that converts the chemical energy into electric energy. The natural gas, for its proven improvement in the income of the equipment in relation to other energy ones, has been very used to feed the solid oxide fuel cell (SOFC) in the generation of electric power. Ceramics of Yttria-stabilized zirconia had been used as electrolyte and when supported with nickel oxide they act as anode in the solid oxide fuel cell, due to raised ionic conductivity that these materials present in high temperatures, while lanthanum with strontium and manganite are used as cathode. In the composition of the anode, the concentration of Ni O, acting as catalytic in the YSZ confers high electric conductivity and high electrochemical activity of the reactions, providing the internal reform in the SOFC. In this work, the solid oxide fuel cell, formed by Yttria- stabilized zirconia, nickel oxide, and lanthanum with strontium and manganite were tested in the reform had been prepared samples of electrode/electrolyte for use in SOFC of the natural gas in the presence of low water text, similar condition to the operation of the SOFC, operating in temperatures range from 700 to 800 deg C. This cell also was characterized using the impedance spectroscopy technique. These results allowed the development of components of the current versus voltage. (author)

  16. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Sudireddy, Bhaskar Reddy

    2015-01-01

    ’s commercially available and relevant SOFC fuels such as natural gas and diesel etc. contain trace amounts of sulfur. Thus, tolerance towards sulfur poisoning is desirable. Ceria and gadolinium doped ceria (GDC) have been reported in the literature to have a beneficial effect on the tolerance towards sulfur...

  17. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke;

    2015-01-01

    stainless steel (FeCr) and showed excellent performance characteristics at 650ºC with area specific resistances (ASR) of 0.35 Ωcm2 and 0.7 Ωcm2 respectively. The sulfur tolerance testing was performed by addition/removal of 2, 5, and 10 ppm H2S in hydrogen based fuel under galvanostatic operation...

  18. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  19. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    Science.gov (United States)

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    tolerance of Ni/YSZ, however, in the presence of H(2)S ceria did not promote the reverse Boudouard reaction and at high temperatures carbon deposition was greater over ceria-doped Ni/YSZ. In order to further study the effects of ceria-doping, a solid oxide fuel cell (SOFC) was constructed with a ceria-doped anode cermet and its electrical performance on simulated biogas compared to hydrogen was tested. This fuel cell was subsequently ran for 1000 h on simulated biogas with no degradation in its overall electrical performance.

  20. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  1. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes

    Science.gov (United States)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin

    2017-02-01

    In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.

  2. Energy storage in ultrathin solid oxide fuel cells.

    Science.gov (United States)

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy.

  3. Stainless steel-supported solid oxide fuel cell with La0.2Sr0.8Ti0.9Ni0.1O3-δ/yttria-stabilized zirconia composite anode

    Science.gov (United States)

    Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sunwoong; Park, Juahn; Kim, Sun Jae; Park, Byung Hyun; Choi, Gyeong Man

    2016-08-01

    A metal-supported solid oxide fuel cell (MS-SOFC) is fabricated by co-firing stainless steel (STS) support with a new reduction-resistant oxide-anode and yttria-stabilized zirconia electrolyte. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ, LSTN) which shows Ni exsolution capability is composited with Y0.16Zr0.84O2-δ (YSZ) electrolyte to form a new LSTN-YSZ anode. A cermet layer composed of STS and YSZ (STS-YSZ) is inserted between a porous STS support and a new LSTN-YSZ composite anode for stable contact. With La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode and Ce0.8Gd0.2O2-δ (GDC) interlayer coated on top of co-fired half-cell, YSZ/LSTN-YSZ/STS-YSZ/STS, a newly designed and fabricated cell achieved maximum power density of 185 mW cm-2 at 650 °C. This power density is an improvement over many conventional co-fired MS-SOFCs that use a Ni-cermet anode.

  4. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...

  5. A Computational Analysis of Functionally Graded Anode in Solid Oxide Fuel Cell by Involving the Correlations of Microstructural Parameters

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-05-01

    Full Text Available Functionally-graded electrodes (FGEs have shown great potential in improving solid oxide fuel cells’ (SOFCs performance. In order to produce predictions of real FGE operations, a comprehensive numerical model that takes into account all the microstructure parameters, together with two sub model correlations, i.e., porosity-tortuosity, and porosity-particle size ratio, is utilized, aiming to provide a novel approach to demonstrate the advantages of FGEs for SOFCs. Porosity grading and particle size grading are explored by using this implemented model as a baseline. Multiple types of grading cases are tested in order to study the FGEs at a micro-scale level. Comparison between the FGEs and conventional non-graded electrodes (uniform random composites is conducted to investigate the potential of FGEs for SOFCs. This study essentially focuses on presenting a new perspective to examine the real-world FGEs performance by involving the correlations of physically connected micro-structural parameters.

  6. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)

    Science.gov (United States)

    Bambagioni, Valentina; Bianchini, Claudio; Marchionni, Andrea; Filippi, Jonathan; Vizza, Francesco; Teddy, Jacques; Serp, Philippe; Zhiani, Mohammad

    Palladium and platinum-ruthenium nanoparticles supported on multi-walled carbon nanotubes (MWCNT) are prepared by the impregnation-reduction procedure. The materials obtained, Pd/ MWCNT and Pt-Ru/ MWCNT, are characterized by TEM, ICP-AES and XRPD. Electrodes coated with Pd/ MWCNT are scrutinized for the oxidation of methanol, ethanol or glycerol in 2 M KOH solution in half cells. The catalyst is very active for the oxidation of all alcohols, with glycerol providing the best performance in terms of specific current density and ethanol showing the lowest onset potential. Membrane-electrode assemblies have been fabricated using Pd/ MWCNT anodes, commercial cathodes and anion-exchange membrane and evaluated in both single passive and active direct alcohol fuel cells fed with aqueous solutions of 10 wt.% methanol, 10 wt.% ethanol or 5 wt.% glycerol. Pd/ MWCNT exhibits unrivalled activity as anode electrocatalyst for alcohol oxidation. The analysis of the anode exhausts shows that ethanol is selectively oxidized to acetic acid, detected as acetate ion in the alkaline media of the reaction, while methanol yields carbonate and formate. A much wider product distribution, including glycolate, glycerate, tartronate, oxalate, formate and carbonate, is obtained from the oxidation of glycerol. The results obtained with Pt-Ru/ MWCNT anodes in acid media are largely inferior to those provided by Pd/ MWCNT electrodes in alkaline media.

  7. Model-supported interpretation of the electrochemical characteristics of solid oxide fuel cells with Ni/YSZ cermet anodes; Modellgestuetzte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden

    Energy Technology Data Exchange (ETDEWEB)

    Gewies, Stefan

    2009-01-29

    This work presents the development, validation and application of a multiscale model for the detailed description of a solid oxide fuel cell (SOFC) with a Ni/YSZ (nickel/yttria-stabilized zirconia) cermet anode. The aim of the study is the identification of the physico-chemical loss processes, as seen in impedance spectra and polarization curves. The model consists of an elementary kinetic description of the electrochemistry including the development of an electrical double layer at the electrode/electrolyte interface of the cermet anode, a homogenized description of charge and gas-phase transport in the electrodes as well as a macroscopic description of convective and diffusive mass transport in the gas phase above the electrodes. For the rst time this study allows for a complete description of the impedance spectra of a diffusively fuel-supplied cermet anode. By comparing simulations with experiments on symmetrical cells (University of Karlsruhe) three dominant loss processes could be identified. The model was extended to account for the description of segmented SOFCs. In correspondence with experimental data (German Aerospace Center) the simulations show strong gradients in current densities and gas concentrations. (orig.)

  8. Inorganic salt mixtures as electrolyte media in fuel cells

    Science.gov (United States)

    Angell, Charles Austen (Inventor); Belieres, Jean-Philippe (Inventor); Francis-Gervasio, Dominic (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  9. Simulation and experimental measurement of local performance of anode supported solid oxide fuel cell%SOFC单电池局部性能的评价与测试

    Institute of Scientific and Technical Information of China (English)

    汪杰; 颜冬; 朱彬; 池波; 蒲健; 张宜生; 李箭

    2011-01-01

    为了制备高性能大面积固体氧化物燃料电池(SOFC)单电池,解决由于面积过大而导致的单电池上气体分配不均匀及各部分温度差异,通过实验设计测试了单电池的各个区域的性能,包括局部电性能和局部温度.实验在1片10cm×10cm(有效反应面积9cm×9cm)的阳极支撑SOFC单电池上进行,电池的阴极以及空气气体分配板和集流器都被分成电绝缘的9个分块单元.每个分块单元的面积是2.8cm×2.8cm,均布置有独立的电流电压监测及温度监测系统.同时,利用计算流体力学模拟计算阴极侧的气体流场分布,并将计算的结果与实验测量结果进行了比较.模拟计算和实验测量的结果均显示大面积单电池存在局部的气体分布不均匀及其导致的性能不均匀,这为大面积SOFC电池的性能优化及电堆模块的设计提供依据.%In order to prepare for high performance large size anode-supported planar solid oxide fuel cell (SOFC) and avoid the gas distribution difference during the test, in this research single cell with dimension of 10cm× 10cm (active reaction area of 9cm× 9cm) was divided into 9 galvanically separated segments (each segment with dimension of .8cm× 2.8cm) to measure the local performance and temperature. Each segment was measured independently about the current-voltage curve and the local temperature. For comparison, computational fluid dynamics (CFD) was used to simulate the gas distribution in the cathode side. Both the simulation and experimental results show an inhomogeneous distribution of gas during the test. This work is crucial to design large size SOFC single cell with optimization of the gas distribution layer.

  10. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  11. Novel Method for Floating Synthesizing Heavy Metal Particles as Flowing Anode of Zinc-Air Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chen Yang Wu

    2014-01-01

    Full Text Available In this study, centrally hollow microspheres of zinc were synthesized. The microspheres were then mixed with KOH electrolyte to form zinc sol, which was coagulated and precipitated. Afterward, we employed a novel technique to enable the permanent floating of zinc particles, which involved stirring zinc sol with air using a magnetic stirrer. This resulted in the formation of foam in which the zinc particles permanently floated. We then added 65 wt% of the electrolyte (KOH to prepare 35 wt% of zinc sol. We tested the cell and found the values of current density, specific energy, and electric capacity to be 7.41 mA/cm2, 840.14 Wh/kg, and 3023 mAh, respectively.

  12. Synthesis, characterization and mechanical properties of NiO - GDC20 (Ce0.8Gd0.2O1.9) nano composite anode for solid oxide fuel cells

    Science.gov (United States)

    Reddy, M. Narsimha; Rao, P. Vijaya Bhaskar; Sharma, R. K.

    2016-05-01

    In the present research work, X (NiO) +1-X(Ce0.8Gd0.2O1.9) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce0.8Gd0.2O1.9 (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materials were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.

  13. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode

    Indian Academy of Sciences (India)

    K K Tintula; S Pitchumani; P Sridhar; A K Shukla

    2010-05-01

    Nano-sized Pt-Ru supported onto a mixed-conducting polymer composite comprising poly(3,4-ethylenedioxythiophene)-polystyrene sulphonic acid (PEDOT-PSSA) is employed as anode in a solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC) and its performance compared with the SPE-DMFC employing conventional Vulcan XC-72R carbon supported Pt-Ru anode. Physical characterization of the catalyst is conducted by Fourier-transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDAX) in conjunction with cyclic voltammetry and chronoamperometry. The study suggests that PEDOT-PSSA to be a promising alternative catalyst-support-material for SPE-DMFCs.

  14. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  15. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  16. Corrosion free phosphoric acid fuel cell

    Science.gov (United States)

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  18. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...

  19. 固体氧化物燃料电池阳极材料Ni—SDC的制备及性能研究%Preparation and Performance of Anode Materials Ni-SDC for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    齐丽晶; 张岩

    2012-01-01

    The effect of Micro-structure and material composition through synthesizing the intermediate temperature solid oxide fuel Smo. 15 02- (SDC) and testing electrochemical properties on the cell ( performance was researched IT-SOFC) anode material Ni-Ce0.85%通过对中温固体氧化物燃料电池(IT—SOFC)阳极材料M—ce0.05Sm0.15O2-δ(SDC)的合成和电化学性能的测试,研究了微结构及材料组分对阳极性能的影响.

  20. Dual-Anode Nickel/Hydrogen Cell

    Science.gov (United States)

    Gahn, Randall F.; Ryan, Timothy P.

    1994-01-01

    Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.

  1. Enhanced methanol utilization in direct methanol fuel cell

    Science.gov (United States)

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  2. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  3. A Three-Dimensional Two-Phase Flow Model for the Anode of Direct Methanol Fuel Cell%直接甲醇燃料电池阳极三维两相流模拟

    Institute of Scientific and Technical Information of China (English)

    吴玉厚; 田扬; 孙红; 左家骥

    2012-01-01

    目的 研究直接甲醇燃料电池阳极电化学反应和传质特性对其性能的重要影响.方法 建立一个直接甲醇燃料电池阳极三维两相流模型,分析电池阳极中甲醇和CO2的分布规律,以及电池温度和甲醇通入流速对电池阳极中甲醇质量浓度和CO2质量浓度分布的影响.结果 分析结果表明沿着流道方向,甲醇质量浓度降低,而CO2质量浓度升高;流场脊下甲醇和CO2的质量浓度低于流道下甲醇和CO2的质量浓度;升高电池温度,电化学反应加快,甲醇质量浓度降低而CO2质量浓度升高;增大甲醇通入流速,CO2质量浓度升高.结论 电池的电化学反应及流场结构决定了传质在电池中的质量浓度分布;电池的电化学反应速率受电池温度与甲醇通入流速的影响.研究结果对优化直接甲醇燃料电池操作参数,提高电池性能具有重要意义.%The paper aims to study the influence on the performance with electrochemical reaction and the mass transfer characteristics in the anode of direct methanol fuel cell. A three-dimensional two-phase flow model for the anode of direct methanol fuel cell is established to analyze the distribution of methanol and CO2 in the anode of fuel cell as well as the effect of fuel cell temperature and methanol inlet velocity on the distribution of methanol and CO2 concentration in anode. The results indicate that the methanol concentration decreases while the CO2 concentration elevated along the channel direction;the mass concentration of methanol and CO2 under the channel is lower than that under the flow ridge;if the fuel cell temperature increases, the electrochemical reaction would be accelerated and methanol concentration would decreased while CO2 concentration elevated; increase of the methanol access velocity would elevated the mass concentration of CO2. It is showed in this paper that the mass concentration distribution of transfer in the cell is determined by cell

  4. Investigation into the effects of trace coal syn gas species on the performance of solid oxide fuel cell anodes, PhD. thesis, Russ College of Engineering and Technology of Ohio University

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason P. [Ohio Univ., Athens, OH (United States). Russ College of Engineering and Technology

    2007-06-01

    Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be used for many years to come in the United States for power production. As a result of the environmental impact of burning coal for power production more efficient and environmentally benign power production processes using coal are sought. Solid oxide fuel cells (SOFCs) combined with gasification technologies represent a potential methodology to produce electric power using coal in a much more efficient and cleaner manner. It has been shown in the past that trace species contained in coal, such as sulfur, severely degrade the performance of solid oxide fuel cells rendering them useless. Coal derived syngas cleanup technologies have been developed that efficiently remove sulfur to levels that do not cause any performance losses in solid oxide fuel cells. The ability of these systems to clean other trace species contained in syngas is not known nor is the effect of these trace species on the performance of solid oxide fuel cells. This works presents the thermodynamic and diffusion transport simulations that were combined with experimental testing to evaluate the effects of the trace species on the performance of solid oxide fuel cells. The results show that some trace species contained in coal will interact with the SOFC anode. In addition to the transport and thermodynamic simulations that were completed experimental tests were completed investigating the effect of HCl and AsH3 on the performance of SOFCs.

  5. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  6. Effects of Anode Wettability and Slots on Anodic Bubble Behavior Using Transparent Aluminium Electrolytic Cells

    Science.gov (United States)

    Zhao, Zhibin; Gao, Bingliang; Feng, Yuqing; Huang, Yipeng; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2017-02-01

    Transparent aluminum electrolytic cells were used to study the effects of anode wettability and slots on bubble behavior in a similar environment to that used in industrial cells. Observations were conducted using two types of transparent cells, one with side-observation and the other with a bottom-observation cell design. Anodic bubbles rising process in the side channel is strongly affected by the wettability of the anode. After rising a short distance, the bubbles detach from the anode vertical surface at good-wetting anode cases, while the bubbles still attach to the vertical surface at poor-wetting anode cases. Anode slots of width of 4 mm are able to prevent smaller bubbles from coalescing into larger bubbles and thus decrease the bubble size and gas coverage on the anode. Anode slots also make a contribution in slightly reducing bubble thickness. With the presence of slots, the bubble-induced cell voltage oscillation decreases as well.

  7. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  8. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  9. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  10. Study of low concentration CO poisoning of Pt anode in a proton exchange membrane fuel cell using spatial electrochemical impedance spectroscopy

    Science.gov (United States)

    Reshetenko, Tatyana V.; Bethune, Keith; Rubio, Miguel A.; Rocheleau, Richard

    2014-12-01

    This paper presents experimental and modeling results of the effect of low CO concentration (2 ppm) on the spatial performance of PEMFC as well as its spatial electrochemical impedance spectroscopy (EIS) responses. The cell was operated at constant current using various cathode gases: air, O2 and H2. Due to CO adsorption on the Pt anode and its poisoning, the cell voltage decreased and spatial current redistribution was observed. The steady state voltage losses were 0.089, 0.280 and 0.295 V for the H2/O2, H2/air and H2/H2 gas configurations, respectively. EIS data revealed a pseudo-inductive behavior in the low frequency region for inlet segments of the cell operated under H2/air and H2/H2 conditions. Operation with O2 as an oxidant did not cause any pseudo-inductance. Analysis of the EIS and anode overpotential data suggested that CO oxidation occurred via chemical or electrochemical mechanisms, or a combination of both depending on the selected cathode gas. The spatial EIS data were analyzed using the equivalent electric circuits approach. The distributions of the equivalent electric circuit parameters are presented and discussed. A current distribution model and EIS interpolation technique were successfully applied for detailed analysis of CO effects on the spatial PEMFC performance and EIS.

  11. Ni/YSZ anode – Effect of pre-treatments on cell degradation and microstructures

    DEFF Research Database (Denmark)

    Hauch, Anne; Jørgensen, Peter Stanley; Brodersen, Karen

    2011-01-01

    Anode supported (Ni/YSZ–YSZ–LSM/YSZ) solid oxide fuel cells were tested and the degradation over hundreds of hours was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the Ni/YSZ anode degradation and all tests were operated at 750°C, a current density of ...

  12. Fuel cells with doped lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng Man [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Goodenough, J.B. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Huang Keqin [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Milliken, C. [Cerematec, Inc., Salt Lake City, UT (United States)

    1996-11-01

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800 C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800 C was achieved, our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum gallate and achieve higher power density at 800 C from solid oxide fuel cells. (orig.)

  13. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  14. Composite Fe - BaCe0.2Zr0.6Y0.2O2.9 Anodes for Proton Conductor Fuel Cells

    DEFF Research Database (Denmark)

    Lapina, Alberto; Chatzichristodoulou, Christodoulos; Holtappels, Peter;

    2014-01-01

    Symmetrical cells with Fe - BaCe0.2Zr0.6Y0.2O2.9 composite electrodes are produced by screen printing and infiltration, using BaCe0.2Zr0.6Y0.2O2.9 as electrolyte. The electrochemical performance of the composite electrode is studied by impedance spectroscopy at 250–500◦C in dry and wet hydrogen....../nitrogen mixtures. The polarization resistance is 1.6 _ cm2 at 500◦C in wet H2 (pH2O = 0.01 atm), and has an activation energy of 0.72 eV. The cells degrade upon exposure to temperatures up to 500◦C, likely due to coarsening of the iron nanoparticles and loss of electronic percolation in the composite anode. Iron...

  15. Protozoan grazing reduces the current output of microbial fuel cells.

    Science.gov (United States)

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells.

  16. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell.

    Science.gov (United States)

    Nourbakhsh, Fatemeh; Mohsennia, Mohsen; Pazouki, Mohammad

    2017-08-01

    A novel nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite has been prepared and used to modify the electrocatalytic properties of carbon cloth anode in fabricating dual-chamber MFC. The prepared nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy. The carbon cloth coated with the NCP nanocomposite showed the enhanced electrochemical performance as compared to bare carbon cloth anode. The electrochemical properties of the fabricated MFC with the modified anode have been investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The maximum power density of the MFC using the novel NCP nanocomposite-carbon cloth anode increased by 61.88% compared to that of the bare carbon cloth anode. In comparison to the bare carbon cloth anode, the new composite anode showed 26.8% enhancement of current density output which it can be due to the enhancement of the charge transfer capability.

  17. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  18. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  19. Method for Making a Fuel Cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.

  20. Fuel cell: new electrocatalysts for SOFC (Solid Oxide Fuel Cells) anodes and regulation between cell performance and catalytic activity; Celula a combustivel: novos eletrocatalisadores para anodos de SOFC (Celulas a Combustivel de Oxido Solido) e correlacao entre desempenho da celula e atividade catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Aguiar, Aurinete B.; Brandao, Soraia T. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Frank, Maria Helena Troise; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Electro-catalysts were prepared using new routes. Chemical Ultrasound Deposition (CUD) method: aqueous solution of nickel nitrate and citric acid was ultrasound vaporized and deposited on heated Ytria-stabilized Zirconia (YSZ). Resin impregnation (IPR) method: nickel oxide and YSZ were mixed, added to phenolic resins, precipitated in acidic water and milled. Wet impregnation method (IMP) was used for comparison: YSZ and an aqueous solution of nickel nitrate and citric acid were mixed, followed by evaporation, drying and calcination. The catalysts were evaluated for methane steam reforming in a quartz reactor. The reactions were conducted for one hour with no significant catalytic activity loss. In reactions with 100 mg of catalyst and a mixture consisting of methane and steam (3:1), IPR catalyst showed activity higher and better stability than those by IMP. On other tests, the reform was conducted with 100 mg of catalyst and methane to steam of 10. The IPR catalyst activity was so high that the reaction approached equilibrium conditions. Anode/electrolyte/cathode units (A/E/C) were prepared with the above catalysts as follows: the anode was a catalyst porous layer; the electrolyte an YSZ dense layer; and the cathode an LSM porous layer; graphite powder formed the material porosity. The two first layers, in powder form, were put in a stainless steel cast, pressed to 4000 bars and sinterized. The cathode layer was subsequently added using tape-casting techniques followed by sintering. A/E/C units showed 40% linear contraction and porosity higher than 20%. For fuel cell tests, A/E/C was mounted in alumina plates with platinum current collectors. Unitary SOF cells were loaded with hydrogen diluted in nitrogen showing opened circuit voltage from circa 700 mV, for the CUD anode, to 350 mV, for the IPR anode. The unitary SOFC was loaded with methane for 15 minutes or longer, with no noticeable voltage loss. At 1300 K the SOFC made with IPR or IMP catalysts showed opened

  1. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  2. Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling

    Energy Technology Data Exchange (ETDEWEB)

    Cheddie, Denver F. [Center for Energy Studies, University of Trinidad and Tobago, Point Lisas Campus, Esperanza Road, Brechin Castle, Couva (Trinidad and Tobago); Tobago; Murray, Renique [Natural Gas Institute of the Americas, University of Trinidad and Tobago, Point Lisas Campus, Esperanza Road, Brechin Castle, Couva (Trinidad and Tobago); Tobago

    2010-10-15

    Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency in order to improve system efficiencies and economics. The SOFC system is semi-directly coupled to the gas turbine power plant, with careful attention paid to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 21.6 MW at 49.2% efficiency. The model also predicts a breakeven per-unit energy cost of USD 4.70 cents /kWh for the hybrid system based on futuristic mass generation SOFC costs. Results show that SOFCs can be semi-directly integrated into existing GT power systems to improve their thermodynamic and economic performance. (author)

  3. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  4. Effect of anode area on generating electricity of microbial fuel cell%阳电极面积对微生物燃料电池产电性能的影响

    Institute of Scientific and Technical Information of China (English)

    秦必达; 孙彩玉; 王佳瑜; 党煊栋; 邸雪颖; 李永峰

    2014-01-01

    Microbial fuel cell ( MFC) is one of the most application prospect technology in wastewater treatment and at the same time it ’ s able to generate electricity .This article mainly studied the double chamber microbial fuel cell with different electrode area on production performance and the effect of COD , in which molasses wastewater as anode substrate , metal ion plating wastewater as cathode solution .The results show that when the external resistance was 300 Ω, big reactor microbial fuel cell A1(anode area of 78.15 cm2) and small reactor microbial fuel cell A2 ( anode area of 76.8 cm2 ) maximum power density were 0.28 mW/cm2 and 0.22 mW/cm2 .In the first 200 hours, A2 generated maximum voltage 71.1 mV and maximum current 189.5μA (when the battery in the 60 hours), A1 maximum voltage 81.1 mV and maximum current228.1μA(during 190 hours ) .At the same time , when Zn 2+wered as cathode solution , the COD removal rate of small reactor microbi -al fuel cell was at between 1.5%and 7 .02%, the big reactor ’ s COD removal rate was between 0 and 14 .96%. Cathode Zn 2+removal rate was 28 .6%A 1 A 2 is 19 .2%.%微生物燃料电池( MFC )最具应用前景之一是处理废水的同时能够产生电能。以糖蜜废水作为阳极基质,以金属离子的电镀废水做阴极溶液,研究了双室微生物燃料电池不同电极面积对产电性能和COD的影响。结果发现,当外电阻为300Ω时,大反应器微生物燃料电池A1(阳极面积为78.15cm2)及小反应器微生物燃料电池A2(阳极面积为76.8cm2)最大功率密度分别为0.28mW/cm2和0.22mW/cm2。在前200个小时内,A2电池在第60个小时时产生最大电压71.1 mV和最大电流189.5μA,A1在第190个小时时产生最大电压81.1 mV和最大电流228.1μA。同时,当Zn2+作阴极溶液时,小反应器微生物燃料电池阳极溶液的COD去除率在1.5%到7.02%之间,大反应器微生物燃料电

  5. 微生物燃料电池阳极材料的最新研究进展%Latest research progress of anode materials in microbial fuel cells

    Institute of Scientific and Technical Information of China (English)

    陈妹琼; 程发良; 郭文显; 张敏; 柳鹏

    2015-01-01

    Microbial fuel cells (MFCs) with microbe as catalysts is promising novel technology with the potential to degrade organic sewage and produce electricity. The novel research progress of anode materials in MFCs was reviewed, especial y the influence of treatment of carbon basic materials and their functional modifications on the performance of electricity prodution. The existing problems of large scale application of anode electrode materials in current MFCs were analyzed. The application future of MFCs was prospected.%微生物燃料电池以微生物为催化剂,既可以处理废水又可以产生电能,是一种具有很好应用前景的新兴技术。综述了近年来用于微生物燃料电池阳极材料的最新研究进展,着重综述了炭材料的处理、炭材料的修饰对微生物燃料电池产电性能影响的研究进展。分析了微生物燃料电池阳极材料大规模应用主要存在的问题,并对微生物燃料电池的应用前景做出展望。

  6. Recent development of anode electrocatalysts for direct sodium borohydride fuel cell%硼氢化钠燃料电池负极催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    岳增芳; 余丹梅; 陈昌国

    2011-01-01

    Whether the oxidation of NaBH4 occurs with 8 e- is the key to direct sodium borohydride fuel cell(DBFC),from which the highest capacity can be obtained. However, the electrons number generated by BH4-oxidized is different due to the different anode electrocatalysts, and the composition and structure of the electrccatalysts are very important upon this reaction, Based on the principle of DBFC, the recent progress of anode electrccatalysts both domestically and abroad were reviewed in detail, The development and application of DBFC catalysts in the future was presented.%直接硼氢化钠燃料电池(DBFC)的核心在于NaBH4的氧化是否能发生8e一的氧化反应.从而达到最高的电子利用率.但负极电催化荆不同.BH4-电氧化释放出的电子数也不同,因此负极催化剂的组成和结构对该氧化反应有十分重要的影响.在介绍DBFC工作原理的基础上,着重概述了近几年来国内外在D日FC负极催化剂方面所取得的研究进展,展望了DBFC催化剂的发展趋势.

  7. Research progress of anode-supported micro-tubular solid oxide fuel cells%阳极支撑微管式固体氧化物燃料电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙旺; 毛雅春; 张乃庆; 孙克宁

    2013-01-01

    Micro-tubular solid oxide fuel cells (MT-SOFCs) have been research focus in recent years, with the advantages of simple sealing, high volume energy density, good thermal shock resistance and rapid set-up. This paper introduces the advantages of MT-SOFCs and overviews the progress of anode-supported MT-SOFC, focusing on fabrication methods, research status and future development directions. The progress of anode-supported MT-SOFCs prepared by plastic extrusion and phase-inversion is reviewed. Besides, the design concepts of anode-supported MT-SOFC stack are introduced, and the future development directions of MT-SOFCs are also presented.%近些年来,微管式固体氧化物燃料电池(SOFC)由于其具有密封简单、体积能量密度高、抗热震性好、启动时间快等优点备受关注.本文主要介绍了微管式SOFC的优势,并重点概述了阳极支撑型微管式SOFC的制备方法、研究现状和未来的发展方向.分别对采用塑性挤出法和相转化法制备的阳极支撑微管式SOFC的技术进展进行了综述.介绍了阳极支撑微管式SOFC电池堆的设计理念,并对未来微管式SOFC的发展方向进行了展望.

  8. Method for the production of nitrogen and hydrogen in a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a method for the production of nitrogen and hydrogen in a fuel cell with an anode and a cathode, comprising the steps of inducing a combustion in a fuel cell, wherein a fuel is supplied to the anode, and air is supplied to the cathode, and with oxygen in the air being reduce

  9. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  10. Fuel cells - Fundamentals and types: Unique features

    Science.gov (United States)

    Selman, J. R.

    An overview of the working principles, thermodynamic efficiencies, types, and engineering aspects of fuel cells is presented. It is noted that fuel cells are distinguished from other direct energy conversion devices by the existence of charge separation at the electrodes involving ions in an electrolyte. The electrical energy produced by a fuel cell is shown to be equal to the change in the free energy of the reactants, and thermodynamic balances of reactions in different fuel cells are provided. The production of electricity in the discharge mode involves a spontaneous reaction of overproduction of electrons at the anode and consumption of the electrons at the cathode, with the total ionic current being equal to the electronic current in the external circuit. Attention is given to the operations and problems of acid, alkaline, molten carbonate, and solid oxide fuel cells, in addition to applications of electro-organic fuel cells.

  11. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens

    Science.gov (United States)

    Nevin, Kelly P.; Zhang, Pei; Franks, Ashley E.; Woodard, Trevor L.; Lovley, Derek R.

    One of the limitations of power generation with microbial fuel cells is that the anode must typically be maintained under anaerobic conditions. When oxygen is present in the anode chamber microorganisms oxidize the fuel with the reduction of oxygen rather than electron transfer to the anode. A system in which fuel is provided from within a graphite anode and diffuses out to the outer surface of the anode was designed to overcome these limitations. A biofilm of Geobacter sulfurreducens strain KN400, pregrown on the surface of a graphite electrode in a traditional two-chambered system with an anaerobic anode chamber and acetate as an external fuel source, produced current just as well under aerobic conditions when acetate was provided via diffusion from an internal concentrated acetate solution. No acetate was detectable in the external medium. In contrast, aerobic systems in which acetate was provided in the external medium completely failed within 48 h. Internally fed anodes colonized by a strain of KN400 adapted to grow at marine salinities produced current in aerobic seawater as well as an anaerobic anode system. The ability to generate current with an anode under aerobic conditions increases the potential applications and design options for microbial fuel cells.

  12. Research on the Anode Materials for Microbial Fuel Cells%微生物燃料电池阳极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    贺光华; 张萍

    2015-01-01

    微生物燃料电池(Microbial Fuel Cells,MFCs)是近些年发展起来的具有去污和产能双重功能的生物电化学系统.本文简要介绍MFCs的工作原理,主要概述微生物燃料电池阳极材料的研究进展,最后对微生物燃料电池阳极材料的发展和微生物燃料电池的应用前景进行展望.

  13. 微生物燃料电池阳极材料及结构研究现状%Research progress of anode materials in microbial fuel cells

    Institute of Scientific and Technical Information of China (English)

    刘春梅; 刘磊

    2015-01-01

    微生物燃料电池(Microbial Fuel Cell,MFC)阳极是细菌附着、电子传递、底物和产物传输的场所,是影响电池性能的关键因素之一.综述了应用于MFC中阳极材料,如不同结构碳材料的优劣、金属及金属氧化物的性能,也对阳极材料的表面改性方法进行了汇总.

  14. Organic fuel cell methods and apparatus

    Science.gov (United States)

    Vamos, Eugene (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The