WorldWideScience

Sample records for fuel cell study

  1. Durability study of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F.; Yuan, X.Z.; Martin, J.J.; Wang, H.J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; Bi, X.T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Pei, P.C.; Huang, H.Y. [Tsinghua Univ., Beijing (China). Dept. of Automotive Engineering

    2007-07-01

    Technical challenges limit the commercialization of polymer electrolyte membrane fuel cells (PEM) for use in stationary applications and transport. These include: on-board storage and infrastructure for hydrogen fuel as well as the fuel cell system itself; high costs; and, durability under a wide range of operational conditions. Durability is defined as the maximum service life of a fuel cell system with no more than 10 per cent loss in efficiency at the end of life. This paper presented a literature review and analysis in order to provide a unified definition of PEM fuel cell service life when operated at either steady state or dynamic load conditions. The paper presented an analysis of different operating conditions and the dependence of PEM fuel cell durability on the operating condition. The paper also reviewed durability studies of the different components of a PEM fuel cell, and also examined various degradation mechanisms. These included: load or thermal cycles; fuel or oxidant starvation; high or low humidification levels; and, reformate or simulated reformed gases as fuels. A relationship between the accelerated service life of a PEM fuel cell and the real service life was then developed. To obtain real service life under normal testing conditions, statistical models based on accelerated service life data were illustrated. It was concluded that the service life of a fuel cell and its components is a function of more than one or two variables. 46 refs., 4 tabs., 3 figs.

  2. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  4. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  5. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  6. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  7. Microfluidic platforms and fundamental electrocatalysis studies for fuel cell applications

    Science.gov (United States)

    Cohen, Jamie Lee

    The fabrication and testing of a planar membraneless microchannel fuel cell, based on a silicon microchannel, is described in detail. Laminar flow of fuel and oxidant streams, one on top of the other, prevents fuel crossover while allowing ionic transport at the interface between the two solutions. By employing laminar flow, the useful functions of a membrane are retained, while bypassing its inherent limitations. The planar design maximizes the anode and cathode areas, and elimination of the membrane affords broad flexibility in the choice of fuel and oxidant. Fuels including formic acid, methanol, ethanol, sodium borohydride and hydrogen were tested along with oxidants such as oxygen, hydrogen peroxide and potassium permanganate. Steps taken to improve voltage, current density, and overall power output have been addressed, including the testing of a dual electrolyte system and the use of micro-patterned electrode surfaces to enhance fuel utilization. As the complexity of the fuels studied in the microchannel fuel cell increased, it was imperative to characterize these fuels using electrochemical techniques prior to utilization in the fuel cell. The oxidation pathway of the liquid fuel methanol was studied rigorously because of its importance for micro-fuel cell applications. Activation energies for methanol oxidation at a Ptpoly surface were determined using electrochemical techniques, providing a benchmark for the comparison of activation energies of other Pt-based electrocatalysts for methanol oxidation at a given potential. A protocol to obtain Ea values was established in three different electrolytes and experimental parameters that influence the magnitude of these values are discussed in detail. The oxidation pathways of sodium borohydride were also examined at Au, Pt, and Pd surfaces using cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry. In addition to studies on bulk Ptpoly surfaces, new bulk intermetallic catalysts were

  8. Study of fuel cell and gas turbine hybrid power systems

    OpenAIRE

    Basurto, M. T.

    2002-01-01

    Environmental awareness and the interest in distributed generation caused by electricity market de-regulation are factors that promote research on renewable energies. Fuel cells transform the chemical energy stored in fuel into electricity by means of electrochemical reactions. Among the different fuel cell types, high temperature fuel cells (HTFCS) have many advantages: high efficiency, low emissions, fuel flexibility, modularity and high quality waste heat. The main disadvant...

  9. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  10. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  11. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  12. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  13. Study of PEM fuel cell performance by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Saeed; Mokmeli, Ali; Samavati, Mahrokh [Isfahan Engineering Research Center, 7th kilometer of Imam Khomeini ave., P.O. Box 81395-619, Isfahan (Iran)

    2010-09-15

    Electrochemical impedance spectroscopy is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. This paper presents the diagnostic testing results of a 120 W single cell and a 480 W PEM fuel cell short stack by electrochemical impedance spectroscopy. The effects of clamping torque, non-uniform assembly pressure and operating temperature on the single cell impedance spectrum were studied. Optimal clamping torque of the single cell was determined by inspection of variations of high frequency and mass transport resistances with the clamping torque. The results of the electrochemical impedance analysis show that the non-uniform assembly pressure can deteriorate the fuel cell performance by increasing the ohmic resistance and the mass transport limitation. Break-in procedure of the short stack was monitored and it is indicated that the ohmic resistance as well as the charge transfer resistance decrease to specified values as the break-in process proceeds. The effect of output current on the impedance plots of the short stack was also investigated. (author)

  14. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  15. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  16. In situ studies of fuel oxidation in solid oxide fuel cells.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2007-03-15

    Existing electrochemical experiments and models of fuel oxidation postulate about the importance of different oxidation pathways and relative fuel conversion efficiencies, but specific information is often lacking. Experiments described below present the first direct, in situ measurements of relevant chemical species formed on solid oxide fuel cell (SOFC) cermet anodes operating with both butane and CO fuel feeds. Raman spectroscopy is used to acquire vibrational spectra from SOFC anodes at 715 degrees C during operation. Both C4H10 and CO form graphitic intermediates. In the limit of a large oxide flux, excess butane forms ordered graphite but only transiently. At higher cell potentials (e.g., less current being drawn) ordered and disordered graphite form on the Ni cermet anode following exposure to butane, and under open circuit voltage (OCV) conditions the graphite persists indefinitely. The chemistry of CO oxidation is such that ordered graphite and a Ni-COO intermediate form only at intermediate cell potentials. Concurrent voltammetry studies show that the formation of graphite with butane at OCV leads first to decreased cell performance after exposure to 25 cm3 butane, then recovered performance after 75 cm3. CO voltammetry data show that at lower potentials the oxide flux through the YSZ electrolyte is sufficient to oxidize the Ni in the anode especially near the interface with the electrolyte.

  17. Surface science studies of model fuel cell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Ross, P.N. [Lawrence Berkeley National Laboratory, Materials Sciences Division, University of California, 94720 Berkeley, CA (United States)

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  18. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  19. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    . Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were......Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  20. Fuel-cell-propelled submarine-tanker-system study

    Energy Technology Data Exchange (ETDEWEB)

    Court, K E; Kumm, W H; O' Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  1. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  2. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  3. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  4. Experimental and numerical studies of micro PEM fuel cell

    Institute of Scientific and Technical Information of China (English)

    Rong-Gui Peng; Chen-Chung Chung; Chiun-Hsun Chen

    2011-01-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500μm.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimentalmechanism phenomena.

  5. Engineering model system study for a regenerative fuel cell: Study report

    Science.gov (United States)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  6. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  7. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  8. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  9. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  10. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  11. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner

    2005-01-01

    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  12. Corrosion Studies of Platinum Nano-Particles for Fuel Cells

    DEFF Research Database (Denmark)

    Shim, Signe Sarah

    The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been...

  13. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    Science.gov (United States)

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively.

  14. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  15. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Traulsen, Marie Lund; Kiebach, Wolff-Ragnar;

    2012-01-01

    Solid oxide fuel cells (SOFCs) are able to produce electricity and heat from hydrogen- or carbon-containing fuels with high efficiencies and are considered important cornerstones for future sustainable energy systems. Performance, activation and degradation processes are crucial parameters to con...... and in the presence of relevant gases. Simultaneous spectroscopic and electrochemical evaluation by using X-ray absorption spectroscopy and electrochemical impedance spectroscopy is possible....... on materials and structural properties, preferably at the atomic level. A characterization of these properties under operation is desired. As SOFCs operate at temperatures around 1073 K, this is a challenge. A spectroelectrochemical cell was designed that is able to study SOFCs at operating temperatures...

  16. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    Science.gov (United States)

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  17. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  18. Fuel cells research in Canada and in other leading countries: a bibliometric study

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, E. [Science Metrix, Montreal, QC (Canada)], e-mail: eric.archambault@science-metrix.com; Cote, G.

    2008-07-01

    This document is a study on fuel cells (FC) research in Canada and other leading countries, performed by Science Metrix for the National Research Council of Canada (NRC), Natural Resources Canada (NRCan) and the Natural Sciences and Engineering Research Council (NSERC). Fuel cells research started growing rapidly around 1999 and paused in 2005. In 1996, 519 papers were published in the field of fuel cells. In 2007, more than 3000 documents were presented. Most of the papers that mention a fuel cell type deal with solid oxide (SO) or proton exchange membrane (PEM) fuel cells. Canada occupies the most advantageous position for both SOFCs and PEMFCs and ranks first in the multicriteria ranking of scientific research on fuel cells. Among the leading companies at the world level, Ballard ranks 5th for fuel cell papers and presents an excellent scientific impact and scientific impact. Among the leading universities, Penn State is the leading one in FC research regarding the number of fuel cell papers and the scientific impact. Scientific collaboration in this field is fragmented and appears to be mostly regional around the world. 8 tabs., 17 figs.

  19. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    Directory of Open Access Journals (Sweden)

    Eleuterio Mora

    2013-01-01

    Full Text Available The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.

  20. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  1. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    OpenAIRE

    Hong eLiu; Peiwen eLi; Daniel eJuarez-Robles; Kai eWang; Abel eHernandez-Guerrero

    2014-01-01

    In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the b...

  2. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  3. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  4. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    Science.gov (United States)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  5. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  6. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. In Situ Optical Studies of Solid-Oxide Fuel Cells

    Science.gov (United States)

    Pomfret, Michael B.; Owrutsky, Jeffrey C.; Walker, Robert A.

    2010-07-01

    Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1°C across a SOFC electrode at temperatures higher than 600°C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.

  8. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  9. In situ optical studies of solid-oxide fuel cells.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2010-01-01

    Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1 degrees C across a SOFC electrode at temperatures higher than 600 degrees C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.

  10. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  11. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  12. Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5

    Science.gov (United States)

    Mak, Audie; Meier, John

    2007-01-01

    This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.

  13. Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell

    Science.gov (United States)

    Pornprasertsuk, Rojana

    Because of the steep increase in oil prices, the global warming effect and the drive for energy independence, alternative energy research has been encouraged worldwide. The sustainable fuels such as hydrogen, biofuel, natural gas, and solar energy have attracted the attention of researchers. To convert these fuels into a useful energy source, an energy conversion device is required. Fuel cells are one of the energy conversion devices which convert chemical potentials into electricity. Due to their high efficiency, the ease to scale from 1 W range to megawatts range, no recharging requirement and the lack of CO2 and NOx emission (if H2 and air/O 2 are used), fuel cells have become a potential candidate for both stationary power generators and portable applications. This thesis has been focused primarily on solid oxide fuel cell (SOFC) studies due to its high efficiency, varieties of fuel choices, and no water management problem. At the present, however, practical applications of SOFCs are limited by high operating temperatures that are needed to create the necessary oxide-ion vacancy mobility in the electrolyte and to create sufficient electrode reactivities. This thesis introduces several experimental and theoretical approaches to lower losses both in the electrolyte and the electrodes. Yttria stabilized zirconia (YSZ) is commonly used as a solid electrolyte for SOFCs due to its high oxygen-ion conductivity. To improve the ionic conductivity for low temperature applications, an approach that involves dilating the structure by irradiation and introducing edge dislocations into the electrolyte was studied. Secondly, to understand the activation loss in SOFC, the kinetic Monte Carlo (KMC) technique was implemented to model the SOFC operation to determining the rate-limiting step due to the electrodes on different sizes of Pt catalysts. The isotope exchange depth profiling technique was employed to investigate the irradiation effect on the ionic transport in different

  14. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  15. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  16. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  17. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  18. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Full Text Available Proton Exchange membrane (PEM fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components compression occurs during the assembly process of the cell, but also during fuel cell operation due to membrane swelling when absorbs water and cell materials expansion due to heat generating in catalyst layers. Additionally, the repetitive channel-rib pattern of the bipolar plates results in a highly inhomogeneous compressive load, so that while large strains are produced under the rib, the region under the channels remains approximately at its initial uncompressed state. This leads to significant spatial variations in GDL thickness and porosity distributions, as well as in electrical and thermal bulk conductivities and contact resistances (both at the ribe-GDL and membrane-GDL interfaces. These changes affect the rates of mass, charge, and heat transport through the GDL, thus impacting fuel cell performance and lifetime. In this paper, computational fluid dynamics (CFD model of a PEM fuel cell has been developed to simulate the pressure distribution inside the cell, which are occurring during fuel cell assembly (bolt assembling, and membrane swelling and cell materials expansion during fuel cell running due to the changes of temperature and relative humidity. The PEM fuel cell model simulated includes the following components; two bi-polar plates, two GDLs, and, an MEA (membrane plus two CLs. This model is used to study and analyses the effect of assembling and operating parameters on the mechanical behaviour of PEM. The analysis helped identifying critical

  19. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  20. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  1. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  2. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  3. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  4. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  5. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  6. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  7. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  8. Multi-Fuel oxidation in Solid Oxide Fuel Cells: Model anodes and system studies

    NARCIS (Netherlands)

    Patel, H.C.

    2015-01-01

    With the evolution of renewable energy technologies it has become necessary that a balance is found between power production with conventional energy sources and other long term solutions. SOFCs offer an alternative for utilising conventional fossil fuels as well as sustainable biomass derived fuels

  9. Feasibility study of a mini fuel cell to detect interference from a cellular phone

    Science.gov (United States)

    Abdullah, M. O.; Gan, Y. K.

    Fuel cells produce electricity without involving combustion processes. They generate no noise, vibration or air pollution and are therefore suitable for use in many vibration-free power-generating applications. In this study, a mini alkaline fuel cell signal detector system has been designed, constructed and tested. The initial results have shown the applicability of such system for used as an indicator of signal disturbance from cellular phones. A small disturbance even at 4 mV cm -1, corresponding to an amplitude of 12-18 mG in terms of electromagnetic field, can be well detected by such a device. Subsequently, a thermodynamics model has been developed to provide a parametric study by simulation to show the likely performance of the fuel cell alone in other environments. As such the model can provide many useful generic design data for alkaline fuel cells. Two general conclusions can be drawn from the present theoretical study: (i) fuel cell performance increases with temperature, pressure and correction factor, C f; (ii) the temperature factor (E/ T) increases with increasing temperature and with increasing pressure factor.

  10. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  11. Fuel cells flows study; Etude des ecoulements dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Riva, R.; Bador, B. [CEA Grenoble, Dept. de Thermohydraulique et de Physique (DTP/SETEX), 38 (France); Marchand, M. [Altran Technologies Renault, 75 - Paris (France); Lebaigue, O. [CEA Grenoble, Dept. de Thermohydraulique et de Physique (DTP/SMTH), 38 (France)

    1999-07-01

    Fuel cells are energy converters, which directly and continuously produce electricity from paired oxidation reduction-reactions: In most cases, the reactants are oxygen and hydrogen with water as residue. There are several types of fuel cells using various electrolytes and working at different temperatures. Proton Exchange Membrane Fuel Cells are, in particular, studied in the GESTEAU facility. PEMFC performance is chiefly limited by two thermal-hydraulic phenomena: the drying of membranes and the flooding of gas distributors. Up to now, work has been focused on water flooding of gas channels. This has showed the influence of flow type on the electrical behaviour of the cells and the results obtained have led to proposals for new duct geometries. (authors)

  12. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  13. Fuel Cells: Reshaping the Future

    Science.gov (United States)

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  14. Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study

    Science.gov (United States)

    Ni, Meng; Leung, Dennis Y. C.; Leung, Michael K. H.

    The pressure gradients in the electrodes of a solid oxide fuel cell (SOFC) are frequently neglected without any justification in calculating the concentration overpotentials of the SOFC electrodes in modeling studies. In this short communication, a comparative study has been conducted to study the effect of pressure gradients on mass transfer and the resulting concentration overpotentials of an SOFC running on methane (CH 4) fuel. It is found that the pressure gradients in both anode and cathode are significant in the fuel cell electrochemical activities. Neglecting the anode pressure gradient in the calculation can lead to underestimation of the concentration overpotential by about 20% at a typical current density of 5000 A m -2 and at a temperature of 1073 K. The deviation can be even larger at a higher temperature. At the cathode, neglecting the pressure gradient can result in overestimation of the concentration overpotential by about 10% under typical working conditions.

  15. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...... system. An electrochemical model of the SOFC has been developed and calibrated against published data from Topsoe Fuel Cells A/S and the Risø National Laboratory. The modelled gasifier is based on an up scaled version (~500 kW_th) of the demonstrated low tar gasifier, Viking, situated at the Technical...

  16. Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study

    Science.gov (United States)

    Prokopius, P. R.

    1975-01-01

    An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.

  17. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  18. Comparative study of two different powertrains for a fuel cell hybrid bus

    Science.gov (United States)

    Gao, Dawei; Jin, Zhenhua; Zhang, Junzhi; Li, Jianqiu; Ouyang, Minggao

    2016-07-01

    The powertrain plays an essential role in improving the tractive performance and the fuel consumption of fuel cell hybrid vehicles. This paper presents a comparative study of two different powertrains for fuel cell hybrid buses. The significant difference between the two powertrains lies in the types and arrangements of the electrical motor. One powertrain employs an induction motor to drive the vehicle, while the other powertrain adopts two permanent magnetic synchronous motors for near-wheel propulsion. Besides, the tiny difference between the proposed powertrain is the supply path of the fuel cell accessories, which can have an effect on the powertrain efficiency. The component parameters and energy management strategies for the two powertrain are determined. The fuel cell hybrid buses equipped with the two powertrains are developed, and some road tests are achieved, according to the chosen procedures or driving cycles. The paper focuses on the tractive performance and energy analysis of the powertrains based on the testing results. Finally, the paper summarizes the relative merits of the proposed powertrains.

  19. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  20. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  1. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  2. A simulation study of Solid Oxide fuel cell for IGCC power generation using Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Kim, Hyung Taek

    2010-01-01

    in a more accurate fuel cell model giving an advantage over previous system studies based on simplified SOFC models. The objective of this work is to develop a simulation model of a SOFC for IGFC system, flexible enough for use in future development, capable of predicting system performance under various...... operating conditions and using diverse fuels. The SOFC stack model developed using the chemical process flow sheet simulator Aspen Plus which is of equilibrium type and is based on Gibbs free energy minimization. The SOFC model performs heat and mass balances and considers the ohmic, activation...

  3. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  4. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  5. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  6. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  7. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  8. STAGING OF FUEL CELLS - PHASE II

    Energy Technology Data Exchange (ETDEWEB)

    Per Onnerud; Suresh Sriramulu

    2002-08-29

    TIAX has executed a laboratory-based development program aiming at the improvement of stationary fuel cell systems. The two-year long development program resulted in an improved understanding of staged fuel cells and inorganic proton conductors through evaluation of results from a number of laboratory tasks: (1) Development of a fuel cell modeling tool--Multi-scale model was developed, capable of analyzing the effects of materials and operating conditions; and this model allowed studying various ''what-if'' conditions for hypothetically staged fuel cells; (2) Study of new high temperature proton conductor--TIAX discovery of a new class of sulfonated inorganics capable of conducting protons when exposed to water; and study involved synthesis and conductivity measurements of novel compounds up to 140 C; (3) Electrochemical fuel cell measurements--the feasibility of staged fuel cells was tested in TIAX's fuel cell laboratories experimental design was based on results from modeling.

  9. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  10. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  11. EXAFS: New tool for study of battery and fuel cell materials

    Science.gov (United States)

    Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.

    1987-01-01

    Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.

  12. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  13. Study of renewable energy, fuel cell and demotics integration for stationary energy production

    Energy Technology Data Exchange (ETDEWEB)

    Andaloro, L.; Ferraro, M.; Sergi, F.; Brunaccini, G.; Antonucci, V. [National Research Inst., Messina (Italy)

    2009-07-01

    This paper described a study in which a small house equipped with various renewable technologies was modelled. The aim of the study was to evaluated the integration of fuel cells with various other energy sources. Technologies installed in the house included a photovoltaic (PV) system; a hydrogen system; fuel cells; a battery-storage system; and a thermal solar panel. Maximum energy savings were evaluated for different configurations and combinations of the installed energy sources. A domotic system was also used to automatically control the use of electrical appliances and improve safety and comfort. An energy side management system was designed and compared with a demand side management system. Various scenarios were simulated in order to test the energy management systems in relation to the automated domotic system.

  14. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  15. Study of component technologies for fuel cell on-site integrated energy systems

    Science.gov (United States)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  16. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R.

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  17. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  18. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  19. Elaboration and study of fuel cell according to solid polymer electrolyte technology

    Energy Technology Data Exchange (ETDEWEB)

    Novel-Cattin, F.

    1990-10-23

    A hydrogen-oxygen fuel cell was built in an attempt to develop a pilot scale fuel cell of a few kW. These fuel cells were based on a polymeric ion exchange membrane commercialized by Dupont de Nemours under the trademark NAFION 117. This work consists in part of the development of different test cells, for electrodes of surface area from 1 to 25 cm{sup 2}. Different types of porous electrodes were also used containing platinum as the electro-catalyst, in the synthesis of composite electrode-membrane electrode ensembles. Different methods of electrode manufacture are detailed in this thesis. These electrodes were characterized by their current potential behaviour under stationary conditions. Different analysis technics, such as the microprobe and electronic microscopy were used. The electrode structure was studied using impedance spectroscopy. A full factorial optimization program was developed in order to optimize the performance of some of these electrodes. The use of the thermoplastic form of the membrane was used as a mean of incorporating the electrodes into the membrane. The transport of water coupled to proton migration across the membrane was also measured. (author). 82 refs., 32 figs., 10 tabs., 11 curves., 14 schemes., 2 appends.

  20. Modeling and Experimental Study of PEM Fuel Cell Transient Response for Automotive Applications

    Institute of Scientific and Technical Information of China (English)

    HUA Jianfeng; XU Liangfei; LIN Xinfan; LU Languang; OUYANG Minggao

    2009-01-01

    This paper presents an analysis of the dynamic response of a low pressure proton exchange membrane (PEM) fuel cell stack to step changes in load, which are characteristic of automotive fuel cell system applications. The goal is a better understanding of the electrical and electrochemical processes when accounting for the characteristic cell voltage response during transients. The analysis and experiment are based on a low pressure 5 kW proton exchange membrane fuel cell (PEMFC) stack, which is similar to those used in several of Tsinghua's fuel cell buses. The experimental results provide an effective improvement reference for the power train control scheme of the fuel cell buses in Olympic demonstration in Beijing 2008.

  1. Thermally regenerative fuel cells

    Science.gov (United States)

    Ludwig, F. A.; Kindler, A.; McHardy, J.

    1991-10-01

    The three phase project was undertaken to investigate solventless ionic liquids as possible working fluids for a new type of thermally regenerative fuel cell (TRFC). The heart of the new device, invented at Hughes Aircraft Company in 1983, is an electrochemical concentration cell where acid and base streams react to produce electrical energy. Thermal energy is then used to decompose the resulting salts and regenerate the cell reactants. In principle, a TRFC can be matched to any source of thermal energy simply by selecting working fluids with the appropriate regeneration temperature. However, aqueous working fluids (the focus of previous studies) impose limitations on both the operating temperatures and the achievable energy densities. It was the need to overcome these limitations that prompted the present investigation. Specific aims were to identify possible working fluids for TRFC systems with both low and high regeneration temperatures. A major advantage of our aqueous-fluid TRFC systems has been the ability to use hydrogen electrodes. The low activation and mass transfer losses of these electrodes contribute substantially to overall system efficiency.

  2. Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus

    Directory of Open Access Journals (Sweden)

    Evanthia A. Nanaki

    2017-02-01

    Full Text Available Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water, are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes, exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74%, wind turbine of 45%, electrolysis of 67%, and fuel cells of 40%.

  3. Mass transfer in fuel cells

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  4. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Science.gov (United States)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  7. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2009-04-15

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  8. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  9. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  10. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  11. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  12. Fuel Cell Backup Power Unit Configuration and Electricity Market Participation: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-13

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  13. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  14. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  15. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  16. FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Frederick S. Pettit; Gerald H. Meier

    2003-06-30

    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  17. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  18. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    Science.gov (United States)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  19. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  20. Proceedings of the Queen's-RMC Fuel Cell Research Centre fuel cell technology day

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Queen's-RMC Fuel Cell Research Centre was formed to conduct research on polymer electrolyte membrane (PEM) and solid oxide (SOFC) fuel cells as well as fuel processing and hydrogen production and storage technologies. The centre focuses on the development of manufacturing methods, mathematical modelling, catalysis and reaction engineering, and computational thermodynamics. The fuel cell technology day provided a forum for research leaders from various institutions to discuss recent studies related to PEM and SOFC fuel cells. Issues related to materials and system degradation in fuel cells were discussed along with recent developments in the micro-engineering of SOFC cathodes. Commercialization plans for megawatt fuel cells were also discussed, and recent spectroscopy and voltammetry studies of PEM fuel cells were presented. A panel discussion was also held to determine research directions for the future. The technology day featured 7 presentations, of which 2 have been catalogued separately for inclusion in this database. tabs., figs.

  1. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  2. Comparative study of different fuel cell technologies; Estudio comparativo de las diferentes tecnologias de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado-Flores, J.

    2013-06-01

    Fuel cells generate electricity and heat during electrochemical reaction which happens between the oxygen and hydrogen to form the water. Fuel cell technology is a promising way to provide energy for rural areas where there is no access to the public grid or where there is a huge cost of wiring and transferring electricity. In addition, applications with essential secure electrical energy requirement such as uninterruptible power supplies (UPS), power generation stations and distributed systems can employ fuel cells as their source of energy. The current paper includes a comparative study of basic design, working principle, applications, advantages and disadvantages of various technologies available for fuel cells. In addition, techno-economic features of hydrogen fuel cell vehicles (FCV) and internal combustion engine vehicles (ICEV) are compared. The results indicate that fuel cell systems have simple design, high reliability, noiseless operation, high efficiency and less environmental impact. The aim of this paper is to serve as a convenient reference for fuel cell power generation reviews. (Author) 113 refs.

  3. A comparative study of approaches to direct methanol fuel cells modelling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Engenharia, Tecnologia e Inovacao, Paco do Lumiar, 22,1649-038 (Portugal)

    2007-03-15

    Fuel cell modelling has received much attention over the past decade in an attempt to better understand the phenomena occurring within the cell. Mathematical models and simulation are needed as tools for design optimization of fuel cells, stacks and fuel cell power systems. Analytical, semi-empirical and mechanistic models for direct methanol fuel cells (DMFC) are reviewed. Effective models were until now developed describing the fundamental electrochemical and transport phenomena taking place in the cell. More research is required to develop models that can account for the two-phase flows occurring in the anode and cathode of the DMFC. The merits and demerits of the models are presented. Selected models of different categories are implemented and discussed. Finally, one of the selected simplified models is proposed as a computer-aided tool for real-time system level DMFC calculations. (author)

  4. Fuel Cell Stacks

    Science.gov (United States)

    1975-04-01

    AD-A009 587 FUEL CELL STACKS Bernard S. Baker Energy Research Corporation Prepared for: Army Mobility Equipment Research and Development Center April... Mobility Equipment Research and Development Center Unclassified For- Belvoir, Virginia 22060 [15. DE.CLASSIFICATION/L.TWNOGRADING SCREOUJLE 16...the majority of effort has been directed at translating technoilogy for small comn- ponent manufacture on a laboratory scale into large size components

  5. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  6. FUEL CELL MANPACK POWER SOURCE.

    Science.gov (United States)

    battery provides required power density and instantly available power while the fuel cell efficiently converts a primary fuel to electrical power at a...field supply, afford an extremely high energy density making the hybrid fuel cell system competitive on cost per kilowatt hour with standard military zinc-carbon primary batteries. (Author)

  7. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  8. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  9. Modeling and experimental studies to optimize the performance of a hydrogen - bromine fuel cell

    Science.gov (United States)

    Yarlagadda, Venkata Raviteja

    The regenerative Hydrogen-Bromine (H2-Br 2) fuel cells are considered to be one of the viable systems for large scale energy storage because of their high energy conversion efficiency, flexible operation, highly reversible reactions and low capital cost. The preliminary performance of a H2-Br2 fuel cell using both conventional as well as novel materials (Nafion and electrospun composite membranes along with platinum and rhodium sulfide electrocatalysts) was discussed. A maximum power density of 0.65 W/cm2 was obtained with a thicker Br 2 electrode (780 mum) and cell temperature of 45°C. The active area and wetting characteristics of Br2 electrodes were improved upon by either pre-treating with HBr or boiling them in de-ionized water. On the other hand, similar or better performances were obtained using dual fiber electrospun composite membranes (maximum power densities of 0.61 W/cm2 and 0.45 W/cm2 obtained with 25 mum and 65 mum electrospun membranes at 45°C) versus using Nafion membranes (maximum power densities of 0.52 W/cm 2 and 0.41 W/cm2 obtained with Nafion 212 and Nafion 115 membranes at 45°C). The rhodium sulfide (RhxSy) electrocatalyst proved to be more stable in the presence of HBr/Br2 than pure Pt. However, the H2 oxidation activity on RhxS y was quite low compared to that of Pt. In conclusion, a stable H 2 electrocatalyst that can match the hydrogen oxidation activity obtained with Pt and a membrane with low Br2/Br- permeability are essential to prolong the lifetime of a H2-Br2 fuel cell. A 1D mathematical model was developed to serve as a theoretical guiding tool for the experimental studies. The impact of convective and diffusive transport and kinetic rate on the performance of a H2-Br2 fuel cell is shown in this study. Of the two flow designs (flow-by and flow-through) incorporated in this study, the flow-through design demonstrated better performance, which can be attributed to the dominant convective transport inside the porous electrode. Both

  10. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  11. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies.

    Science.gov (United States)

    Pomfret, Michael B; Walker, Robert A; Owrutsky, Jeffrey C

    2012-10-18

    Solid oxide fuels cells (SOFCs) are promising devices for versatile and efficient power generation with fuel flexibility, but their viability is contingent upon understanding chemical and material processes to improve their performance and durability. Newly developed in situ optical methods provide new insight into how carbon deposition varies with different hydrocarbon and alcohol fuels and depends on operating conditions. Some findings, such as heavier hydrocarbon fuels forming more carbon than lighter fuels, are expected, but other discoveries are surprising. For example, methanol shows a greater tendency to form carbon deposits than methane at temperatures below 800 °C, and kinetically controlled steam reforming with ethanol at high temperatures (∼800 °C) is less detrimental to SOFC performance than operating the device with dry methanol as the fuel. In situ optical techniques will continue to provide the chemical information and mechanistic insight that is critical for SOFCs to become a viable energy conversion technology.

  12. Commercialization of fuel cells: myth or reality?

    CERN Document Server

    Wang, Junye

    2014-01-01

    Despite huge investment and efforts in the last decades, fuel cells are still known as a fledgling industry after 170 years of the first fuel cell. It becomes clear that these investment and efforts did not address the critical questions. Why upscaling of fuel cells failed often when many researchers stated their successes in small scale? Why the fuel cells with simpler structure still lag far from the internal combustion (IC) engines and gas turbines? Could the current investment of the hydrogen infrastructure reduce substantially the fuel cell cost and make a breakthrough to the key issues of durability, reliability and robustness? In this paper, we study these fundamental questions and point out a must-way possible to reduce cost of fuel cells and to substantially improve durability and reliability.

  13. Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, T.; Cesar, B.; Branco, P.J. Costa [Instituto Superior Tecnico (IST), Center for Innovation in Electrical and Energy Engineering, CIE3, Av. Rovisco Pais, 1049-001, Lisboa (Portugal)

    2010-04-15

    Portable fuel cells are receiving great attention today mainly because their energy density is higher than any portable battery solution. Among other types, portable polymer electrolyte membrane (PEM) fuel cells are an established technology where research on increasing their efficiency is leading product development and manufacturing. The objective of this work was to study and evaluate the redesign of a commercial portable fuel cell, improving its efficiency. A three-dimensional model of the original PEM fuel cell with parallel plus a transversal flow channel design was developed using Comsol Multiphysics, including the effects of liquid water formation and electric current production. Using this model, the effects of different channel geometries and respective cathode flow rates on the cell's performance, including the local transport characteristics, were studied. Laboratory tests with various fuel cell stacks using the new channels structure were effectuated for an evaluation of the fuel cell's performance, showing improvements in its efficiency of up to 26.4%. (author)

  14. Integration of Fuel Cell Micro-CHPs on Low. Voltage Grid: A Danish Case Study

    DEFF Research Database (Denmark)

    You, Shi; Marra, Francesco; Træholt, Chresten

    2012-01-01

    The future significance of fuel cell (FC) powered micro combined heat and power (micro-CHP) units in meeting the residential energy demands is set to increase, which may have a considerable impact on the low voltage (LV) grid. The objective of this paper is to investigate into the related technical...... issues using a Danish case study with different penetration levels of uncoordinated FC micro-CHPs. Based on the findings, it is recommended to design grid oriented integration strategies such as Virtual Power Plants (VPPs) for achieving future smart grids with a large roll out of distributed energy...

  15. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  16. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  17. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  18. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-01

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE

  19. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  20. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.

  1. An experimental study of a PEM fuel cell power train for urban bus application

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    An experimental study was carried out on a fuel cell propulsion system for minibus application with the aim to investigate the main issues of energy management within the system in dynamic conditions. The fuel cell system (FCS), based on a 20 kW PEM stack, was integrated into the power train comprising DC-DC converter, Pb batteries as energy storage systems and asynchronous electric drive of 30 kW. As reference vehicle a minibus for public transportation in historical centres was adopted. A preliminary experimental analysis was conducted on the FCS connected to a resistive load through a DC-DC converter, in order to verify the stack dynamic performance varying its power acceleration from 0.5 kW s -1 to about 4 kW s -1. The experiments on the power train were conducted on a test bench able to simulate the vehicle parameters and road characteristics on specific driving cycles, in particular the European R40 cycle was adopted as reference. The "soft hybrid" configuration, which permitted the utilization of a minimum size energy storage system and implied the use of FCS mainly in dynamic operation, was compared with the "hard hybrid" solution, characterized by FCS operation at limited power in stationary conditions. Different control strategies of power flows between fuel cells, electric energy storage system and electric drive were adopted in order to verify the two above hybrid approaches during the vehicle mission, in terms of efficiencies of individual components and of the overall power train. The FCS was able to support the dynamic requirements typical of R40 cycle, but an increase of air flow rate during the fastest acceleration phases was necessary, with only a slight reduction of FCS efficiency. The FCS efficiency resulted comprised between 45 and 48%, while the overall power train efficiency reached 30% in conditions of constant stack power during the driving cycle.

  2. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneously...... under different H2 stoichiometries below 1.0 and at different current loads. The experimental results show that the cell voltage decreases promptly when the H2 stoichiometry decreases to below 1.0. Negative cell voltage can be observed which indicates cell reversal. The local current density starts...... to diverge when the cell voltage decreases. In the H2 upstream regions the current densities show an increasing trend, while those in the H2 downstream regions show a decreasing trend. Consequently, the current density distribution becomes very uneven. The current density is the highest in the upstream...

  3. Data mining in the study of nuclear fuel cells; Mineria de datos en el estudio de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Medina P, J. A. [Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, 24039 San Francisco de Campeche, Campeche (Mexico); Ortiz S, J. J.; Castillo, A.; Montes T, J. L.; Perusquia, R., E-mail: j.angel.mp@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    In this paper is presented a study of data mining application in the analysis of fuel cells and their performance within a nuclear boiling water reactor. A decision tree was used to fulfill questions of the type If (condition) and Then (conclusion) to classify if the fuel cells will have good performance. The performance is measured by compliance or not of the cold shutdown margin, the rate of linear heat generation and the average heat generation in a plane of the reactor. It is assumed that the fuel cells are simulated in the reactor under a fuel reload and rod control patterns pre designed. 18125 fuel cells were simulated according to a steady-state calculation. The decision tree works on a target variable which is one of the three mentioned before. To analyze this objective, the decision tree works with a set of attribute variables. In this case, the attributes are characteristics of the cell as number of gadolinium rods, rods number with certain uranium enrichment mixed with a concentration of gadolinium, etc. The found model was able to predict the execution or not of the shutdown margin with a precision of around 95%. However, the other two variables showed lower percentages due to few learning cases of the model in which these variables were or were not achieved. Even with this inconvenience, the model is quite reliable and can be used in way coupled in optimization systems of fuel cells. (Author)

  4. SOME ASPECTS OF FUEL CELLS

    OpenAIRE

    2012-01-01

    This work provides literature data to improve solid oxide fuel cells by a direct methane fuel cell and electrode settings of uninterrupted space. The possibility of electrochemical generators SOFC as synthesis gas from natural gas. We describe progress in the creation of new nanomaterials for components SOFC and modern technologies for their manufacture. Briefly described features of the operation and use molten carbonate fuel cells and their accessories and SOFC in cogeneration system (three...

  5. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  6. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  7. Cost targets for domestic fuel cell CHP

    Science.gov (United States)

    Staffell, I.; Green, R.; Kendall, K.

    Fuel cells have the potential to reduce domestic energy bills by providing both heat and power at the point of use, generating high value electricity from a low cost fuel. However, the cost of installing the fuel cell must be sufficiently low to be recovered by the savings made over its lifetime. A computer simulation is used to estimate the savings and cost targets for fuel cell CHP systems. Two pitfalls of this kind of simulation are addressed: the selection of representative performance figures for fuel cells, and the range of houses from which energy demand data was taken. A meta-study of the current state of the art is presented, and used with 102 house-years of demand to simulate the range of economic performance expected from four fuel cell technologies within the UK domestic CHP market. Annual savings relative to a condensing boiler are estimated at €170-300 for a 1 kWe fuel cell, giving a target cost of €350-625 kW -1 for any fuel cell technology that can demonstrate a 2.5-year lifetime. Increasing lifetime and reducing fuel cell capacity are identified as routes to accelerated market entry. The importance of energy demand is seen to outweigh both economic and technical performance assumptions, while manufacture cost and system lifetime are highlighted as the only significant differences between the technologies considered. SOFC are considered to have the greatest potential, but uncertainty in the assumptions used precludes any clear-cut judgement.

  8. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  9. Fuel cells problems and solutions

    CERN Document Server

    Bagotsky, Vladimir S

    2012-01-01

    The comprehensive, accessible introduction to fuel cells, their applications, and the challenges they pose Fuel cells-electrochemical energy devices that produce electricity and heat-present a significant opportunity for cleaner, easier, and more practical energy. However, the excitement over fuel cells within the research community has led to such rapid innovation and development that it can be difficult for those not intimately familiar with the science involved to figure out exactly how this new technology can be used. Fuel Cells: Problems and Solutions, Second Edition addresses this i

  10. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  11. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  12. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  13. Numerical study of changing the geometry of the flow field of a PEM fuel cell

    Science.gov (United States)

    Khazaee, I.; Sabadbafan, H.

    2016-05-01

    The geometry of channels of a PEM fuel cell is an important parameter that affects the performance of it that the lower voltage loss in polarization curve can indicate the better performance. In this study a complete three-dimensional and single phase model is used to investigate the effect of increasing the number of serpentine channels in the bipolar plates and also increasing the area (depth) of channels of a PEM fuel cell with rectangular, triangular and elliptical cross-section geometry. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region is developed and numerically solved using a finite volume based computational fluid dynamics technique. The results show that there are good agreement with the numerical results and experimental results of the previous work of authors. Also the results show that by increasing the number of channels from one to four and eight, the performance improved about 18 % and by decreasing the area of channels from 2 to 1 mm2 the performance improved about 13 %.

  14. Experimental Study of Nonequilibrium Electrodeposition of Nanostructures on Copper and Nickel for Photochemical Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Rajesh K. Shanmugam

    2011-01-01

    Full Text Available To increase the performance of photochemical fuel cells, nonequilibrium electrodeposition has been performed on Cu and Ni to make photosensitive anodes. Processing parameters including electrolyte concentration, and electrode potential were studied using cyclic voltammetry. Scanning electron microscopy (SEM and X-ray Spectroscopy (EDS were performed to understand the formation of the nanostructures during the nonequilibrium deposition of copper fractals. An increase in the deposition rate was observed with the increase in electrolyte concentration (from 0.05 M to 1.0 M. Similar trend was found when the cathode potential was decreased from −0.5 V to −4.5 V. The effect of substrate material was also examined. Porous fractal structures on copper were achieved, while the deposited material showed high density of surface cracks on nickel. The fractal structures deposited on copper electrode with the increased surface area were converted into copper oxide by oxidation in air. Such oxide samples were made into anodes for photochemical fuel cell application. We demonstrated that an increase in the magnitude of open circuit output voltage is associated with the increase in the fractal surface area under the ultraviolet irradiation test conditions. However, the electrodeposited fractals on nickel showed very limited increase in the magnitude of open circuit voltage.

  15. 1986 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  16. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  17. Fundamental study of mechanical and chemical degradation mechanisms of PEM fuel cell membranes

    Science.gov (United States)

    Yoon, Wonseok

    One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by

  18. Transport in fuel cells: Electrochemical impedance spectroscopy and neutron imaging studies

    Science.gov (United States)

    Aaron, Douglas Scott

    This dissertation focuses on two powerful methods of performing in-situ studies of transport limitations in fuel cells. The first is electrochemical impedance spectroscopy (EIS) while the second is neutron imaging. Three fuel cell systems are studied in this work: polymer electrolyte membrane fuel cells (PEMFCs), microbial fuel cells (MFCs) and enzyme fuel cells (EFCs). The first experimental section of this dissertation focuses on application of EIS and neutron imaging to an operating PEMFC. The effects of cathode-side humidity and flow rate, as well as cell temperature and a transient response to cathode-side humidity, were studied for a PEMFC via EIS. It was found that increased air humidity in the cathode resulted in greatly reduced cathode resistance as well as a significant reduction in membrane resistance. The anode resistance was only slightly reduced in this case. Increased air flow rate was observed to have little effect on any resistance in the PEMFC, though slight reductions in both the anode and the cathode were observed. Increased cell temperature resulted in decreased cathode and anode resistances. Finally, the transient response to increased humidity exhibited unstable behavior for both the anode and the cathode resistances and the PEMFC power output. Neutron imaging allowed the calculation of water content throughout the PEMFC, showing a maximum in water content at the cathode gas diffusion layer - membrane interface. The second experimental section of this dissertation delves into the world of microbial fuel cells. Multiple long-term observations of changes in internal resistances were performed and illustrated the reduction in anode resistance as the bacterial community was established. Over this same time period, the cathode resistance was observed to have increased; these two phenomena suggest that the anode improved over time while the cathode suffered from degradation. Increased anode fluid ionic strength and flow rate both led to significant

  19. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Washington, DC Site. Project Description

    Science.gov (United States)

    1985-06-01

    the cell stacks; - Maintenance for the expander, compresor and generator is typical of that for rotating equipment. Fuel cell stacks are periodically...steel, with mist eliminator designed for 157 psig at 150OF, 3’-8" diameter x 7’-6" high 0-204 Tar separator - coalescer plates in- stalled in fabricated

  20. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  1. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  2. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    Science.gov (United States)

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm(2) was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells.

  3. Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Oezbek, Markus

    2010-03-29

    This thesis focuses on the development of a fuel cell-based hybrid electric powertrain for smaller (2 kW) hybrid electric vehicles (HEVs). A Hardware-in-the-Loop test rig is designed and built with the possibility to simulate any load profile for HEVs in a realistic environment, whereby the environment is modeled. Detailed simulation models of the test rig are developed and validated to real physical components and control algorithms are designed for the DC/DC-converters and the fuel cell system. A state-feedback controller is developed for the DC/DC-converters where the state-space averaging method is used for the development. For the fuel cells, a gain-scheduling controller based on state feedback is developed and compared to two conventional methods. The design process of an HEV with regard to a given load profile is introduced with comparison between SuperCaps and batteries. The HEV is also evaluated with an introduction to different power management concepts with regard to fuel consumption, dynamics, and fuel cell deterioration rate. The power management methods are implemented in the test rig and compared. (orig.)

  4. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Frederick S. Pettit; Gerald H. Meier

    2006-06-30

    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure

  5. ELECTROCHEMISTRY OF FUEL CELL ELECTRODES.

    Science.gov (United States)

    optimization of fuel cell electrodes. Hydrogen oxidation and reduction, the reduction of oxygen, and the oxidation of formic acid, a soluble organic...substance, were selected for these studiees because of their relevance to fuel cell systems and because of their relative simplicity. The electrodes

  6. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  7. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Science.gov (United States)

    Yan, Wei-Mon; Mei, Sheng-Chin; Soong, Chyi-Yeou; Liu, Zhong-Sheng; Song, Datong

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%.

  8. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Mei, Sheng-Chin [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, Chyi-Yeou [Department of Aerospace and System Engineering, Feng Chia University, Seatwen, Taichung 40724, Taiwan (ROC); Liu, Zhong-Sheng; Song, Datong [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-09-29

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%. (author)

  9. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Scranton, Pennsylvania Site. Project Description,

    Science.gov (United States)

    1985-11-01

    Fuel Cells". Lawrence Berkeley Laboratory Report No. LBL- 18001 April 1985 6.4-3 ANSI C34.2-i968 (R1973), Practices and Requirements for Semiconductor...following governing codes and regulations. Some of the uriteria include: - OSHA - Requirements for Safe Work places - NFPA 101 - Life Safety Code...34, Lawrence Berkeley Laboratory Report No. LBL- 18001 , April 1985. I I I 7588A 168 I I i I I I APPENDIX C ALTERNATE UTC FUEL CELL SYSTEM I I I 7588A 169 AD

  10. Direct-fuelled fuel cells

    Science.gov (United States)

    Waidhas, M.; Drenckhahn, W.; Preidel, W.; Landes, H.

    Fuel supply is one important problem to be solved for commercial application of fuel cell technology. Conventional fuel-cell types require hydrogen as the fuel, which has to be free from impurities when operated at temperatures below 100 °C. The storage and distribution of this explosive and extremely fugitive gas is one of the open questions in the context of a customer-oriented broad commercial market. The direct-fuelled fuel cells (DMFCs) overcome the hydrogen specific restrictions. They are capable of directly using natural gas or fuels which are liquid under ambient conditions. In this paper the different options from direct-fuelled systems are described and their general aspects discussed. The state-of-the-art at Siemens in this field, and also the remaining technical questions are outlined as a basis for assessing future applications.

  11. Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Pinar, F. Javier; Úbeda, Diego

    To improve fuel cell design and performance, research studies supported by a wide variety of physical and electrochemical methods have to be carried out. Among the different techniques, current distribution measurement owns the desired feature that can be performed during operation, revealing information about internal phenomena when the fuel cell is working. Moreover, short durability is one of the main problems that is hindering fuel cell wide implementation and it is known to be related to current density heterogeneities over the electrode surface. A good flow channel geometry design can favor a uniform current density profile, hence hypothetically extending fuel cell life. With this, it was thought that a study on the influence of flow channel geometry on the performance of a high temperature polymer electrolyte membrane (PEM) fuel cell using current distribution measurement should be a very solid work to optimize flow field design. Results demonstrate that the 4 step serpentine and pin-type geometries distribute the reactants more effectively, obtaining a relatively flat current density map at higher current densities than parallel or interdigitated ones and yielding maximum powers up to 25% higher when using oxygen as comburent. If air is the oxidant chosen, interdigitated flow channels perform almost as well as serpentine or pin-type due to that the flow conditions are very important for this geometry.

  12. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  13. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  14. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  15. Development and optimization of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Davila, D.; Vigues, N.; Sanchez, O.; Garrido, L.; Tomas, N.; Mas, J. [Univ. Autonoma de Barcelona, Barcelona (Spain). Dept. de Genetica y Microbiologia; Esquivel, J.P.; Sabate, N.; Del Campo, F.J.; Munoz, F.J. [Inst. de Microelectronica de Barcelona-CNM (CSIC), Barcelona (Spain)

    2008-04-15

    While global energy demand increases daily, fossil fuel sources are being depleted at an unsustainable pace. Fuel cells represent a solution as they are more efficient than other energy sources. A microbial fuel cell is an electrochemical device capable of continuously converting chemical energy into electrical energy for as long as adequate fuel and oxidant are available. A microbial fuel cell (MFC) adds the benefit of converting chemical energy from organic compounds, such as simple carbohydrates or organic waste matter, into electricity by using bacteria as biocatalysts. This article described the effect of several parameters that affect the operation of a microbial fuel cell (MFC). The study is based on a methodology utilized in previous studies which employed escherichia coli as biocatalyst and neutral red as the electron mediator in a mediated electron transfer (MET) microbial fuel cell. The study analysed the influence of the bacterial concentration, the effective area of electrode and the volume of the cell. It was concluded that there is a proportional energy production to the bacterial concentration present in the anode compartment. It was demonstrated that an increase in the volume of the cell negatively affects the power produced by the cells. 8 refs., 1 tab., 5 figs.

  16. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    Science.gov (United States)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  17. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  18. PEM Fuel Cells - Fundamentals, Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics. Part III: Applications Chapter 7: PEM fuel cell system design and applications.

  19. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  20. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  1. Numerical studies on liquid water flooding in gas channels used inpolymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, CZ.; Hassanizadeh, S.M.; Rensink, D.

    2012-01-01

    Water management plays an important role in the development of low-temperature polymer electrolyte fuel cells (PEFCs). The lack of a macroscopic gas channel (GC) flooding model constrains the current predictions of PEFC modeling under severe flooding situations. In this work, we have extended our pr

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Fuel-Cell Water Separator

    Science.gov (United States)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  5. Micro PEM Fuel Cells and Stacks

    Institute of Scientific and Technical Information of China (English)

    Shou-shing; Hsieh

    2007-01-01

    1 Results The effects of different operating parameters on micro proton exchange membrane (PEM) fuel cell performance were experimentally studied for three different flow field configurations (interdigitated,mesh,and serpentine).Experiments with different cell operating temperatures and different backpressures on the H2 flow channels,as well as various combinations of these parameters,have been conducted for three different flow geometries.The micro PEM fuel cells were designed and fabricated in-house t...

  6. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications : production, storage and fuel cell drivetrain considerations

    OpenAIRE

    Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François

    2009-01-01

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study...

  7. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  8. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  9. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  10. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam fuel split into two processes with opposing temperature behavior in the reformate fuels. An 87.5% reduction in active electrode area diminishes the gas conversion impedance in the hydrogen/steam fuel at high fuel flow rates. In both reformates, the second and third lowest frequency processes merged...

  11. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    Science.gov (United States)

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  12. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Science.gov (United States)

    Wang, Xiao-Dong; Duan, Yuan-Yuan; Yan, Wei-Mon

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.

  13. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)

    2007-10-11

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)

  14. The Fuel Cells Are Coming

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    By the middle of next year, three hydrogen-powered buses will be roving the streets of Washington,D. C.,Los Angeles,and Chicago as part of a government-sponsored test of the effectiveness of fuel cells and alternative fuels in reducing vehicle emissions.

  15. Experimental study of hydrogen kinetics from agroindustrial by-product: optimal conditions for production and fuel cell feeding

    Energy Technology Data Exchange (ETDEWEB)

    Perego, P.; Fabiano, B.; Ponzano, G.P.; Palazzi, E. [Univ. Genoa, Inst. of Chemical and Process Engineering ``G.B. Bonino`` (Italy)

    1998-09-01

    One of the best and cleanest systems to produce electric energy is represented by fuel cells, whose natural fuel is hydrogen. In this paper, the production of hydrogen rich biogas is studied. This process contributes to create a system for biomass recovery, which eliminates organic pollutants and produces energy with high efficiency without atmospheric emissions. The study has been based on Escherichia coli and Enterobacter aerogenes strains. The research deals with batch reactors and verification of optimal conditions of hydrogen production. The realization of the optimal working conditions would conduce to the realization of a reactor suitable to feed a stack of the above mentioned fuel cells. In view of industrial applications, some different ways have been considered to greatly enhance the process performance, in terms of rate of hydrogen production, efficiency of hydrogen utilization and/or biosynthesis of valuable subproducts. (orig.)

  16. Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  17. Studies in new materials for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Skinner, Alex W.

    Ceramic materials have historically been of interest for their thermal and mechanical properties. However, certain ceramic materials can have very interesting electrical, magnetic and optical properties, leading to a new subclass, the electroceramics. Perovskites, in particular, have become the subject of intense research in this field. Specifically, doped barium zirconates have shown high proton conductivity in the intermediate temperature range (600--800°C), making them advantageous for use in solid oxide fuel cells. Solid oxide fuel cells (SOFCs) are electrochemical devices that convert chemical energy into electricity using ion-conducting oxide ceramics as electrolytes. The anode component of the cell is also of interest. Cermets or ceramic metals can serve a dual role as substrates for thin film electrolytes and anodes in the cell. Thin films of gadolinium and ytterbium doped barium zirconate were deposited using pulsed laser deposition (KrF; 1--3 J/cm2) on several substrates, including cermets developed in our lab, in a 10--400 mTorr oxygen environment with various substrate temperatures. Crystalline structure and chemical composition was determined by X-ray diffraction (XRD) and energy dispersive x-ray analysis, respectively. Preliminary electrical measurements of the electrolyte/cermet structure were taken using electrochemical impedance spectroscopy. Keywords: solid oxide fuel cells (SOFCs), perovskites, proton conductors, electroceramics, gadolinium-doped barium zirconate (BZG).

  18. Micro & nano-engineering of fuel cells

    CERN Document Server

    Leung, Dennis YC

    2015-01-01

    Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturizatio

  19. Study of a small heat and power PEM fuel cell system generator

    Science.gov (United States)

    Hubert, Charles-Emile; Achard, Patrick; Metkemeijer, Rudolf

    A micro-cogenerator based on a natural gas reformer and a PEMFC is studied in its entirety, pointing out the links between different sub-systems. The study is conducted within the EPACOP project, which aims at testing PEMFC systems on user sites to evaluate development and acceptance of this technology for small stationary applications. Five units were installed from November 2002 to May 2003 and have been operated until now, in real life conditions. They deliver up to 4 kW of AC power and about 6 kW of heat. Center for Energy and Processes (CEP), one of the scientific partners, processes and analyses the experimental data from the five units, running in different regions of France. This database and the study of the flowsheet enable to propose changes to enhance the efficiency of the system composed of a steam reforming, a shift and a preferential oxidation reactor, a fuel cell stack and heat exchangers. The steady state modelling and optimisation of the system is done with Thermoptim ®, a software developed within CEP for applied thermodynamics. At constant power, main targets are to decrease natural gas consumption, to increase heat recovery and to improve the water balance. This study is made using the pinch point analysis, at full load and partial load. Main results of this study are different system configurations that allow improvement of gross electrical and thermal efficiency and enable to obtain a positive water balance.

  20. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  1. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  2. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  3. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications-Production, storage and fuel cell drivetrain considerations

    Science.gov (United States)

    Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address.

  4. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  5. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  6. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  7. Self Regulating Fiber Fuel Cell

    Science.gov (United States)

    2010-08-16

    energy numbers are 2.3X and 5.7X the theoretical values for lithium thionyl chloride respectively (1100 Whr/liter and 590 Whr/kg), which has the...REPORT Self Regulating Fiber Fuel Cell 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Advances in lithium primary battery technology, which serves as the...Prescribed by ANSI Std. Z39.18 - 16-Aug-2010 Self Regulating Fiber Fuel Cell Report Title ABSTRACT Advances in lithium primary battery technology

  8. Micro fuel cell fabrication technologies

    OpenAIRE

    Scotti, Gianmario

    2014-01-01

    Fuel cells are established devices for high efficiency conversion of chemical into electrical energy. Microfabricated fuel cells (MFC) promise higher energy density compared to rechargeable batteries currently used in portable applications (mobile phones, tablets, laptops etc.). In this work new fabrication technologies have been developed to make MFCs more viable alternatives to batteries. Like other microfluidic devices, MFCs can be fabricated using a number of different techniques, each...

  9. BIOCHEMICAL FUEL CELLS.

    Science.gov (United States)

    used to evaluate kinetics of alcoholic fermentation . Evaluation of results indicated that 1% ethanol can be generated in 1 hour. One per cent ethanol is the minimum fuel concentration required for this system. (Author)

  10. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  11. System Study on Hydrothermal Gasification Combined with a Hybrid Solid Oxide Fuel Cell Gas Turbine

    OpenAIRE

    Toonssen, Richard; Aravind, P.V.; Smit, Gerton; Woudstra, Nico; Verkooijen, Adrian

    2010-01-01

    Abstract The application of wet biomass in energy conversion systems is challenging, since in most conventional systems the biomass has to be dried. Drying can be very energy intensive especially when the biomass has a moisture content above 50 wt% on a wet basis. The combination of hydrothermal biomass gasification and a solid oxide fuel cell (SOFC) gas turbine (GT) hybrid system could be an efficient way to convert very wet biomass into electricity. Therefore, thermodynamic evalu...

  12. NMR Studies of Mass Transport in New Conducting Media for Fuel Cells

    Science.gov (United States)

    2009-01-01

    D’Epifanio, Debora Marani, Michele Vittadello, and Jayakody R. P. Jayakody, Journal of the Electrochemical Society , 153 A1226-A1231 (2006). 7...Durantino, H. Zhang, L. Xiao, and B. Benicewicz, Journal of the Electrochemical Society , 154, B242 (2007). 12. "NMR Characterization of Composite Polymer...Membranes for Low Humidity PEM Fuel Cells", with Isabella Nicotera, Tao Zhang, and Andrew Bocarsly, Journal of the Electrochemical Society , L54, B466

  13. Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A microbial fuel cell with 4-CP as oxidant was established to investigate the feasibility of 4-CP dechlorination in the cathodic chamber of MFC. It demonstrated good performance on electricity generation with Pmax 12.4 mW/m2 and CE 22.7%. Besides, 60 mg/L 4-CP could be completely dechlorinated in 45 h in the MFC, and 4-CP dechlorination process and electricity generation process had obvious synergistic effect.

  14. Study on an environmental-friendly and high-efficient fuel cell energy conversion system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The kinds and the distribution of the coal in China areinvestigated in this paper. The results indicated that the 80% coalin China is used by the method of the coal gasification. Thepossibility of utilization and development of the fuel cell powerplant in China is analyzed. A combined cycle generation system isdesigned. Its net electrical efficiency is about 55%(LHV), which ishigher than that of the fire power plant. So it isenvironmental-friendly and high-efficient generation mode.

  15. Study of PtPd Bimetallic Nanoparticles for Fuel Cell Applications

    OpenAIRE

    Esparza, Rodrigo; Santoveña,Alan; Ruíz-Baltazar, Alvaro; Angeles-Pascual,Alvaro; Bahena,Daniel; Maya-Cornejo,Jose; Ledesma-García, Janet; Pérez,Ramiro

    2017-01-01

    Bimetallic nanoparticles are of special interest for their potential applications for fuel cells, mainly for portable power applications. Among the bimetallic systems, Pt-Pd bimetallic nanoparticles have received great interest as they can be widely used as effective catalysts for various electrochemical reactions. In this work, Pt-Pd alloy bimetallic nanoparticles were synthesized through a chemical reduction method. The nanoparticles were characterized using aberration-corrected scanning/tr...

  16. 14 CFR 31.45 - Fuel cells.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  17. Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

    Directory of Open Access Journals (Sweden)

    Nadia Belmonte

    2017-03-01

    Full Text Available In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house and a mobile system (i.e., an unmanned aerial vehicle will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA results show the lower burdens of both technologies.

  18. Effects of Operating Conditions on Internal Resistances in Enzyme Fuel Cells Studied via Electrochemical Impedance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, D [Georgia Institute of Technology; Borole, Abhijeet P [ORNL; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    Enzyme fuel cells (EFCs) offer some advantages over traditional precious-metal-catalyzed fuel cells, such as polymer electrolyte membrane fuel cells (PEMFCs). However, EFCs exhibit far less power output than PEMFCs and have relatively short life spans before materials must be replaced. In this work, electrochemical impedance spectroscopy (EIS) is used to analyze the internal resistances throughout the EFC at a variety of operating conditions. EIS analysis is focused primarily on the resistances of the anode, solution/membrane, and cathode. Increased enzyme loading results in improved power output and reductions in internal resistance. Conditions are identified for which enzyme loading does not limit the EFC performance. EIS experiments are also reported for EFCs operated continuously for 2 days; power output declines sharply over time, while all internal resistances increase. Drying of the cathode and enzyme/mediator degradation are believed to have contributed to this behavior. Finally, experiments are performed at varying air-humidification temperatures. Little effect on internal resistances or power output is observed. However, it is anticipated that increased air humidification can improve longevity by delivering more water to the cathode. Improvements to the enzymatic cathode are needed for EFC development. These improvements need to focus on improving transport rather than increasing enzyme loading.

  19. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  20. Probe beam deflection studies of nanostructured catalyst materials for fuel cells.

    Science.gov (United States)

    García, G; Bruno, M M; Planes, G A; Rodriguez, J L; Barbero, C A; Pastor, E

    2008-11-28

    Probe beam deflection (PBD) techniques, both as cyclic voltadeflectometry (CVD) and chronodeflectometry (CD), were applied for the first time to the study of the electrochemistry of nanostructured Pt materials which are commonly used as electrocatalysts in fuel cells. The electrochemical surface reactions, including faradaic processes, double layer charging and specific anion adsorption were easily detected. Quantitative analysis of the chronodeflectometric data made possible to elucidate the dynamics of double layer charging in such materials and to determine the potential of zero charge (pzc) of the metal present either as a monolithic mesoporous material or as metal nanoparticles supported on carbon. The electro-oxidation of CO, adsorbed on nanostructured Pt, was also studied by CVD and CD being able to detect the formation of CO2 and H3O+ related with the nucleation and growth process which controls the rate of CO stripping. The interplay of Pt oxide formation and COad electrooxidation, both in potential and time, was detected indicating possible application of the technique to other electrocatalysts.

  1. Fuel cell vehicles: Status 2007

    Science.gov (United States)

    von Helmolt, Rittmar; Eberle, Ulrich

    Within the framework of this paper, a short motivation for hydrogen as a fuel is provided and recent developments in the field of fuel cell vehicles are described. In particular, the propulsion system and its efficiency, as well as the integration of the hydrogen storage system are discussed. A fuel cell drivetrain poses certain requirements (concerning thermodynamic and engineering issues) on the operating conditions of the tank system. These limitations and their consequences are described. For this purpose, conventional and novel storage concepts will be shortly introduced and evaluated for their automotive viability and their potential impact. Eventually, GM's third generation vehicles (i.e. the HydroGen3) are presented, as well as the recent 4th generation Chevrolet Equinox Fuel Cell SUV. An outlook is given that addresses cost targets and infrastructure needs.

  2. Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network

    Science.gov (United States)

    Obara, Shinya; Kudo, Kazuhiko

    Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method

  3. Environmental Impact of Fuel Cell Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hart, N.T.; Day, M.J. [Rolls-Royce Strategic Research Centre, PO Box 31, Derby, DE24 8BJ (United Kingdom); Brandon, N.P. [T.H.Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science Technology and Medicine, London, SW7 2BP (United Kingdom); Shemilt, J.E. [Dept. of Materials Engineering, Brunel University, Uxbridge, UB8 3PH (United Kingdom)

    2000-07-01

    Fuel Cells potentially offer environmental benefits when compared to conventional technology but it is important to consider the full environmental impact including the manufacturing and disposal steps. This paper describes a case study that compares the energy requirements for Solid Oxide Fuel Cell fabrication routes. The results show that that, when compared to the benefits during use, the associated environmental impact is relatively small. Therefore the choice of manufacturing routes will have little effect on the overall advantage of implementing Fuel Cell systems. The total environmental impact of fuel cell fabrication will also include the production of materials. This could contribute a large share of the total environmental burden, however it could be minimised by adopting a design that allows the materials to be recycled in an efficient manner. (author)

  4. Modelling studies to proper size a hydrogen generator for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, G.; Recupero, V.; Di Leonardo, R.; Lagana, M. [Istituto CNR-TAE, Lucia, Messina (Italy)

    1996-12-31

    Based upon an extensive survey of literature a mathematical model has been developed to study the temperature profile along the catalytic bed of a reactor for the methane partial oxidation. The model allowed a preliminary design of a 5 Nm{sup 3} syngas/h prototype to be integrated with second generation fuel cells as hydrogen generator (in the framework of the EC-JOU2 contract). This design was based on some target features, including the choice of a GHSV (gas hour space velocity) equal to 80000 h{sup -1}, a catalyst particle size of 1/8inches, a molar air/methane ratio of 2.7 (i.e. O{sub 2}/CH{sub 4}=0.53), a linear velocity in the catalytic bed of about 2 m/sec, and an inert/catalyst ratio 3:1. Starting from this data, the work has been concerned with the identification of the controlling regime (kinetic or diffusional), and then with the estimation of the gas composition and temperature profiles along the reactor. A comparison between experimental and model results has also been accomplished.

  5. Theoretical studies on membranes and non-platinum catalysts for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, Hiroshi [Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ushiyama@chemsys.t.u-tokyo.ac.jp (Japan)

    2015-12-31

    Mechanism of proton transfer among high-density acid groups in the interface between organic and inorganic materials for polymer electrolyte fuel cells has been theoretically examined. It has been clearly shown that the interactions between the phosphate groups at the surface of the inorganic material, zirconium phosphate (ZrP), and the adsorbed water molecules are relatively large and a strong hydrogen-bond network is generated locally. Because of the strong interactions, water molecules can be attached to ZrP and the O–O distance becomes shorter than that in bulk water systems. Because of the short O–O distances and the delocalized charge of each atom, the activation energy of proton transfer at the ZrP surface decreases and causes high proton conductivity even under conditions of high temperature and low humidity. Based on the above studies, the origin of the high proton conductivity of hybrid electrolytes is also discussed. We will also discuss the mechanism of oxygen reduction reaction on non-platinum catalysts such as Ta{sub 3}N{sub 5}.

  6. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    Science.gov (United States)

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance.

  7. Studies of Modified Hydrogen Storage Intermetallic Compounds Used as Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Rui F. M. Lobo

    2011-12-01

    Full Text Available The possibility of substituting Pt/C with the hydrogen storage alloy MlNi3.6Co0.85Al0.3Mn0.3 as the anode active material of a proton exchange membrane fuel cell system has been analyzed. The electrochemical properties indicate that a much more electrochemically active anode is obtained by impregnating the active material loaded anode in a Nafion proton conducting polymer. Such performance improvement might result from the increase of three-phase boundary sites or length in the gas diffusion electrode where the electrochemical reaction occurs. The experimental data revealed that the membrane electrode assembly (MEA shows better results when the anode active material, MlNi3.6Co0.85Al0.3Mn0.3, is treated with a hot alkaline KBH4 solution, and then chemically coated with 3 wt.% Pd. The MEA with the aforesaid modification presents an enhanced surface capability for hydrogen adsorption, and has been studied by molecular beam-thermal desorption spectrometry.

  8. Study on the behavior of in-house built fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Silvina [Instituto de Engenharia Mecanica e Gestao Industrial (INEGI), Leca do Balio (Portugal)], e-mail: sguimaraes@inegi.up.pt; Gomes, Antonio [Universidade de Aveiro, Oliveira de Azemeis (Portugal). Escola Superior Aveiro Norte], e-mail: antonio.gomes@aveiro-norte.ua.pt; Pinho, Carlos [Universidade do Porto, Porto (Portugal). Fac. de Engenharia. Dept. de Engenharia Mecanica], e-mail: ctp@fe.up.pt

    2006-07-01

    This work reports the capacity of design, construction and testing of proton exchange membrane fuel cells at laboratory scale, with the objective of reaching a set of reference conditions to be used for further testing of other types of fuel cells using similar geometrical configurations. Two configurations were adopted in this initial approach, both with an active membrane area of 25 cm{sup 2}, but using different layouts for the anode and cathode gas flow channels. The used membranes were from DuPont reference H25-bMEA5 with a NAFION layer of 25 {mu}m thickness. One of the configurations used a pair of serpentine channels, for each gas flow, whereas the other used single serpentine flow channels. The twin serpentine configuration had two independent entries for hydrogen and air. With this layout the two serpentines available for each gas flow, could either be connected in series or in parallel. Both cells were then tested in a laboratory scale test rig, by feeding pure hydrogen to the anode and air to the cathode. Experiments were carried out for different combinations of operating temperatures of the gas flows, of the cell operation and also for different degrees of humidification of the hydrogen and air flows. Experimental data are shown as plots of polarization curves of the cells under analysis and explanations for the obtained results are discussed. (author)

  9. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  10. Additive Manufacturing of a Microbial Fuel Cell--A detailed study.

    Science.gov (United States)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-27

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m(-3) per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  11. Ballard: leading the fuel cell charge

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    This article outlines the role of Ballard Power Systems in the development of fuel cells, and their strategy in concentrating on fuel cells for cars, buses, trucks, and stationary and portable power plants. Market drivers; costs; the concept of a fuel cell as a component of a power plant, and customers and competition are discussed. California's fuel cell partnership for testing fuel cell vehicles, the shrinking of fuel cell sizes and weights, aspects of piracy and copyright, and fuel types and sources are examined. (UK)

  12. A review of fuel cell systems for maritime applications

    Science.gov (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.

    2016-09-01

    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  13. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation by Experiment

    Science.gov (United States)

    Tsai, Ho-Cheng

    We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML

  14. Correlated resistor network study of porous solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Abel, J.; Kornyshev, A.A.; Lehnert, W. [Forschungszentrum Juelich (Germany). Inst. fuer Energieverfahrenstechnik

    1997-12-01

    A resistor network model is developed for solid oxide fuel cell (SOFC) composite anodes, in which solid electrolyte grains, metal particles, and pores are considered on the same footing. The model is studied by a Monte Carlo simulation on a face-centered cubic lattice, with a random distribution of the three components over the lattice sites. The concept of active bonds is used; the bond between a metal and an electrolyte site is conductive (reaction-active) if the sites belong to clusters connected to the solid-electrolyte membrane or metal current collector, respectively, and if the bond has at least one neighbor site which is a part of a pore cluster connected with the fuel supplying gas channels. Active bonds are characterized by an elementary reaction resistance, inactive bonds are blocking. The total inner resistance of the anode is calculated as a function of composition and the elementary reaction resistance, R{sub r}, vs. ion transport resistance, R{sub e} (of a bond between two solid-electrolyte grains). Compositions which provide the lowest inner resistance for a given R{sub r}/R{sub e} ratio are revealed. Across-the-sample distribution of the current through the three-phase boundary is investigated. The higher the R{sub r}/R{sub e} ratio, the larger areas of the three-phase boundary are used; however, if the ratio is low, the reaction occurs only very close to the anode/membrane interface to avoid ion transport limitations. A scaling law for the reaction penetration depth in side the anode, N{sub f} {proportional_to} (R{sub r}/R{sub e}){sup {beta}} (where {beta} {le} 0.5) is suggested in accordance with the Monte Carlo results. In line with the existing experimental data, the simulation and scaling estimates reveal the interplay between the reaction penetration depth and the anode thickness, which determines the thickness effect on the inner resistance.

  15. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling......, impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  16. The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions

    Science.gov (United States)

    Behm, R. J.; Jusys, Z.

    In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.

  17. Maritime Fuel Cell Generator Project.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.

  18. Semi-fuel cell studies for powering underwater devices: integrated design for maximized net power output

    Science.gov (United States)

    Cardenas-Valencia, Andres M.; Short, R. Timothy; Adornato, Lori; Langebrake, Larry

    2010-04-01

    Use of sensor systems in water bodies has applications that range from environmental and oceanographic research to port and homeland security. Power sources are often the limiting component for further reduction of sensor system size and weight. We present recent investigations of metal-anode water-activated galvanic cells, specifically water-activated Alcells using inorganic alkali peroxides and solid organic oxidizers (heterocyclic halamines), in a semi-fuel cell configuration (i.e., with cathode species generated in situ and flow-through cells). The oxidizers utilized are inexpensive solid materials that are generally (1) safer to handle than liquid solutions or gases, (2) have inherently higher current and energy capacity (as they are not dissolved), and, (3) if appropriately packaged, will not degrade over time. The specific energy (S.E.) of Al-alkali peroxide was found to be 230 Wh/kg (460 Wh/kg, considering only active materials) in a seven-gram cell. Interestingly, when the cell size was increased (making more area of the catalytic cathode electrode available), the results from a single addition of water in an Al-organic oxidizer cell (weighing ~18 grams) showed an S.E. of about 200 Wh/kg. This scalability characteristic suggests that values in excess of 400 Wh/kg could be obtained in a semi-fuel-cell-like system. In this paper, we also present design considerations that take into account the energy requirements of the pumping devices and show that the proposed oxidizers, and the possible control of the chemical equilibrium of these cathodes in solution, may help reduce this power requirement and hence enhance the overall energetic balance.

  19. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    Science.gov (United States)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  20. European opportunities for fuel cell commercialisation

    Science.gov (United States)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    when demand for power exceeds supply. The SWB solar hydrogen project in Germany is testing PAFC and AFC stacks in this application. Several problems remain before fuel cell technology can fulfil its maximum potential market. For PAFC there is a need to reduce plant capital costs and to verify lifetimes and reliability. KTI's 25 kW demonstration at Delft and the Milan 1 MW plant will increase European knowledge and experience of PAFC plant operation. For MCFC there are materials problems to be solved and work needs to be carried out on the best way to scale up plants. Projects underway in the Netherlands, Germany, Italy and elsewhere should bring Europe to the forefront of MCFC technology. SOFC requires further study in the area of design configurations and fabrication techniques. Research on these aspects is underway in Denmark, Switzerland, Germany, the Netherlands and the UK. For PEM technology work on reducing precious metal loadings and selecting the best polymer membrane is required — an area in which Johnson Matthey is involved. For all fuel cell technologies there needs to be a greater awareness among power suppliers, consumers, legislators and environmentalists of the advantages that fuel cells can offer. The increase in activity among European organisations in developing, demonstrating, testing and optimising fuel cell systems will encourage a greater awareness of the technology and bring commercialisation closer to reality.

  1. Fuel Cell/Reformers Technology Development

    Science.gov (United States)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  2. Study on Use of Fuel-Cell Auxiliary Power Units in Refrigerator Cars Employed for Delivery to Convenience Store

    Science.gov (United States)

    Katayama, Noboru; Kamiyama, Hideyuki; Kogoshi, Sumio; Kudo, Yusuke; Fukada, Takafumi; Ogawa, Makoto

    The use of fuel-cell auxiliary power units (FC-APU) in refrigerator cars employed delivery to for convenience store delivery has been studied. The delivery pattern is assumed to be a typical pattern that includes driving between convenience stores or between a delivery center and a convenience store, unloading, driver's lunch break. The M15 driving mode, which simulates the driving condition in urban areas, is used as the driving mode in the delivery pattern. The FC-APU system includes a proton-exchange membrane fuel cell (PEFC) module, an inverter, and DC/DC converter. Bench tests of the FC-APU are performed to determine the hydrogen fuel consumption rate and the energy efficiency; these values depend on the output power of the PEFC module. The calculated relationship between the output power and fuel consumption rate of a current used system, which consists of an alternator and a secondary battery, are used to estimate the energy efficiency of the current used system. On the basis of the measurement data in this study and the results for the model proposed by Brodric et al. [C. J. Brodrick et al., Trans. Res. D, vol 7, pp. 303 (2002)], the payback period is calculated. The results indicate that the payback period would be 2.1 years when the FC-APU operates at a load of 70%.

  3. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Computational modeling study on polymer electrolyte membranes for fuel cell applications

    Science.gov (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji

    2016-12-01

    Properties of polymer electrolyte membranes (PEMs) for use in polymer electrolyte membrane fuel cells (PEFCs) were investigated using the first-principles molecular dynamics simulations. One important issue in PEMs is how to improve the proton conductivity of PEMs under low hydration conditions. Results of the simulation show that perfluorinated type membranes such as Nafion exhibit excellent hydrophilic/hydrophobic phase separation while a hydrocarbon membrane has a relatively poor phase separation property. We found that such a poor phase separation behavior of a hydrocarbon membrane arise from hydrophilic functional groups attached to the PEMs.

  5. Direct-mode glucose fuel cells with near-neutral-state electrolytes : anode electrode studies with different catalysts and electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Spets, J.P.; Noponen, T.; Kuosa, M.A.; Lampinen, M.J.; Saari, K. [Helsinki Univ. of Technology, Sahkomiehentie (Finland). Dept. of Energy Technology, Applied Thermodynamics; Kiros, Y. [Royal Inst. of Technology-KTH, Stockholm (Sweden). Dept. of Chemical Engineering and Technology; Rantanen, J. [Hydrocell Ltd, Jarvenpaa (Finland)

    2009-07-01

    Interest in direct-mode glucose fuel cells is growing because glucose can be readily produced by hydrolysis of complex storage carbohydrates such as starch and cellulose. This paper reported on the testing of a direct-mode glucose anode half-cell with three different catalyst materials. A direct-mode glucose cathode half-cell was also tested with one catalyst material. The purpose of the study was to produce both effective and simple direct-mode glucose fuel cell either with a neutral or near-neutral-state electrolyte, which could operate with a moderate electric power production capacity. The paper discussed the experiment with particular reference to the chemical compositions of the near-neutral state electrolytes in the anode half cell tests; comparison of test methods to an earlier test method; and the limitations of the scope of the results. Results were presented in terms of properties of the aqueous electrolytes before the operation in the anode half cell; polarization curves for glucose in an anode half-cell in two concentrations and in two electrolytes at pH value of 7.4 using anode catalyst material Raney-Nickel; polarization curves for glucose in an anode half-cell in two concentrations and in two electrolytes at pH value of 7.4 using anode catalyst material Nickel-Porphyrin; and polarization curves with glucose in two concentrations in the Krebs-Ringer electrolyte for the anode and cathode direct-mode half-cells at RT. It was concluded that one target for future research could be the development of new electrocatalysts, which enable the use of direct-mode fuel cells with the near-neutral-state electrolyte for bio-organics. 22 refs., 4 tabs., 4 figs.

  6. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  7. DIRECT AMMONIA-AIR FUEL CELL.

    Science.gov (United States)

    fuel cell was investigated. This cell is based on the use of a non-aqueous fused hydroxide electrolyte matrix, and operates in the intermediate temperature range of 180-300 C. Studies have been carried out to determine the nature of the ratecontrolling step in the kinetics of the anodic oxidation of ammonia. A new type of Ni/NiOOH reference electrode was developed for the measurement of single electrode potentials in experimental galvanic fuel cells employing this type of matrix electrolyte. In addition to various exploratory studies, two statistical analysis

  8. Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas

    OpenAIRE

    2014-01-01

    Solid oxide fuel cells (SOFCs) with proton conducting electrolyte (H-SOFCs) are promising power sources for stationary applications. Compared with other types of fuel cells, one distinct feature of SOFC is their fuel flexibility. In this study, a 2D model is developed to investigate the transport and reaction in an H-SOFC fueled with syngas, which can be produced from conventional natural gas or renewable biomass. The model fully considers the fluid flow, mass transfer, heat transfer and r...

  9. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  10. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  11. Study of basic biopolymer as proton membrane for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Salgado, Joel [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas No. 152, CP 07730, Mexico D.F. (Mexico)

    2007-03-01

    Up to now, many research groups work to improve the electrical and mechanical properties of membranes with a low cost of production. The biopolymers could be an answer to produce proton membranes at low cost. This work demonstrates that the intrinsic membrane polymer and clays properties can help to develop a novel proton exchange membranes. Biopolymer composites (chitosan-oxide compounds) present conductivity between 10{sup -3} and 10{sup -2} S cm{sup -1}. The measurements were calculated by EIS (1 MHz-0.05 Hz) using the two-electrode configuration. Different oxides were used: MgO, CaO, SiO{sub 2}, Al{sub 2}O{sub 3}. The ionic conductivities were compared with Nafion {sup registered} 's in the same conditions of P and T. The catalyst layer/membrane ensemble was made during the design with the subsequent demonstration as membrane electrode assemblies and finally the fuel cell was built. Our focus was to increase the compatibility between the proton basic polymer exchange membrane and basic clays as CaO and test a new kind of fuel cell. (author)

  12. Studies on metal catalysts and carbon materials for fuel cell applications

    Science.gov (United States)

    Zhang, Gaixia

    As a potential candidate for an environmentally benign and highly efficient electric power generation technology, proton exchange membrane fuel cells (PEMFC) are now attracting great interest for various applications. The main objective of this project has been to investigate the interfacial interaction of Pt nanoparticles with their carbon supports, so as to determine ways to optimise the catalyst electrode and to increase its catalytic activity, thereby enhancing PEM fuel cell performance. We first studied the interfacial interaction (leading to adhesion) of Pt nanoparticles evaporated onto untreated and Ar+-treated highly oriented pyrolytic graphite surfaces, with, respectively, low and high surface defect densities; HOPG was used as a model for carbon nanotubes (CNTs) and carbon fibers. We found that those Pt nanoparticles have very weak interactions with their pristine carbon material supports, with no evidence of compound formation between them. Our analysis, however, indicated that the adhesion of Pt nanoparticles to their supports can be enhanced, using ion beams, plasmas, or other treatments to establish defects on the carbon substrate surface. In addition, by using multicomponent XPS analysis with symmetric lineshapes for each Pt4f spectral component (4f7/2,5/2), we attributed the component peaks to the existence of (i) surface oxidation on the platinum nanoparticles, and different electronic configurations of (ii) surface and (iii) bulk Pt atoms. One way of enhancing strong adhesion between them is by chemical functionalization of the support. Using mixed H2SO4/HNO3 acid treatments, we have characterized the surface chemistry of functionalized carbon fiber paper by combining infrared, Raman and X-ray photoelectron spectroscopies, to give new insights into the often-used oxidation of graphene-containing materials. We have, for the first time, demonstrated the presence of transient O-, N- and S-containing species during the oxidation process, as well as

  13. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  14. Fuel Cell Seminar, 1992: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  15. A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2010-03-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of

  16. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  17. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jixin [Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697-3975 (United States)

    2010-02-15

    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells. (author)

  18. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts

    Science.gov (United States)

    Chen, Jixin

    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.

  19. Carbon oxides free fuel processing for fuel cell applications

    Science.gov (United States)

    Choudhary, Tushar V.

    Fuel processing represents a very important aspect of fuel cell technology. The widespread utilization of fuel cells will only be possible if CO x-free hydrogen producing technologies are developed. Towards this objective, step-wise reforming of hydrocarbons and catalytic decomposition of ammonia were investigated for hydrogen production. Also, novel Au-based catalysts were synthesized for preferentially eliminating CO in the presence of excess hydrogen. The step-wise reforming of hydrocarbons was investigated for production of CO-free hydrogen for proton exchange membrane fuel cells. Proof of concept pulse reactor experiments employing Ni-based catalysts clearly showed the feasibility of the cyclic step-wise reforming process for clean hydrogen production. Under optimum conditions the CO content in the hydrogen was found to be less than 20 ppm by this process (a large amount of CO is obtained as a by-product from conventional methods of hydrogen production). The step-wise reforming process thus greatly simplifies fuel reforming, as expensive and circuitous post-reforming hydrogen purification processes are eliminated. The process was profoundly influenced by the operating temperature, space velocity and nature of the catalyst support. Catalytic ammonia decomposition was investigated for COx-free hydrogen production for alkaline fuel cells. These studies revealed that Ru, Ir and Ni-based catalysts were active for the process with Ru being the most active and Ni the least. The catalyst supports played a decisive role in determining the ammonia decomposition activity. Partial pressure dependence studies of the reaction rate on model Ir (100) catalysts yielded a positive order (0.9 +/- 0.l) with respect to ammonia and negative order (-0.7 +/- 0.l) with respect to hydrogen. The negative order with respect to hydrogen was attributed to the enhancement in the reverse of the ammonia decomposition reaction in the presence of surface hydrogen atoms. Novel nano-Au catalysts

  20. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  1. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  2. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  3. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  4. Performance Study On An Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFT Fabricated By Dry Pressing Method

    Directory of Open Access Journals (Sweden)

    A. Rifau

    2006-01-01

    Full Text Available An intermediate temperature solid oxide fuel cell (IT-SOFC has been developed by using the dry pressing method. Widely studied materials were used for anode and cathode and SDC based electrolyte was used in this study. The cells were fabricated by dry-pressed at different pressures using a die without any binding material, a known amount of three electrode materials in powder form were pressed together and a nickel mesh was used as current collector. The test area of the fabricated cells was 0.785 cm2. The experiments were conducted using H2 as fuel and compressed air as oxidant. The cells were tested under different operating temperatures with varying fabrication parameters. The fabricated cells recorded an open cell voltage (OCV of 765mV while operating at 560°C. The maximum current density obtained was 726mA/cm2 and with a power density of 193mW/cm2.

  5. Study of homogeneous fuel cells type 10 x 10; Estudio de celdas de combustible homogeneas tipo 10 x 10

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Perusquia, R.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Francois, J.L.; Marquez, C.M. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2005-07-01

    At the moment in the National Institute of Nuclear Research (ININ) are carried out studies with the purpose of to establish a methodology that allows to carry out the neutron design of fuel cells of type 10 x 10. During the initial stage of the process of cells design, starting from the data that have to do with the planned energy demand it requires to be estimated the average value of the enrichment in U{sup 235} w/o of the one assemble. The experience has shown that the accuracy that is achieved in this estimate it depends, among other factors, of the information (e.g. concentrations of U{sup 235} and Gd{sub 2}O{sub 3}) of the cells that its are disposed in that moment. For what we consider convenient to enlarge the available information by means of a series of calculations of cell physics; and to the one same time some aspects can be studied on the parameters that define the characteristics of a fuel cell. In this work the effect of the presence of different distributions of the concentrations of the fissile material is analyzed and of burnup poisons on the reactivity parameters of the cell as well as in the peak factor of local power (LPPF-Local Power Peaking Factor). (Author)

  6. Protozoan grazing reduces the current output of microbial fuel cells.

    Science.gov (United States)

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells.

  7. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    Science.gov (United States)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  8. The birth of the fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Don

    2001-12-01

    Everyone knows that Thomas Alva Edison invented the light bulb, Alexander Graham Bell the telephone and that the Otto and Diesel engines were invented by two Germans bearing those names. But who invented the fuel cell? Fuel cells generate electricity with virtually zero pollution by combining gaseous fuels and air. There are different types generally described as high temperature or low temperature fuel cells. Here, Don Prohaska delves into a recently published book: The Birth of the Fuel Cell, by a descendant of one of the fathers of the fuel cell, and sheds new light on the early days of this technology. (Author)

  9. Fuel-Cell Drivers Wanted

    Science.gov (United States)

    Clark, Todd; Jones, Rick

    2004-01-01

    While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…

  10. Nanostructured Electrocatalysts for Fuel Cells

    Science.gov (United States)

    2011-01-26

    and adsorbents. Ordered mesoporous carbon ( OMC ) has the advantages of high surface area, tunable pore size, interconnected pore network, and...tailorable surface properties. Recently, OMC as support for metal nanocatalysts for electrode materials in low-temperature fuel cells has been attracting much

  11. Nanomaterials for fuel cell catalysis

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2016-01-01

    Full Text Available Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art...

  12. HDS for fuel cell applications

    NARCIS (Netherlands)

    Alsolami, B.H.

    2012-01-01

    The objective of this chapter is to investigate the feasibility of developing a catalytic hydrodesulfurization (HDS) process operating under low pressure and high temperature conditions to produce a near-zero sulfur content diesel suitable for fuel cell applications. As expected, it was found that d

  13. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  14. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  15. Cell, cell, cell: fuel cell applications moving ahead

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2001-11-01

    Developments in fuel cell technology within the last decade, such as the targeting by major automakers of non-polluting fuel cells as an alternative to the internal combustion engine, are reviewed. For example, Ballard Power Systems of Vancouver is the exclusive supplier to both DaimlerCrysler and the Ford Motor Company of the fuel cell stacks that produce the power in fuel cell systems. Ballard plans the commercial launch of transit bus engines in 2002 and automotive products between 2003 and 2005. The company also sees huge opportunities for fuel cells in stationary and portable power applications. At the same time, the Calgary-based fuel cell division of Energy Ventures Inc. is developing a direct methanol fuel cell that eliminates the intermediate step of 'reforming' methanol into hydrogen that is required in the Ballard process. Energy Ventures targets small niche markets such as small utility vehicles for its direct methanol fuel cell. A completely self-contained fuel cell of this type is expected to be ready in 2002. Solid oxide fuel cells for off-grid remote power units as well as for home heat and power is yet another field of development that will be particularly attractive to operations in remote areas where reliable grid electricity is expensive and hard to obtain. A prototype 2.3 kW residential power system using natural gas was made available by Global Thermoelectric Inc in June 2001; field testing is planned for 2002, with commercial production in late 2003 or 2004. The Calgary-based Snow Leopard Resources Inc plans to use pure hydrogen sulphide obtained from sour natural gas as a hydrogen source. The prime focus of Snow Leopard is on gas plants looking for ways to increase their efficiency, obtain carbon dioxide credits and generate electricity on site. This type of fuel cell also could be of interest to companies with shut-in sour gas since these companies could use the stationary fuel cell system to generate electricity.

  16. 2007 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  17. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis

    2016-01-08

    Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.

  18. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  19. Study of the long-term operation of a vanadium/oxygen fuel cell

    Science.gov (United States)

    Noack, Jens; Cognard, Gwenn; Oral, Meryem; Küttinger, Michael; Roznyatovskaya, Nataliya; Pinkwart, Karsten; Tübke, Jens

    2016-09-01

    A vanadium/oxygen fuel cell (VOFC) with a geometrically active area of 51 cm2 and two membranes was discontinuously operated over a period of over 676 h with 47 successive tests at room temperature with a current density of 19.6 mA/cm2 in order to investigate signs of ageing. As well as measuring cell voltages, the test setup was also used to measure anode and redox potentials as well as cell and half-cell impedances. The performance data of the VOFC fluctuated widely over the course of the test period, due to different V2+ concentrations and instabilities of the starting solutions on the one hand and complex changes in cathode conditions on the other. The desired behaviour of the anode reactions was achieved primarily through improved methods for producing the V2+ solutions, and remained stable at the end of the experiments. The kinetics of the cathode reactions were temporarily increased by purging with 2 M H2SO4, however their performance decreased over time. The VOFC had symptoms of ageing by complex and overlaid changes in the cathode's triple phase boundary layer and in the special conditions between the two electrodes and membranes.

  20. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  1. Innovative Fuel Cell Health Monitoring IC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage devices, including fuel cells, are needed to enable future robotic and human exploration missions. Historically, the reliability of the fuel cells has...

  2. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  3. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  4. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  5. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  6. Study of Low Temperature Fuel Cells Thin Films Morphology by GISAXS

    Science.gov (United States)

    Irita, Tomomi; Russell, Thomas

    2007-03-01

    Grazing incidence small angle x-ray scattering experiments were performed on thin films of Nafion solutions as a function of time as the solvent, methanol/water, evaporated. The development and orientation of the structure and morphology in the thin films, at the free surface and in the bulk of the film, was characterized by the scattering below and above the critical angle. The scattering profiles indicated that Nafion thin morphology was strongly influenced by the conformations of Nafion molecules in the solutions. In addition, the morphology in thin films of sulfonated block copolymers of polystyrene-b-poly(ethylene-o-butylene)-b-polystyrene, an alternative material for fuel cell applications, was characterized by GISAXS and scanning force microscopy using different solvents and under an applied electric field. Both the solvents used and the applied field was found to markedly influence the orientation of the ion conducting domains in the films.

  7. Toward new fuel cell support materials: a theoretical and experimental study of nitrogen-doped graphene.

    Science.gov (United States)

    Seo, Min Ho; Choi, Sung Mook; Lim, Eun Ja; Kwon, In Hye; Seo, Joon Kyo; Noh, Seung Hyo; Kim, Won Bae; Han, Byungchan

    2014-09-01

    Nano-scale Pt particles are often reported to be more electrochemically active and stable in a fuel cell if properly displaced on support materials; however, the factors that affect their activity and stability are not well understood. We applied first-principles calculations and experimental measurements to well-defined model systems of N-doped graphene supports (N-GNS) to reveal the fundamental mechanisms that control the catalytic properties and structural integrity of nano-scale Pt particles. DFT calculations predict thermodynamic and electrochemical interactions between N-GNS and Pt nanoparticles in the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Moreover, the dissolution potentials of the Pt nanoparticles supported on GNS and N-GNS catalysts are calculated under acidic conditions. Our results provide insight into the design of new support materials for enhanced catalytic efficiency and long-term stability.

  8. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    Science.gov (United States)

    2011-01-01

    fuel cell ( SOFC ) technology has been of great interest over many years due to its...All Rights Reserved iii ABSTRACT Solid oxide fuel cell ( SOFC ) technology has been of great interest over many years due to its... Fuel Cell (PAFC) Molten Carbonate Fuel Cell (MCFC) Solid Oxide Fuel Cell ( SOFC ) This classification in fuel cells broadly depends on the type

  9. A study on the electricity generation from cow dung using microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Shiv K Bharadwaj

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Microbial Fuel Cells (MFCs use bacteria as biocatalyst to convert biodegradable substrates into electricity.  The natural cow dung was found more suitable as it generated 150.9 mV Open Circuit Voltage (OCV against 3.2 mV OCV generated by the sterile cow dung in       the H-shaped MFC.  On configuration, a MFC with 50 % cow dung and a salt bridge (5 cm × 2 cm containing a mixture of 10 % sodium chloride and 5 % agar, electrodes of 32.20 cm2 surface area and phenol red (0.1 % as exogenous mediator was found ideal. Furthermore, five electrogenic bacteria were isolated from the cow dung and individually studied for their electrogenic properties.  The bacterial isolate CD64 was found best among the isolates, as it generated 710.7 mV OCV at 37 ºC, pH 7.0 with LB medium as anolyte against vinegar as catholyte.  Based on the phenotypic characteristics and 16S rDNA sequencing, isolate CD64 was identified as Bacillus sp. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  10. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    Science.gov (United States)

    2007-10-01

    oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig...range of power outputs. In addition , instantaneous and on-load fuel switching from natural gas to propane and back was demonstrated without loss of...issues that required additional investigation included identifying the number and volume of propane tanks needed and a vaporization sys- tem to

  11. Strongly correlated perovskite fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines1, 2, 3, 4. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number5. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes6. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  12. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  13. Strongly correlated perovskite fuel cells.

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  14. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  15. Fuel cells for electrochemical energy conversion

    Science.gov (United States)

    O'Hayre, Ryan P.

    2017-07-01

    This short article provides an overview of fuel cell science and technology. This article is intended to act as a "primer" on fuel cells that one can use to begin a deeper investigation into this fascinating and promising technology. You will learn what fuel cell are, how they work, and what significant advantages and disadvantages they present.

  16. Low cost, lightweight fuel cell elements

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  17. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters c...

  18. Microbial fuel cell treatment of fuel process wastewater

    Science.gov (United States)

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  19. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  20. Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether

    Science.gov (United States)

    Liu, Yu; Guo, Youmin; Wang, Wei; Su, Chao; Ran, Ran; Wang, Huanting; Shao, Zongping

    This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr 0.4Ce 0.4Y 0.2O 3-δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH 4 and CO 2 as the only gaseous carbon-containing products. An O 2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH 4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm -2 are achieved for the cells operating on pure DME, a DME + H 2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H 2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H 2O than on H 2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.

  1. Fuel cell transit bus development & commercialization programs at Gerogetown University

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.; Larkins, J.; Romano, S. [Georgetown Univ., Washington, DC (United States)

    1996-12-31

    Fourteen years ago, Georgetown University (GU) perceived the need for a clean, efficient power systems for transportation that could operate on non-petroleum based fuels. The transit bus application was selected to begin system development. GU recognized the range and recharge constraints of a pure battery powered transit bus. A Fuel Cell power system would circumvent these limitations and, with an on board reformer, accommodate liquid fuel for rapid refueling. Feasibility studies for Fuel Cell power systems for transit buses were conducted with the Los Alamos National Laboratory in 1983. Successful results of this investigation resulted in the DOT/DOE Fuel Cell transit bus development program. The first task was to prove that small Fuel Cell power plants were possible. This was achieved with the Phase I development of two 25 kW Phosphoric Acid Fuel Cell (PAFC) brassboard systems. A liquid cooled version was selected for the Phase II activity in which three 30-foot Fuel Cell powered Test Bed Buses (TBBs) were fabricated. The first of these TBBs was delivered in the spring of 1994. All three of these development vehicles are now in Phase III of the program to conduct testing and evaluation, is conducting operational testing of the buses. The test will involve two fuel cell-operated buses; one with a proton exchange fuel cell and the other with a phosphoric acid fuel cell.

  2. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  3. New applications for phosphoric acid fuel cells

    Science.gov (United States)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  4. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  5. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Greely, Alaska Site. Project Description,

    Science.gov (United States)

    1985-11-01

    COS in the Fuel Gas on the Performance of Amoient Pressure Phosphoric Acid Fuel Cells". Lawrence Berkeley Laboratory Report No. LBL- 18001 April 1985 6.4...enclosure. The facility satisfies the criteria of the following governing codes and regulations. Some of the criteria include: - OSHA - Requirements for Safe

  6. Electrochemical impedance spectroscopy and cyclic voltammetry studies of a proton exchange membrane fuel cell operated at low humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malevich, D. [Fuel Cell Research Centre, Kingston, ON (Canada)

    2007-07-01

    This study investigated water balance issue in polymer electrolyte membrane fuel cells (PEMFCs) using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. Equivalent PEMFC circuits and microporous layers (MPL) were investigated. Bode and Nyquist plots were presented, and the effect of current density on EIS was explored. Membrane resistance, Warburg resistance, and electron transfer resistance was measured. The study also examined hydrogen underpotential deposition on platinum. Cyclic voltammetry was used to develop curves for electrochemically active surfaces and charge transfer resistance of the MPL. Polarization curves for the anode and cathode MPLs were presented along with impedance diagrams for the PEMFC operating at low humidity conditions. tabs., figs.

  7. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  8. General Motors automotive fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  9. Fuel cells principles, design, and analysis

    CERN Document Server

    Revankar, Shripad T

    2014-01-01

    ""This book covers all essential themes of fuel cells ranging from fundamentals to applications. It includes key advanced topics important for understanding correctly the underlying multi-science phenomena of fuel cell processes. The book does not only cope with traditional fuel cells but also discusses the future concepts of fuel cells. The book is rich on examples and solutions important for applying the theory into practical use.""-Peter Lund, Aalto University, Helsinki""A good introduction to the range of disciplines needed to design, build and test fuel cells.""-Nigel Brandon, Imperial Co

  10. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  11. DIGESTER GAS - FUEL CELL - PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  12. Study thermofluidynamic of the sub frame of fuel in the cell of discharge of the ATC; Estudio termofluidodinamico del bastidor auxiliar de combustible en la celda de descarga del ATC

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, J.; Feria, F.; Herranz, L. E.

    2014-07-01

    The objective of this work was to determine the conditions that guarantee the maintenance of the State of the fuel during hypothetical stays in the discharge of a postulated ATC cell. The study includes three different conditions fuel element: intact, defective drawer of damaged fuel and defective without drawer of damaged fuel. (Author)

  13. Molten carbonate fuel cell matrices

    Science.gov (United States)

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  14. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  15. Microbial Fuel Cells for Sulfide Removal

    NARCIS (Netherlands)

    Rabaey, K.; Sompel, van de S.; Maignien, L.; Boon, N.; Aelterman, P.; Clauwaert, P.; Schamphelaire, de L.; The Pham, H.; Vermeulen, J.; Verhaege, M.; Lens, P.N.L.; Verstraete, W.

    2006-01-01

    Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to eleme

  16. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  17. Simulation studies of the membrane exchange assembly of an all-liquid, proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, Ethan D. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Everitt Laboratory, MC-702, 1406 W. Green St., Urbana, IL 61801-2918 (United States); Miley, George H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 100C NEL, 103 S. Goodwin Ave., Urbana, IL 61801 (United States)

    2008-01-21

    A model has been designed and constructed for the all-liquid, sodium borohydride/hydrogen peroxide fuel cell under development at the University of Illinois at Urbana-Champaign. The electrochemical behavior, momentum balance, and mass balance effects within the fuel cell are modeled using the Butler-Volmer equations, Darcy's law, and Fick's law, respectively, within a finite element modeling platform. The simulations performed with the model indicate that an optimal physical design of the fuel cell's flow channel land area or current collector exists when considering the pressure differential between channels, and the diffusion layer permeability and conductivity. If properties of the diffusion layer are known, the model is an effective method of improving the fuel cell design in order to achieve higher power density. (author)

  18. Issues in fuel cell commercialization

    Science.gov (United States)

    Appleby, A. J.

    After 25 years of effort, the phosphoric acid fuel cell (PAFC) is approaching commercialization as cell stack assemblies (CAS) show convincingly low degradation and its balance-of-plant (BOP) achieves mature reliability. A high present capital cost resulting from limited cumulative production remains an issue. The primary PAFC developer in the USA (International Fuel Cells, IFC) has only manufactured 40 MW of PAFC components to date, the equivalent of a single large gas turbine aero-engine or 500 compact car engines. The system is therefore still far up the production learning curve. Even so, the next generation of on-site 40% electrical efficiency (LHV) combined heat-and-power (CHP) PAFC system was available for order from IFC in 1995 at US 3000/kW (1995). To effectively compete in the marketplace with diesel generators, the dispersed cogeneration PAFC must cost approximately US 1550/kW (1995) in the USA and Europe. At somewhat lower costs than this, dispersed cogeneration PAFCs will compete with large combined-cycle generators. However, in Japan, costs greater than US 2000/kW will be competitive, based on the late-1995 trade exchange rate of 100-105 Yen/US ). The perceived advantages of fuel cell technologies over developments of more conventional generators (e.g., ultra-low emissions, siting) are not strong selling points in the marketplace. The ultimate criterion is cost. Cost reduction is now the key to market penetration. This must include reduced installation costs, for which the present goal is US$ 385/kW (1995). How further capital cost reductions can be achieved by the year 2000 is discussed. Progress to date is reviewed, and the potential for pressurized electric utility PAFC units is determined. Markets for high-temperature fuel cell system (molten carbonate, MCFC, and solid oxide, SOFC), which many consider to be 20 and 30 years, respectively, behind the PAFC, are discussed. Their high efficiency and high-quality waste heat should make them attractive

  19. Analysis of cogeneration system using fuel cell: cases study; Analise de sistema de cogeracao utilizando celula de combustivel: estudo de casos

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Jose Luz; Leal, Elisangela Martins [UNESP, Guaratingueta, SP (Brazil). Escola de Engenharia. Dept. de Energia]. E-mails: joseluz@feg.unesp.br; elisange@feg.unesp.br

    2000-07-01

    In this paper, a methodology for the study of a molten carbonate fuel cell cogeneration system associated to an absorption refrigeration system, for the electricity and cold water production, and applied to two establishments, is presented. This system permits the recovery of waste heat, available between 600 deg C e 700 deg C. Initially, some technical information about the most diffusing types of the fuel cell demonstration in the world are presented. In the next step, an energetic, exergetic and economic analysis are carry out, seeking the use of fuel cells, in conditions of prices and interest of Brazil. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian energy scene. (author)

  20. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  1. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  2. Use of alternative fuels in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    A future sustainable energy system will certainly be based on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types the solid oxide fuel cell (SOFC) has a number of advantages that places them in a favorable position: high efficiency, parallel production of electricity and high value heat, prevention of NOx emission, flexibility regarding usable fuels, and certain tolerance towards impurities. It is thus a natural option, to combine such a highly efficient energy conversion tool with a sustainable fuel supply. In the present contribution, the use of alternative compared to conventional fuels in SOFCs was evaluated. Regarding carbon containing, biomass derived fuels, SOFCs showed excellent power output and stability behavior during long-term testing under technologically relevant conditions. Moreover, ammonia can be used directly as fuel. The chemical and structural properties of the SOFC anode makes it even possible, to combine a chemical conversion of the fuel, for example methane into synthesis gas via steam reforming and decomposition of ammonia into hydrogen and nitrogen, with the electrochemical production of electricity in one step. (au)

  3. Biological Fuel Cells and Membranes.

    Science.gov (United States)

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  4. A Study of the Influence of Gas Channel Parameters on HT-PEM Fuel Cell Performance Using FEM Analysis

    Directory of Open Access Journals (Sweden)

    Ionescu Viorel

    2016-01-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFC are highly efficient power generators, achieving up to 50–60% conversion efficiency, even in sizes of a few kilowatts. Comsol Multiphysics, a commercial solver based on the Finite Element Method (FEM was used for developing a three dimensional model of a high temperature PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. Cathode gas flow velocity influence on the cell performance was investigated at first. Polarization curves for three different channel widths (0.8, 1.6 and 2.4 mm and three different channel depths (1, 2 and 3 mm were computed at a cathode inlet flow velocity of 0.06 m/s. Oxygen molar concentration at cathode catalyst layer-GDL channel interface and local current density variation along the cell length were also studied for specific gas channel geometries.

  5. Study of CO2 recovery in a carbonate fuel cell tri-generation plant

    Science.gov (United States)

    Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo

    2015-06-01

    The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.

  6. Numerical study of water management in the air flow channel of a PEM fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Peng; Lai, Ming-Chia [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2007-01-10

    The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air-water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity. (author)

  7. Effects of several trace contaminants on fuel cell performance. [Theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Park, S M; O' Brien, T J

    1980-08-01

    The electrochemical reactivity of various trace contaminants in coal gas, i.e., Hg/HgS, PbS, CdS, Sn/SnCl/sub 2//SnCl/sub 4/, and TiO/sub 2/, in coal gas at the nickel anode and the nickel oxide cathode in a molten carbonate fuel cell have been examined thermodynamically. Calculations indicate that only SnCl/sub 4/ would undergo reduction at the cathode to SnCl/sub 2/. Other species would remain intact. Contaminants such as H/sub 2/S/SO/sub 2/ and HCl have also been included in the calculation. The results are consistent with the limited observations. Possible chemical interactions between contaminants and electrodes or electrolytes have been examined. Reactions of Sn/sup 2 +/, HgS, H/sub 2/S, and HCl with the nickel anode have negative free energies. Mercury would interact physically with the anode by forming an alloy. Reactions of Sn, SnCl/sub 2/, H/sub 2/S, and HCl with the nickel oxide cathode also have negative free energies. Reactions of Sn/sup 2 +/, HCl, H/sub 2/S, and SO/sub 2/ with carbonates have large negative free energies. Born's model of ion transfer was used to calculate the free energy charge for the transfer of ions from aqueous solution to the molten carbonate solution.

  8. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... investigated. In addition, different stack design schemes have been proposed and their effect on system efficiency has been investigated....

  9. SULFUR DIOXIDE - SULFUR TRIOXIDE REGENERATIVE FUEL CELL RESEARCH

    Science.gov (United States)

    The thermodynamics and electrolytic characteristics are discussed of an SO2-SO3 regenerative, closed-cycle fuel cell , and summarizes the electrolytic...electrochemical, and phase separation research conducted during a study program to determine the practicability of such a fuel cell . The...experimental results obtained were at such wide variance with the theoretical concept that it became apparent that a fuel cell of this type is not feasible. (Author)

  10. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  11. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  12. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  13. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...

  14. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  15. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  16. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  17. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    FuelCell Energy

    2005-05-16

    , water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  18. Petroleum Diesel and Biodiesel Fuels Used in a Direct Hydrocarbon Phosphoric Acid Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yuanchen Zhu

    2015-01-01

    Full Text Available The performance of a direct hydrocarbon phosphoric acid fuel cell, PAFC, was investigated using petroleum diesel, biodiesel, and n-hexadecane as the fuels. We believe this is the first study of a fuel cell being operated with petroleum diesel as the fuel at the anode. Degradation in fuel cell performance was observed prior to reaching steady state. The degradation was attributed to a carbonaceous material forming on the surface of the anode. Regardless of the initial degradation, a steady-state operation was achieved with each of the diesel fuels. After treating the anode with water the fuel cell performance recovered. However, the fuel cell performance degraded again prior to obtaining another steady-state operation. There were several observations that were consistent with the suggestion that the carbonaceous material formed from the diesel fuels might be a reaction intermediate necessary for steady-state operation. Finally, the experiments indicated that water in the phosphoric acid electrolyte could be used as the water required for the anodic reaction. The water formed at the cathode could provide the replacement water for the electrolyte, thereby eliminating the need to provide a water feed system for the fuel cell.

  19. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  20. Modeling and control of fuel cell systems and fuel processors

    Science.gov (United States)

    Pukrushpan, Jay Tawee

    Fuel cell systems offer clean and efficient energy production and are currently under intensive development by several manufacturers for both stationary and mobile applications. The viability, efficiency, and robustness of this technology depend on understanding, predicting, and controlling the unique transient behavior of the fuel cell system. In this thesis, we employ phenomenological modeling and multivariable control techniques to provide fast and consistent system dynamic behavior. Moreover, a framework for analyzing and evaluating different control architectures and sensor sets is provided. Two fuel cell related control problems are investigated in this study, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen Fuel Cell System (FCS) and control of the anode hydrogen supply from a natural gas Fuel Processor System (FPS). System dynamic analysis and control design is carried out using model-based linear control approaches. A system level dynamic model suitable for each control problem is developed from physics-based component models. The transient behavior captured in the model includes flow characteristics, inertia dynamics, lumped-volume manifold filling dynamics, time evolving spatially-homogeneous reactant pressure or mole fraction, membrane humidity, and the Catalytic Partial Oxidation (CPOX) reactor temperature. The goal of the FCS control problem is to effectively regulate the oxygen concentration in the cathode by quickly and accurately replenishing oxygen depleted during power generation. The features and limitations of different control configurations and the effect of various measurement on the control performance are examined. For example, an observability analysis suggests using the stack voltage measurement as feedback to the observer-based controller to improve the closed loop performance. The objective of the FPS control system is to regulate both the CPOX temperature and anode hydrogen concentration. Linear

  1. National fuel cell seminar. Program and abstracts. [Abstracts of 40 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Abstracts of 40 papers are presented. Topics include fuel cell systems, phosphoric acid fuel cells, molten carbonate fuel cells, solid fuel and solid electrolyte fuel cells, low temperature fuel cells, and fuel utilization. (WHK)

  2. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  3. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  4. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  5. Microfabrication of microchannels for fuel cell plates.

    Science.gov (United States)

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  6. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  7. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  8. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  9. n-Hexadecane Fuel for a Phosphoric Acid Direct Hydrocarbon Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yuanchen Zhu

    2015-01-01

    Full Text Available The objective of this work was to examine fuel cells as a possible alternative to the diesel fuel engines currently used in railway locomotives, thereby decreasing air emissions from the railway transportation sector. We have investigated the performance of a phosphoric acid fuel cell (PAFC reactor, with n-hexadecane, C16H34 (a model compound for diesel fuel, cetane number = 100. This is the first extensive study reported in the literature in which n-hexadecane is used directly as the fuel. Measurements were made to obtain both polarization curves and time-on-stream results. Because deactivation was observed hydrogen polarization curves were measured before and after n-hexadecane experiments, to determine the extent of deactivation of the membrane electrode assembly (MEA. By feeding water-only (no fuel to the fuel cell anode the deactivated MEAs could be regenerated. One set of fuel cell operating conditions that produced a steady-state was identified. Identification of steady-state conditions is significant because it demonstrates that stable fuel cell operation is technically feasible when operating a PAFC with n-hexadecane fuel.

  10. Diesel fuel processor for hydrogen production for 5 kW fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, D.; Melgar, A.; Briceno, Y. [Fundacion CIDAUT. Parque Tecnologico de Boecillo, P. 209, 47151 Boecillo (Valladolid) (Spain); Navarro, R.M.; Alvarez-Galvan, M.C. [Instituto de Catalisis y Petroquimica (CSIC), C/ Marie Curie 2, Cantoblanco (Madrid) (Spain); Rosa, F. [Instituto Nacional de Tecnica Aeroespacial, Carretera San Juan del Puerto-Matalascanas, km 33, 21130 Mazagon-Moguer (Huelva) (Spain)

    2007-07-15

    The present paper describes a diesel fuel processor designed to produce hydrogen to feed a PEM fuel cell of 5 kW. The fuel processor includes three reactors in series: (1) oxidative steam reforming reactor; (2) one-step water gas shift reactor; and (3) a preferential oxidation reactor. The design of the system was accomplished by means of a one-dimensional model. A specific study of the fuel-air mixing chamber was carried out with Fluent by taking into account fuel evaporation and cool flame processes. The assembly of the installation allowed the characterisation of each component and the control of each working parameter. The first experimental results obtained in the reformer system using decaline and diesel fuels demonstrate the feasibility of the design to produce hydrogen suitable to feed a PEM fuel cell. (author)

  11. Environmental benefits of transport and stationary fuel cells

    Science.gov (United States)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  12. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  13. Study of pyrolyzed hemin/C as non-platinum cathodic catalyst for direct methanol fuel cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biological reduction of O2 to H2O justifies a serious look at heme as a potential O2 reduction reaction(ORR) catalyst for low temperature fuel cells.In this study,a novel non-platinum electrocatalyst for ORR was prepared through hemin,which is hydrochloride of heme,supported on Black Pearls 2000 carbon black(Hm-BP) pyrolyzed at 700-900℃ in Ar atmosphere.The physical and electrocatalytic properties of as-prepared catalysts were characterized by TGA,XRD,XPS,TEM,rotating disk electrode(RDE) and rotating ring disk electrode(RRDE).It has found that the catalyst treated at 750℃(Hm-BP-750) exhibits the best property among the Hm-BP catalysts prepared.The onset potential of ORR on the Hm-BP-750 at 30℃ was measured ca.0.90 V(vs.RHE) in 0.1 M H2SO4,and mass current density was reached 15.3 mA mg-1 at 0.75 V.It has revealed that O2 could be reduced directly to water in a 4e process between 0.9 and 0.83V,and the yield of H2O2 was 0-18% in the potential range of 0.83-0.63 V.This methanol-tolerant catalyst also presents excellent stability in medium-term test of direct methanol fuel cell at 80℃.

  14. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    Science.gov (United States)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  15. Understanding the Vancouver hydrogen and fuel cells cluster : a case study of public laboratories and private research

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, A. [Simon Fraser Univ., Burnaby, BC (Canada). Centre for Policy Research on Science and Technology; Arthurs, D. [Hickling Arthurs Low Corp., Ottawa, ON (Canada); Cassidy, E. [National Research Council of Canada, Ottawa, ON (Canada)

    2007-07-01

    A technology cluster is a geographically proximate group of interconnected companies and associated institutions that compete but also cooperate. Studies have shown that firms who cluster achieve greater competitive advantages over those who do not. This paper discussed the development of a hydrogen and fuel cells cluster in the city of Vancouver. A structured approach was used to evaluate the cluster against indicators of current conditions in the city. The results of a survey conducted with industry representatives and business leaders suggested that the cluster will contain 2 major components: (1) a hydrogen-based industry; and (2) a fuel cell-based industry. Developments in both technologies were discussed in relation to stationary and mobile applications in the future. Markets for the new technologies were also outlined. The role of the National Research Council (NRC) in the cluster's evolution was discussed. Details of the cluster's business characteristics and plans for the future were also provided. 16 refs., 7 tabs., 7 figs.

  16. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  17. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  18. Regulation of Power Conversion in Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SHEN Mu-zhong; ZHANG J.; K. Scott

    2004-01-01

    Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the equilibrium potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs. the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.

  19. Fuel cells - Fundamentals and types: Unique features

    Science.gov (United States)

    Selman, J. R.

    An overview of the working principles, thermodynamic efficiencies, types, and engineering aspects of fuel cells is presented. It is noted that fuel cells are distinguished from other direct energy conversion devices by the existence of charge separation at the electrodes involving ions in an electrolyte. The electrical energy produced by a fuel cell is shown to be equal to the change in the free energy of the reactants, and thermodynamic balances of reactions in different fuel cells are provided. The production of electricity in the discharge mode involves a spontaneous reaction of overproduction of electrons at the anode and consumption of the electrons at the cathode, with the total ionic current being equal to the electronic current in the external circuit. Attention is given to the operations and problems of acid, alkaline, molten carbonate, and solid oxide fuel cells, in addition to applications of electro-organic fuel cells.

  20. PLATINUM, FUEL CELLS, AND FUTURE ROAD TRANSPORT

    Science.gov (United States)

    A vehicle powered by a fuel cell will emit virtually no air polution and, depending on fuel choice, can substantially improve fuel economy above that of current technology. Those attributes are complementary to issues of increasing national importance including the effects of tra...

  1. Microfabrication of Microchannels for Fuel Cell Plates

    OpenAIRE

    Ho Su Jang; Dong Sam Park

    2009-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of m...

  2. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  3. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  4. EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2010-09-28

    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  5. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ralph E. White; Dr. Branko N. Popov

    2002-04-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

  6. Dual-radial cell thermionic fuel element

    Science.gov (United States)

    Terrell, Charles W.

    A dual-radial cell thermionic fuel element (TFE) has been proposed and partially evaluated. The cell has the capacity to produce considerably more power per gram of fuel than does a single-cell TFE, with a total electrical power in a fast reactor system of several hundred kWs, conservatively operated.

  7. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  8. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  9. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  10. DLA’s Hydrogen Fuel Cell Pilots

    Science.gov (United States)

    2009-05-07

    DLA’s Hydrogen Fuel Cell Pilots E2S2 Conference May 7, 2009 Rob Hardison LMI rhardison@lmi.org Report Documentation Page Form ApprovedOMB No. 0704...2009 to 00-00-2009 4. TITLE AND SUBTITLE DLA’s Hydrogen Fuel Cell Pilots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...and fuel cells offer potential „green‟ solutions •DLA‟s efforts to measure and improve viability of fuel cells DoD is supporting long term solutions

  11. PEM fuel cell testing and diagnosis

    CERN Document Server

    Wu, Jifeng; Zhang, Jiujun

    2013-01-01

    PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their

  12. Feasibility and Design Implications of Fuel Cell Power for Sealift Vessels

    Science.gov (United States)

    2009-08-01

    fuel cells as the primary power source on a large military cargo ship. A notional solid oxide fuel cell ( SOFC ) module is proposed and the... cell ( SOFC ) module is proposed and the implications of the technology on fuel savings and machinery arrangements are analyzed. The study shows that...notional Solid Oxide Fuel Cell ( SOFC ) module is defined as the building block for future fuel cell power plants. A hybrid SOFC and gas turbine

  13. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  14. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  15. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  16. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are f = 0.7 and current density 2500 A m -2 the electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  17. Methodology study for the catalyst obtention to low temperature fuel cells (DEFC); Estudo da metodologia de obtencao de catalisadores para celulas a combustivel de baixa temperatura (DEFC)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Emilia Lucena de; Korb, Matias De Angelis; Correa, Patricia dos Santos; Radtke, Claudio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil); Rieder, Ester [Universidade Luterana do Brasil (ULBRA), Canoas, RS (Brazil)

    2010-07-01

    Different methods to elaboration of catalysts in direct ethanol fuel cells (low temperature fuel cells) have been proposed in the literature. The present work aims to study a simplified methodology to obtain Pt-Sn-Ni alloys, used as catalysts in low temperature fuel cells. Impregnation/reduction method was employed to obtain Pt- Sn-Ni alloys supported on carbon, using ethylenoglycol as reductor agent and carbon Vulcan XC72R as support. Different amounts of Pt, Sn e Ni were studied, with the intent to obtain the maximum catalytic effect. The catalysts were obtained in an alkaline range, at 130 deg C, using the proportion ethylenoglycol:water 75/25 v/v. The analytical techniques used in this study was RBS (Rutherford Backscattering Spectroscopy), X Ray Diffraction and Cyclic Voltammetry. (author)

  18. Micro solid oxide fuel cell at ARC

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, P.; Rho, H. [Alberta Research Council, Edmonton, AB (Canada)

    2003-07-01

    A fuel cell generates electricity by electrochemically converting chemical energy to electrical energy. The basic components of a fuel cell are the electrolyte, anode, cathode and current collectors. The Alberta Research Council has developed a design and manufacturing process for a high volumetric density Micro Solid Oxide Tubular fuel cell with a diameter of less than 5 mm. The advantage of this newly developed fuel cell is that the power per unit volume is increased significantly because the power of a fuel cell is directly proportional to the electrolyte surface area. The fuel cell also has quick start up. Calculations show that a decrease in tube diameter from 22 mm to 2 mm will increase the electrolyte surface area in a stack by approximately 8 times. The thin wall of the Micro Solid Oxide Fuel Cell has a very high thermal shock resistance and low thermal mass. These are 2 basic characteristics needed to reduce start up and turn off time for the solid oxide fuel cell system (SOFC). The added advantage of high volumetric power is that smaller devices can be fabricated for portable applications. Samples were manufactured using a sequential electrophoretic deposition (EPD) method used to fabricate complex shapes and microstructures. Single cell SOFCs were made using EPD with an electrolyte thickness of less than 10 {mu}m. The cell power was found to be comparable to standard tubular SOFC but with a lower production cost. 3 refs., 1 tab., 7 figs.

  19. Fuel Transformer Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  20. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  1. Multiply manifolded molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  2. Modeling cascading diffusion of new energy technologies: case study of residential solid oxide fuel cells in the US and internationally.

    Science.gov (United States)

    Herron, Seth; Williams, Eric

    2013-08-06

    Subsidy programs for new energy technologies are motivated by the experience curve: increased adoption of a technology leads to learning and economies of scale that lower costs. Geographic differences in fuel prices and climate lead to large variability in the economic performance of energy technologies. The notion of cascading diffusion is that regions with favorable economic conditions serve as the basis to build scale and reduce costs so that the technology becomes attractive in new regions. We develop a model of cascading diffusion and implement via a case study of residential solid oxide fuel cells (SOFCs) for combined heating and power. We consider diffusion paths within the U.S. and internationally. We construct market willingness-to-pay curves and estimate future manufacturing costs via an experience curve. Combining market and cost results, we find that for rapid cost reductions (learning rate = 25%), a modest public subsidy can make SOFC investment profitable for 20-160 million households. If cost reductions are slow however (learning rate = 15%), residential SOFCs may not become economically competitive. Due to higher energy prices in some countries, international diffusion is more favorable than domestic, mitigating much of the uncertainty in the learning rate.

  3. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  4. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    such an opportunity. Some knowledge about the electrooxidation of DME is available, together with its limited use in low temperature PEM fuel cells, where the low temperature poses an obstacle in the form of phase separation in the fuel supply, making the cells less effective and reducing the amount of power...... harvested from the cells. This is completely avoided at the elevated temperatures with the additional benefit of increased kinetics. In the presented work an experimental setup for testing direct dimethyl ether high temperature fuel cells is described, proposing a novel design of an evaporator for a burst...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...

  5. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  6. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  7. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  8. Molten carbonate fuel cell technology improvement

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  9. Comparative Study of Two Carbon Fiber Cathodes and Theoretical Analysis in Microbial Fuel Cells on Ocean Floor

    Institute of Scientific and Technical Information of China (English)

    FU Yubin; LIU Yuanyuan; XU Qian; LU Zhikai; ZHANG Yelong

    2014-01-01

    Cathode activity plays an important role in the improvement of the microbial fuel cells on ocean floor (BMFCs). A comparison study between Rayon-based (CF-R) and PAN-based carbon fiber (CF-P) cathodes is conducted in the paper. The two carbon fibers were heat treated to improve cell performance (CF-R-H&CF-P-H), and were used to build a new BMFCs structure with a foamy carbon anode. The maximum power density was 112.4 mW m-2 for CF-R-H, followed by 66.6 mW m-2 for CF-R, 49.7 mW m-2 for CF-P-H and 21.6 mW m-2 for CF-P respectively. The higher specific area and deep groove make CF-R have a better power output than with CF-P. Meanwhile, heat treatment of carbon fiber can improve cell power, nearly two-fold higher than heat treatment of plain fiber. This improvement may be due to the quinones group formation to accelerate the reduction of oxygen and electron transfer on the fiber surface in the three phase boundary after heat treatment. Compared to PAN-based carbon fiber, Rayon-based carbon fiber would be preferentially selected as cathode in novel BMFCs design due to its high surface area, low cost and higher power. The comparison research is significant for cathode material selection and cell design.

  10. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  11. Integrated regenerative fuel cell experimental evaluation

    Science.gov (United States)

    Martin, Ronald E.

    1990-01-01

    An experimental test program was conducted to investigate the performance characteristics of an integrated regenerative fuel cell (IRFC) concept. The IRFC consists of a separate fuel cell unit and electrolysis cell unit in the same structure, with internal storage of fuel cell product water and external storage of electrolysis cell produced hydrogen and oxygen. The fuel cell unit incorporates an enhanced Orbiter-type cell capable of improved performance at reduced weight. The electrolysis cell features a NiCo2O4 catalyst oxygen evolution eletrode with a porous Teflon cover to retard electrolyte loss. Six complete IRFC assemblies were assembled and performance tested at an operating temperature of 200 F (93.3 C) and reactant pressures up to 170 psia (117.2 n/cu cm) on IRFC No. 4. Anomalous pressure charge/discharge characteristics were encountered during performance evaluation. A reversible fuel cell incorporating a proprietary bi-functional oxygen electrode operated satisfactory at 200 F (93.3 C) at reactant pressures up to 50 psia (41.4 n/cu cm) as a regenerative fuel cell for one cycle, before developing an electrical short in the fuel cell mode. Electrolysis cell 300-hour endurance tests demonstrated the electrolyte retention capability of the electrode Teflon cover and the performance stability of the bi-functional oxygen electrode at high potential.

  12. Phosphoric Acid Fuel Cell Technology Status

    Science.gov (United States)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  13. A Study of influence on sulfonated TiO2-Poly (Vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM Fuel cell application

    Science.gov (United States)

    kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh

    2017-10-01

    The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.

  14. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  15. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    Science.gov (United States)

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  16. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  17. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  18. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  19. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  20. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  1. The fuel cell; La pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Boursin, P.

    2005-07-01

    This document is an exhaustive review of the history of fuel cells from 1802 to 2004. It focusses mainly on the automotive applications and supplies many technical details about each prototype of fuel cell and/or vehicle. (J.S.)

  2. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  3. What are batteries, fuel cells, and supercapacitors?

    Science.gov (United States)

    Winter, Martin; Brodd, Ralph J

    2004-10-01

    Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

  4. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a station

  5. Organic fuel cell methods and apparatus

    Science.gov (United States)

    Vamos, Eugene (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  6. Corrosion free phosphoric acid fuel cell

    Science.gov (United States)

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  7. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  8. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  9. Fuel Cell Research at the University of Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang G; Advani, Suresh G

    2006-01-27

    The grant initiated nine basic and applied research projects to improve fundamental understanding and performance of the proton exchange membrane (PEM) fuel cells, to explore innovative methods for hydrogen production and storage, and to address the critical issues and barriers to commercialization. The focus was on catalysis, hydrogen production and storage, membrane durability and flow modeling and characterization of Gas Diffusion Media. Three different types of equipment were purchase with this grant to provide testing and characterization infrastructure for fuel cell research and to provide undergraduate and graduate students with the opportunity to study fuel cell membrane design and operation. They are (i) Arbin Hydrogen cell testing station, (ii) MTS Alliance RT/5 material testing system with an ESPEC custom-designed environmental chamber for membrane Durability Testing and (iii) Chemisorption for surface area measurements of electrocatalysts. The research team included ten faculty members who addressed various issues that pertain to Fuel Cells, Hydrogen Production and Storage, Fuel Cell transport mechanisms. Nine research tasks were conducted to address the critical issues and various barriers to commercialization of Fuel Cells. These research tasks are subdivided in the general areas of (i) Alternative electrocatalysis (ii) Fuel Processing and Hydrogen Storage and (iii) Modeling and Characterization of Membranes as applied to Fuel Cells research.. The summary of accomplishments and approaches for each of the tasks is presented below

  10. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  11. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... (RDE) and (ii) a gas diffusion electrode (GDE) setup designed for experiments in conc. H3PO4. The pressurized cell is demonstrated by tests on polycrystalline platinum electrodes up to 150 ºC. Functionality of the RDE system is proved studying the oxygen reduction reaction (ORR) at temperatures up...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...

  12. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Conducting Membrane Fuel Cells III Symposium; The Electrochemical Society: 2002, in press. 6. Landsman, D. A.; Luczak, F. J.; ``Catalyst Studies and Coating Technologies''; in: Handbook of Fuel Cells Fundamentals, Technology and Applications; Vielstich, W.; Lamm, A.; Gasteiger, H. A. (Eds.); John Wiley & Sons (Chichester, UK): volume 4, chapter 60, 2003, pp. 811-831. 7. Kinoshita, K.; Carbon: Electrochemical and Physicochemical Properites; John Wiley & Sons (New York, USA): 1988. 8. LaConti, A. B.; Hamdan, M.; McDonald, R. C.; ``Mechanisms of Chemical Degradation''; in: Handbook of Fuel Cells Fundamentals, Technology and Applications; Vielstich, W.; Lamm, A.; Gasteiger, H. A. (Eds.); John Wiley & Sons (Chichester, UK): volume 3, chapter 49, 2003, pp. 647-662.

  13. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  14. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling...

  15. Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2011-10-15

    A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel-based composite anode is reported. Carbon-supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane-based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion registered membrane electrolytes under identical conditions. The borohydride-oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm{sup -2} at 60 C. The peak power densities of the PVA hydrogel membrane-based DBFCs were comparable or a little higher than those using Nafion registered 212 membranes at 60 C. The fuel efficiency of borohydride-oxygen fuel cell based on PVA hydrogel membrane and Ni-based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  17. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  18. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  19. FUEL CELL ELECTRODES FOR ACID MEDIA

    Science.gov (United States)

    fuel cell electrodes for acid media. Activated carbon electrodes were prepared, wetproofed with paraffin or Teflon, and catalyzed with platinum. The wetproofing agent was applied by immersion or electrodeposition and the catalyst applied by chemical decomposition of H2P+Cl6 solutions. Half cell studies with hydrogen anodes and oxygen (air) cathodes showed that electrochemical performance is essentially the same for paraffin and Teflontreated electrodes; however, the life of the Teflon-treated electrodes under equal conditions of load is greater than that for

  20. Sterion membranes in Direct Methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J. J.; Lobato, J.; Canizares, P.; Rodrigo, M. A.; Fernandez, A.

    2005-07-01

    Direct Methanol Fuel Cells (DMFCs) has been postulated as an alternative to traditional hydrogen fed Polymer Electrolyte Membrane Fuel Cells (H2-PEMFCs). Among their advantages, it can be pointed out the low cost of the fuel, simplicity of design, large availability, easy handling and distribution. However, there are still some challenges in this field, such as the development of electrocatalysts which can enhance the electrokinetics of methanol oxidation, the discovery of an electrolyte membrane with high conductivity and low methanol crossover at the same time and the production of methanol-tolerant electrocatalysts with high activity for oxygen reduction. So far, Nafion 117 has been the polymer membrane most widely used in DMFCs. Yet, it is well known that Nafion (Du Pont Inc.) membranes are not good barrier for methanol, so that the coulombic efficiency of Nafion-based DMFCs is significantly reduced by the chemical oxidation of methanol in the cathode. Recently, a new perfluorinated polymer with sulphonic acid groups (PFSA) has been developed, under the commercial name of Sterion (David Fuel Cell Components). As a difference as opposed to Nafion, this membrane is cast by the solution casting method, which provides a different sulphonic cluster configuration as compared to the extrusion cast Nafion membranes, which may give rise to different methanol crossover behaviour. In this work, it has been studied and analysed the suitability of Sterion in the DMFCs field. For that, it has been measured the methanol permeability of this membrane at different solute concentration and temperature, and its performance in an actual fuel cell at different operational conditions, such as methanol concentration, temperature and back pressure. Tests have been made using both oxygen and air in the cathode and half-cell potentials have been evaluated in some measurements in order to discriminate the contribution of both semi-reactions to the overall cell overvoltage. A lifetime

  1. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  2. Modelling and characterization of the PEM fuel cell to study interactions with power converters; Modelisation et caracterisation de la pile pem pour l'etude des interactions avec les convertisseurs statiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, G.

    2005-09-15

    The climatic and energy challenges were now clearly stated. The use of hydrogen is one of the best ways which gives many hopes. Fuel cells are an essential link in the chain of the use of hydrogen. Thus, a lot of studies have been undertaken throughout the world on fuel cells in many fields of physics. Concerning the field of power electronics, a lot of work on distributed generation technologies using fuel cells has been realised too and a great number of power converters dedicated to fuel cells have been studied. However, very few studies have been undertaken on the interactions between fuel cells and power converters. The goals of this work are to study interactions between fuel cells and power converters. Some requirements for the power electronic engineer can follow from this work. This work proposes high signal dynamic models of a H{sub 2}/O{sub 2} PEM fuel cell. These models include the different physical and chemical phenomena. Specific methods based on a limited number of original experiments (low frequency current sweeps) allow to extract the model parameters. These models are used to study the interactions between fuel cells and power converters which are the most used: buck chopper, boost chopper, inverters. The important part of the double layer capacitors has thus been underlined: they can filter the current harmonics created by the power converters. Finally, some choices of filtering elements to be connected to the fuel cell are proposed. (author)

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  4. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... and discussed in the following. Parallel acquisition using electrochemical impedance spectroscopy can be used to detect possible minor differences in the supply of gas to the individual cells, which is important when going to high fuel utilizations. The fuel flow distribution was determined and provides...... carried out on an experimental 14-cell SOFC stack at varying frequencies and fuel utilizations. The results illustrated that THD can be used to detect increasing non-linearities in the current-voltage characteristics of the stack when the stack suffers from fuel starvation by monitoring the stack sum...

  5. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    Reducing CO2 emissions are getting more attention because of global warming. The transport sector which is responsible for a significant amount of emissions is going to reduce them due to new and upcoming regulations. Using fuel cells may be one way to help to reduce the emissions from this sector....... Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention....... The most common type of fuel cell used for automotive applications is PEM fuel cell. They are known for their high efficiency, low emissions and high reliability. However, lack of a hydrogen infrastructure, cost and durability of the stack is considered the biggest obstacles to the introduction of fuel...

  6. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    Science.gov (United States)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  7. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  8. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  9. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...

  10. Reversible (unitized) PEM fuel cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are

  11. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  12. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  13. Technological study of experimental proton exchange polymer membrane fuel cells; Estudo tecnologico de celulas a combustivel experimentais a membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Thais Aranha de Barros

    2004-07-01

    Experimental studies to achieve an optimized behavior of a unit PEM-fuel cell with an active area of 25cm{sup 2} were carried out. Polarization curves, surface response methodology and regression methodology were used for the analysis. The different methodologies identified the interactions between the parameters that were studied. These parameters were, humidifying temperature, fuel cell operating temperature and the flows of hydrogen and oxygen. MEAs were produced by the spray and hot pressing hybrid method, developed at IPEN. The studies were done with these MEAs and equivalent commercial ones. The MEAs producing method used induced an important variation on the quantity of platinum in the electrodes. This fact has showed to have a great influence in the results. The optimized values were: oxygen flow from 30 to 35% of consume (70 to 65% of excess), fuel cell operating temperature from 60 to 62 deg C and 0.41 mg of platinum in the electrodes. The hydrogen flows and the humidifying temperature have not showed a major influence in the fuel cell behavior, in the studied variable range. (author)

  14. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  15. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  17. Microbial fuel cells: Their application and microbiology

    Science.gov (United States)

    He, Zhen

    The energy crisis is an urgent global issue due to the increased consumption of the finite amount of fossil fuel. As a result, looking for alternative energy sources is of critical importance. Microbial fuel cell (MFC) technology can extract electric energy from wastewater, and thus is a sustainable approach to supply energy to our electricity-based society. My research focuses on the development of a suitable MFC reactor for wastewater treatment and the understanding of the microbial function in the MFC process. First, together with colleagues, I have developed a novel MFC reactor, named upflow microbial fuel cell (UMFC), by combining upflow and MFC technologies. The power output from the UMFC was improved by 10-fold after it was modified with a U-shape cathode. The UMFC appears to be a practical reactor for continuous operation, though the output of electric power requires further improvement. In addition, a sediment MFC with a rotating cathode was also developed and its performance was examined. Second, I have adopted a human distal gut anaerobe, Bacteroides thetaiotaomicron, as the model organism to study the role of fermentative bacterium in electricity generation. When B. thetaiotaomicron grew under an applied electric potential, an electric current was generated. GeneChip data indicated that this bacterium did not alter its metabolism during this process. Although B. thetaiotaomicron may not be capable of respiration with an electrode as the electron acceptor, the experiment has demonstrated that fermentative bacteria may play an important role in electricity generation.

  18. Shortcut model for water-balanced operation in fuel processor fuel cell systems

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Kramer, G.J.

    2004-01-01

    In a fuel processor, a hydrocarbon or oxygenate fuel is catalytically converted into a mixture rich in hydrogen which can be fed to a fuel cell to generate electricity. In these fuel processor fuel cell systems (FPFCs), water is recovered from the exhaust gases and recycled back into the system. We

  19. Method for Making a Fuel Cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.

  20. Micro-fuel cell power sources

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Jeffrey D. [Center for Meso, Micro, and Nano Technology, Lawrence Livermore National Laboratory, 7000 East Avenue, L-222, Livermore, CA 94550, (United States)

    2007-01-19

    This paper presents a review and discussion of micro-fuel cell technologies, providing insight into the innovations that have been made to date. Discussion of concepts and results leading towards increased levels of integration and performance for micro-fuel cell systems will elucidate the potential of thin film and microfabrication methods in meeting the challenges and requirements necessary for consumer applications. While the amount of literature in this area is substantial, a representative sampling of key developments will be presented in this paper, in order to gain a sense of the design methodologies being implemented for micro-fuel cell power sources. (Author)

  1. Business Case for Fuel Cells 2016

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016. This list is by no means exhaustive. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  2. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  3. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  4. The Substitute Energy of 21st Century, Fuel Cell RPG

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Yongin (Korea)

    2001-08-01

    If there were any generating method that yields more electricity with less fossil fuel, it would be the most required generating system in poor-resources nation. It is a fuel cell that is developed from such requirement. A fuel cell started to be researched in 1839 in UK at the first time. A domestic venture company has researched various types of fuel cells such as battery type and the applied type to a movable fuel as well as residential fuel cell (Rg), all of which are just before for sale. This company is Ce ti, Co., Ltd. that is located in Dedk Research Complex of Teijin. Ce ti, Co.,Ltd. is organized with two parts, R and D and a marketing and business section. The headquarters of Taejin takes charge of R and D, and the Seoul Office, which is located in Seocho-gu, Seoul, intensively undertakes a marketing and business. The headquarters of Taejon is under construction to enlarge 500 pyung scale of R and D office for the full-scale of R and D. CETI (Clean Energy Technologies Inc.) is jointly established by LG-Caltex that leads the domestic fuel cell, DAC of USA, and ABL that is the domestic professional company of incubation. In this venture company, which is constituted of young able men, all employees including the president, Kim Gun Taek, 22 persons, devote themselves to R7D of fuel cell. They have been studying the various applied types based on the principle of fuel cell, of which the residential fuel cell (RPG) will be sold at markets in the end of this year or the beginning of next year. 1 fig.

  5. Swiss fuel cell passenger and pleasure boats

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, J.-F.

    2000-07-01

    This paper published by the University of Applied Science in Yverdon-les-Bains, Switzerland, looks at the development of electrically driven small boats that are powered by fuel cells. The various implementations of the test boats are described. Starting with a 100-watt PEM fuel cell built by the Paul Scherrer Institute (PSI) and the University of Applied Science in Solothurn, Switzerland, for educational purposes, a small pedal-boat was electrified. The paper describes the development of four further prototypes and introduces a new project for a 6-passenger leisure boat powered by a 2 kW PEFC fuel cell. Apart from the fuel cells, various other components such as propellers and control electronics are discussed as are the remaining problems still to be solved before the cells and boats can be marketed. Since they were carried out at a technical university, these projects are said to have provided an excellent way of teaching new technologies to students.

  6. Opportunities for portable Ballard Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, H.H.; Huff, J.R. [Ballard Power Systems Inc., Burnaby, British Columbia (Canada)

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  7. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  8. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    Science.gov (United States)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  9. An in situ diffraction study of a solid oxide fuel cell system

    DEFF Research Database (Denmark)

    Sörby, L.; Poulsen, F.W.; Poulsen, H.F.;

    1998-01-01

    The design of a synchrotron diffraction experiment on a working SOFC air-electrode is outlined. A large number of diffraction data sets were collected successfully from LSM/YSZ/Ag cells under different polarization states at 850 degrees C. Systematic changes are observed in lattice parameters and...

  10. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  11. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Hood, Texas Site. Project Description,

    Science.gov (United States)

    1985-07-01

    It may be a switch or circuit breaker with provisions for remote and local operation. c. Inverter The inverter converts the dc output of the fuel cell...the substation system through a static converter which is similar in all respects to those used throughout the power industry for HVDC and variable...indicate that availability of HVDC converters averaged 94.6 percent (98.2 percent if maintenance outages are excluded) for the period 1977-1981. The

  12. Fuel cells. Citations from the NTIS data base

    Science.gov (United States)

    Cavagnaro, D. M.

    1980-08-01

    Fuel cell applications, components, fabrication, design, catalysts, and chemistry are covered. The citations discuss different types of fuel cells such as hydrogen oxygen cells, hydrocarbon air cells, and biochemical cells.

  13. Hardware-Based Simulation of a Fuel Cell Turbine Hybrid Response to Imposed Fuel Cell Load Transients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.P. (Georgia Inst. of Technology); Tucker, D.A.; Haynes, C.L. (Georgia Inst. of Technology); Liese, E.A.; Wepfer, W.J. (Georgia Inst. of Technology)

    2006-11-01

    Electrical load transients imposed on the cell stack of a solid oxide fuel cell/gas turbine hybrid power system are studied using the Hybrid Performance (HyPer) project. The hardware simulation facility is located at the U.S. Department of Energy, National Energy Technology Laboratory (NETL). A computational fuel cell model capable of operating in real time is integrated with operating gas turbine hardware. The thermal output of a modeled 350 kW solid oxide fuel cell stack is replicated in the facility by a natural gas fired burner in a direct fired hybrid configuration. Pressure vessels are used to represent a fuel cell stack's cathode flow and post combustion volume and flow impedance. This hardware is used to simulate the fuel cell stack and is incorporated with a modified turbine, compressor, and 120 kW generator on a single shaft. For this study, a simulation was started with a simulated current demand of 307 A on the fuel cell at approximately 0.75 V and an actual 45 kW electrical load on the gas turbine. An open loop response, allowing the turbine rotational speed to respond to thermal transients, was successfully evaluated for a 5% current reduction on the fuel cell followed by a 5% current increase. The impact of the fuel cell load change on system process variables is presented. The test results demonstrate the capabilities of the hardware-in-the-loop simulation approach in evaluating hybrid fuel cell turbine dynamics and performance.

  14. Fuel cells: A handbook (Revision 3)

    Energy Technology Data Exchange (ETDEWEB)

    Hirschenhofer, J.H.; Stauffer, D.B.; Engleman, R.R.

    1994-01-01

    Fuel cells are electrochemical devices that convert the chemical energy of reaction directly into electrical energy. In a typical fuel cell, gaseous fuels are fed continuously to the anode (negative electrode) compartment and an oxidant (i.e., oxygen from air) is fed continuously to the cathode (positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. A fuel cell, although having similar components and several characteristics, differs from a typical battery in several respects. The battery is an energy storage device, that is, the maximum energy that is available is determined by the amount of chemical reactant stored within the battery itself. Thus, the battery will cease to produce electrical energy when the chemical reactants are consumed (i.e., discharged). In a secondary battery, the reactants are regenerated by recharging, which involves putting energy into the battery from an external source. The fuel cell, on the other hand, is an energy conversion device which theoretically has the capability of producing electrical energy for as long as the fuel and oxidant are supplied to the electrodes. In reality, degradation or malfunction of components limits the practical operating life of fuel cells.

  15. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  16. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

    2011-12-31

    The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

  17. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control

    Science.gov (United States)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel

    2015-02-01

    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  18. Advanced computational tools for PEM fuel cell design. Part 2. Detailed experimental validation and parametric study

    Science.gov (United States)

    Sui, P. C.; Kumar, S.; Djilali, N.

    This paper reports on the systematic experimental validation of a comprehensive 3D CFD-based computational model presented and documented in Part 1. Simulations for unit cells with straight channels, similar to the Ballard Mk902 hardware, are performed and analyzed in conjunction with detailed current mapping measurements and water mass distributions in the membrane-electrode assembly. The experiments were designed to display sensitivity of the cell over a range of operating parameters including current density, humidification, and coolant temperature, making the data particularly well suited for systematic validation. Based on the validation and analysis of the predictions, values of model parameters, including the electro-osmotic drag coefficient, capillary diffusion coefficient, and catalyst specific surface area are determined adjusted to fit experimental data of current density and MEA water content. The predicted net water flux out of the anode (normalized by the total water generated) increases as anode humidification water flow rate is increased, in agreement with experimental results. A modification of the constitutive equation for the capillary diffusivity of water in the porous electrodes that attempts to incorporate the experimentally observed immobile (or irreducible) saturation yields a better fit of the predicted MEA water mass with experimental data. The specific surface area parameter used in the catalyst layer model is found to be effective in tuning the simulations to predict the correct cell voltage over a range of stoichiometries.

  19. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  20. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  1. A fuel cell driven aircraft baggage tractor

    Energy Technology Data Exchange (ETDEWEB)

    Sterkenburg, Stefan van [HAN Univ. of Applied Sciences (Netherlands); Rijs, Aart van; Hupkens, Huib [Silent Motor Company, Arnhem (Netherlands)

    2010-07-01

    Silent Motor Company and the HAN University of Applied Science collaborate in the development of an aircraft baggage tractor. The baggage tractor is equipped with an 8kW fuel cell stack connected to a 26kWh battery-pack. The control system implemented minimizes the start-up time of the fuel cell system, protects the fuel cell against overload and underload and controls the State of Charge (SOC) of the battery to its optimum value. A practical SOC-determination method is implemented which does not need detailed knowledge about the batteries applied. This paper presents a description of the fuel cell system, its energy management system and SOC-determination method and the results of first test measurements. (orig.)

  2. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  3. Direct formate fuel cells: A review

    Science.gov (United States)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  4. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power......, whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental...

  5. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  6. Studies of heteropoly acid/polyvinylidenedifluoride-hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Malers, Jennifer L.; Sweikart, Mary-Ann [Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hydrogen Technologies and Systems Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States); Horan, James L. [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401 (United States); Turner, John A. [Hydrogen Technologies and Systems Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States); Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2007-10-11

    Complete polarization curves for a number of heteropoly acids (HPAs), H{sub 3}PW{sub 12}O{sub 40}, {alpha}-H{sub 3}P{sub 2}W{sub 18}O{sub 62}, H{sub 6}P{sub 2}W{sub 21}O{sub 71}, and H{sub 6}As{sub 2}W{sub 21}O{sub 69} as the only proton conducting component are presented for the first time. Both thin pellets of HPA and composite membranes of 1:1 (w/w) of HPA and polyvinylidenedifluoride-hexafluoropropylene (PVDF-HFP) are investigated. Although the pellets are somewhat variable, the HPA phase changes can be observed by electrochemistry and these materials show promise for solid acid fuel cell performance at >200 C. The high proton conductivities reported for HPAs at RT are demonstrated in fuel cells using HPA/PVDF-HFP composites with limiting current densities as high as 1.6 A cm{sup -2} using dry O{sub 2} and H{sub 2}. Moderate fuel cell activity is demonstrated for {alpha}-H{sub 3}PW{sub 18}O{sub 62} at 120 C and 25%RH. Unfortunately all of the materials studied were somewhat porous and the open circuit potentials observed were somewhat low. We were also able to show that an HPA fuel cell could be shorted by reduction of the HPA to a heteropoly blue under exceptional circumstances. (author)

  7. Studies of heteropoly acid/polyvinylidenedifluoride-hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane

    Science.gov (United States)

    Malers, Jennifer L.; Sweikart, Mary-Ann; Horan, James L.; Turner, John A.; Herring, Andrew M.

    Complete polarization curves for a number of heteropoly acids (HPAs), H 3PW 12O 40, α-H 3P 2W 18O 62, H 6P 2W 21O 71, and H 6As 2W 21O 69 as the only proton conducting component are presented for the first time. Both thin pellets of HPA and composite membranes of 1:1 (w/w) of HPA and polyvinylidenedifluoride-hexafluoropropylene (PVDF-HFP) are investigated. Although the pellets are somewhat variable, the HPA phase changes can be observed by electrochemistry and these materials show promise for solid acid fuel cell performance at >200 °C. The high proton conductivities reported for HPAs at RT are demonstrated in fuel cells using HPA/PVDF-HFP composites with limiting current densities as high as 1.6 A cm -2 using dry O 2 and H 2. Moderate fuel cell activity is demonstrated for α-H 3PW 18O 62 at 120 °C and 25%RH. Unfortunately all of the materials studied were somewhat porous and the open circuit potentials observed were somewhat low. We were also able to show that an HPA fuel cell could be shorted by reduction of the HPA to a heteropoly blue under exceptional circumstances.

  8. Fuel cells and the theory of metals.

    Science.gov (United States)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  9. Compact mixed-reactant fuel cells

    Science.gov (United States)

    Priestnall, Michael A.; Kotzeva, Vega P.; Fish, Deborah J.; Nilsson, Eva M.

    The compact mixed-reactant (CMR) fuel cell is an important new "platform" approach to the design and operation of all types of fuel cell stacks. Amongst several other advantages, CMR has the potential to reduce polymer electrolyte membrane (PEM) stack component costs by around a third and to raise volumetric power densities by an order of magnitude. Mixed-reactant fuel cells, in which the fuel and oxidant within a cell are allowed to mix, rely upon the selectivity of anode and cathode electrocatalysts to separate the electrochemical oxidation of fuel and reduction of oxidant. A comprehensive review of the 50-year history of mixed-reactant literature has demonstrated that such systems can perform as well as and, in some circumstances, much better than conventional fuel cells. The significant innovation that Generics has introduced to this field is to combine the concept of mixed-reactant fuel cells with that of a fully porous membrane electrode assembly (MEA) structure. Passing a fuel-oxidant mixture through a stack of porous cells allows the conventional bipolar flow-field plates required in many fuel cell designs to be eliminated. In a conventional PEM stack, for example, the bipolar carbon flow-field plates may block up to half of the active cell area and account for up to 90% of the volume of the stack and of the order of one-third of the materials costs. In addition to all the advantages of mixed-reactant systems, the "flow-through" mode, embodied in Generics' CMR approach, significantly enhances mass-transport of reactants to the electrodes and can reduce reactant pressure drops across the stack. Redesigning fuel cells to operate in a CMR mode with selective electrodes offers the attractive prospect of much reduced stack costs and significantly higher stack power densities for all types of fuel cell. Initial modeling and proof of principle experiments using an alkaline system have confirmed the validity of the CMR approach and the potential for substantial

  10. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  11. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  12. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  13. Microcontroller-driven hydrogen fuel cell car

    OpenAIRE

    Queirós, Hugo; Lafuente, António; Sepúlveda, João; Esteves, João Sena

    2010-01-01

    This paper presents a fuel cell car with 8 minutes autonomy, capable of following a white line on a black track, using infrared sensors that detect white and black colors. A servomotor controls its direction. Guidelines to the servomotor are given by a system based on an 8051 microcontroller, according to the information it receives from the infrared sensors. The hydrogen needed by the fuel cell is produced by electrolysis, which requires an external power supply. The gas is retained on an is...

  14. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  15. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  16. 16th Polymer Electrolyte Fuel Cell Symposium

    Science.gov (United States)

    2016-11-29

    Electrolyte Fuel Cell Catalyst Y. Nanba, D. S. Rivera Rocabado, T. Ishimoto, M. Koyama 717 Mo- doped Shaped Nanoparticles based on PtNi-alloys – A...Degradation of Nafion Ionomer to Functionalize Graphene as a Support for Core-Shell Palladium-Ruthenium Alloy @ Platinum Electrocatalysts C. C. Kuo...Layers B. Fu, Y. Minamida, Z. Noda, K. Sasaki, A. Hayashi 827 Porous Graphene Layers on Pt Catalyst for Long-Term Stability of Fuel Cell

  17. Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-10-01

    Due to the wide applications of acetonitrile as a solvent in the chemical industry, acetonitrile can be present in the air and should be considered a possible pollutant. In this work, the spatial proton exchange membrane fuel cell performance exposed to air with 20 ppm CH3CN was studied using a segmented cell system. The injection of CH3CN led to performance losses of 380 mV at 0.2 A cm-2 and 290 mV at 1.0 A cm-2 accompanied by a significant change in the current density distribution. The observed local currents behavior is likely attributed to acetonitrile chemisorption and the subsequent two consecutive reduction/oxidation reactions. The hydrolysis of CH3CN and its intermediate imine species resulted in NH4+ formation, which increased the high-frequency resistance of the cell and affected oxygen reduction and performance. Other products of hydrolysis can be oxidized to CO2 under the operating conditions. The reintroduction of pure air completely recovered cell performance within 4 h at 1.0 A cm-2, while at 0.2 A cm-2 the cell recovery was only partial. A detailed analysis of the current density distribution, its correlation with spatial electrochemical impedance spectroscopy data, possible CH3CN oxidation/reduction mechanisms and mitigation strategies are presented and discussed.

  18. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  19. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... of dissolved oxygen. A potential step method (hydrodynamic chronocoulometry) is evaluated for simultaneous measurement of diffusivity and solubility of oxygen by means of RDE. Finally, the ORR tests are extended to conc. H3PO4 at more relevant working temperatures and under increased oxygen pressure. Direct...... of platinumphosphoric acid. At room temperature, a relative slow ORR hindering process is active, which requires using a fast method (cyclic voltammetry with high scan rate / hydrodynamic chronocoulometry) to accurately measure the diffusion limited currents, and thus, oxygen diffusivity and solubility. In conc. H3PO4...

  20. Simple and inexpensive DNA extraction protocol for studying the bacterial composition of sludges used in microbial fuel cells.

    Science.gov (United States)

    Canto-Canché, B; Tzec-Simá, M; Vázquez-Loría, J I; Espadas-Álvarez, H; Chí-Manzanero, B H; Rojas-Herrera, R; Valdez-Ojeda, R; Alzate-Gaviria, L

    2013-02-04

    Bacteria oxidize organic matter and nutrients to produce electric energy in microbial fuel cells (MFC) - a technology of increasing importance because of its sustainability. To improve the performance of MFCs, it is necessary not only to gain a better understanding of MFC engineering designs, but also to improve the understanding of the composition of the microbial communities in MFCs. Fast and efficient DNA extraction protocols that are suitable for extracting diverse bacterial genomes are necessary to identify the bacterial diversity present in MFCs and to further monitor the dynamic changes of microbial communities. This study focused on testing different direct cell lysis protocols to extract DNA from a microbial sludge harvested from an MFC. The protocol that achieved the best results was based on a previous study, but was modified by eliminating a chaotropic salt and the special columns used for nucleic acid purification. The efficiency of this less expensive and more straightforward protocol was confirmed by PCR amplification of the 16S rRNA gene and denaturing gradient gel electrophoresis analysis, which confirmed the extraction of multiple genomes. The sequences of 10 clones revealed the presence of phyla, Proteobacteria, Firmicutes and Actinobacteria, comprising both Gram-negative and Gram-positive bacteria. Some of these bacteria were identified at the genus level, e.g., Clostridium, Pseudoxanthomonas, Tistrella, and Enterobacter; these genera have been described in active sludges from wastewater treatment, supporting the congruency of our results. Therefore, this protocol is a useful tool for analysis of the bacteria responsible for energy production in MFCs.

  1. Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, L.C.; Jusys, Z.; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Wurth, A. [TS-IM-IM-CB Inorganic Materials, Evonik Degussa GmbH, D-50997 Cologne (Germany)

    2009-05-01

    The electrochemical oxidation and corrosion resistance of differently prepared and post-treated (graphitization, surface oxidation) carbon support materials, whose surface area and composition were characterized by adsorption measurements and X-ray photoelectron spectroscopy, were investigated in model studies performed under fuel cell cathode relevant potential conditions. These included also the abnormal cathode potentials (up to 1.5 V{sub RHE}) occurring during start-up and shut-down procedures. Reversible surface oxidation, leading, e.g., to the formation of quinones/hydroquinones, and irreversible oxidation to CO{sub 2} were discriminated by combining electrochemical and on-line mass spectrometry measurements. Oxygenated surface carbon species were found to affect the surface area normalized electrooxidation activity much more than the surface area and porosity of the material, with graphitized carbon with low porosity and low oxygen surface content being most resistant towards reversible oxidation and towards irreversible oxidation at high potentials. Trapped CO{sub 2}, formed upon carbon oxidation at high potentials, is proposed to be at least partly responsible for CO{sub 2} release at low potentials, below the standard potential for electrochemical carbon oxidation. (author)

  2. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells

    Science.gov (United States)

    Chang, Shih-Hang; Liou, Jyun-Sian; Liu, Jung-Liang; Chiu, Yi-Fan; Xu, Chang-Han; Chen, Bor-Yann; Chen, Jian-Zhang

    2016-12-01

    This study investigated the surface and electrochemical properties of carbon cloth electrodes surface-modified by using atmospheric pressure plasma jets (APPJs) for applications involving microbial fuel cells (MFCs). APPJ treatment made the carbon cloth highly hydrophilic and did not introduce any observable cracks or flaws. MFCs configured with APPJ-treated carbon cloth electrodes exhibited electrochemical performance (maximum power density of 7.56 mW m-2) superior to that of MFCs configured with untreated carbon cloth electrodes (maximum power density of 2.38 mW m-2). This boost in performance can be attributed to the formation of abundant carboxyl and ammonium functional groups on the surface of APPJ-treated carbon cloth, which promoted the formation of anodic biofilms and the adhesion of bacteria, while facilitating the transfer of electrons from the bacteria to the electrodes. APPJ surface modification is non-toxic and environmentally friendly (no exogenous chemicals are required), which is particularly beneficial as the introduction of toxins might otherwise inhibit bacterial growth and metabolism. The APPJ surface modification process is rapid, cost-effective, and applicable to substrates covering a large area, making it ideal for the fabrication of large-scale MFCs and bioelectrochemical bioenergy devices.

  3. A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Khajeh-Hosseini-Dalasm, N.; Kermani, M.J.; Moghaddam, D. Ghadiri [Department of Mechanical Engineering, Energy Conversion Research Laboratory, and The New Technologies Research Center, 424 Hafez Avenue, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413 (Iran); Stockie, J.M. [Department of Mathematics, Simon Fraser University, Burnaby, BC (Canada)

    2010-03-15

    This paper is a computational study of the cathode catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) and how changes in its structural parameters affect performance. The underlying mathematical model assumes homogeneous and steady-state conditions, and consists of equations that include the effects of oxygen diffusion, electrochemical reaction rates, and transport of protons and electrons through the Nafion ionomer (PEM) and solid phases. Simulations are concerned with the problem of minimizing activation overpotential for a given current density. The CL consists of four phases: ionomer, solid substrate, catalyst particles and void spaces. The void spaces are assumed to be fully flooded by liquid water so that oxygen within the CL can diffuse to reaction sites via two routes: within the flooded void spaces and dissolved within the ionomer phase. The net diffusive flux of oxygen through the cathode CL is obtained by incorporating these two diffusive fluxes via a parallel resistance type model. The effect of six structural parameters on the CL performance is considered: platinum and carbon mass loadings, ionomer volume fraction, the extent to which the gas diffusion layer (GDL) extends into the CL, the GDL porosity and CL thickness. Numerical simulations demonstrate that the cathode CL performance is most strongly affected by the ionomer volume fraction, CL thickness and carbon mass loading. These results give useful guidelines for manufactures of PEMFC catalyst layers. (author)

  4. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    Science.gov (United States)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  5. Oxidation of Carbon Supports at Fuel Cell Cathodes: Differential Electrochemical Mass Spectrometric Study

    Science.gov (United States)

    Li, Ming-fang; Tao, Qian; Liao, Ling-wen; Xu, Jie; Cai, Jun; Chen, Yan-xia

    2010-08-01

    The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectrometry in a dual-thin layer flow cell. Carbon can be oxidized in different distinct potential regimes; O2 accelerates carbon oxidation, the rates of CO2 production from carbon oxidation in O2 saturated solution are two times of that in N2 saturated solution at the same potential; Pt can catalyze the carbon oxidation, with supported Pt nanoparticles, the overpotential for carbon oxidation is much smaller than that without loading in the carbon electrode. The mechanism for the enhanced carbon oxidation by Pt and O2 are discussed.

  6. Mitochondrial biofuel cells: expanding fuel diversity to amino acids.

    Science.gov (United States)

    Bhatnagar, Dushyant; Xu, Shuai; Fischer, Caitlin; Arechederra, Robert L; Minteer, Shelley D

    2011-01-07

    Although mitochondria have long been considered the powerhouse of the living cell, it is only recently that we have been able to employ these organelles for electrocatalysis in electrochemical energy conversion devices. The concept of using biological entities for energy conversion, commonly referred to as a biofuel cell, has been researched for nearly a century, but until recently the biological entities were limited to microbes or isolated enzymes. However, from the perspectives of efficient energy conversion and high volumetric catalytic activity, mitochondria may be a possible compromise between the efficiency of microbial biofuel cells and the high volumetric catalytic activity of enzymatic biofuel cells. This perspective focuses on comparing mitochondrial biofuel cells to other types of biofuel cells, as well as studying the fuel diversity that can be employed with mitochondrial biofuel cells. Pyruvate and fatty acids have previously been studied as fuels, but this perspective shows evidence that amino acids can be employed as fuels as well.

  7. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    Science.gov (United States)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  8. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  9. Solid alkaline membrane fuel cell : what are they advantages and drawbacks compared to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Baranton, S.; Simoes, M. [Univ. de Poitiers, Poitiers (France). Laboratoire de Catalyse en Chimie Organique, UMR CNRS

    2010-07-01

    Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) and direct alcohol fuel cells (DAFCs) are promising power sources for portable electronics and transportation applications. However, these fuel cells require high amounts of platinum at the anodes to achieve high cell performance. Although alkaline membrane fuel cells (AFCs) may be an alternative to PEMFCs, the technology of low temperature fuel cells is less developed than that of fuel cells working with a solid acid electrolyte. Interest in solid alkaline membrane fuel cells (SAMFCs) has increased in recent years because it is easier to activate the oxidation and reduction reactions in alkaline medium than in acidic medium. Fewer platinum based catalysts are needed due to higher electrode kinetics. The development of hydroxyl conductive membrane makes this technology available, but the fuel to be used in the system must be considered. Pure hydrogen or hydrogen-rich gases offer high electric efficiency, but their production, storage, and distribution are not sufficient for a large-scale development. This paper discussed the relatively good electroreactivity of polyols such as glycerol and ethylene glycol in a SAMFC, as well as sodium borohydride (NaBH{sub 4}) as an alternative. The working principle of SAMFCs was also presented along with considerations regarding the electrochemical reactions occurring at the electrodes, and requirements concerning the catalysts, the triple phase boundary in the electrode and the anionic membrane. Palladium based catalysts were found to be an interesting alternative to platinum in SAMFCs. In situ FTIR measurements and oxidation products analysis was used to determine the electrooxidation pathways of alcohol and NaBH{sub 4}in alkaline medium. The study also included a comparison with oxidation mechanisms in acid medium. 8 refs.

  10. Synthesis, Characterization and Performance Study of Phosphosilicate Gel-Sulfonated Poly (Ether Ether Ketone Nanocomposite Membrane for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    S. Ganguly

    2012-03-01

    Full Text Available Phosphosilicate gel – SPEEK (Sulfonated Poly Ether Ether Ketone hybrid nanocomposite membranes are proposed for performance enhancement of polymer electrolyte fuel cell. The nanocomposite membranes are synthesized and characterized at 50 and 60 weight percent of inorganic loading. Phosphosilicate gel particles of varying size (sub micro to nanometer are synthesized using sol gel approach followed by grinding using planetary ball mill for different time. Transmission Electron Microscopy (TEM reveals less than 10 nm particle size for 20 hr grinding. Nano composite membrane having inorganic particles of size less than 10 nm exhibits higher values of proton conductivity, ion exchange capacity and water uptake compared to composite membrane comprising of larger (400 nm and above inorganic particles. The membrane is assembled with the electrode in the unit cell and the polarization characteristics are measured at different operating temperatures. Performance study reveals that between 70 to 80 C the membrane offers best performance in terms of peak power generation and of allowable load current. For the same conditions 40-50 % nano-enhancement of peak power generation is achieved by reducing the average gel particle size from sub micro to less than 10 nm. At medium temperature (between 70 to 80 C the nanocomposite membrane offers more than 100 enhancement of peak power generation compared to that generated by SPEEK membrane. Phosphosilicate gel – SPEEK (Sulfonated Poly Ether Ether Ketone hybrid nanocomposite membranes are proposed for performance enhancement of polymer electrolyte fuel cell. The nanocomposite membranes are synthesized and characterized at 50 and 60 weight percent of inorganic loading. Phosphosilicate gel particles of varying size (sub micro to nanometer are synthesized using sol gel approach followed by grinding using planetary ball mill for different time. Transmission Electron Microscopy (TEM reveals less than 10 nm

  11. Fuel cell commercialization issues for light-duty vehicle applications

    Science.gov (United States)

    Borroni-Bird, Christopher E.

    The major challenges facing fuel cells in light-duty vehicle applications relate to the high cost of the fuel cell stack components (membrane, electro-catalyst and bipolar plate) which dictate that new manufacturing processes and materials must be developed. Initially, the best fuel for a mass market light-duty vehicle will probably not be the best fuel for the fuel cell (hydrogen); refueling infrastructure and energy density concerns may demand the use of an on-board fuel processor for petroleum-based fuels since this will increase customer acceptance. The use of fuel processors does, however, reduce the fuel cell system's efficiency. Moreover, if such fuels are used then the emissions benefit associated with fuel cells may come with a significant penalty in terms of added complexity, weight, size and cost. However, ultimately, fuel cells powered by hydrogen do promise to be the most efficient and cleanest of automotive powertrains.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  13. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  14. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  15. Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Dhiman, Rajnish;

    2015-01-01

    A non-covalent functionalization for multi-walled carbon nanotubes has been used as an alternative to the damaging acid treatment. Platinum nanoparticles with similar particle size distribution have been deposited on the surface modified multi-walled carbon nanotubes. The interaction between...... platinum nanoparticles and multi-walled carbon nanotubes functionalized with 1-pyrenecarboxylic acid is studied and its electrochemical stability investigated. This study reveals the existence of a platinum-support interaction and leads to three main conclusions. First, the addition of 1-pyrenecarboxylic......-term stability by as much as 20%. Third, post-mortem microscopy analysis showed a surprising effect. During the electrochemical stability investigations concerned with carbon corrosion it was found that the multi-walled carbon nanotubes were undergoing severe structural change, transforming finally into carbon...

  16. Solid Polymer Electrolyte Fuel Cell Technology Program

    Science.gov (United States)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  17. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  18. Current interruption measurement and analysis for PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.C.; Yuan, X.; Wang, H. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2007-07-01

    The ohmic resistance, charge transfer resistance and the capacity discharge limit of proton exchange membrane (PEM) fuel cells can be evaluated and characterized by a newly developed, low cost, current interruption measuring method. This paper presented the results of a study in which the current interruption measurement for a PEM fuel cell was set up and proven through measurements with a dummy cell. The current interruption characteristics of a 500 W PEM fuel cell stack with an active area of 280 cm{sup 2} was measured using the National Instrument PCI data acquisition unit combined with a TDI electronics load-bank and a FuelCon test station, at different load currents. The ohmic loss of the stack determined by current interruption measurements was in good agreement with that determined by AC impedance spectroscopy. The same setup was shown to be effective for single cell measurements of a small PEM fuel cell and for a PEM fuel cell stack with a load bank. It was concluded that the current interruption measurement is much faster than the AC impedance method, but has lower accuracy, particularly for a signal with high noise. 1 ref., 10 figs.

  19. High temperature PEM fuel cell. Final report. Public part

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf (DTU (DK)); Yde Andersen, S.; Rycke, T. de (IRD Fuel Cells A/S (DK)); Nilsson, M. (Danish Power Systems ApS (DK)); Christensen, Torkild, (DONG Energy (DK))

    2006-07-01

    The main outcome of the project is the development of stacking technology for high temperature PEMFC stacks based on phosphoric acid doped polybenzimidazole membranes (PBI-membranes) and a study of the potential of a possible accommodation of HT-PEMFC in the national energy system. Stacks of different lengths (up to 40 cells) have been built using two different approaches in terms of plate materials and sealing. The stacks still need maturing and further testing to prove satisfactory reliability, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during the project the process has come a long way. The survey of HT-PEM fuel cells and their regulatory power in the utility system concludes that fuel cells will most likely not be the dominating technique for regulation, but as no other technique has that potential alone, fuel cells are well suited to play a role in the system provided that the establishment of a communication system is not too complicated. In order to maintain an efficient power system with high reliability in a distributed generation scenario, it is important that communication between TSO (Transmission System Operator) and fuel cells is included in the fuel cell system design at an early stage. (au)

  20. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production

    Science.gov (United States)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde