WorldWideScience

Sample records for fuel burn-up calculations

  1. TRIGA fuel burn-up calculations and its confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R., E-mail: rustamzia@yahoo.co [Vienna University of Technology (TU Wien)/Atominstitute (ATI), Stadionallee 2, A-1020, Vienna (Austria); Karimzadeh, S.; Boeck, H. [Vienna University of Technology (TU Wien)/Atominstitute (ATI), Stadionallee 2, A-1020, Vienna (Austria)

    2010-05-15

    The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.

  2. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  3. Burn up calculations and validation by gamma scanning of a TRIGA HEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan).; Karimzadeh, S.; Boeck, H.; Villa, M.; Stummer, T. [Vienna Univ. of Technology (Austria). Atominstitut

    2013-03-15

    The TRIGA Mark II research reactor operated by Atominstitut (Vienna/Austria) is one of the few TRIGA reactors, which still utilizes several High Enriched Uranium (HEU) Zirconium-Hydride (U-Zr-H) fuel elements. Its current core is a completely mixed core with 3 different types of fuel elements including one HEU type with 70 % enrichment and a stainless steel cladding. The present paper calculates the burn up of the FLIP (Fuel Lifetime Improvement Program) fuel using the burn up code ORIGEN2 and validates the theoretical results by high resolution gamma spectrometry using a unique fuel scanning device (FSD) developed at the Atominstitut especially for TRIGA fuel. For this purpose a FLIP fuel element was removed from the reactor core and stored in the research reactor pool for an appropriate cooling period. The fuel element was then transferred into the fuel scanning device to determine the Cesium-137 isotope distribution along the axis of the fuel element. The comparison between theoretical predictions and experimental results is the highlight of the present paper. (orig.)

  4. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  5. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    OpenAIRE

    Tukiran Surbakti; Mochammad Imron

    2017-01-01

    The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor) type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN) and the IAEA (Int...

  6. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  7. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  8. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  9. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  10. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  11. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  12. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  13. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  14. Burn-up Effect to Quantity and Characteristics of Nuclear Power Plant Spent Fuel

    International Nuclear Information System (INIS)

    Nurokhim

    2008-01-01

    Spent fuel Quantity and characteristics from nuclear power plant need to be predicted and understood in order to manage its appropriately. Development of nuclear fuel technology shows that increasing burn-up for a new type of nuclear reactor will be built. This paper was prepare to asses the effect of burn-up development to the quantity and characteristics of nuclear power plant spent fuel, its objective are to predict nuclear spent fuel quantity that will be built in Indonesia and also for its management purposes. Calculation conducted by assumption of 4 NPP PWR 1000 MWe type at year 2016, 2017, 2023, and 2024, using burn-up 33 and 35 (old NPP), 40, 45 and 50 GWd/tU. The result show that quantity of spent fuel from NPP decrease by using higher burn-up, using burn-up 50 GWd/tU will decrease one third of spent fuel which is generated by burn-up 33 GWd/tU. Using burn-up 50 GWd/tU accumulation of spent fuel at year 2040 will be 2210.54 ton or 3360 spent fuel assembly. However, its need to be noticed that radioactivity and potential hazard for every tonne or every spent fuel assembly is higher, so need to be managed more carefully. (author)

  15. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  16. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  17. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  18. Calculation of triton confinement and burn-up in tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Battistoni, P.

    1987-01-01

    An analytical investigation is made of the confinement and subsequent burn-up of fusion produced tritons in a deuterium Tokamak plasma. Explicit approximations are obtained for the triton confinement factor, clearly displaying the scaling with physical parameters. The importance of pitch angle scattering losses during the triton slowing down is also estimated. A comparison with experiments and numerical calculations on the FT Tokamak slows good qualitative agreement. (authors)

  19. Experimental methods for burn-up determination in nuclear fuels, 1

    International Nuclear Information System (INIS)

    Taddei, J.F. de A.C.; Rodrigues, C.

    1977-01-01

    A method is presented that allows the calculation of the total percentage of atoms having undergone fission ('burn up') in nuclear fuels, from the measurement of absolute amounts of fission product neodymium-148 and of uranium and plutoniun present in the spent fuel, the fission yield of neodymium-148 being known. These measurements are performed through the mass spectrometry- isotope dilution technique [pt

  20. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  1. Change of fuel-to-cladding gap width with the burn-up in FBR MOX fuel irradiated to high burn-up

    International Nuclear Information System (INIS)

    Maeda, Koji; Asaga, Takeo

    2004-01-01

    In order to study the dependence of the gap width change on the burn-up, the fuel-to-cladding gap widths were investigated by ceramography in a large number of FBR MOX fuel pins irradiated to high burn-up. The dependence of gap widths on the burn-up was closely connected with the formations of JOG (joint oxyde-gaine) and rim structure. The gap widths decreased gradually due to the fuel swelling until ∼30 GWd/t, but beyond this burn-up the dependence showed two different tendencies. With the increase of burn-up, the gap widths decreased due to the increase of fuel swelling in the low fuel temperature region where the rim structure was observed, but they increased in the high fuel temperature region where the JOG rich in Cs and Mo formed in the gap

  2. Modeling of Pore Coarsening in the Rim Region of High Burn-up UO2 Fuel

    Directory of Open Access Journals (Sweden)

    Hongxing Xiao

    2016-08-01

    Full Text Available An understanding of the coarsening process of the large fission gas pores in the high burn-up structure (HBS of irradiated UO2 fuel is very necessary for analyzing the safety and reliability of fuel rods in a reactor. A numerical model for the description of pore coarsening in the HBS based on the Ostwald ripening mechanism, which has successfully explained the coarsening process of precipitates in solids is developed. In this model, the fission gas atoms are treated as the special precipitates in the irradiated UO2 fuel matrix. The calculated results indicate that the significant pore coarsening and mean pore density decrease in the HBS occur upon surpassing a local burn-up of 100 GWd/tM. The capability of this model is successfully validated against irradiation experiments of UO2 fuel, in which the average pore radius, pore density, and porosity are directly measured as functions of local burn-up. Comparisons with experimental data show that, when the local burn-up exceeds 100 GWd/tM, the calculated results agree well with the measured data.

  3. CRISTAL V1: Criticality package for burn up credit calculations

    International Nuclear Information System (INIS)

    Gomit, Jean-Michel; Cousinou, Patrick; Gantenbein, Francoise; Diop, Cheikh; Fernandez de Grado, Guy; Mijuin, Dominique; Grouiller, Jean-Paul; Marc, Andre; Toubon, Herve

    2003-01-01

    The first version of the CRISTAL package, created and validated as part of a joint project between IRSN, COGEMA and CEA, was delivered to users in November 1999. This fruitful cooperation between IRSN, COGEMA and CEA has been pursued until 2003 with the development and the validation of the package CRISTAL V1, whose main objectives are to improve the criticality safety studies including the Burn up Credit effect. (author)

  4. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  5. Development of transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Kuri, S.; Tamaki, H.; Hode, S.

    2004-01-01

    Mitsubishi Heavy Industries, LTD. (MHI) has been developing various transport and storage casks (MSF cask fleet) for high burn-up spent nuclear fuel (SNF). This paper outlines the specifications and describes the features of the newly developed casks and the advanced technology that enables the maximize number of the accommodated fuel assemblies of high burn-up and short cooling period

  6. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  7. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  8. Fabrication of DUPIC fuel pellets using high burn-up spent PWR fuel

    International Nuclear Information System (INIS)

    Lee, Jung-Won; Park, Geun-Il; Choi, Yong

    2012-01-01

    Technology for the direct usage of a spent PWR fuel in CANDU reactors (DUPIC) was developed in KAERI to reduce the amount of spent fuel. DUPIC fuel pellets were fabricated using a dry processing method to re-fabricate CANDU fuel from spent PWR fuel without any intentional separation of fissile materials or fission products. The DUPIC fuel element fabrication process satisfied a quality assurance program in accordance with the Canadian standard. For the DUPIC fuels with various fuel burn-ups between 27,300 and 65,000 MWd/tU, the sintered pellet density decreased with increasing fuel burn-ups. Fission gas releases and powder properties of the spent fuel also influenced the DUPIC fuel characteristics. Measurement of cesium content released from green pellets revealed that their sintered density significantly depended on sintering temperature history. It was useful to establish a DUPIC fuel fabrication technology in which a high-burn-up fuel with 65,000 MWd/tU was treated. (author)

  9. Simulation of high burn-up fuel cladding and its safety assessment under LOCA condition

    International Nuclear Information System (INIS)

    Park, Dong Jun; Won, Sung Bin; Choi, Byoung Kwon; Park, Jeong Yong; Koo, Yang Hyun

    2011-01-01

    Current LOCA safety criteria was established in the beginning of 1970s and based on the results obtained from non-irradiated Zircaloy-4 claddings. Because of major advantages in fuel-cycle costs, reactor operation, and waste management, the increase in fuel discharge burn-up is current worldwide trend in the nuclear industry. As the fuel burn-up increases, various phenomena unexpected have been reported due to changes in the condition of reactor operation and in-core environment. Since, it should be considered whether the current Loss-of-coolant accident (LOCA) criteria is suitable for high burn-up fuel cladding or not. In addition, many fuel vendors have recently developed new cladding alloys superior to Zircaloy-4 cladding. The performance of these advanced cladding alloys under LOCA, especially at high burn-up, is not well understood at this time. To better understand high burn-up effects and commercialize new cladding alloys, study of LOCA-related behavior of various types of high burn-up fuel cladding and their data base is essentially required. In this background, postulated LOCA test has been carried out with prehydrided Zircaloy-4 cladding as a surrogate for high burn-up cladding and the relevant results obtained are discussed

  10. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  11. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  12. COREBN; A Core burn-up calculation module for SRAC2006

    OpenAIRE

    奥村 啓介

    2007-01-01

    COREBN is an auxiliary code of the SRAC system for multi-dimensional core burn-up calculation based on the diffusion theory and interpolation of macroscopic cross-sections tabulated to local parameters such as burn-up degree, moderator temperature and so on. The macroscopic cross-sections are prepared by cell burn-up calculations with the collision probability method of SRAC. SRAC and COREBN have wide applicability for various types of cell and core geometries. They have been used mainly for ...

  13. Study on the Development of New BWR Core Analysis Scheme Based on the Continuous Energy Monte Carlo Burn-up Calculation Method

    OpenAIRE

    東條, 匡志; tojo, masashi

    2007-01-01

    In this study, a BWR core calculation method is developed. The continuous energy Monte Carlo burn-up calculation code is newly applied to BWR assembly calculations of production level. The applicability of the present new calculation method is verified through the tracking-calculation of commercial BWR.The mechanism and quantitative effects of the error propagations, the spatial discretization and of the temperature distribution in fuel pellet on the Monte Carlo burn-up calculations are clari...

  14. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  15. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  16. Modeling of pore coarsening in the rim region of high burn-up UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing; Long, Chong Sheng [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu (China)

    2016-08-15

    An understanding of the coarsening process of the large fission gas pores in the high burn-up structure (HBS) of irradiated UO{sub 2} fuel is very necessary for analyzing the safety and reliability of fuel rods in a reactor. A numerical model for the description of pore coarsening in the HBS based on the Ostwald ripening mechanism, which has successfully explained the coarsening process of precipitates in solids is developed. In this model, the fission gas atoms are treated as the special precipitates in the irradiated UO{sub 2} fuel matrix. The calculated results indicate that the significant pore coarsening and mean pore density decrease in the HBS occur upon surpassing a local burn-up of 100 GWd/tM. The capability of this model is successfully validated against irradiation experiments of UO{sub 2} fuel, in which the average pore radius, pore density, and porosity are directly measured as functions of local burn-up. Comparisons with experimental data show that, when the local burn-up exceeds 100 GWd/tM, the calculated results agree well with the measured data.

  17. Burn-up analysis of uranium silicide fuels 20% 235U, in the LFR facility

    International Nuclear Information System (INIS)

    Amor, Ricardo A.; Bouza, Edgardo; Cabrejas, Julian L.; Devida, Claudio A.; Gil, Daniel A.; Stankevicius, Alejandro; Gautier, Eduardo; Garavaglia, Ricardo N.; Lobo, Alfredo

    2003-01-01

    The LFR Facility is a laboratory designed and constructed with a Hot-Cells line, a Globe-Box and a Fume-Hood, all of them suited to work with radioactive materials such as samples of irradiated silicide MTR fuel elements. A series of dissolutions of this material was performed. From the resulting solutions, two fractions were separated by HPLC. One contained U + Pu, and other the fission product Nd. The concentrations of these elements were obtained by isotopic dilution and mass spectrometry (IDMS). It is concluded that this technique is very powerful and accurate when properly applied, and makes the validation of burn-up calculation codes possible. It is worth remarking the Lfr capacity to carry on different Research and Development (R + D) tasks in the Nuclear Fuel Cycle field. (author)

  18. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  19. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  20. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  1. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  2. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  3. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  4. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  5. Verification to the RSG-GAS fuel discharge burn-up using SRAC2006 module of COREBN/HIST

    International Nuclear Information System (INIS)

    J-Susilo; T-M-Sembiring; G-R-Sunaryo; M-Imron

    2018-01-01

    For 30 years operation, some of the modifications to the RSG GAS core has been done, that are changes included the type of fuel from U 3 O 8 -Al to U 3 Si 2 -Al with the same density 2.96 gU/cc, the loading pattern of standard fuel elements/fuel control elements from 6/1 & 6/2 to 5/1 pattern, and in core fuel management calculation tool has been change from IAFUEL to BATAN-FUEL. To obtain an extension of the operating license for the next 10 years, the RSG-GAS Periodic Safety Assessment Document is need to prepared. According to the Regulatory Body Chairman Regulation No. 2 2015, RSG-GAS safety assessment should be done independently. As part of this assessment the fuel discharge burn-up must be estimated. In this research, to ensure that the misposition of fuel element in the core has not occurred, the investigation to the document operating report related the fuel placement has been done. Therefore, by using 78 th to 93 rd operation data, verify of the fuel discharge burn-up of the RSG-GAS has been performed by using SRAC2006 module of COREBN/HIST. In addition, the results of these calculations are also made comparative with the operating report data that is calculated by using BATAN-FUEL. Maximum fuel discharge burn-up (57.73 % of U-235) was verified still under permissible value determined by the regulatory body (<60 % of U-235). Maximum differences value between two computer codes was about 2.12 % of U-235 (3.80 %) that is fuel at the B-7 position. Fuel discharge burn-up of RSG-GAS showed almost the same value for each the operation cycle, range of 1.52 % of U-235. So it can be concluded that the RSG-GAS core operation over the last ten years was in good fuel management performance, in accordance with the design. BATAN-FUEL has been conformed well enough with COREBN/HIST. (author)

  6. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  7. Propagation of Statistical and Nuclear Data Uncertainties in Monte-Carlo Burn-up Calculations

    OpenAIRE

    García Herranz, Nuria; Cabellos de Francisco, Oscar Luis; Sanz Gonzalo, Javier; Juan Ruiz, Jesús; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP–ACAB system, which comb...

  8. A contribution to the understanding of the high burn-up structure formation in nuclear fuels

    International Nuclear Information System (INIS)

    Jonnet, J.

    2007-01-01

    An increase of the discharge burn-up of UO 2 nuclear fuels in the light water reactors results in the appearance of a change of microscopic structure, called HBS. Although well characterised experimentally, important points on the mechanisms of its formation remain to be cleared up. In order to answer these questions, a study of the contribution of the dislocation-type defects was conducted. In a first part, a calculation method of the stress field associated with periodic configurations of dislocations was developed. The method was applied to the cases of edge dislocation pile-up and wall, for which an explicit expression of the internal stress potential was obtained. Through the study of other examples of dislocation configurations, it was highlighted that this method also allows the calculation of any periodic dislocation configuration. In a second part, the evolution of interstitial-type dislocation loops was studied in UO 2 fuel samples doped with 10% in mass of alpha emitters. The experimental loop size distributions were obtained for these samples stored during 4 and 7 years at room temperature. Kinetic equations are proposed in order to study the influence of the resolution process of interstitials from a loop back to the matrix due to an impact with the recoil atom 234 U, as well as the coalescence of two interstitial loops that can diffuse by a volume mechanism. The application of the model shows that the two processes must be considered in the study of the evolution of radiation damage. (author)

  9. FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000

    Directory of Open Access Journals (Sweden)

    Jati Susilo

    2016-06-01

    Full Text Available ABSTRACT FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000. AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth, operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB2, Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and  produce energy, fission products and new neutron. Because of the U-238 neutron absoption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC. Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic crossection, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU.  Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. Keywords: Fuel Burn-Up, Transuranic, AP1000, EOC, SRAC2006   ABSTRAK DISTRIBUSI BURN-UP DAN KANDUNGAN NUKLIDA TRANSURANIUM YANG DIHASILKAN BAHAN BAKAR PADA SIKLUS OPERASI PERTAMA TERAS AP1000. Reaktor AP1000 didesain dengan daya nominal 1154 MWe (3415 MWth, mampu beroperasi selama umur reaktor sekitar 60 tahun dan memiliki panjang tiap siklus sekitar 18

  10. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  11. The criticality implications of taking credit for fuel burn-up

    International Nuclear Information System (INIS)

    Clemson, P.D.; Thorne, P.R.

    1989-01-01

    The first problem usually facing a criticality engineer is data specification. The design engineer and operator need a design and operating envelope of data which allows practical operation, but the criticality engineer must ensure that key parameters remain within specific limits to maintain criticality safety. Given the high safety standards demanded in the nuclear industry, a naturally cautious view is taken and pessimistic assumptions of parameter values are therefore made. This explains why assessments of spent fuel transport and storage assume unirradiated fissile compositions (the fresh fuel assumption). Looking ahead, the pressure to achieve more economic designs and the need to extend design specifications is likely to increase. The large decrease in spent fuel reactivity resulting from fuel burn-up provides a potential way of meeting these requirements. The challenge is to develop ways of taking credit for fuel burn-up with no reduction in safety. This raises various issues which are discussed briefly in this paper, together with a scoping study to investigate the scale of reactivity change with burn-up for an existing BNFL cask design

  12. Pu-recycling in light water reactors: calculation of fuel burn-up data for the design of reprocessing plants as well as the influence on the demand of uranium

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1977-02-01

    This report gives a detailed review on the composition of radionuclides in spent LWR fuel in the case of Pu-recycling. These calculations are necessary for the design of spent fuel reprocessing plants. Furthermore the influence of Pu-recycling on the demand of uranium for a single LWR as well as for a certain growing LWR-population is shown. (orig.) [de

  13. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  14. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  15. Fission gas release and fuel swelling at burn-ups higher than 50 Mwd/kg U

    International Nuclear Information System (INIS)

    Bremier, S.; Walker, C.T.; Manzel, R.

    2002-01-01

    Post-irradiation examination results from commercial PWR fuel rods with average burn-ups up to 98 MWd/kgU are presented. The fractional fission gas release increased exponentially with rod burn-up from less than 10% at 50 MWd/kgU to around 25% at 98 MWd/kgU. It is argued that most of the gas released to rod-free volume originated in the central region of the fuel. The penetration of the high burn-up structure in the outer region of the fuel increased markedly with burn-up, and at a pellet burn-up of 102 MWd/kgU it extended over a distance of 1.15 mm to about r/ro = 0.75. The porosity of the high burn-up structure increased linearly with the local burn-up, and in fuel pellets with burn-ups greater than 80 MWd/kgU the pores in the vicinity of the pellet rim showed a distinct increase in size. Above 70 MWd/kgU, the widespread formation of the high burn-up structure caused the fuel swelling rate to increase from 1% to 1.5% per 10 MWd/kgU. The concentration of Xe retained in the grains of the high burn-up structure did not increase with burn-up, but remained at a low level of around 0.25 wt.% over the whole burn-up range studied. It is concluded that radiation-enhanced diffusion is responsible for the release of fission gas from the re-crystallized grains and that there is no build-up of gas in the grains with burn-up because equilibrium exists between the rate at which gas atoms are produced and the rate at which they diffuse to grain boundaries. The diffusion coefficient required to obtain an equilibrium Xe concentration of 0.2-0.3 wt.% in grains 0.1-0.3 μm in diameter is of the order of 10 -24 -10 -22 m 2 s -1 . (authors)

  16. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    with a regression coefficient of 0.9996 (ZrO{sub 2}) and 0.9883 (UO{sub 2}), respectively. The sensitivity-based calculation of limits of detection indicates that Xe concentrations as low as 200 ng/g are detectable by LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The fundamental calibration studies were furthermore applied to 'real' high burn-up samples and detailed studies using SEM (Scanning Electron Microscope), OM (Optical Microscopy), EPMA, SIMS, HPLC-MC-ICP-MS (High Performance Liquid Chromatography Multi-Collector) and LA-ICP-MS (Laser Ablation) were used to characterize selected fuel samples. Matrix Xe concentrations, sizes of locally formed pores in fuel pellet cross sections, qualitative Xe-distribution within different sized pores and quantitative Xe isotope concentrations were determined. It was shown that a thorough investigation of such complex materials requires various analytical techniques. However, LA-ICP-MS was the only technique providing quantitative information of the Xe-isotope concentrations. Finally, the experimentally determined Xe data were used to estimate the gas pressures in pores formed at different fuel positions. The uncertainty of the pressure determined from experimental data indicate the necessity of further analysis on fuel samples to distinguish between effects of local fuel heterogeneity and measurement uncertainties. The introduction of LA-ICP-MS for the determination of Xe isotope concentrations in high burn-up fuel samples allowed measuring all relevant isotopes and furthermore the calculation of pore pressures, which is an important contribution to significantly improved understanding of fission gas production and distribution within fuels. (author)

  17. Simulation of the effects of the extend fuel rod burn-up under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Abe, Alfredo, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br, E-mail: ayabe@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Due to the high burn-up imposed to the nuclear fuel in the last recent years, new challenges become important, including a deep review of the fuel performance under accident conditions. In this sense, available data in the open literature show that some experiments were carried out in order to study the behavior of fuel rods under LOCA (Loss of Coolant Accident) scenario. For instance, a series of experiments, designated IFA-650 series, performed in the Halden reactor in 2010 present data related to zircaloy fuel rods submitted to LOCA conditions. In the tests were addressed issues such as fuel fragmentation, relocation and dispersal for an extended irradiation cycle. In the studied case (IFA-650.5), the LOCA scenario was evaluated after a burnup of 83.4 MWd/kg. The aim of this paper is to compare the experimental data to the fuel performance obtained applying the codes FRAPCON and FRAPTRAN. Different phenomena were evaluated, such as ballooning, burst, cladding oxidation and fuel relocation. Also, the cladding metallurgical phase transformation was considered. The obtained results reproduced in a good way the experimental data, showing that the adopted models are representative of the observed phenomena. (author)

  18. Changes of the inventory of radioactive materials in reactor fuel from uranium in changing to higher burn-up and determining the important effects of this

    International Nuclear Information System (INIS)

    Kirchner, G.; Schaefer, R.

    1985-01-01

    The knowledge of the nuclide composition during and after use in the reactor is an essential, in order to be able to determine the effects associated with the operation of nuclear plants. The missing reliable data on the inventory of radioactive materials resulting from the expected change to higher burn-ups of uranium fuels in West Germany are calculated. The reliability of the program system used for this, which permits a one-dimensional account taken of the fuel rod cell and measurement of the changes of specific sets of nuclear data depending on burn-up, is confirmed by the comparison with experimentally found concentrations of important nuclides in fuel samples at Obrigheim nuclear power station. Realistic conditions of use are defined for a range of burn-up of 33 GWd/t to 55 GWd/t and the effects of changes of the number of cycles and the use of types of fuel elements being developed on the composition of the inventory are determined. The plutonium compositions during use in the reactor are given and are tabulated with the inventory for decay times up to 30 years. Effects during change to higher burn-ups are examined and discussed for the maximum inventories during use of fuel and for heat generation during final storage. (orig./HP) [de

  19. Determination of nuclear fuel burn-up using mass spectrometric techniques

    International Nuclear Information System (INIS)

    Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.

    1977-01-01

    Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)

  20. Development of destructive methods of burn-up determination and their application on WWER type nuclear fuels

    International Nuclear Information System (INIS)

    Hermann, A.; Stephan, H.; Nebel, D.

    1984-03-01

    Results are described of a cooperation between the Central Institute of Nuclear Research Rossendorf and the Radium Institute 'V.G. Chlopin' Leningrad in the field of destructive burn-up determination. Laboratory methods of burn-up determination using the classical monitors 137 Cs, 106 Ru, 148 Nd and isotopes of heavy metals (U, Pu) as well as the usefulness of 90 Sr, stable isotopes of Ru and Mo as monitors are dealt with. The analysis of the fuel components uranium (spectrophotometry, potentiometric titration, mass-spectrometric isotope dilution) and plutonium (spectrophotometry, coulometric titration, mass- and alpha-spectrometric isotope dilution) is fully described. Possibilities of increasing the reproducibility (automatic adjusting of measurement conditions) and the sensibility (ion impuls counting) of mass-spectrometric measurements are proposed and applied to a precise determination of Am and Cm isotopic composition. The methods have been used for burn-up analysis of spent WWER (especially WWER-440) fuel. (author)

  1. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  2. Gamma spectrometry in the Osiris reactor. Determination of the power and burn-up rate of irradiated fuel element

    International Nuclear Information System (INIS)

    Destot, M.; Musso, J.F.; Cerles, J.M.

    1976-01-01

    The gamma spectrometry facility, original in design, located in the immediate proximity of the OSIRIS reactor core at Saclay, is described. This device is used to examine nuclear fuel elements irradiated in OSIRIS or in some power reactors. In most cases, it is possible to equip power reactors (in particular water reactors) with installations of this type. With this device, it is also possible to follow the evolution of a large number of fission products in space and time, and to obtain useful information concerning nuclear safety (for example, cladding rupture) and fuel economy (with burn-up rate determination). Details on the performance of this measuring device are given in connection with the study of burn-up rates and linear irradiation power. This OSIRIS reactor gamma spectrometry installation is a nondestructive testing technique, which is easy and rapid to use [fr

  3. Determination of the burn-up in fuels of the MTR type by means of gamma spectroscopy with crystal of INa(Tl)

    International Nuclear Information System (INIS)

    Kestelman, A.J.

    1988-01-01

    One of the responsibilities of the Laboratory of Analysis by Neutronic Activation of the RA-6 reactor is to determine the burn-up in fuels of the MTR type. In order to gain experience, up to the arrival of the hyperpure Germanium detector (HPGe) to be used in normal operation, preliminary measurements with a crystal of INa(Tl) were made. The fuel elements used are originated in the RA-3 reactor, with a decay superior to the thirteen years. For this reason, the unique visible photoelectric peak is the one of Cs-137, owing to the low resolution of the INa(Tl). After preliminary measurements, the profiles of burn-up, rectified by attenuation, were measured. Once the efficiency of the detector was determined, the calculation of the burn-up was made; for the element No. 144, a value of 21.6 ± 2.9 g was obtained to be compared with the value 21.9 g which was the evaluation made by the operators. (Author) [es

  4. An analysis on the transmutation and production rate of Pu (Plutonium) and MA (Minor Actinides) using burn-up calculation method with a solution of 1-dimension multigroup diffusion theory

    International Nuclear Information System (INIS)

    Marsodi; Zuhair; Subki, M.I.R.

    1997-01-01

    The depletion calculation was developed such that for burn-up with follow the chaim reactor from uranium to einsteinium. this calculation was performed for each case of parameter used to quantify the impact on the changes of reactor fuel and gain or loss of nuclides and the impact to the burn-up reactivity swing. Different cases of sample problems by introducing different isotopes were investigated and the results were showed with more detail and accurate. the calculations of this model have also been analyzed by appropriately changing the related material number densities according to the prescribed condition of the reactor core

  5. Burn-up Credit Criticality Safety Benchmark-Phase II-E. Impact of Isotopic Inventory Changes due to Control Rod Insertions on Reactivity and the End Effect in PWR UO2 Fuel Assemblies

    International Nuclear Information System (INIS)

    Neuber, Jens Christian; Tippl, Wolfgang; Hemptinne, Gwendoline de; Maes, Philippe; Ranta-aho, Anssu; Peneliau, Yannick; Jutier, Ludyvine; Tardy, Marcel; Reiche, Ingo; Kroeger, Helge; Nakata, Tetsuo; Armishaw, Malcom; Miller, Thomas M.

    2015-01-01

    PWR UO 2 spent fuel assemblies was analysed. The results of the Phase II-C benchmark were used to define the two axial burn-up profiles for the Phase II-E benchmark such that the impact of the asymmetry on the reactivity and the end effect is bounded. The two profiles together with the sets of isotopic number densities related to different control rod insertion depths during depletion were provided to the participants in the Phase II-E benchmark. To enable the participants to estimate the end effects related to the profiles and the control rod insertion depths the isotopic number densities applying to uniform distributions of the two average burn-ups of 30 MWd/kg U and 50 MWd/kg U were also supplied. In the Phase II-E benchmark basically the same conceptual transport cask configuration was employed as was already used in Phase II-C: A finite transport cask made of stainless steel is used, containing 21 fuel assemblies separated by borated stainless steel plates. The cask was assumed to be fully flooded with pure light water. In total, fourteen solutions were submitted to the Phase II-E benchmark exercise, by ten companies/organisations in seven countries. The participants were asked to calculate, using the two axial burn-up profiles and the related uniform burn-up distributions, the neutron multiplication factors eff k of the cask configuration employing the sets of isotopic number densities related to preset control rod insertion depths during depletion. In addition, the optional task was suggested to the participants to calculate for both, the axial burn-up profiles as well as the related uniform burn-up distributions, the axial fission densities for the axial zones that had been used to describe the axial burn-up distributions for the different control rod insertion depths. For this optional task three solutions were submitted by three companies/organisations in three countries. The analysis of the results obtained for the Phase II-E benchmark exercise begins with

  6. Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: Review of data and alternative interpretation of recently published results

    International Nuclear Information System (INIS)

    Spino, J.; Peerani, P.

    2008-01-01

    The available oxygen potential data of LWR-fuels by the EFM-method have been reviewed and compared with thermodynamic data of equivalent simulated fuels and mixed oxide systems, combined with the analysis of lattice parameter data. Up to burn-ups of 70-80 GWd/tM the comparison confirmed traditional predictions anticipating the fuels to remain quasi stoichiometric along irradiation. However, recent predictions of a fuel with average burn-up around 100 GWd/tM becoming definitely hypostoichiometric were not confirmed. At average burn-ups around 80 GWd/tM and above, it is shown that the fuels tend to acquire progressively slightly hyperstoichiometric O/M ratios. The maximum derived O/M ratio for an average burn-up of 100 GWd/tM lies around 2.001 and 2.002. Though slight, the stoichiometry shift may have a measurable accelerating impact on fission gas diffusion and release

  7. Burn-up measurements of LEU fuel for short cooling times

    International Nuclear Information System (INIS)

    Pereda B, C.; Henriquez A, C.; Klein D, J.; Medel R, J.

    2005-01-01

    The measurements presented in this work were made essentially at in-pool gamma-spectrometric facility, installed inside of the secondary pool of the RECH-1 research reactor, where the measured fuel elements are under 2 meters of water. The main reason for using the in-pool facility was because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days, which are the usual times between reactor operations. Regarding these short cooling times, this work confirms again the possibility of using the 95 Zr as a promising burnup monitor, in spite of the rough approximations used to do it. These results are statistically reasonable within the range calculated using codes. The work corroborates previous results, presented in Santiago de Chile, and it suggests future improvements in that way. (author)

  8. FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000

    OpenAIRE

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    ABSTRACT FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000. AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB2, Pyrex and Boron solution are used to compensate the excess reactivity at the begin...

  9. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations; Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik

    2014-06-15

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  10. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  11. On the use of the FALCON code for modeling the behaviour of high burn-up BWR fuel during the LS-1 pulse-irradiation test

    International Nuclear Information System (INIS)

    Khvostov, G.; Zimmermann, M.A.; Sugiyama, T.; Fuketa, T.

    2008-01-01

    The LS-1 RIA-simulating test conducted in NSRR with high-burnup fuel base irradiated in the BWR KKL to a pellet burn-up of 69 MWd/kgU is analysed using the FALCON fuel behaviour code coupled with the advanced GRSW-A model for fission gas release and swelling of the uranium dioxide fuels. A reasonable agreement of the results of calculation with the measured value of fission gas release in the failed fuel rod, amounting to about 23 % of total gas generated in the pellets is obtained. The mechanisms able to result in as significant fission gas release as measured by the post-test-examination are analysed with the model and discussed in consideration of the predicted initial micro-structural state of the fuel after the base irradiation. The minor role of gaseous swelling in the early failure of the LS-1 test-fuel-rod is shown by calculation, which is due to premature brittle cracking of the highly hydrated cladding under the conditions of the Room-Temperature capsule used in the LS-1 test. However, a significant potential impact of the gaseous swelling on cladding strain-stress conditions during the RIA is shown by the calculation when assuming a sufficient residual cladding ductility in the hypothetical test with the same parameters as in LS-1, but under conditions of the High- Temperature-High-Pressure capsule. (authors)

  12. Moderator poison design and burn-up calculations at the SNS

    Science.gov (United States)

    Lu, W.; Ferguson, P. D.; Iverson, E. B.; Gallmeier, F. X.; Popova, I.

    2008-06-01

    The spallation neutron source (SNS) at Oak Ridge National Laboratory was commissioned in April 2006. At the nominal operating power (1.4 MW), it will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of ˜$2 million a piece. A replacement of the inner reflector plug presents a significant drawback to the facility due to the activation and the operation cost. Although there are a lot of factors limiting the lifetime of the inner reflector plug, like radiation damage to the structural material and helium production of beryllium, the bottle-neck is the lifetime of the moderator poison sheets. Increasing the thickness of the poison sheet extends the lifetime but would sacrifice the neutronic performance of the moderators. A compromise is accepted at the current SNS target system which uses thick Gd poison sheets at a projected lifetime of 6 MW-years of operation. The calculations in this paper reveal that Cd may be a better poison material from the perspective of lifetime and neutronic performance. In replacing Gd, the inner reflector plug could reach a lifetime of 8 MW-years with ˜5% higher peak neutron fluxes at almost no loss of energy resolution.

  13. Moderator poison design and burn-up calculations at the SNS

    International Nuclear Information System (INIS)

    Lu, W.; Ferguson, P.D.; Iverson, E.B.; Gallmeier, F.X.; Popova, I.

    2008-01-01

    The spallation neutron source (SNS) at Oak Ridge National Laboratory was commissioned in April 2006. At the nominal operating power (1.4 MW), it will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of ∼$2 million a piece. A replacement of the inner reflector plug presents a significant drawback to the facility due to the activation and the operation cost. Although there are a lot of factors limiting the lifetime of the inner reflector plug, like radiation damage to the structural material and helium production of beryllium, the bottle-neck is the lifetime of the moderator poison sheets. Increasing the thickness of the poison sheet extends the lifetime but would sacrifice the neutronic performance of the moderators. A compromise is accepted at the current SNS target system which uses thick Gd poison sheets at a projected lifetime of 6 MW-years of operation. The calculations in this paper reveal that Cd may be a better poison material from the perspective of lifetime and neutronic performance. In replacing Gd, the inner reflector plug could reach a lifetime of 8 MW-years with ∼5% higher peak neutron fluxes at almost no loss of energy resolution

  14. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Brémier, S., E-mail: stephan.bremier@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Inagaki, K. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Capriotti, L.; Poeml, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Ogata, T.; Ohta, H. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany)

    2016-11-15

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15–20 μm and migration of cladding elements to the fuel. - Highlights: • Electron Probe MicroAnalysis of a UPuZr metallic fuel alloy irradiated to 7.0 at.% burn-up. • Significant redistribution of the fuel components along the fuel radius, nearly complete depletion of Zr in the central part of the fuel. • Interactions between the fuel and the cladding with occurrence of a number of intermediary layers and migration of cladding elements to the fuel. • Safe irradiation behaviour of the base alloy fuel.

  15. Impact of neutron thermal scattering laws on the burn-up analysis of supercritical LWR's fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Andrea

    2011-10-15

    . The third, most naive option is called the ''free gas approximation''. It is the goal of this work to make an estimate of the criticality calculations' inaccuracy due to the inadequate employed physical model and to determine which one of the available models can be the best replacement. The accuracy of criticality calculations referring to the HPLWR is a problem that had already been raised by Waata in 2006. In her Ph.D. thesis Waata reports having carried out MCNP runs referring to an HPLWR fuel element employing the free gas approximation. In her thesis Waata explicitly sifts through the factors that can affect her MCNP runs' accuracy, but leaves the inappropriate thermal treatment completely out. In this work, the inaccuracy of the criticality calculations has been investigated carrying out sets of similar burn-up calculations differing from each other only in the applied thermal cross section sets. The widest discrepancies were detected between the results obtained applying the free gas model and those obtained applying the molecular models. This, in conjunction with the fact that the free gas model does not even keep in count the molecular structure of H{sub 2}O suggest to discard it and to focus the investigation on the vapour and liquid models. Dr. J. Marti, from the Universitat Politecnica de Catalunya, Barcelona, Spain registered the generalized frequency distributions obtained from the molecular dynamics simulations of 216 molecules of H{sub 2}O in 10 simulated supercritical states and published in an article (1999) the frequencies of the three characteristic distribution peaks for each simulated state, in numerical format. A confrontation with the corresponding peaks from Bernnat's available frequency distributions for liquid water and vapour revealed the peaks of the latter to be closest to the supercritical water ones in nearly all cases. Hence the inference that thermal cross section sets for vapour are for the time

  16. Development of external coupling for calculation of the control rod worth in terms of burn-up for a WWER-1000 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noori-Kalkhoran, Omid, E-mail: o_noori@yahoo.com [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Yarizadeh-Beneh, Mehdi [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Calculation of control rod worth in term of burn-up. • Calculation of differential and integral control rod worth. • Developing an external couple. • Modification of thermal-hydraulic profiles in calculations. - Abstract: One of the main problems relating to operation of a nuclear reactor is its safety and controlling system. The most widely used control systems for thermal reactors are neutron absorbent rods. In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 nuclear reactor. External coupling of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of the core in various days. PARCS V2.7 has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. An external coupling algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and control rod worth for different control rod groups have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective Full Power Days (EFPDs) in some steps. Results have been compared with the results of Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR). The results show a good agreement and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.

  17. Long-term radiotoxicity, in the framework of the ICRP-48, of high level wastes and spent fuels produced by light water reactors: impact of burn-up extension and of the use of mixed oxide fuels

    International Nuclear Information System (INIS)

    Elayi, A.G.; Schapira, J.P.

    1987-01-01

    The time evolution of radiotoxicities of spent fuels and high-level wastes have been calculated up to 10 7 years, in the framework of the recent I.C.R.P.-48 guideline, in which the ratio dose/ingested-activity has been divided by 10 for Np, multiplied by 10 for Pu and by 2 for Am, Cm and Cf, with respect to the previous I.C.R.P.-30 values. In the case of burn-up extension of the standard 33,000 MWd/t enriched uranium fuel, and in the case of plutonium recycle in light-water reactors, one shows that the spent fuel radiotoxicity is now dominated by its plutonium content, most of the time up to about 10 5 years. Possible incineration effects are discussed within these two fuel cycle options

  18. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noori-Kalkhoran, Omid; Ahangari, R. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research school; Shirani, A.S. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Faculty of Engineering

    2017-03-15

    In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 reactor. Parallel processing of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of core at different days. PARCS V2.7?has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. A Parallel processing algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and Control rod worth have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective full Power Days (EFPDs) in some steps. Results have been compared with Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR) results. The results show great similarity and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.

  19. Preferential removal of Sm by evaporation from Nd-Sm mixture and its application in direct burn-up determination of spent nuclear fuel

    International Nuclear Information System (INIS)

    Sajimol, R.; Bera, S.; Nalini, S.; Sivaraman, N.; Joseph, M.; Kumar, T.

    2016-01-01

    Rate of evaporation of Sm and Nd from their mixture was studied based on their ion intensities using thermal ionization mass spectrometry. Because of the comparatively larger evaporation rate of Sm, it was found possible to get the isotopic composition of Nd (fission product monitor) free from isobaric interference of Sm isotopes. The decrease in ion intensity of Sm was studied as a function of time and filament temperature. Based on this study, an easy and time effective method for the determination of burn-up of spent nuclear fuel was examined and the results are compared with that obtained by the conventional method. Typical burn-up value obtained for a pressurized heavy water reactor fuel dissolver solution using the direct method by preferential evaporation of Sm is: 0.84 at.%, whereas the one obtained by the use of conventional method is 0.82 at.%. In both the cases, Nd was employed as the fission product monitor. (author)

  20. Investigation of the applicability of solid state detectors for the determination of reactor fuel burn-up, development and making of a jumping spark counter

    International Nuclear Information System (INIS)

    Csikai, J.

    1979-04-01

    A method was investigated for the determination of reactor fuel burn-up by measuring the spontaneous fission cross sections ratio 235 U/ 238 U. The method was adopted for the determination of uranium in powdered solid samples. The angular distribution of fission fragments of 239 Pu has been measured by means of a polycarbonate solid state nuclear track detector, using a 252 Cf neutron source

  1. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  2. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    International Nuclear Information System (INIS)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-01-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  3. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P. [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K. (ed.) [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  4. A study on the in-reactor behavior of centrifugally atomized U3Si dispersion fuel irradiated up to high burn-up under normal power condition

    International Nuclear Information System (INIS)

    Kim, K. H.; Lee, Y. S.; Lee, C. S.; Jeong, Y. H.; Park, D. G.; Kim, C. G.

    2001-01-01

    In order to localize the nuclear fuels for HANARO, centrifugally atomized and mechanically comminuted U 3 Si mini-element fuels were fabricated and irradiated up to high burn-up under normal power condition in HANARO reactor. The average interaction thickness in atomized U 3 Si dispersion fuel meat was observed as about 8 μm. It was almost same thickness and more uniform comparing to that of comminuted U 3 Si dispersion fuel meats. The interaction thickness of U 3 Si dispersion fuel meats were generally assumed acceptable in the fuel performance point of view. The U 3 Si fuel particles were examined containing a relatively fine and uniform fission gas bubble distribution without any indications of unstable and rapid breakway swelling, irrespective of powdering methods

  5. Analysis of temperature reactivity coefficient at very high burn-ups for pressurized water reactor

    International Nuclear Information System (INIS)

    Yu Shihe; Dai Xiang; Cao Xinrong

    2012-01-01

    In the high burn-up core, as the initial enrichment increases, the fast/thermal flux ratio also increases. The harder neutron spectrum influences the temperature reactivity coefficients. In this paper, a very high burn-up core was designed, very high burn-up levels was achieved using higher enrichments and various feed assembly and loading pattern options. The CASMO-4/SIMULATE-3 code system is used to model the high burn-up core and calculate temperature reactivity coefficient for the burn-up more than 60 GWD/T. The results show that the hardening of the neutron spectrum leads to more negative moderator temperature coefficients at high burn-ups irrespective of whether or not there is burnable poison; the is little variation with fuel temperature coefficient. (authors)

  6. Mechanical fracture study of nuclear fuel high burn-up structure (HBS or RIM) during annealing test

    International Nuclear Information System (INIS)

    Marcet, M.

    2010-01-01

    The ceramics used in Power Water Reactors ar made of uranium dioxide. Irradiated at high Burn-up, they present a characteristic zone in periphery called High Burn-Up Structure or RIM zone with micrometer pores containing over-pressurized gas bubbles. Annealing texts simulating incidental or accidental reactor situations, a strong release of the RIM zone is observed. We have considered that the fission gas release mechanism is the mechanical fracture of the RIM grain boundaries. The we have compared the different types of mechanical stress applied to a grain boundary with the fracture stress of the oxide. The first stress is due to RIM over-pressurized gas bubbles, these bubbles apply a stress field determined at a microscopic level i.e. at the gas bubbles scale and its local environment. The second stress is generated by the Pellet-Cladding Mechanical Interaction (PCMI). This stress applies a stress field on a microscopic scale i.e. at the RIM zone and its overall environment. The last stress is occurred by a strain due to the RIM structural evolution during annealing test. The experimental results show that microscopic and macroscopic stress fields to do not explain the RIM grain boundary fracture during annealing test. The stresses induced by the RIM structural evolution as a function of the temperature is a possible mechanism to explain the overall mechanical behavior of the RIM zone during annealing test. (author)

  7. Burn up physics

    International Nuclear Information System (INIS)

    Tretiakoff, O.

    1964-01-01

    The present communication is devoted to a body of theoretical and experimental work carried out at the C.E.A. with the aim of adding to the current knowledge on the evolution of the reactivity (during fuel irradiation) in natural or slightly enriched Uranium reactors. The difficulties of performing direct experiments on large amounts of irradiated fuels are reviewed - especially in operating power reactors - and the necessity is underlined for fundamental research in two directions: on one hand, the change in the composition of the fuels (chains of heavy nuclei, fission products), and on the other hand the effect of changes in composition on the neutron balance. Before presenting three types of experiments which have been carried out, the importance of the problems associated with the neutron spectra is stressed and the practical methods used for the calculations are briefly described. The systematic irradiation of several types of fuel, followed by their chemical and isotopic analysis has been going on for several years. An outline of the experimental programme is given with a description of the methods employed: α, β, γ chain for the preparation of samples determination of the plutonium content by coulometry and double isotopic dilution, separation of Boron used in some cases for the measurement of integrated neutron densities. The interpretation of the measurements is discussed with some examples. A second and more recent series of experiments deals with the investigation of lattices, using synthetic fuels (Uranium-Plutonium alloys) as compared to slightly depleted or enriched Uranium Various experiments are considered on heavy water and on cold graphite, then on graphite heated up to 500 C Some results already obtained are listed. These experiments, requiring nearly a metric ton of each type of fuel cannot be pursued in a systematic manner. This is why is developed since several years a method of differential measurement by oscillation, which requires

  8. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  9. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  10. Approaches to modeling of high burn-up structure and analysis of its effects on the behaviour of light water reactor fuels in the START-3 fuel performance code

    International Nuclear Information System (INIS)

    Khvostov, Grigori; Novikov, Vladimir; Medvedev, Anatoli; Bogatyr, Serguey

    2005-01-01

    An advanced model GRSWEL-A for fission gas behavior and micro-structural evolutions in Light Water Reactor (LWR) fuels was developed for and embedded in the START-3 fuel performance code. This paper represents the physical basis and verification of the model with emphasis on analysis of High Burn-up Structure (HBS), which is generally ascribed to a so-called rim-layer of high burn-up fuel pellets. Specifically, the issues of microscopic polygonization, loss of matrix fission gas, growth of fuel porosity and fission gas release are highlighted. The effects of HBS on total fission gas release, temperature distribution in the pellet, pellet swelling and permanent strain of the cladding are considered in the appropriate section of the paper by means of comparative and sensitivity analysis with the use of both modeling and available experimental data. In all the cases, an accounting for the present effects is found to be an important integral part of thorough analysis of LWR fuel behavior. Aside from the description of current capabilities of modeling, some priority directions of further improvement are outlined. (author)

  11. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  12. Modelling of thermal mechanical behaviour of high burn-Up VVER fuel at power transients with special emphasis on the impact of fission gas induced swelling of fuel pellets

    International Nuclear Information System (INIS)

    Novikov, V.; Medvedev, A.; Khvostov, G.; Bogatyr, S.; Kuzetsov, V.; Korystin, L.

    2005-01-01

    This paper is devoted to the modelling of unsteady state mechanical and thermo-physical behaviour of high burn-up VVER fuel at a power ramp. The contribution of the processes related to the kinetics of fission gas to the consequences of pellet-clad mechanical interaction is analysed by the example of integral VVER-440 rod 9 from the R7 experimental series, with a pellet burn-up in the active part at around 60 MWd/kgU. This fuel rod incurred ramp testing with a ramp value ΔW 1 ∼ 250 W/cm in the MIR research reactor. The experimentally revealed residual deformation of the clad by 30-40 microns in the 'hottest' portion of the rod, reaching a maximum linear power of up to 430 W/cm, is numerically justified on the basis of accounting for the unsteady state swelling and additional degradation of fuel thermal conductivity due to temperature-induced formation and development of gaseous porosity within the grains and on the grain boundaries. The good prediction capability of the START-3 code, coupled with the advanced model of fission gas related processes, with regard to the important mechanical (residual deformation of clad, pellet-clad gap size, central hole filling), thermal physical (fission gas release) and micro-structural (profiles of intra-granular concentration of the retained fission gas and fuel porosity across a pellet) consequences of the R7 test is shown. (authors)

  13. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  14. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  15. Test of test fuel elements with carbide fuel in the BOR 60 reactor until burn-up of 3 or 7%

    International Nuclear Information System (INIS)

    Davydov, E.F.; Majorsin, A.A.; Sjuzev, V.P.; Bibilasvili, J.K.; Golovin, I.S.; Men'sikova, T.S.

    1976-01-01

    Operational experience with the carbide zone of the BR-5 and a few foreign reactors shows the real possibility of utilizing carbide fission material in fast reactors. For the purpose of using the advantages of the uranium carbide as compared to oxide and development of the optimum construction of the fuel element, a number of problems must be clarified by careful experimental investigation, amongst others, the source of the fission material; the gas release, the compatibility of the fuel with the cladding, etc. (orig./TK) [de

  16. Some calculations of the failure statistics of coated fuel particles

    International Nuclear Information System (INIS)

    Martin, D.G.; Hobbs, J.E.

    1977-03-01

    Statistical variations of coated fuel particle parameters were considered in stress model calculations and the resulting particle failure fraction versus burn-up evaluated. Variations in the following parameters were considered simultaneously: kernel diameter and porosity, thickness of the buffer, seal, silicon carbide and inner and outer pyrocarbon layers, which were all assumed to be normally distributed, and the silicon carbide fracture stress which was assumed to follow a Weibull distribution. Two methods, based respectively on random sampling and convolution of the variations were employed and applied to particles manufactured by Dragon Project and RFL Springfields. Convolution calculations proved the more satisfactory. In the present calculations variations in the silicon carbide fracture stress caused the greatest spread in burn-up for a given change in failure fraction; kernel porosity is the next most important parameter. (author)

  17. BURNUR.SYS: A 2-D code system for NUR research reactor burn up analysis

    International Nuclear Information System (INIS)

    Meftah, B.; Halilou, A.; Letaim, F.; Mazidi, S.; Mokeddem, M.Y.; Zeggar, F.

    2008-01-01

    Adequate knowledge of burn up levels of fuel elements within a research reactor is of great importance for its optimum operation. Such knowledge is required for the monitoring of reactivity parameters and flux and power distributions throughout the reactor core, the estimation of the radioactive source term needed in accidental situations analysis, the evaluation of the amount of fissile materials present at any moment within the fuel for safeguards purposes and the estimation of cooling and shielding requirements for interim storage or transport of spent fuel elements. This paper presents the approach of fuel burn up evaluation used at the NUR research reactor. The approach is essentially based upon the utilization of BURNUR.SYS code, an in-house developed software. BURNUR.SYS is an object oriented program under DELPHI 7 that integrates the cell calculation code WIMSD-4 and the core calculation code CITVAP. BURNUR.SYS calculates the evolution in time of pertinent quantities such as: the concentrations of U235 and others actinides, the concentrations of major poisons (Xe135 and Sm149), the distributions of power densities and burn up levels within fuel elements, the effective multiplication factor and core reactivity. The results are displayed in user friendly graphical and numerical formats

  18. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  19. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  20. Fuel depletion calculation in MTR-LEU NUR reactor

    Directory of Open Access Journals (Sweden)

    Zeggar Foudil

    2008-01-01

    Full Text Available In this article, we present the results of a few energy groups calculations for the NUR reactor fuel depletion analysis up to 45 000 MWd/tU taken as the maximum fuel burn up. The WIMSD-4 cell code has been employed as a calculation tool. In this study, we are interested in actinides such as the uranium and plutonium isotopes, as well as fission products Xe-135, Sm-149, Sm-151, Eu-155, and Gd-157. Calculation results regarding the five energy groups are in a good agreement with those obtained with only two energy groups which can, therefore, be used in all subsequent calculations. Calculation results presented in this article can be used as a microscopic data base for estimating the amount of radioactive sources randomly dispersed in the environment. They can also be used to monitor the fuel assemblies inventory at the core level.

  1. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  2. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  3. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  4. Local atomic structure of Pd and Ag in the SiC containment layer of TRISO fuel particles fissioned to 20% burn-up

    Science.gov (United States)

    Seibert, Rachel L.; Terrani, Kurt A.; Velázquez, Daniel; Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; Terry, Jeff

    2018-03-01

    The structure and speciation of fission products within the SiC barrier layer of tristructural-isotropic (TRISO) fuel particles irradiated to 19.6% fissions per initial metal atom (FIMA) burnup in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) was investigated. As-irradiated fuel particles, as well as those subjected to simulated accident scenarios, were examined. The TRISO particles were characterized using synchrotron X-ray absorption fine-structure spectroscopy (XAFS) at the Materials Research Collaborative Access Team (MRCAT) beamline at the Advanced Photon Source. The TRISO particles were produced at Oak Ridge National Laboratory under the Advanced Gas Reactor Fuel Development and Qualification Program and sent to the ATR for irradiation. XAFS measurements on the palladium and silver K-edges were collected using the MRCAT undulator beamline. Analysis of the Pd edge indicated the formation of palladium silicides of the form PdxSi (2 ≤ x ≤ 3). In contrast, Ag was found to be metallic within the SiC shell safety tested to 1700 °C. To the best of our knowledge, this is the first result demonstrating metallic bonding of silver from fissioned samples. Knowledge of these reaction pathways will allow for better simulations of radionuclide transport in the various coating layers of TRISO fuels for next generation nuclear reactors. They may also suggest different ways to modify TRISO particles to improve their fuel performance and to mitigate potential fission product release under both normal operation and accident conditions.

  5. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  6. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    Science.gov (United States)

    Widiawati, Nina; Su'ud, Zaki

    2015-09-01

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from -0.6695443 % at BOC to -0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  7. Preliminary 3D burn-up analysis of the HPLWR core

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Lanfranco; Gabrielli, Fabrizio; Schulenberg, Thomas [Forschungszentrum Karlsruhe (Germany). Inst. for Nuclear and Energy Technologies

    2009-07-01

    The High Performance Light Water Reactor (HPLWR) is an innovative reactor concept cooled and moderated with water at supercritical pressure (25 MPa) whose feasibility is analyzed within a European framework [1]. The pronounced variation in water density, which takes place inside the core, is due to the coolant heat up from 550 K to 800 K and is supposed to generate pronounced 3D effects during reactor operation because the different core regions have different flux amplitude and neutron spectrum. Open questions are how k{sub eff} and the power-map will change during the burn-up and require a 3D multi-zone burn-up analysis of the core. This goal is achieved using the ERANOS system [2, 3], which is a deterministic tool for neutronic core analyses. The starting condition is taken from a neutronic/thermal-hydraulic coupled solution of the whole core [4], which does not yet include any fuel enrichment optimization nor reactivity control systems, i.e. control rods or burnable poisons. Uranium dioxide enriched to 5wt% in {sup 235}U is used as starting fuel while typical LWRs evolution chains for actinides and fission products have been selected. The core nodalization used in the coupled system is also adopted for multi-zone burn-up analysis: there are 462 zones with different material composition, 21 in axial direction and 22 in the horizontal plane. A burn-up period of 200 days ({approx_equal}6400 MWd/tHM) is considered here and has been divided into two different smaller time steps: 1) an inner time step at which macroscopic cross-sections (XSs) and the flux normalization are calculated according to the change in fuel isotopic composition; 2) an outer time step at which whole core flux calculations are performed to evaluate the region-wise neutron flux distribution. The length of the flux calculation time step has to be short enough to avoid unphysical power-shape oscillations, as underlined by Reiss et al. [5] with a different computational approach. The 40 groups

  8. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    Directory of Open Access Journals (Sweden)

    Herrero J.J.

    2017-01-01

    Full Text Available In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  9. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    Science.gov (United States)

    Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.

    2017-09-01

    In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  10. ALEPH: An optimal approach to Monte Carlo burn-up

    International Nuclear Information System (INIS)

    Verboomen, B.

    2007-01-01

    The incentive of creating Monte Carlo burn-up codes arises from its ability to provide the most accurate locally dependent spectra and flux values in realistic 3D geometries of any type. These capabilities linked with the ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, detailed energy-angle correlations, multi-particle physics, etc.) could make Monte Carlo burn-up codes very powerful, especially for hybrid and advanced nuclear systems (like for instance Accelerator Driven Systems). Still, such Monte Carlo burn-up codes have had limited success mainly due to the rather long CPU time required to carry out very detailed and accurate calculations, even with modern computer technology. To work around this issue, users often have to reduce the number of nuclides in the evolution chains or to consider either longer irradiation time steps and/or larger spatial burn-up cells, jeopardizing the accuracy of the calculation in all cases. There should always be a balance between accuracy and what is (reasonably) achievable. So when the Monte Carlo simulation time is as low as possible and if calculating the cross sections and flux values required for the depletion calculation takes little or no extra time compared to this simulation time, then we can actually be as accurate as we want. That is the optimum situation for Monte Carlo burn-up calculations.The ultimate goal of this work is to provide the Monte Carlo community with an efficient, flexible and easy to use alternative for Monte Carlo burn-up and activation calculations, which is what we did with ALEPH. ALEPH is a Monte Carlo burn-up code that uses ORIGEN 2.2 as a depletion module and any version of MCNP or MCNPX as the transport module. For now, ALEPH has been limited to updating microscopic cross section data only. By providing an easy to understand user interface, we also take away the burden from the user. For the user, it is as if he is

  11. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  12. Study on the sensitivity of Self-Powered Neutron Detectors (SPND) and its change due to burn-up

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Lee, Wanno; Yoon, Jeong-Hyoun.

    1996-01-01

    Self-Powered Neutron Detectors (SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with its usage, it has some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation was accomplished to calculate the escape probability as a function of the birth position for the typical geometry of rhodium-based SPNDs. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity is calculated as a function of burn-up time in the reactor. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long-term usage. (author)

  13. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    International Nuclear Information System (INIS)

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  14. Effect of burn-up on the radioactivation behavior of cladding hull materials studied using the ORIGEN-S code

    International Nuclear Information System (INIS)

    Min Ku Jeon; Chang Hwa Lee; Jung Hoon Choi; In Hak Cho; Kweon Ho Kang; Hwan-Seo Park; Geun Il Park; Chang Je Park

    2013-01-01

    The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125 Sb, 125m Te, and 55 Fe are the major sources of radioactivity. On the other hand, 93m Nb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94 Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94 Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository. (author)

  15. Mathematical modeling of the heat treatment and combustion of a coal particle. V. Burn-up stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-07-01

    The present material is a sequel of the previous publications of the authors in this journal under a common title in which by means of mathematical modeling the sequential stages of the process of combustion of coal fuels have been obtained: heating, drying, escape of volatiles, and ignition. Mathematical models of the final stage of combustion of an individual particle — the burn-up stage — have been formulated. On the basis of the solution methods for nonlinear boundary-value problems developed by us, approximate-analytic formulas for two characteristic regimes, burn-up simultaneously with the evaporation of the remaining moisture and burn-up of the completely dried coke residue, have been obtained. The previous history of the physical and chemical phenomena in the general burning pattern is taken into account. The influence of the ash shell on the duration of combustion has been extimated. Comparison of calculations by the obtained dependences with the results of other authors has been made. It showed an accuracy sufficient for engineering applications.

  16. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R.S.; Blackadder, W.H.; Ronqvist, N.

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  17. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.

    2010-03-01

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  18. Technical description of the burn-up software system MOP

    International Nuclear Information System (INIS)

    Schutte, C.K.

    1991-05-01

    The burn-up software system MOP is a research tool primary intended to study the behaviour of fission products in any reactor composition. Input data are multi-group cross-sections and data concerning the nuclide chains. An option is available to calculate a fundamental mode neutron spectrum for the specified reactor composition. A separate program can test the consistency of the specified nuclide chains. Options are available to calculate time-dependent cross-sections of lumped fission products and to take account of the leakage of gaseous fission products from the reactor core. The system is written in FORTRAN77 for a CYBER computer, using the operating system NOS/BE. The report gives a detailed technical description of the applied algorithms and the flow and storage of data. Information is provided for adapting the system to other computer configurations. (author). 5 refs.; 11 figs

  19. Semi-analytical calculation of fuel parameters for shock ignition fusion

    Directory of Open Access Journals (Sweden)

    S A Ghasemi

    2017-02-01

    Full Text Available In this paper, semi-analytical relations of total energy, fuel gain and hot-spot radius in a non-isobaric model have been derived and compared with Schmitt (2010 numerical calculations for shock ignition scenario. in nuclear fusion. Results indicate that the approximations used by Rosen (1983 and Schmitt (2010 for the calculation of burn up fraction have not enough accuracy compared with numerical simulation. Meanwhile, it is shown that the obtained formulas of non-isobaric model cannot determine the model parameters of total energy, fuel gain and hot-spot radius uniquely. Therefore, employing more appropriate approximations, an improved semianalytical relations for non-isobaric model has been presented, which  are in a better agreement with numerical calculations of shock ignition by Schmitt (2010.

  20. Progress in core and fuel modelling to calculate severe accidents

    International Nuclear Information System (INIS)

    Bonnet, M.; Baldi, St.; Porta, J.

    2000-01-01

    The use of CERMET type composite fuels lead to a correct use of plutonium; a good thermomechanical behaviour due to a low operating temperature thanks to a high thermo-conductivity, that favours high burn-up due to the low fission gas release. However, the increase in the metallic mass, an alloy of zircaloy in the core, as well as the composite nature of the fuel with two very different melting temperatures (∼ 1,600 deg C for the metal, and 2,300 deg C for the ceramic) lead to a behaviour very different from that of the traditional ceramic fuel in the event of an accident. (authors)

  1. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  2. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  3. Thermal diffusivity of high burn-up UO2 pellet irradiated at HBWR

    International Nuclear Information System (INIS)

    Nakamura, J.

    1998-01-01

    Thermal diffusivity of high burn-up UO 2 (63 MWd/kgU) irradiated at HBWR was measured from 290 to 1794 K by laser flash method. The thermal diffusivity of high burn-up UO 2 was lower than half that of unirradiated UO 2 at room temperature and the difference between them decreased as the measurement temperature increased. The measurements were repeated three or four times on the same sample, with increasing the maximum measurement temperature. Then, thermal diffusivity gradually increased at low temperature region. It was estimated that this increase of thermal diffusivity was mainly caused by the recovery of radiation damage. The thermal diffusivity data of the samples were separated into two groups. The difference of the thermal diffusivity of these groups was mostly explained by the effect of density difference. The present results on the samples measured after annealing at temperature between 700 and 1300 K were a little smaller than those of SIMFUEL, which chemically simulated the effects of burn-up by adding solid FPs. The relative degradation of thermal conductivity with burn-up estimated from the present data agreed well with that derived from fuel centre temperature measurement by expansion thermometer at HBWR. (author)

  4. The burn-up credit physics and the 40. Minerve anniversary; La physique du credit Burn-Up et le 40. anniversaire de Minerve

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A. [CEA/Cadarache, Departement d' Etudes des Reacteurs, DER/SPRC, 13 - Saint-Paul-lez-Durance (France); Toubon, H. [Cogema, 78 - Velizy Villacoublay (France); Trakas, C. [FRAMATOME, 92 - Paris La Defense (France)] [and others

    2000-03-21

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  5. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  6. Precise calculation of neutron-capture reactions contribution in energy release for different types of VVER-1000 fuel assemblies

    Science.gov (United States)

    Tikhomirov, Georgy; Bahdanovich, Rynat; Pham, Phu

    2017-09-01

    Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions - capture component - contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.

  7. Precise calculation of neutron-capture reactions contribution in energy release for different types of VVER-1000 fuel assemblies

    Directory of Open Access Journals (Sweden)

    Tikhomirov Georgy

    2017-01-01

    Full Text Available Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions – capture component – contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.

  8. Nuclear fuel cycle cost and cost calculation

    International Nuclear Information System (INIS)

    Schmiedel, P.; Schricker, W.

    1975-01-01

    Four different methods of calculating the cost of the fuel cycle are explained, starting from the individual cost components with their specific input data. The results (for LWRs) are presented in tabular form and in the form of diagrams. (RB) [de

  9. Calculation of resonance integral for fuel cluster

    International Nuclear Information System (INIS)

    Remsak, S.

    1969-01-01

    The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO 2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV [sr

  10. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  11. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    International Nuclear Information System (INIS)

    Toubon, H.; Guillou, E.; Cousinou, P.; Barbry, F.; Grouiller, J.P.; Bignan, G.

    2001-01-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis

  12. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  13. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    Sukarsono; Wardaya; Indra-Suryawan

    1996-01-01

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  14. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design; Calculo de los terminos fuente de combustibles irradiados PWR para el diseno de contenedores de almacenamiento y transporte

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J. L.; Lopez, J.

    1986-07-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs.

  15. Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION

    Science.gov (United States)

    Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.

    The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature

  16. The burn-up credit physics and the 40. Minerve anniversary

    International Nuclear Information System (INIS)

    Santamarina, A.; Toubon, H.; Trakas, C.

    2000-01-01

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  17. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP; Calculos de criticidad de un contenedor de combustible generico para ensambles combustibles PWR, mediante el codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  18. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  19. Direct measurement of burn up monitor by Pulsed Laser Deposition (PLD) followed by Isotopic Dilution Mass Spectrometry

    International Nuclear Information System (INIS)

    Sajimol, R.; Manoravi, P.; NaIini, S.; Balasubramanian, R.; Joseph, M.

    2012-01-01

    Burn-up measurement is an important aspect in the assessment of fuel performance especially for experimental nuclear fuels. Conventional mass spectrometric technique offer the best accuracy for determination of burn-up but they suffer from the labour intensive and time consuming chemical separation procedures followed by mass spectrometric analysis. Our laboratory has reported a potential laser mass spectrometric technique with advantages of (i) direct and fast measurement of ion intensities of selected rare earth element and residual heavy element atoms to deduce burn up and (ii) adaptability to remote handling of radioactive samples. Direct quantification of burn up monitor element in fuel in the form of pellet as well as liquid was probed by pulsed laser deposition followed by Isotopic Dilution Mass Spectrometric technique (IDMS). The procedure involving laser ablation of heavy element (namely U and Pu) and fission product (Nd, La etc) from a simulated spent fuel matrix followed by isotopic dilution mass spectrometry using thermal ionization mass spectrometry (TIMS) has been presently attempted to arrive at the rare earth element to heavy element ratio to deduce burn up using the methodology described in our earlier work. The details of IDMS technique has been reviewed by Heumann et al. Accurately weighed amounts of major rare earth fission products such as Nd, La, Ce and Sm in solution form were mixed with known quantity of uranium solution (all the weights are corresponding to their fission yields and the residual heavy element atoms after a given burn up) and mixed together to attain uniformity. The solution is then dried and resulting powder was pelletized and sintered. Subsequently, the pellet was ablated with pulsed laser (8 ns, 532 nm, Nd-YAG) and the plume was deposited on a glass plate. This deposit was dissolved in minimum amount of nitric acid. A known volume of the solution was mixed with spike (for e.g., 150 Nd/ 142 Nd, 233 U/ 238 U in this study

  20. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  1. ALEPH 1.1.2: A Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    Haeck, W.; Verboomen, B.

    2006-01-01

    In the last 40 years, Monte Carlo particle transport has been applied to a multitude of problems such as shielding and medical applications, to various types of nuclear reactors, . . . The success of the Monte Carlo method is mainly based on its broad application area, on its ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, complex interaction laws, detailed energy-angle correlations, multi-particle physics, . . . ), on its capability of modeling geometries from simple 1D to complex 3D, . . . There is also a current trend in Monte Carlo applications toward high detail 3D calculations (for instance voxel-based medical applications), something for which deterministic codes are neither suited nor performant as to computational time and precision. Apart from all these fields where Monte Carlo particle transport has been applied successfully, there is at least one area where Monte Carlo has had limited success, namely burn-up and activation calculations where the time parameter is added to the problem. The concept of Monte Carlo burn-up consists of coupling a Monte Carlo code to a burn-up module to improve the accuracy of depletion and activation calculations. For every time step the Monte Carlo code will provide reaction rates to the burn-up module which will return new material compositions to the Monte Carlo code. So if static Monte Carlo particle transport is slow, then Monte Carlo particle transport with burn-up will be even slower as calculations have to be performed for every time step in the problem. The computational issues to perform accurate Monte Carlo calculations are however continuously reduced due to improvements made in the basic Monte Carlo algorithms, due to the development of variance reduction techniques and due to developments in computer architecture (more powerful processors, the so-called brute force approach through parallel processors and networked systems

  2. On-line extraction of the variance caused by burn-up in in-core three-dimensional power distribution

    International Nuclear Information System (INIS)

    Wang Yaqi; Luo Zhengpei; Li Fu; Liu Wenfeng

    2001-01-01

    In most of PWRs, the ex-core ion-chambers are the sole real-time sensors to respond to in-core power and its axial offset. However, the calibration coefficient of the ion-chambers depends on the (3D) power distribution and varies with the burn-up. People expect to know the variance in distribution caused by burn-up directly from the signals of ion-chambers. This expectation is not realized as yet, because an ion-chamber almost only responds to its nearest fuel assemblies. The authors then developed a two-step method for burn-up characteristic extraction: the harmonics synthesis method and harmonics' burn-up grouping. Using the extracted burn-up characteristics, the relationship between the readings of the ex-core ion-chambers and the in-core 3D power distribution is set up. Through the simulation on the heating reactor, the method of burn-up characteristic extraction is verified under engineering conditions. It is possible to on-line extract the variance caused by burn-up in 3D power distribution

  3. 40 CFR 600.113-78 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-78... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-78 Fuel economy calculations. The...

  4. 40 CFR 600.113-93 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-93... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-93 Fuel economy calculations. The...

  5. 40 CFR 600.113-88 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-88... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-88 Fuel economy calculations. The...

  6. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  7. A comparison study of the 1MeV triton burn-up in JET using the HECTOR and SOCRATE codes

    International Nuclear Information System (INIS)

    Gorini, G.; Kovanen, M.A.

    1988-01-01

    The burn-up of the 1MeV tritons in deuterium plasmas has been measured in JET for various plasma conditions. To interpret these measurements the containment, slowing down and burn-up of fast tritons needs to be modelled with a reasonable accuracy. The numerical code SOCRATE has been written for this specific purpose and a second code, HECTOR, has been adapted to study the triton burn-up problem. In this paper we compare the results from the two codes in order to exclude possible errors in the numerical models, to assess their accuracy and to study the sensitivity of the calculation to various physical effects. (author)

  8. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.

    2007-01-01

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  9. Temperature calculations and the effect of modelling the fuel mechanical behaviour

    International Nuclear Information System (INIS)

    Garcia, P.; Struzik, C.; Veyrier, N.

    1998-01-01

    Some of the aspects are overviewed pertaining to the thermal modelling included in the METEOR/TRANSURANUS fuel behaviour code. A summary of the basic modelling options of the code is given. Experiments for which the fuel centerline temperature is monitored in-pile are interpreted and used to illustrate the range of operating conditions and fuel types which the modelling covers. These include high burn-ups, MOX and gadolinium doped fuels. Although the expressions used for both the fuel thermal conductivity and the gap conductance are of major importance in accurately predicting the thermal response of a fuel rod, the effect of the fuel and cladding mechanical behaviour is also significant, albeit to a lesser degree. Its influence is mainly felt through the fuel-cladding gap size and in cases where the gap is closed, through the fuel cladding contact pressure. (author)

  10. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  11. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  12. Nuclide inventories of spent fuels from light water reactors

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Okamoto, Tsutomu

    2012-02-01

    Accurate information on nuclide inventories of spent fuels from Light Water Reactors (LWRs) is important for evaluations of criticality, decay heat, radioactivity, toxicity, and so on, in the safety assessments of storage, transportation, reprocessing and waste disposal of the spent fuels. So, a lot of lattice burn-up calculations were carried out for the possible fuel specifications and irradiation conditions in Japanese commercial LWRs by using the latest nuclear data library JENDL-4.0 and a sophisticated lattice burn-up calculation code MOSRA-SRAC. As a result, burn-up changes of nuclide inventories and their possible ranges were clarified for 21 heavy nuclides and 118 fission products, which are important from the viewpoint of impacts to nuclear characteristics and nuclear fuel cycle and environment. (author)

  13. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  14. Simulated LOCA Test and Characterization Study Related to High Burn-Up Issue

    International Nuclear Information System (INIS)

    Park, D. J.; Jung, Y. I.; Choi, B. K.; Park, S. Y.; Kim, H. G.; Park, J. Y.

    2012-01-01

    For the safety evaluation of fuel cladding during the injection of emergency core coolant, simulated Loss-of-coolant accident (LOCA) test was performed by using Zircaloy-4 fuel cladding samples. Zircaloy-4 tube samples with and without prehydring were oxidized in a steam environment with the test temperature of 1200 .deg. C. Prehydrided cladding was prepared from as-fabricated Zircaloy-4 to study the effects of hydrogen on mechanical properties of cladding during high temperature oxidation and quench conditions. In order to measure the ductility of the tube samples embrittled by quenching water, ring compression test was carried out by using 8 mm ring sample sectioned from oxidized tube sample and microstructural analysis was also performed after simulated LOCA test. The results showed that hydrogen increases oxygen solubility and pickup rate in the beta layer. This reduces ductility of prehydrided fuel cladding compared with as-fabricated cladding. Trend in ductility decrease for prehydrided sample under simulated LOCA condition was very similar with data obtained from tests conducted using irradiated high burn-up fuel claddings

  15. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  16. Mathematical dependence for the 137Cs concentration in spent nuclear fuel and its using for experimental data processing

    Directory of Open Access Journals (Sweden)

    V. V Galchenko

    2013-06-01

    Full Text Available The 137Cs behavior during burn up for VVER and RBMK fuel were analyzing. Mathematical dependence for the 137Cs concentration from fuel burn up in the form of is obtained. The formula’s calculation results on 137Cs concentration were compared with ORIGEN and STURBUCS of SCALE-5 computer codes system calculations with some RBMK-1000 fuel experimental data. Using offered dependence the RBMK experimental samples cooling time were founded and isotopic compositions calculations were made with proper cooling time. Difference on some isotopes between calculation and experimental data were reducing.

  17. Criticality calculation for cluster fuel bundles using grey Dancoff factor

    International Nuclear Information System (INIS)

    Hyeong Heon Kim; Nam Zin Cho

    1999-01-01

    This paper applies the grey Dancoff factor calculated by Monte Carlo method to the criticality calculation for cluster fuel bundles. Dancoff factors for five symmetrically different pin positions of CANDU37 and CANFLEX fuel bundles in full three-dimensional geometry are calculated by Monte Carlo method. The concept of equivalent Dancoff factor is introduced to use the grey Dancoff factor in the resonance calculation based on equivalence theorem. The equivalent Dancoff factor which is based on the realistic model produces an exact fuel collision probability and can be used in the resonance calculation just as the black Dancoff factor. The infinite multiplication factors based on the black Dancoff factors calculated by collision probability or Monte Carlo method are overestimated by about 2 mk for normal condition and 4 mk for void condition of CANDU37 and CANFLEX fuel bundles in comparison with those based on the equivalent Dancoff factors

  18. IN-CORE FUEL MANAGEMENT: PWR Core Calculations Using MCRAC

    Science.gov (United States)

    PetroviĆ, B. G.

    1991-01-01

    The following sections are included: * INTRODUCTION * IN-CORE FUEL MANAGEMENT CALCULATIONS * In-Core Fuel Management * Methodological Problems of In-Core Fuel Management * In-Core Fuel Management Analytical Tools * PENN STATE FUEL MANAGEMENT PACKAGE * Penn State Fuel Management Package (PFMP) * Assembly Data Description (ADD) * Linking PSU-LEOPARD and MCRAC: An Example * MULTICYCLE REACTOR ANALYSIS CODE (MCRAC) * Main Features and Options of MCRAC code * Core geometry * Diffusion equations * 1.5-group model * Multicycle neutronic analysis * Multicycle cost analysis * Criticality search * Power-dependent xenon feedback calculations * Control rod and burnable absorber simulation * Search for LP with flat BOC power distribution * Artificial ADD option * Variable dimensioning technique * RBI version of MCRAC code * Programming changes in PC version * Fuel interchange option * MCRAC Input/Output * General input description * Sample input * Sample output * EXPERIENCE WITH MCRAC CODE * CONCLUSIONS * REFERENCES

  19. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  20. Application of fuel management calculation codes for CANDU reactor

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun

    2003-01-01

    Qinshan Phase III Nuclear Power Plant adopts CANDU-6 reactors. It is the first time for China to introduce this heavy water pressure tube reactor. In order to meet the demands of the fuel management calculation, DRAGON/DONJON code is developed in this paper. Some initial fuel management calculations about CANDU-6 reactor of Qinshan Phase III are carried out using DRAGON/DONJON code. The results indicate that DRAGON/DONJON can be used for the fuel management calculation for Qinshan Phase III

  1. IGT calculates world reserves of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Institute of Gas Technology has published the IGT World Reserves Survey, giving their latest tabulation of world reserves of fossil fuels and uranium. The report contains 120 Tables and 41 Figures. Estimates are provided for proved reserves, resources, current production, and life indexes of the non-renewable energy sources of the US and of the world as a whole. World regional data are also provided in many cases. The data are summarized here. 2 figures, 5 tables

  2. Calculating the plutonium in spent fuel elements

    International Nuclear Information System (INIS)

    Barnham, Keith

    1992-01-01

    Many members of the public are concerned about plutonium. They are worried about its environmental, health and proliferation risks. Fundamental to all such considerations are two related questions: how much plutonium do nuclear reactors produce ? and how accurately do the relevant authorities know these production figures ? These two questions have been studied with particular reference to the UK civil Magnox reactors. In 1990 these were still the only UK civil reactors whose spent fuel had been reprocessed to extract plutonium in routine production. It has not been possible to conclude that the relevant government industry and safeguard authorities are aware of how much plutonium these reactors produce and that the figures are known to the highest achievable accuracy. To understand why, this chapter will outline some of the history of the attempts to get answers to these two questions. (author)

  3. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2016-12-01

    Radioactive iodine is the Achilles’ heel in the design for the safe geological disposal of spent UO2 nuclear fuel. Iodine’s high solubility and anticipated instant release during waste package compromise jeopardize performance assessment calculations. However, dissolution studies have indicated that the instant release fraction (IRF) of radioiodine (I) does not correlate with increasing fuel burn-up. In fact, there is a peak in the release iodine at around 50-60 Mwd/kgU and with increasing burn-up the instant release of iodine decreases. Detailed electron microscopy analysis of high burn-up fuel (~80 MWd/kgU) has revealed the presence of (Pd,Ag)(I,Br) nano-particles. As UO2 fuels are irradiated, the Ag and Pd content increases, from 239Pu fission, enabling radioiodine to be retained. The occurrence of these phases in nuclear fuels may have significant implications for the long-term behavior of iodine.

  4. UK regulatory perspective on the application of burn-up credit to the BNFL thorp head end plant

    International Nuclear Information System (INIS)

    Simister, D.N.; Clemson, P.D.

    2003-01-01

    In the UK the Health and Safety Executive, which incorporates the Nuclear Installations Inspectorate (NII), is responsible for regulation of safety on nuclear sites. This paper reports progress made in the application and development of a UK regulatory position for assessing licensee's plant safety caes which invoke the use of Burn-up Credit for criticality applications. The NII's principles and strategy for the assessment of this technical area have been developed over a period of time following expressions of interest from UK industry and subsequent involvement in the international collaborations and debate in this area. This experience has now been applied to the first main plant safety case application claiming Burn-up Credit. This case covers the BNFL Thermal Oxide Reprocessing Plant (THORP) dissolver at Sellafield, where dissolved gadolinium neutron poison is used as a criticality control. The case argues for a reduction in gadolinium content by taking credit for the burn-up of input fuel. The UK regulatory process, assessment principles and criteria are briefly outlined, showing the regulatory framework used to review the case. These issues include the fundamental requirement in UK Health and Safety law to demonstrate that risks have been reduced to as low as reasonably practicable (ALARP), the impact on safety margins, compliance and operability procedures, and the need for continuing review. Novel features of methodology, using a ''Residual Enrichment'' and ''Domain Boundary'' approach, were considered and accepted. The underlying validation, both of criticality methodology and isotopic determination, was also reviewed. Compliance was seen to rely heavily on local in-situ measurements of spent fuel used to determine ''Residual Enrichment'' and other parameters, requiring review of the development and basis of the correlations used to underpin the measurement process. Overall, it was concluded that the case as presented was adequate. Gadolinium reduction

  5. Modification of UO2 grain re-crystallization temperature in function of burn-up as a base for Vitanza experimental curve reconstruction

    International Nuclear Information System (INIS)

    Szuta, M.; Dąbrowski, L.

    2013-01-01

    Crossing the experimental critical fuel temperature dependent on burn-up, an onset of fission gas burst release is observed. This observed phenomena can be explained by assumption that the fission gas immobilization in the uranium dioxide irradiated to a fluency of greater than 10 19 fissions/cm 3 is mainly due to radiation induced chemical activity. Application of the “ab initio” method show that the bond energy of Xenon and Krypton is equal to –1.23 eV, and –3.42 eV respectively. Assuming further that the gas chemically bound can be released mainly in the process of re-crystallization and modifying the differential equation of Ainscough of grain growth by including the burn-up dependence and the experimental data of limiting grain size in function of the fuel temperature for the un-irradiated and irradiated fuel we can re-construct the experimental curve of Vitanza. (authors)

  6. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Science.gov (United States)

    2010-07-01

    ... gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and... sample of this calculation appears in Appendix II to this part. (4) For alcohol dual fuel automobiles and... tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel...

  7. PENENTUAN KANDUNGAN ISOTOP 235U DALAM PEB U3Si2-Al TMU 2,96 gU/cm3 UNTUK PERHITUNGAN BURN-UP

    Directory of Open Access Journals (Sweden)

    Boybul Boybul

    2016-03-01

    CONTENT OF ISOTOPE 235U IN PEB U3Si2-Al TMU 2.96 gU/cm3 FOR THE CALCULATION OF BURN-UP. 235U separation has been carried out in the solution of PEB U3Si2 - Al with loading of uranium (TMU 2.96 gU/cm3 at the Top. Top of PEB U3Si2-Al cut into three sections (triplo with code T1, T2 and T3. Weight of each PEB code T1 = 0.095 g, T2 = 0.086 g and T3 = 0.087 g and dissolved using HCl and HNO3 in hotcell. The purpose of this study was to determine the content of the isotope 235U in the solution PEB U3Si2-Al post-irradiation and subsequently used for the calculation of burn-up. 235U isotope separation in the solution PEB U3Si2 - Al was conducted using an anion exchange column method using Dowex1x8 resin. Pipette solution of 100 mL, and then put into a column containing Dowex resin with a weight of 1.2 g. U effluent results in the column was eluted using 0.1 M HCl, then dried and conducted electro-deposition process and then analyzed using a spectrometer-α. The analysis showed that the content of the isotope 235U obtained at T1 = 0.03665 g/g PEB, T2 = 0.003468 g/g PEB and T3 = 0.03208 g/g PEB with separation recovery of 63.71 %. The content of isotope 235U obtained is used for the calculation of burn-up. burn-up calculation results of PEB U3Si2-Al of Top section (T1, T2 and T3 were obtained respectively by 43.31 %, 49.48 % and 45.41 % or burn-up an average of 45.75 %. This data is smaller than a data burn-up of PEB U3Si2-Al of middle section of 50.69 % conducted by previous researchers. However, this data can not be used as an input to the reactor, due to should be equipped with a data burn-up of PEB U3Si2-Al of bottom section. Therefore, in the nextstudies will be conducted calculation of burn-up PEB U3Si2-Al of bottom section. Keywords: PEB U3Si2-Al post-irradiation, top, 235U, anion exchanger and burn-up.

  8. ANL calculational methodologies for determining spent nuclear fuel source term

    International Nuclear Information System (INIS)

    McKnight, R. D.

    2000-01-01

    Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements

  9. Calculation of fuel pin failure timing under LOCA conditions

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Siefken, L.J.; Straka, M.; Katsma, K.R.

    1992-01-01

    The objective of this research was to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox design (Oconee) and a Westinghouse 4-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using a four-code approach, comprised of FRAPCON-2, SCDAP/RELAP5/MOD3, TRAC-PF1/MOD1, and FRAP-T6. In addition to the calculation of timing results, this analysis provided a comparison of the capabilities of SCDAP/RELAP5/MOD3 with TRAC-PF1/MOD1 for large-break LOCA analysis. This paper discusses the methodology employed and the code development efforts required to implement the methodology. The shortest time intervals calculated between initiation of containment isolation and fuel pin failure were 11.4 s and 19.1 s for the Babcock and Wilcox and Westinghouse plants, respectively. The FRAP-T6 fuel pin failure times calculated using thermal-hydraulic data generated by SCDAP/RELAP5/MOD3 were more conservative than those calculated using data generated by TRAC-PF1/MOD1

  10. Calculation of fuel pin failure timing under LOCA conditions

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Siefken, L.J.; Straka, M.; Katsma, K.R.

    1991-10-01

    The objective of this research was to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) 4-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system (ECCS) availability, and main coolant pump trip on these items. The analysis was performed using a four-code approach, comprised of FRAPCON-2, SCDAP/RELAP5/MOD3, TRAC-PF1/MOD1, and FRAP-T6. In addition to the calculation of timing results, this analysis provided a comparison of the capabilities of SCDAP/RELAP5/MOD3 with TRAC-PF1/MOD1 for large-break LOCA analysis. This paper discusses the methodology employed and the code development efforts required to implement the methodology. The shortest time intervals calculated between initiation of containment isolation and fuel pin failure were 11.4 s and 19.1 for the B ampersand W and W plants, respectively. The FRAP-T6 fuel pin failure times calculated using thermal-hydraulic data generated by SCDAP/RELAP5/MOD3 were more conservative than those calculated using data generated by TRAC-PF1/MOD1. 18 refs., 7 figs., 4 tabs

  11. Calculation device for fuel power history in BWR type reactors

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)

  12. IFR starts to burn up weapons-grade material

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With funding from different parts of the federal government, the Integral Fast Reactor (IFR) project has survived into fiscal year 1994 and is now embarking on a demonstration of how this type of liquid-metal-cooled reactor (LMR) can be used to burn fuel derived from weapons-grade plutonium. This month, an assembly made from weapons-grade material is to be loaded into Experimental Breeder Reactor-II in Idaho, which is serving as the prototype for the IFR concept. Although FY 1994 work is being funded by the DOE, this particular examination of plutonium burnup is backed by the Department of Defense

  13. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  14. A procedure validation for high conversion reactors fuel elements calculation

    International Nuclear Information System (INIS)

    Ishida, V.N.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The present work includes procedure validation of cross sections generation starting from nuclear data and the calculation system actually used at the Bariloche Atomic Center Reactor and Neutrons Division for its application to fuel elements calculation of a high conversion reactor (HCR). To this purpose, the fuel element calculation belonging to a High Conversion Boiling water Reactor (HCBWR) was chosen as reference problem, employing the Monte Carlo method. Various cases were considered: with and without control bars, cold of hot, at different vacuum fractions. Multiplication factors, reaction rates, power maps and peak factors were compared. A sensitivity analysis of typical cells used, the approximations employed to solve the transport equation (Sn or Diffusion), the 1-D or 2-D representation and densification of the spatial network used, with the aim of evaluating their influence on the parameters studied and to come to an optimum combination to be used in future design calculations. (Author) [es

  15. Inventory charge calculations in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Salmon, R.

    1975-09-01

    Simplified methods are presented for the calculation of inventory charges or carrying charges on fuel, which represent the indirect component of the fuel cycle cost. These methods permit rapid calculation of the changes in fuel cycle cost caused by changes in the amount or timing of fuel cycle expenditures. The methods are developed by applying the discounted cash flow procedure to a single batch of fuel. In typical cases, this would be a batch representing equilibrium or steady-state reactor operation. The cost equations used are the same as those used in the computer code REFCO, described in ORNL-4695, which was based on the discounted cash flow procedure with continuous discounting. Equivalent procedures using the fixed charge rate concept also are developed. This is done in such a way that consistency with the discounted cash flow procedure is maintained. The fixed charge rate used here is defined in terms of tax rates and the interest rates on debt and equity capital. An effective inventory time is also defined. This is a function of the lead or lag time, the interest rates on capital, and the exposure time of the batch. Tabulated values of the effective inventory time and other useful functions, such as the ratio of indirect to direct cost, are included. Cost calculations using these tables agree with those produced by REFCO, the accuracy being within 0.001 mill/kWhr in the cases studied. (U.S.)

  16. Application Of WIMS Code To Calculation Kartini Reactor Parameters By Pin-Cell And Cluster Method

    International Nuclear Information System (INIS)

    Sumarsono, Bambang; Tjiptono, T.W.

    1996-01-01

    Analysis UZrH fuel element parameters calculation in Kartini Reactor by WIMS Code has been done. The analysis is done by pin cell and cluster method. The pin cell method is done as a function percent burn-up and by 8 group 3 region analysis and cluster method by 8 group 12 region analysis. From analysis and calculation resulted K ∼ = 1.3687 by pin cell method and K ∼ = 1.3162 by cluster method and so deviation is 3.83%. By pin cell analysis as a function percent burn-up at the percent burn-up greater than 59.50%, the multiplication factor is less than one (k ∼ < 1) it is mean that the fuel element reactivity is negative

  17. Comments on the Calculations of Specific Electricity and Fuel Consumption

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    Calculation of specific consumption of electricity and fuel for model electrical vehicles (passenger cars and vans). Both the present technological level and projected future technological developments. Used as background paper for a review of the scope for electrical vehicles in Denmark, carried...

  18. Calculation device for amount of heavy element nuclide in reactor fuels and calculation method therefor

    International Nuclear Information System (INIS)

    Naka, Takafumi; Yamamoto, Munenari.

    1995-01-01

    When there are two or more origins of deuterium nuclides in reactor fuels, there are disposed a memory device for an amount of deuterium nuclides for every origin in a noted fuel segment at a certain time point, a device for calculating the amount of nuclides for every origin and current neutron fluxes in the noted fuel segment, and a device for separating and then displaying the amount of deuterium nuclides for every origin. Equations for combustion are dissolved for every origin of the deuterium nuclides based on the amount of the deuterium nuclides for every origin and neutron fluxes, to calculate the current amount of deuterium nuclides for every origin. The amount of deuterium nuclides originated from uranium is calculated ignoring α-decay of curium, while the amount of deuterium nuclides originated from plutonium is calculated ignoring the generation of plutonium formed from neptunium. Deuterium nuclides can be measured and controlled accurately for every origin of the reactor fuels. Even when nuclear fuel materials have two or more nationalities, the measurement and control thereof can be conducted for every country. (N.H.)

  19. Temperature distribution calculations in TRIGA fuel element after the pulse

    International Nuclear Information System (INIS)

    Mele, I.; Ravnik, M.

    1992-01-01

    The computer program TEMPUL for calculating radial temperature distribution in a fuel element after the pulse operation is shortly described. It is based on one-dimensional diffusion equation for heat transfer in cylindrical geometry and implicit boundary condition at the element-coolant interface, defined by empirical boiling curve, which relates the heat flux from the rod and the difference between the fuel element surface temperature and water boiling point. As an example the results of such analysis of maximal allowed pulse at TRIGA Mark II reactor in Ljubljana are presented. (author) [sl

  20. Preliminary design study of a board type radial fuel shuffling sodium cooled breed and burn reactor core

    International Nuclear Information System (INIS)

    Zheng, Meiyin; Tian, Wenxi; Chu, Xiao; Zhang, Dalin; Qiu, Suizheng; Su, Guanghui

    2014-01-01

    Highlights: • A 1500MWt radial fuel shuffling sodium cooled breed and burn reactor core was designed. • The board type radial fuel shuffling strategy was applied and demonstrated. • Influences of the fuel height and core radius were investigated. - Abstract: In this paper, a preliminary board type radial fuel shuffling sodium cooled breed and burn reactor core is designed. In the current design, a number of breeding subassemblies are arranged in the center core to ensure enough breeding. A self-developed MCNP-ORIGEN coupled system with the ENDF/B-VI data library is applied to perform neutronics and burn-up calculations. For a 2.0 m radius and 2.5 m height core, the results demonstrate the feasibility of the board type radial fuel shuffling strategy. Breeding mainly occurs in the breeding subassemblies during the first 6 fuel cycles as they are moved to the burning/breeding region. The core will become asymptotically stable after about 24 years. The discharged burn-up of most subassemblies is about 15.0–30.0%. The influences of the core size on the major core parameters, such as initial k eff , steady k eff , maximum power density, peak burn-up and burn-up ratio between breeding and ignition subassemblies are calculated and investigated. The results indicate that the initial k eff increases with fuel height and core radius and finally reaches stability; the steady k eff increases with fuel height and core radius, then reaches peak value and finally decreases; the maximum power density, the peak burn-up and the burn-up ratio between breeding and ignition subassemblies decrease with the increase of fuel height and core radius; if core radius is less than 1.875 m, they increase sharply with the decrease of core radius

  1. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat this latter effect permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. The benchmark exercise has resolved a potentially dangerous inadequacy in dissolver calculations. (author)

  2. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-27

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can cause collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.

  3. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  4. 40 CFR Appendix II to Part 600 - Sample Fuel Economy Calculations

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Calculations II... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. II Appendix II to Part 600—Sample Fuel Economy Calculations (a) This sample fuel economy calculation is applicable to...

  5. Calculation Analysis of San Onofre Depletion MOX Fuel Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovichev, AM

    2001-08-31

    The report provides calculation results of isotopic composition of spent MOX fuel irradiated in Sun Onofre PWR reactor. The calculation was performed by means of the MCU/BURNUP Monte Carlo code. The code is developed in Kurchatov Institute, Russia. The predicted isotope contents are compared with the measured ones. A purpose of this work is a verification both the code and the model of experiment description. Predicted plutonium content exceeds the measured one approximately by 3%. It is arise mainly from error of {sup 239}Pu isotope. Isotopic contents of the main plutonium and uranium isotopes are predicted with satisfactory precision.

  6. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  7. Verification of annular fuel design code 'CEPTAR'. Verification with the irradiation data of JOYO Mk-II driver fuel

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    Annual fuel design code 'CEPTAR' was verified with irradiation data of JOYO Mk-II driver fuel as part of high burn-up MOX fuel development. To estimate irradiation behavior of JOYO Mk-II driver fuel, the pellet swelling equation evaluated with the PIE data of JOYO Mk-II driver fuel and the PNC316 property equations (swelling and irradiation creep) were added to CEPTAR code. As a result of verification by using the irradiation data of JOYO Mk-II driver fuel, the calculated values with CEPTAR code were in agreement with the observed values from the result of PIEs up to pellet peak burn-up ∼76,000MWd/t. (author)

  8. RA3: Application of a calculation model for fuel management with SEFE (Slightly Enriched Fuel Elements)

    International Nuclear Information System (INIS)

    Estryk, G.; Higa, M.

    1993-01-01

    The RA-3 (5 MW, MTR) reactor is mainly utilized to produce radioisotopes (Mo-99, I-131, etc.). It started operating with Low Enrichment Uranium (LEU) in 1990, and spends around 12 fuels per year. Although this consumption is small compared to a nuclear power station. It is important to do a good management of them. The present report describes: - A reactor model to perform the Fuel Shuffling. - Results of fuel management simulations for 2 and a half years of operation. Some features of the calculations can be summarized as follows: 1) A 3D calculation model is used with the code PUMA. It does not have experimental adjustments, except for some approximations in the reflector representation and predicts: power, flux distributions and reactivity of the core in an acceptable way. 2) Comparisons have been made with the measurements done in the commissioning with LEU fuels, and it has also been compared with the empirical method (the previous one) which had been used in the former times of operation with LEU fuel. 3) The number of points of the model is approximately 13500, an it can be run in 80386 personal computer. The present method has been verified as a good tool to perform the simulations for the fuel management of RA-3 reactor. It is expected to produce some economic advantages in: - Achieving a better utilization of the fuels. - Leaving more time of operation for radioisotopes production. The activation measurements through the whole core required by the previous method can be significantly reduced. (author)

  9. Optimization of in-core fuel management strategy of Tehran Research Reactor (TRR) using MCNP-4C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, M., E-mail: mkeyvani@aeoi.org.i [Atomic Energy Organization of Iran, Nuclear Science and Technology Research Institute (NSTRI), Reactor and Accelerator Research and Development School, End of Karegar Ave., Tehran 14155-1339 (Iran, Islamic Republic of); Arkani, M., E-mail: markani@aeoi.org.i [Atomic Energy Organization of Iran, Nuclear Science and Technology Research Institute (NSTRI), Reactor and Accelerator Research and Development School, End of Karegar Ave., Tehran 14155-1339 (Iran, Islamic Republic of); Rokh, A. Hossni, E-mail: ahossnirokh@aeoi.org.i [Atomic Energy Organization of Iran, Nuclear Science and Technology Research Institute (NSTRI), Reactor and Accelerator Research and Development School, End of Karegar Ave., Tehran 14155-1339 (Iran, Islamic Republic of)

    2010-12-15

    In order to optimize fuel utilization in TRR, the method of fuel management is modified using MCNP-4C code system. An important parameter of fuel management is the uniformity of neutron flux distribution in the core region, which is obtained efficiently in the present strategy. This strategy is based on calculation of position factors and power densities utilizing MCNP simulations. This study shows that the core life time and average extracted burn up of spent fuel elements of TRR are improved significantly.

  10. Mutually concerted neutron-physical and thermo-physical calculations of VVER fuel kernels

    International Nuclear Information System (INIS)

    Baranov, V.G.; Kudryashov, N.A.; Sal’dikov, I. S.; Tenishev, A. V.; Ternovykh, M. Yu.; Tikhomirov, G. V.; Khlunov, A. V.; Tsibulsky, S.V.; Chmykhov, M.A.

    2013-01-01

    Various mathematical algorithms and computer codes may be used to study time dependencies of isotopic compositions and maximal temperatures in fuel rods of nuclear reactors. In connection with designing of new-generation fuel assemblies (FA) and upgrading of computer engineering techniques, the problem related with achieving better accuracy in mathematical simulation of these FA parameters becomes more actual one. Development of new mathematical algorithms and computer codes for modeling time-dependent behavior of isotopic compositions of maximal temperatures in all fuel rod components requires availability of some benchmark tasks for verification of the algorithms and codes. The presentation describes a set of the benchmark tasks needed to verify the algorithms for determination of maximal temperatures in fuel rods of VVER-type reactors at various phases of fuel burn-up. If the benchmark tasks are resolved with application of different high-precision computer codes, then systematization of these solutions makes it possible to evaluate the uncertainty range of maximal temperatures obtained with application of different modeling approaches. (authors)

  11. TRIGA FUEL PHASE I AND II CRITICALITY CALCULATION

    International Nuclear Information System (INIS)

    Angers, L.

    1999-01-01

    The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside a five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation. This calculation will support the analysis that will be performed to demonstrate the viability of the codisposal concept for the Monitored Geologic Repository (MGR)

  12. Comparison of matrix exponential methods for fuel burnup calculations

    International Nuclear Information System (INIS)

    Oh, Hyung Suk; Yang, Won Sik

    1999-01-01

    Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7. (author). 11 refs., 4 figs., 2 tabs

  13. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... fuel economy calculations. This section applies to data used for fuel economy labeling under Subpart D...

  14. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  15. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... Values § 600.207-93 Calculation of fuel economy values for a model type. (a) Fuel economy values for a... update sales projections at the time any model type value is calculated for a label value. (iii) The... those intended for sale in other states, he will calculate fuel economy values for each model type for...

  16. Comparative study for axial and radial shuffling scheme effect on the performance of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input

    International Nuclear Information System (INIS)

    Zaki Suud; Indah Rosidah; Maryam Afifah; Ferhat Aziz; Sekimoto, H.

    2013-01-01

    Full text:Comparative study for the Design of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input using special radial shuffling strategy and axial direction modified CANDLE burn-up scheme has been performed. The reactors utilizes UN-PuN as fuel, Eutectic Pb-Bi as coolant, and can be operated without refueling for 10 years in each batch. Reactor design optimization is performed to utilize natural uranium as fuel cycle input. This reactor subdivided into 6-10 regions with equal volume in radial directions. The natural uranium is initially put in region 1, and after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions. The calculation has been done by using SRAC-Citation system code and JENDL-3.2 library. The effective multiplication factor change increases monotonously during 10 years reactor operation time. There is significant power distribution change in the central part of the core during the BOC and the EOC in the radial shuffling system. It is larger than that in the case of modified CANDLE case which use axial direction burning region move. The burn-up level of fuel is slowly grows during the first 15 years but then grow faster in the rest of burn-up history. This pattern is a little bit different from the case of modified CANDLE burn-up scheme in Axial direction in which the slow growing burn-up period is relatively longer almost half of the burn-up history. (author)

  17. Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction

    Science.gov (United States)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    A design study of small Gas Cooled Fast Reactor with two region fuel has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region fuel i.e. 60% fuel fraction of Natural Uranium as inner core and 65% fuel fraction of Natural Uranium as outer core. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 filled by fresh Natural Uranium. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium on each region-1. The burn-up calculation is performed using collision probability method PIJ (cell burn-up calculation) in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation in CITATION code. This reactor can results power thermal 600 MWth with average power density i.e. 80 watt/cc. After reactor start-up the operation, furthermore reactor only needs Natural Uranium supply for continue operation along 100 years. This calculation result then compared with one region fuel design i.e. 60% and 65% fuel fraction. This core design with two region fuel fraction can be an option for fuel optimization.

  18. CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION

    Directory of Open Access Journals (Sweden)

    Dávid Halabuk

    2015-12-01

    Full Text Available The elementary parts of every fuel assembly, and thus of the reactor core, are fuel rods. The main function of cladding is hermetic separation of nuclear fuel from coolant. The fuel rod works in very specific and difficult conditions, so there are high requirements on its reliability and safety. During irradiation of fuel rods, a state may occur when fuel pellet and cladding interact. This state is followed by changes of stress and deformations in the fuel cladding. The article is focused on stress and deformation analysis of fuel cladding, where two fuels are compared: a fresh one and a spent one, which is in contact with cladding. The calculations are done for 4 different shapes of fuel pellets. It is possible to evaluate which shape of fuel pellet is the most appropriate in consideration of stress and deformation forming in fuel cladding, axial dilatation of fuel, and radial temperature distribution in the fuel rod, based on the obtained results.

  19. 40 CFR 600.510-86 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... Trucks and Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600...

  20. 40 CFR 600.510-93 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... Trucks and Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600...

  1. 40 CFR 600.510-08 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... Trucks and Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600...

  2. A non-destructive technique for qualitative and attribute verification of spent fuel elements

    International Nuclear Information System (INIS)

    Vana, N.

    1982-08-01

    Some results of spent fuel measurements at Halden HWR (Norway) are described. Three irradiated assemblies were measured by using solid state track records (SSTR), thermo luminescent detectors (TLD) and small ion (IC) and fission chambers (FC). The burn-up range was from 5 to 40 GWd/t, cooling time varied from approximately 3.5 months to 12 years. The gross gamma and neutron burn-up profiles, obtained by using the above mentioned techniques are identical. The exposure time for SSTR's varied from 10 to 50 minutes. One should note that SSTR's were quite sensitive and allowed the authors to observe an ''enrichment'' effect: at nearly the same burn-up values (approximately 37 GWd/t), the assembly with lower U-235 enrichment (5.08%) had higher neutron emission than the assembly with 8% enrichment. A simple power function relationship between the neutron rate and burn-up were derived: neutron rate = α.(burn-up)sup(β), where α approximately equals 7.10 -14 ; β approximately equals 3.1 +- 47% for enrichment epsilon = 5.1% and α approximately equals 6.10 -12 ; β approximately equals 2.5 +- 62% for enrichment epsilon = 8%. These data are in qualitative agreement with the IAEA spent fuel measurements at Loviisa (Finland) and Kozloduy (Bulgaria). They also agree with the Los Alamos calculations of the neutron emission due mainly to the spontaneous fission of some curium isotopes: Cm-242 and Cm-244

  3. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called Mizer...

  4. 40 CFR 600.207-86 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... Values § 600.207-86 Calculation of fuel economy values for a model type. (a) Fuel economy values for a... update sales projections at the time any model type value is calculated for a label value. (iii) The... the projected sales and fuel economy values for each base level within the model type. (1) If the...

  5. Resin bead methodology as applied to fuel burn-up and fissile inventories

    International Nuclear Information System (INIS)

    Smith, D.H.; Walker, R.L.; Carter, J.A.

    1986-01-01

    A new technique has been developed that allows acquisition of samples from matrices difficult to access. While the examples given in this paper are from the nuclear field, the technique is readily modified to address other areas. The technique involves obtaining samples on resin beads; each bead then comprises a sample for mass spectrometric analysis. Through the application of isotope dilution, concentrations of the target elements can be obtained in addition to their isotopic compositions. Examples of application of this technique are given for U, Pu, and Nd. 19 refs., 3 figs., 3 tabs

  6. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  7. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    International Nuclear Information System (INIS)

    Schwegler, E.C.; Maudlin, P.J.

    1983-01-01

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  8. Developing and analyzing long-term fuel management strategies for an advanced Small Modular PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aeoi.org.ir

    2017-03-15

    Highlights: • Comprehensive introduction and supplementary concepts as a review paper. • Developing an integrated long-term fuel management strategy for a SMR. • High reliable 3-D core modeling over fuel pins against the traditional LRM. • Verifying the expert rules of large PWRs for an advanced small PWR. • Investigating large numbers of safety parameters coherently. - Abstract: In this paper, long-term fuel management (FM) strategies are introduced and analyzed for a new advanced Pressurized Light Water Reactor (PWR) type of Small Modular Reactors (SMRs). The FM strategies are developed to be safe and practical for implementation as much as possible. Safety performances, economy of fuel, and Quality Assurance (QA) of periodic equilibrium conditions are chosen as the main goals. Flattening power density distribution over fuel pins is the major method to ensure safety performance; also maximum energy output or permissible discharging burn up indicates economy of fuel fabrication costs. Burn up effects from BOC to EOC have been traced, studied, and highly visualized in both of transport lattice cell calculations and diffusion core calculations. Long-term characteristics are searched to gain periodical equilibrium characteristics. They are fissile changes, neutron spectrum, refueling pattern, fuel cycle length, core excess reactivity, average, and maximum burn up of discharged fuels, radial Power Peaking Factors (PPF), total PPF, radial and axial power distributions, batch effects, and enrichment effects for fine regulations. Traditional linear reactivity model have been successfully simulated and adapted via fine core and burn up calculations. Effects of high burnable neutron poison and soluble boron are analyzed. Different numbers of batches via different refueling patterns have been studied and visualized. Expert rules for large type PWRs have been influenced and well tested throughout accurate equilibrium core calculations.

  9. Power and combustion rate determination of irradiated nuclear fuels at Osiris by in pile gamma spectrometry

    International Nuclear Information System (INIS)

    Musso, J.F.

    1976-01-01

    The OSIRIS reactor is a particularly well suited tool for the study of the various types of reactors, either in normal operation or under emergency conditions. Among the reference parameters which allow a comparison between irradiation conditions in an experimental and a power reactor, the specific burn-up and the power are of importance. until now, no single method of power and burn up measurement could give simultaneously precise results and fast measurements without destroying the fuel itself. Hence the incentive to make use of in-pile gamma fuel scanning to provide an overall answer to these questions. Chapter 1 reviews the most important experimental methods of determination of the specific burn up and of irradiation power and a summary of the principles of in-pile gamma fuel scanning. Chapter 2 describes the tools, the calculation programs and the experimental apparatus used in this study. Chapter 3 is concerned with the determination of the specific burn up using in-pile gamma fuel scanning. Chapter 4 describes the method of determination of the irradiation power and gives the first experimental results [fr

  10. The CEA-FRAGEMA ramp test programme for the study of the effect of power cycling on PCI at high burn-up

    International Nuclear Information System (INIS)

    Joseph, J.; Atabek, R.; Trotabas, M.

    1983-01-01

    The ramp test programme developed jointly by FRAGEMA and CEA is presented. Today, more than thirty PWR fuel rods have been ramp-tested in experimental reactors SILOE and OSIRIS. Nineteen fuel rods, named 'PRISCA', were base irradiated in BR3 and twelve fuel rods have been refabricated in hot cell by the FABRICE technique. The average fuel burn-up lies between 11 GWd.tU -1 and 46 GWd.tU -1 . In the major cases, the flux profile, during ramp-test, was decentred with respect to the base irradiated flux, and allows to obtain much more information than with a centred flux profile. The failure threshold was established under a set of more than thirty fuel rods of various designs. In particular, the post irradiation examinations allow to locate all rupture locations and thus to define precisely the threshold condition for failure of fuel rods. As an example, the results obtained in the PRISCA 109 experiments are presented. The refabricated fuel rods FABRICE behave identically, with regard to PCI, rather than PRISCA rods. An example of load follow transient in a PWR reactor is presented, and indicates any risk of failure due to PCI. (author)

  11. TEMP: a computer code to calculate fuel pin temperatures during a transient

    International Nuclear Information System (INIS)

    Bard, F.E.; Christensen, B.Y.; Gneiting, B.C.

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method

  12. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using the...

  13. Parameter definition for reactor physics calculation of Obrigheim KWO PWR type reactor using the Gels and Erebus codes

    International Nuclear Information System (INIS)

    Faya, A.G.; Nakata, H.; Rodrigues, V.G.; Oosterkamp, W.J.

    1974-01-01

    The main variables for Obrigheim Reactor - KWO diffusion theory calculations, using the EREBUS code were defined. The variables under consideration were: mesh spacing for reactor description, time-step in burn-up calculation, and the temperature in both the moderator and the fuel. The best mesh spacing and time-step were defined considering the relative deviations and the computer time expended in each case. It has been verified that the error involved in the mean fuel temperature calculation (1317 0 K as given by SIEMENS and 1028 0 K as calculated by Dr. Penndorf) does not change substancially the calculation results

  14. Verification calculations for the WWER version of the TRANSURANUS code

    International Nuclear Information System (INIS)

    Elenkov, D.; Boneva, S.; Georgieva, M.; Georgiev, S.; Schubert, A.; Van Uffelen, P.

    2006-01-01

    The paper presents part of the work performed in the study project 'Research and Development for Licensing of Nuclear Fuel in Bulgaria'. The main objective of the project is to provide assistance for solving technical questions of the fuel licensing process in Bulgaria. One important issue is the extension of the predictive capabilities of fuel performance codes for Russian-type WWER reactors. In the last decade, a series of international projects has been based on the TRANSURANUS fuel performance code: Specific models for WWER fuel have been developed and implemented in the code in the late 90's. In 2000-2003, basic verification work was done by using experimental data of nuclear fuel irradiated in WWER-440 reactors. While the present paper focuses on the analysis of WWER-1000 standard fuel under normal operating conditions, the above study project covers additional tasks: 1) Post-irradiation calculations of ramp tests performed in the DR3 test reactor of the Risoe National Laboratory (five instrumented fuel rods of the Risoe 3 dataset contained in the IFPE database) using the TRANSURANUS code; 2) Compilation of cross-section libraries for isotope evolution calculations in WWER-440 and WWER-1000 fuel assemblies using the ORIGEN-S code; 3) Analysis of current situation and needs for an extension of the curriculum in Nuclear Engineering at the Technical University of Sofia. In this paper the post-irradiation calculations of steady-state irradiation experiments with nuclear fuel for Russian-type WWER-1000 reactors, using the latest release of the TRANSURANUS code (v1m1j03)are presented. Regarding a comprehensive verification of modern fuel performance codes, the burn-up region above 40 MWd/kgU is of increasing importance. A number of new phenomena emerge at high fuel burn-up, implying the need for enlarged databases of postirradiation examinations (PIE). For one fuel assembly irradiated in a WWER-1000 reactor with a rod discharge burn-up between 50 and 55 MWd

  15. Criticality calculation for cluster fuel bundles using monte carlo generated grey dancoff factor

    International Nuclear Information System (INIS)

    Kim, Hyeong Heon; Cho, Nam Zin

    1999-01-01

    The grey Dancoff factor calculated by Monte Carlo method is applied to the criticality calculation for cluster fuel bundles. Dancoff factors for five symmetrically different pin positions of CANDU37 and CANFLEX fuel bundles in full three-dimensional geometry are calculated by Monte Carlo method. The concept of equivalent Dancoff factor is introduced to use the grey Dancoff factor in the resonance calculation based on equivalence theorem. The equivalent Dancoff factor which is based on the realistic model produces an exact fuel collision probability and can be used in the resonance calculation just as the black Dancoff factor. The infinite multiplication factors based on the black Dancoff factors calculated by collision probability or Monte Carlo method are overestimated by about 2mk for normal condition and 4mk for void condition of CANDU37 and CANFLEX fuel bundles in comparison with those based on the equivalent Dancoff factors

  16. In-core thermal hydraulic and fission product calculations for severe fuel damage analysis

    International Nuclear Information System (INIS)

    Suh, K.Y.; Sharon, A.; Hammersley, R.J.

    1989-01-01

    In this paper, best-estimate calculations of realistic source terms are presented which reduce uncertainties in predicting volatile fission product release from the UO 2 fuel over the temperature range between 770 K and 2500 K. The proposed method of correlation includes such fuel morphology effects as equiaxed grain growth and fuel-cladding interaction. The method relates the product of fuel release rate and equiaxed grain size with the inverse fuel temperature to yield a bulk mass transfer correlation. Computer codes were written to perform the thermal hydraulic and fission product calculations needed to analyze the Power Burst Facility Severe Fuel Damage tests. The predictions utilizing the bulk mass transfer correlations overall followed the experimental time-release histories during the course of the heatup, power hold and cooldown phases of the transients. Good agreements were achieved for the integral releases. The proposed bulk mass transfer correlations can be applied to both current and advanced light water reactor fuels

  17. Calculation of fuel element temperature TRIGA 2000 reactor in sipping test tubes using CFD

    International Nuclear Information System (INIS)

    Sudjatmi KA

    2013-01-01

    It has been calculated the fuel element temperature in the sipping test of Bandung TRIGA 2000 reactor. The calculation needs to be done to ascertain that the fuel element temperatures are below or at the limit of the allowable temperature fuel elements during reactor operation. ensuring that the implementation of the test by using this device, the temperature is still within safety limits. The calculation is done by making a model sipping test tubes containing a fuel element surrounded by 9 fuel elements. according to the position sipping test tubes in the reactor core. by using Gambit. Dimensional model adapted to the dimensions of the tube and the fuel element in the reactor core of Bandung TRIGA 2000 reactor. Sipping test Operation for each fuel element performed for 30 minutes at 300 kW power. Calculations were performed using CFD software and as input adjusted parameters of TRIGA 2000 reactor. Simulations carried out on the operation of the 30, 60, 90, 120, 150, 180 and 210 minutes. The calculation result shows that the temperature of the fuel in tubes sipping test of 236.06 °C, while the temperature of the wall is 87.58 °C. The maximum temperature in the fuel center of TRIGA 2000 reactor in normal operation is 650 °C. and the boiling is not allowed in the reactor. So it can be concluded that the operation of the sipping test device are is very safe because the fuel center temperature is below the temperature limits the allowable fuel under normal operating conditions as well as the fuel element wall temperature is below the boiling temperature of water. (author)

  18. From laboratory experiments to a geological disposal vault: calculation of used nuclear fuel dissolution rates

    International Nuclear Information System (INIS)

    Sunder, S.; Shoesmith, D.W.; Kolar, M.; Leneveu, D.M.

    1998-01-01

    Calculation of used nuclear fuel dissolution rates in a geological disposal vault requires a knowledge of the redox conditions in the vault. For redox conditions less oxidizing than those causing UO 2 oxidation to the U 3 O 7 , stage, a thermodynamically-based model is appropriate. For more oxidizing redox conditions a kinetic or an electrochemical model is needed to calculate these rates. The redox conditions in a disposal vault will be affected by the radiolysis of groundwater by the ionizing radiation associated with the fuel. Therefore, we have calculated the alpha-, beta- and gamma-dose rates in water in contact with the reference used fuel in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) as a function of cooling time. Also, we have determined dissolution rates of UO 2 fuel as a function of alpha and gamma dose rates from our electrochemical measurements. These room-temperature rates are used to calculate the dissolution rates of used fuel at 100 o C, the highest temperature expected in a container in the CNFWMP, as a function of time since emplacement. It is shown that beta radiolysis of water will be the main cause of oxidation of used CANDU fuel in a failed container. The use of a kinetic or an electrochemical corrosion model, to calculate fuel dissolution rates, is required for a period of ∼1000 a following emplacement of copper containers in the geologic disposal vault envisaged in the CNFWMP. Beyond this time period a thermodynamically-based model adequately predicts the fuel dissolution rates. The results presented in this paper can be adopted to calculate used fuel dissolution rates for other used UO 2 fuels in other waste management programs. (author)

  19. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... section; or (ii) For alcohol-fueled model types, the fuel economy value calculated for that model type in...) For alcohol dual fuel model types, for model years 1993 through 2019, the harmonic average of the... combined model type fuel economy value for operation on alcohol fuel as determined in § 600.208-12(b)(5)(ii...

  20. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  1. Validation of the COBRA code for dry out power calculation in CANDU type advanced fuels

    International Nuclear Information System (INIS)

    Daverio, Hernando J.

    2003-01-01

    Stern Laboratories perform a full scale CHF testing of the CANFLEX bundle under AECL request. This experiment is modeled with the COBRA IV HW code to verify it's capacity for the dry out power calculation . Good results were obtained: errors below 10 % with respect to all data measured and 1 % for standard operating conditions in CANDU reactors range . This calculations were repeated for the CNEA advanced fuel CARA obtaining the same performance as the CANFLEX fuel. (author)

  2. Very fast mass balance and other fuel cycle response calculations for studying back end of fuel cycle scenari

    International Nuclear Information System (INIS)

    Dekens, O.; Marguet, S.; Risch, P.

    1997-01-01

    In order to optimize nuclear fuel utilization, as far as irradiation and storage are concerned, the Research and Development Division of Electricite de France (EDF) developed as fast and accurate software that simulates a fuel assembly life from the inside-reactor stay to the final repository: STRAPONTIN. The discrepancies between reference calculations and STRAPONTIN are generally smaller than 5 %. Moreover, the low calculation time enables to couple STRAPONTIN to any large code in order to widen its scope without impairing its CPU time. (authors)

  3. Stress Calculation of a TRISO Coated Particle Fuel by Using a Poisson's Ratio in Creep Condition

    International Nuclear Information System (INIS)

    Cho, Moon-Sung; Kim, Y. M.; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Kim, W. K.

    2007-01-01

    KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) project since 2004, has been developing a performance analysis code for the TRISO coated particle fuel named COPA (COated Particle fuel Analysis). COPA predicts temperatures, stresses, a fission gas release and failure probabilities of a coated particle fuel in normal operating conditions. KAERI, on the other hand, is developing an ABAQUS based finite element(FE) model to cover the non-linear behaviors of a coated particle fuel such as cracking or debonding of the TRISO coating layers. Using the ABAQUS based FE model, verification calculations were carried out for the IAEA CRP-6 benchmark problems involving creep, swelling, and pressure. However, in this model the Poisson's ratio for elastic solution was used for creep strain calculation. In this study, an improvement is made for the ABAQUS based finite element model by using the Poisson's ratio in creep condition for the calculation of the creep strain rate. As a direct input of the coefficient in a creep condition is impossible, a user subroutine for the ABAQUS solution is prepared in FORTRAN for use in the calculations of the creep strain of the coating layers in the radial and hoop directions of the spherical fuel. This paper shows the calculation results of a TRISO coated particle fuel subject to an irradiation condition assumed as in the Miller's publication in comparison with the results obtained from the old FE model used in the CRP-6 benchmark calculations

  4. Mechanical and thermomechanical calculations related to the storage of spent nuclear-fuel assemblies in granite

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1980-05-01

    A generic test of the geologic storage of spent-fuel assemblies is being made at Nevada Test Site. The spent-fuel assemblies were emplaced at a depth of 420 m (1370 ft) below the surface in a typical granite and will be retrieved at a later time. The early time, close-in thermal history of this type of repository is being simulated with spent-fuel and electrically heated canisters in a central drift, with auxiliary heaters in two parallel side drifts. Prior to emplacement of the spent-fuel canisters, preliminary calculations were made using a pair of existing finite-element codes, ADINA and ADINAT

  5. Gamma dose rate calculations for conceptual design of a shield system for spent fuel interim dry storage in CNA 1

    International Nuclear Information System (INIS)

    Blanco, A; Gomez S

    2012-01-01

    parametric study, radial dose rates and the spectra of photons, for different internal radii and different numbers charged SFE in the system, were also verified for each code. The motivation of this more detailed analysis was based in the fact that the SFE arranged in crowns also contribute to the radial shielding of the radiation that becomes from those SFE located in the innermost zones of the system. For each case it was implemented different detectors and importance schemes, adapting the different possibilities offered by each code in order to obtain comparable results. In all cases it was used a conservative photon source term, calculated with ORIGEN-ARP module for SFE of Low Enriched Uranium (LEU) with a maximum burn up of 12490 [MWd / tU] and 10 years of decay in water pools(author)

  6. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes

    International Nuclear Information System (INIS)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-01-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  7. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  8. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  9. Contribution to the experimental qualification of PWR fuel storage calculations

    International Nuclear Information System (INIS)

    Marsault, Philippe.

    1980-12-01

    Experiments were carried out on assemblies representative of those used in PWR reactors in a configuration made critical with a driver zone. In this way, certain parameters were able to be measured using current classical techniques. As the multiplication factor for a group of assemblies cannot be determined directly, substitutions were made with an equivalent homogeneous lattice in which Laplacian measurements could be made. The k(infinite) factor was obtained by introducing a migration area which can only be obtained from calculations. Experimental storage studies realized during the CRISTO 1 campaign utilize: 1) a lattice with 4 14x14 pin assemblies immersed in ordinary water; 2) a lattice with 4 14x14 pin assemblies and 3) a regular lattice. The CRISTO experiment enabled criticality calculations to be qualified with these lattices for storage under accidental conditions [fr

  10. Detailed channel thermal-hydraulic calculation of nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.; Ushakov, P.A.; Yur'ev, Yu.S.

    1981-01-01

    The system of equations of mass balance, quantity of motion and energy used in calculation of nuclear reactor fuel assemblies is obtained. The equation system is obtained on the base of integral equations of hydrodynamics interaction in assemblies of smooth fuel elements and fuel elements with wire packing. The calculation results of coolant heating distributions by the fast reactor assembly channels are presented. The analysis of the results obtained shows that interchannel exchange essentially uniforms the coolant heating distribution in the peripheral range of the assembly but it does not remove non-uniformity caused by power distribution non-uniformity in the cross section. Geometry of the peripheral assembly range plays an essential role in the heating distribution. Change of the calculation gap between the peripheral fuel elements and assembly shells can result either in superheating or in subcooling in the peripheral channels relatively to joint internal channels of the assembly. Heat supply to the coolant passing through interassembly gaps decreases temperature in the assembly periphery and results in the increase of temperature non-uniformity by the perimeter of peripheral fuel elements. It is concluded that the applied method of the channel-by-channel calculation is ef-- fective in thermal-physical calculation of nuclear reactor fuel assemblies and it permits to solve a wide range of problems [ru

  11. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  12. An equivalence relation and grey Dancoff factor calculated by monte Carlo method for irregular fuel assemblies

    International Nuclear Information System (INIS)

    Kim, Hyeong Heon

    2000-02-01

    The equivalence theorem providing a relation between a homogeneous and a heterogeneous medium has been used in the resonance calculation for the heterogeneous system. The accuracy of the resonance calculation based on the equivalence theorem depends on how accurately the fuel collision probability is expressed by the rational terms. The fuel collision probability is related to the Dancoff factor in closely packed lattices. The calculation of the Dancoff factor is one of the most difficult problems in the core analysis because the actual configuration of fuel elements in the lattice is very complex. Most reactor physics codes currently used are based on the roughly calculated black Dancoff factor, where total cross section of the fuel is assumed to be infinite. Even the black Dancoff factors have not been calculated accurately though many methods have been proposed. The equivalence theorem based on the black Dancoff factor causes some errors inevitably due to the approximations involved in the Dancoff factor calculation and the derivation of the fuel collision probability, but they have not been evaluated seriously before. In this study, a Monte Carlo program - G-DANCOFF - was developed to calculate not only the traditional black Dancoff factor but also grey Dancoff factor where the medium is described realistically. G-DANCOFF calculates the Dancoff factor based on its collision probability definition in an arbitrary arrangement of cylindrical fuel pins in full three-dimensional fashion. G-DANCOFF was verified by comparing the black Dancoff factors calculated for the geometries where accurate solutions are available. With 100,000 neutron histories, the calculated results by G-DANCOFF were matched within maximum 1% and in most cases less than 0.2% with previous results. G-DANCOFF also provides graphical information on particle tracks which makes it possible to calculate the Dancoff factor independently. The effects of the Dancoff factor on the criticality calculation

  13. Neutronic calculations of AFPR-100 reactor based on Spherical Cermet Fuel particles

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.

    2013-01-01

    Highlights: • AFPR-100 reactor considered as a small nuclear reactor without on-site refueling originally based on TRISO micro-fuel element. • The AFPR-100 reactor was re-designed using the new Spherical Cermet fuel element. • The adoption of the Cermet fuel instead of TRISO fuel reduces the core lifetime operation by 3.1 equivalent full power years. • We discussed the new micro-fuel element candidate for small and medium sized reactors. - Abstract: The Atoms For Peace Reactor (AFPR-100), as a 100 MW(e) without the need of on-site refueling, was originally based on UO2 TRISO fuel coated particles embedded in a carbon matrix directly cooled by light water. AFPR-100 is considered as a small nuclear reactor without open-vessel refueling which is proposed by Pacific Northwest National Laboratory (PNNL). An account of significant irradiation swelling in the silicon carbide fission product barrier coating layer of TRISO fuel element, a Spherical Cermet Fuel element has been proposed. Indeed, the new fuel concept, which was developed by PNNL, consists of changing the pyro-carbon and ceramic coatings that are incompatible with low temperature by Zirconium. The latter was chosen to avoid any potential Wigner energy effect issues in the TRISO fuel element. Actually, the purpose of this study is to assess the goal of AFPR-100 concept using the Cermet fuel; undeniably, the fuel core lifetime prediction may be extended for reasonably long period without on-site refueling. In fact, we investigated some neutronic parameters of reactor core by the calculation code SRAC95. The results suggest that the core fuel lifetime beyond 12 equivalent full power years (EFPYs) is possible. Hence, the adoption of Cermet fuel concept shows a core lifetime decrease of about 3.1 EFPY

  14. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C., E-mail: edgar.buck@pnnl.gov; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2016-12-15

    Radioactive iodine is the Achilles' heel in the design for the safe geological disposal of spent uranium oxide (UO{sub 2}) nuclear fuel. Furthermore, iodine's high volatility and aqueous solubility were mainly responsible for the high early doses released during the accident at Fukushima Daiichi in 2011. Studies Kienzler et al., however, have indicated that the instant release fraction (IRF) of radioiodine ({sup 131/129}I) does not correlate directly with increasing fuel burn-up. In fact, there is a peak in the release of iodine at around 50–60 MW d/kgU, and with increasing burn-up, the IRF of {sup 131/129}I decreases. The reasons for this decrease have not fully been understood. We have performed microscopic analysis of chemically processed high burn-up UO{sub 2} fuel (80 MW d/kgU) and have found recalcitrant nano-particles containing, Pd, Ag, I, and Br, possibly consistent with a high pressure phase of silver iodide in the undissolved residue. It is likely that increased levels of Ag and Pd from {sup 239}Pu fission in high burnup fuels leads to the formation of these metal halides. The occurrence of these phases in UO{sub 2} nuclear fuels may reduce the impact of long-lived {sup 129}I on the repository performance assessment calculations. - Highlights: • A Pd-Ag halide phase has been observed in a high burn-up UO{sub 2} reactor fuel. • The phases contains iodine and bromine. • Iodine release in high burnup fuels may be reduced through the formation of recalcitrant phases.

  15. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  16. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  17. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  18. Calculations on the effect of pellet filling on the rewetting of overheated nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Pearson, K.G.; Loveless, J.

    1977-03-01

    Numerical solutions of the rewetting equations are presented which show the effect of filler material and gas gap on the rate of rewetting of an overheated fuel pin. It is shown that taking the presence of the fuel into account can lead to a large reduction in the calculated rewetting speed compared with a calculation which neglects the presence of fuel. The effect is most marked in conditions where rewetting speeds tend to be already low, such as at high pin temperatures and low ambient pressure. A comparison is made between the predictions of the present method and experimental data obtained on zircaloy and stainless steel pins filled with magnesia and with boron nitride. In all cases filling the pins produced a large reduction in rewetting speed and the agreement between the calculated and measured effect was encouraging. It is concluded that the presence of the UO 2 pellet filling should be taken into account when calculating rewetting speeds in safety assessments. (author)

  19. Presentation and Discussion of the UAM/Exercise I-1b: “Pin-Cell Burn-Up Benchmark” with the Hybrid Method

    Directory of Open Access Journals (Sweden)

    O. Cabellos

    2013-01-01

    Full Text Available The aim of this work is to present the Exercise I-1b “pin-cell burn-up benchmark” proposed in the framework of OECD LWR UAM. Its objective is to address the uncertainty due to the basic nuclear data as well as the impact of processing the nuclear and covariance data in a pin-cell depletion calculation. Four different sensitivity/uncertainty propagation methodologies participate in this benchmark (GRS, NRG, UPM, and SNU&KAERI. The paper describes the main features of the UPM model (hybrid method compared with other methodologies. The requested output provided by UPM is presented, and it is discussed regarding the results of other methodologies.

  20. Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle

    Science.gov (United States)

    Amosova, E. V.; Guba, G. G.

    2017-11-01

    This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.

  1. Calculation of Plutonium content in RSG-GAS spent fuel using IAFUEL computer code

    International Nuclear Information System (INIS)

    Mochamad-Imron

    2003-01-01

    It has been calculated the contain of isotopes Pu-239, Pu-240, Pu-241, and isotope Pu-242 in MTR reactor fuel types which have U-235 contain about 250 gram. The calculation was performed in three steps. The first step is to determine the library of calculation output of BOC (Beginning of Cycle). The second step is to determine the core isotope density, the weight of plutonium for one core, and one fuel isotope density. The third step is to calculate weight of plutonium in gram. All calculation is performed by IAFUEL computer code. The calculation was produced content of each Pu isotopes were Pu-239 is 6.7666 gr, Pu-240 is 1.4628 gr, Pu-241 is 0.52951 gr, and Pu-242 is 0.068952 gr

  2. Studies on validation possibilities for computational codes for criticality and burnup calculations of boiling water reactor fuel; Untersuchungen zu Validierungsmoeglichkeiten von Rechencodes fuer Kritikalitaets- und Abbrandrechnungen von Siedewasserreaktor-Brennstoff

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthais; Hannstein, Volker; Kilger, Robert; Sommer, Fabian; Stuke, Maik

    2017-06-15

    The Application of the method of Burn-up Credit on Boiling Water Reactor fuel is much more complex than in the case of Pressurized Water Reactors due to the increased heterogeneity and complexity of the fuel assemblies. Strongly varying enrichments, complex fuel assembly geometries, partial length fuel rods, and strong axial variations of the moderator density make the verification of conservative irradiation conditions difficult. In this Report, it was investigated whether it is possible to take into account the burn-up in criticality analyses for systems with irradiated Boiling Water Reactor fuel on the basis of freely available experimental data and by additionally applying stochastic methods. In order to achieve this goal, existing methods for stochastic analysis were adapted and further developed in order to being applicable to the specific conditions needed in Boiling Water Reactor analysis. The aim was to gain first insight whether a workable scheme for using burn-up credit in Boiling Water Reactor applications can be derived. Due to the fact that the different relevant quantities, like e.g. moderator density and the axial power profile, are strongly correlated, the GRS-tool SUnCISTT for Monte-Carlo uncertainty quantification was used in the analysis. This tool was coupled to a simplified, consistent model for the irradiation conditions. In contrast to conventional methods, this approach allows to simultaneously analyze all involved effects.

  3. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    Science.gov (United States)

    Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2016-12-01

    Radioactive iodine is the Achilles' heel in the design for the safe geological disposal of spent uranium oxide (UO2) nuclear fuel. Furthermore, iodine's high volatility and aqueous solubility were mainly responsible for the high early doses released during the accident at Fukushima Daiichi in 2011. Studies Kienzler et al., however, have indicated that the instant release fraction (IRF) of radioiodine (131/129I) does not correlate directly with increasing fuel burn-up. In fact, there is a peak in the release of iodine at around 50-60 MW d/kgU, and with increasing burn-up, the IRF of 131/129I decreases. The reasons for this decrease have not fully been understood. We have performed microscopic analysis of chemically processed high burn-up UO2 fuel (80 MW d/kgU) and have found recalcitrant nano-particles containing, Pd, Ag, I, and Br, possibly consistent with a high pressure phase of silver iodide in the undissolved residue. It is likely that increased levels of Ag and Pd from 239Pu fission in high burnup fuels leads to the formation of these metal halides. The occurrence of these phases in UO2 nuclear fuels may reduce the impact of long-lived 129I on the repository performance assessment calculations.

  4. Analysis of the Range of Applicability of Thermodynamic Calculations in the Engineering of Nitride Fuel Elements

    Science.gov (United States)

    Ivanov, A. S.; Rusinkevich, A. A.; Belov, G. V.; Ivanov, Yu. A.

    2017-12-01

    The domains of applicability of thermodynamic calculations in the engineering of nitride fuel are analyzed. Characteristic values of the following parameters, which affect directly the concentration equilibration time, are estimated: nuclide production rate; characteristic times to local equilibrium in the considered temperature range; characteristic time needed for a stationary temperature profile to be established; characteristic time needed for a quasi-stationary concentration field to be established on a scale comparable to the size of a fuel pellet. It is demonstrated that equilibrium thermodynamic calculations are suitable for estimating the chemical and phase composition of fuel. However, a two-layer kinetic model should be developed in order to characterize the transport processes in condensed and gaseous phases. The process of diffusive transport needs to be taken into account in order to determine the composition in the hot region at the center of a fuel element.

  5. Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR using a U7Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hanson A. L.; Diamond D.

    2014-06-30

    A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The LEU fuel may be a monolithic foil (LEUm) of U10Mo (10% molybdenum by weight in an alloy with uranium) or a dispersion of U7Mo in aluminum (LEUd). A previous report provided neutronic calculations for the LEUm fuel and this report presents the neutronics parameters for the LEUd fuel. The neutronics parameters for the LEUd fuel are compared to those previously obtained for the present HEU fuel and the proposed LEUm fuel. The results show no significant differences between the LEUm and the LEUd other than the LEUd fuel requires slightly less uranium than the LEUm fuel due to less molybdenum being present. The calculations include kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions under normal operation and with misloaded fuel elements.

  6. The role of advanced calculation and simulation tools in the evolution of fuel

    International Nuclear Information System (INIS)

    Munoz-Reja, C.; Cerracin, A.; Corpa, R.

    2015-01-01

    This article is focused on the role of the advanced calculation/simulation tools on the development of the fuel designs as well as in the assessment of the effect of the changes in the operation. With this purpose, the article describes and shows some examples of the use by ENUSA of some of these tools in the fuel engineering. To conclude, the future on the evolution of the advanced tools is also presented. (Author)

  7. Code-B-1 for stress/strain calculation for TRISO fuel particle (Contract research)

    International Nuclear Information System (INIS)

    Aihara, Jun; Ueta, Shohei; Shibata, Taiju; Sawa, Kazuhiro

    2011-12-01

    We have developed Code-B-1 for the prediction of the failure probabilities of the coated fuel particles for the high temperature gas-cooled reactors (HTGRs) under operation by modification of an existing code. A finite element method (FEM) is employed for the stress calculation part and Code-B-1 can treat the plastic deformation of the coating layer of the coated fuel particles which the existing code cannot treat. (author)

  8. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    Directory of Open Access Journals (Sweden)

    Hector Luis Laurencio-Alfonso,

    2012-10-01

    Full Text Available Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model describes temperature changes, viscous friction effects and the effects of blending flow layers; which is therefore the basis of calculation for the selection, evaluation and rationalization of transport of heavy fuel oil by pipelines.

  9. On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Zhukov, A.V.

    1985-01-01

    One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements

  10. Calculation Of Recycle And Open Cycle Nuclear Fuel Cost Using Lagistase Method

    International Nuclear Information System (INIS)

    Djoko Birmano, Moch

    2002-01-01

    . To be presented the calculation of recycle and open cycle nuclear fuel cost for LWR type that have net power of 600 MWe. This calculation using LEGECOST method developed by IAEA which have characteristics,where i.e. money is stated in constant money (no inflation),discount rate is equalized with interest rate and not consider tax and depreciation.As a conclusion is that open cycle nuclear fuel cost more advantage because it is cheaper than recycle nuclear fuel cost. This is caused that at present, reprocessing process disadvantage because it has not found yet more efficient and cheaper method, besides price of fresh uranium is still cheap. In future, the cost of recycle nuclear fuel cycle will be more competitive toward the cost of open nuclear fuel cycle if is found technology of reprocessing process that more advance, efficient and cheap. Increase of Pu use for reactor fuel especially MOX type will rise Pu price that finally will decrease the cost of recycle nuclear fuel cycle

  11. Gamma spectrometry inspection of TRIGA MARK II fuel using caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, S., E-mail: sam.karimzadeh@ati.ac.a [Vienna University of Technology, Institute of Atomic and Subatomic Physics (ATI), Stadionallee 2, A-1020 Vienna (Austria); Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics (ATI), Stadionallee 2, A-1020 Vienna (Austria)

    2011-01-15

    Research highlights: Cs isotopes are the best choices for the burn up determination of spent fuel. Gamma spectrometer calibration using MCNP5. Cs-ratio can be applied by relative calibration method. - Abstract: Gamma spectrometry is one of the common methods to inspect the spent fuel from research reactors. This method has been applied to in-pool measurements of the Spent Fuel Elements (SPEs) of the TRIGA Mark II research reactor. Due to mixed nature of the reactor core and complicated irradiation history of the fuel elements (FEs), the gamma spectrometry of the FE establishes improvements in the calculation and measurement of the SPE. In order to inspect the TRIGA SPE from dry storage and cooled fuel from the reactor pool, the selected spend fuels are scanned and measured using the fuel-scanning machine. Gamma spectrometry is performed by HPGe detector for spend fuel inspection and determination of the {sup 137}Cs activity and {sup 134}Cs/{sup 137}Cs ratio. In this work, the steps of the detector calibration and the use of the Monte Carlo radiation transport code (MCNP5) have been described. In addition, the fuel-scanning machine and the gamma spectrometer are modelled by MCNP5 to simulate the gamma transport from fuel to detector. It also simulate the gamma spectrometer calibration for the burn up determination of the spend fuel. The results from MCNP5 simulation are applied to spectroscopic measurements and compared with the theoretical predictions of the neutronics code ORIGEN2 in this research work.

  12. Calculational and experimental approaches to the equation of state of irradiated fuel

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schumacher, G.

    1977-07-01

    The oxygen potential is an important parameter for the estimation of the vapor pressure of mixed oxide fuel and fission products. Dissolved fission products can have great influence on this potential in hypostoichiometric fuel. Therefore an attempt was made to calculate oxygen potentials of uranium-plutonium mixed oxides which contain fission products using models based on the equilibrium of oxygen defects. Vapor pressures have been calculated applying these data. The results of the calculation with various models differ especially at high temperatures above 4,000 K. Experimental work has been done to determine the vapor pressure of oxide fuel material at temperatures between 3,000 K and 5,000 K using laser beam heating. A measuring technique and a detailed evaluation model of laser evaporation measurements have been developed. The evaluation model describes the complex phenomena occurring during surface evaporation of liquid oxide fuel. Vapor pressure measurements with UO 2 have been carried out in the temperature region up to 4,500 K. With thermodynamic calculations the required equilibrium vapor pressures (EOS) can be derived from the vapor pressures measured. The caloric equation-of-state of the liquid-vapor equilibrium of the fuel up to temperatures of 5,000 K has been considered theoretically. (orig.) [de

  13. Spectral calculations of WWER-440 fuel assemblies with Gd burnable absorbers

    International Nuclear Information System (INIS)

    Mikolas, P.

    2000-01-01

    Paper describes some analyses of WWER-440 FA with Gd burnable absorber (Gd 2 O 3 ). Analyses consist in comparison of FA with and without Gd absorber incl. variants with different Gd absorbers and a methodology of fuel assemblies burnup calculation with the aim of finding of an optimal variant of such a fuel assemblies and a methodology of its calculation. A benchmark burnup comparison of FA with Gd as a continuation of benchmark for FA burnup comparison from 1966 is also proposed. (Authors)

  14. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    International Nuclear Information System (INIS)

    Fukaya, Y.; Okubo, T.; Uchikawa, S.

    2008-01-01

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241 Pu content in the initial fuel, and the decay heat mainly depends on 238 Pu and 244 Cm. The contribution of 244 Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from

  15. 40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide emissions for the mode sample period [grams]. CO2mass = mass of carbon dioxide emissions... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dilute emission sampling calculations-gasoline fueled engines. 90.426 Section 90.426 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  16. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    International Nuclear Information System (INIS)

    D. A. Thomas

    1996-01-01

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report

  17. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    Science.gov (United States)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  18. On the definition of the fuel temperature coefficient of reactivity for pin-cell calculations on an infinite lattice

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Janssen, A.J.

    1993-03-01

    The fuel temperature coefficient of reactivity is an important parameter in the evaluation of transients in light water reactors. The fuel temperature coefficient of an infinite lattice, often used in pin-cell calculations, is not a correct measure for the fuel temperature effect in such a lattice. We present a somewhat different definition of the fuel temperature coefficient of reactivity. This definition gives a more correct measure for the fuel temperature effect. Some calculations on lattices which are characteristic for a PWR show its accuracy. The newly defined fuel temperature coefficient is much less dependent on the fuel enrichment and the 10 B-concentration. The fuel temperature coefficient is analysed by calculating the different components constituting this coefficient. (orig.)

  19. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.

  20. A subroutine for the calculation of resonance cross sections of U-238 in HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R.; Marullo, G.C.

    1971-02-15

    In this paper, a survey of the codes used at Ispra for the calculations of resonance absorption in HTR fuel elements is presented and a subroutine for the calculation of resonance cross-sections, in a seven groups energy structure, for a HTR lattice of annular type is described. A library of homogeneous resonance integrals and a wide tabulation of lump and kernel Bell factors, and moderators efficiency is given. This paper deals mainly with the problem of taking into account the correct slowing down of neutrons in the graphite and with the derivation of Bell factors to be used in a multigroup calculation scheme.

  1. Very fast isotopic and mass balance calculations used for strategic planing of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Marguet, S.D.

    1993-01-01

    Owing to the prevalence in France of nuclear generated electricity, the french utility, EDF focuses much research on fuel cycle strategy. In this context, analysis of scenarios combining problems related to planning and economics, but also reactor physics, necessitate a relatively thorough understanding of fuel response to irradiation. The main purpose of the fuel strategy program codes is to predict mass balance modifications with time for the main actinides involved in the cycle, including the minor actinides associated with the current back end fuel cycle key issues. Considering the large number of calculations performed by a strategy code in an iterative process covering a range of about a hundred years, it was important to develop basic computation modules for both the ''reactor'' and ''fabrication'' items. These had to be high speed routines, but on an accuracy level compatible with the strategy code efficiency. At the end of 1992, the EDF Research and Development Division (EDF/DER) developed a very simple, extremely fast method of calculating transuranian isotope masses. This approach, which resulted in the STRAPONTIN software, considerably increased the scope of the EDF/DER fuel strategy code TIRELIRE without undue impairment of machine time requirements for a scenario. (author). 2 figs., 2 tabs., 3 refs

  2. A computer program for calculation of the fuel cycle in pressurized water reactors

    International Nuclear Information System (INIS)

    Solanilla, R.

    1976-01-01

    The purpose of the FUCEFURE program is two-fold: first, it is designed to solve the problem of nuclear fuel cycle cost in one pressurized light water reactor calculation. The code was developed primarily for comparative and sensitivity studies. The program contains simple correlations between exposure and available depletion data used to predict the uranium and plutonium content of the fuel as a function of the fuel initial enrichment. Second, it has been devised to evaluate the nuclear fuel demand associated with an expanding nuclear power system. Evaluation can be carried out at any time and stage in the fuel cycle. The program can calculate the natural uranium and separate work requirements of any final and tails enrichment. It also can determine the nuclear power share of each reactor in the system when a decision has been made about the long-term nuclear power installations to be used and the types of PWR and fast breeder reactor characteristics to be involved in them. (author)

  3. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Calculation and experimental estimation of the equation of state of irradiated fuel

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schumacher, G.

    1977-01-01

    The gas pressure development in an irradiated mixed oxide fuel is mainly influenced by fission gases and volatile fission products in the temperature range below the melting point and by the fuel material itself and the less volatile fission products in the temperature region above 4000 K. Besides the temperature the important factors for the vapor pressure are the oxygen potential of the fuel and the concentration of fission products in the fuel. As demonstrated previously the oxygen potential influences strongly the pressure of vapor species above (U Pu)O 2 . The pressure of the species U, UO, UO 2 , Pu, PuO, PuO 2 varies over a range of more than five orders of magnitude by variation of the oxygen potential at 2000 K. Similar effects were observed with oxides of the fission products. Fission products dissolved in mixed oxide fuel on the other hand can influence significantly the oxygen potential of the irradiated mixed oxide. In the first paragraph of the paper an attempt is made to calculate oxygen potentials of mixed oxides containing dissolved fission products. The model used is based on the equilibrium of oxygen defects in the mixed oxide. The chemical state and distribution of fission products is a further behavior that should be considered in calculation of the local and overall pressures and behavior of the fuel. Fission products were transported during the irradiation time and collect at different positions within the fuel pin. This process can produce high local concentrations of fission products, thus enabling elements with low overall concentrations to reach their saturation pressure. The distribution of fission products and their behavior in irradiated mixed oxide fuel is described in the second paragraph. The third paragraph deals with the calculation of vapor pressures that has been conducted using a model described for uranium-plutonium mixed oxides. This model is based on the law of mass action and provides vapor pressures as a function of

  5. Calculation of effect of burnup history on spent fuel reactivity based on CASMO5

    International Nuclear Information System (INIS)

    Li Xiaobo; Xia Zhaodong; Zhu Qingfu

    2015-01-01

    Based on the burnup credit of actinides + fission products (APU-2) which are usually considered in spent fuel package, the effect of power density and operating history on k ∞ was studied. All the burnup calculations are based on the two-dimensional fuel assembly burnup program CASMO5. The results show that taking the core average power density of specified power plus a bounding margin of 0.0023 to k ∞ , and taking the operating history of specified power without shutdown during cycle and between cycles plus a bounding margin of 0.0045 to k ∞ can meet the bounding principle of burnup credit. (authors)

  6. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    Energy Technology Data Exchange (ETDEWEB)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  7. SEM Characterization of the High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Jian Gan; Brandon Miller; Adam Robinson; Pavel Medvedev; James Madden; Dan Wachs; M. Teague

    2014-04-01

    During irradiation, the microstructure of U-7Mo evolves until at a fission density near 5x1021 f/cm3 a high-burnup microstructure exists that is very different than what was observed at lower fission densities. This microstructure is dominated by randomly distributed, relatively large, homogeneous fission gas bubbles. The bubble superlattice has collapsed in many microstructural regions, and the fuel grain sizes, in many areas, become sub-micron in diameter with both amorphous fuel and crystalline fuel present. Solid fission product precipitates can be found inside the fission gas bubbles. To generate more information about the characteristics of the high-fission density microstructure, three samples irradiated in the RERTR-7 experiment have been characterized using a scanning electron microscope equipped with a focused ion beam. The FIB was used to generate samples for SEM imaging and to perform 3D reconstruction of the microstructure, which can be used to look for evidence of possible fission gas bubble interlinkage.

  8. The DACC system. Code burnup of cell for projection of the fuel elements in the power net work PWR and BWR

    International Nuclear Information System (INIS)

    Cepraga, D.; Boeriu, St.; Gheorghiu, E.; Cristian, I.; Patrulescu, I.; Cimporescu, D.; Ciuvica, P.; Velciu, E.

    1975-01-01

    The calculation system DACC-5 is a zero-dimensional reactor physics code used to calculate the criticality and burn-up of light-water reactors. The code requires as input essential extensive reactor parameters (fuel rod radius, water density, etc.). The nuclear constants (intensive parameters) are calculated with a five-group model (2 thermal and 3 fast groups). A fitting procedure is systematically employed to reduce the computation time of the code. Zero-dimensional burn-up calculations are made in an automatic way. Part one of the paper contains the code physical model and computer structure. Part two of the paper will contain tests of DACC-5 credibility for different light-water power lattices

  9. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    Science.gov (United States)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  10. Study of a device for the direct measurement of the fission gas pressure inside an in-pile fuel element

    International Nuclear Information System (INIS)

    Lavaud, B.; Uschanoff, S.

    1964-01-01

    The fission gas pressure inside a fuel element made of a refractory fuel constitutes an important limiting factor for the burn-up. Although it is possible to calculate approximately the volume of gas produced outside the fuel during its life-time; it is nevertheless very difficult to evaluate the pressure since the volume allowed to the fission gases, as well as their temperature are known only very approximately. This physical value, which is essential for the technologist, can only be known by direct in-pile measurement of the pressure. The report describes the equipment which has been developed for this test. (authors) [fr

  11. The Calculation Methods of the Specific Fuel Rate in Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2016-01-01

    Full Text Available The paper discusses a specific fuel rate in combined heat and electricity production using CHP technology. There are two objectives for calculation of specific fuel rate: a CHP technical efficiency estimate, b increasing CHP competitiveness at electricity and district heat markets. Currently, development of a number of thermo-dynamical methods of calculation solves the first problem while to solve the second one there is a number of developed economical methods of calculation. In Russia despite a decade of the wholesale electricity market progress the CHP market offers are still tightly connected with technical efficiency rate. To estimate the technical efficiency rate is widely used the least effective thermo-dynamical method – so called “physical” method”. The paper formulates a problem statement that is the specific fuel rate calculation and reviews the most widely applied methods. The review consists of two parts: in the first the Russian methods are discussed, and in the second one the methods widely used in the countries with highly developed electricity and district heat markets. A new thermo-dynamical method to calculate the specific fuel rate is introduced, which uses the linear characteristic curves of a steam turbine. The developed method allows us to take into consideration the energy inequality of the CHP products. Another advantages of this new method are calculation simplicity and small number of input data. To compare the effectiveness of different methods were introduced comparison rules and also calculations were performed. The comparison of thermo-dynamical methods shows that the most effective methods are an exergy method and also the method that takes into consideration the reduced generation of electricity (work method. Calculation complexity and large number of input data are main disadvantages of these methods. The comparison of economical methods shows that the most effective from stated point of view are a

  12. Calculation of allowable fuel masses for handling and post-irradiation examinations

    International Nuclear Information System (INIS)

    Grimm, Peter; Hollard, Jean-Marc

    2003-01-01

    Minimal critical masses of UO 2 and MOX fuel are calculated over the full range of uranium enrichments and plutonium contents from less than 1% up to 100%. The calculations are performed using deterministic methods for optimally water-moderated and fully reflected spherical arrays, searching for the minimum of the critical mass as a function of moderation ratio and size of the fuel pieces. The critical masses of mixtures of enriched uranium and plutonium are determined by combining the results obtained for UO 2 and MOX with natural uranium matrix material, with explicit calculations for a few cases confirming the validity of the method of combination. The minimum number of full-length power reactor fuel rods, for which criticality can be achieved, is determined by searching for the critical diameter of an optimally moderated and reflected cylindrical array. The critical masses calculated in this work form the basis for the criticality safety limits implemented in the hot cells of the PSI hot laboratory, applying a safety factor of 0.45 between the critical and the allowable masses. (author)

  13. High burnup irradiation performance of annular fuel pins irradiated in fast reactor PFR

    International Nuclear Information System (INIS)

    Naganuma, M.; Koyama, S.; Asaga, T.; Noirot, J.; Lespiaux, D.; Rouault, J.; Crittenden, G.; Brown, C.

    2000-01-01

    The UK Prototype Fast Reactor (PFR) has irradiated MOX annular pelleted fuel pins clad with PE16 up to burn-up of over 20% heavy atom (ha) without failure, these high burn-up fuel pins can provide the valuable data for the study of high burn-up capability. Thus, post irradiation examinations (PIE) have been performed on PFR high burn-up fuel pins, and the irradiation performance is evaluated focusing especially on the mechanical and thermal performance at high burn-up. The fuel pins from LVD and ANT assemblies were irradiated up to 23.2 and 18.9%ha (at peak burn-up). The results of LVD test pins have been evaluated, which demonstrate that these fuel pins have excellent mechanical and thermal performances at high burn-up because of the high swelling resistance of PE16, the maintenance of initial annular geometry up to high burn-up and the behavior of Fuel to Clad Joint (JOG) formation. In this paper, the newly obtained results of ANT test pins with different O/M ratio (ANT: 1.985, LVD: 1.965) are added, and compared with the LVD pins. The ANT results indicate that FCCI becomes larger and the fuel swelling behavior is different at high burn-up. However, the effects are evaluated not to be severe for the capability of high burn-up (-20%ha). Therefore, we conclude that MOX annular pelleted fuel pins clad with low swelling material have high burn-up capability in O/M ratios ranging from 1.965 to 1.985. (author)

  14. Preliminary calculation for fission products generation and accumulation in different types of fuel rods by computer code FPRM-1

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi

    1978-11-01

    The computer code ''FPRM-1'' has been developed for calculation of the quantities of fission products gases released from pellets into plenum in a fuel rod. On the assumption that the irradiation tests of plutonium fuel and others under development in an in-pile water loop were performed, FP generations and accumulations in the fuel rods were calculated by the code. The result of measurement of 131 I released from a fuel rod (UO 2 pellets, 235 U 1.5% Enriched) with an artificial hole through cladding in an in-pile water loop was compared with that of calculation by the code; both were in good agreement. (author)

  15. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    International Nuclear Information System (INIS)

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  16. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Science.gov (United States)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  17. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ...-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment... model type. (a) Base level. 5-cycle fuel economy values for a base level are calculated from vehicle... any model type value is calculated for a label value. (iii) The provisions of this paragraph (a)(3...

  18. Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

    OpenAIRE

    Wan'e, Wu; Zuoming, Zhu

    2012-01-01

    A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ± 7 . 3 %; in the formulation rang...

  19. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    International Nuclear Information System (INIS)

    Rouf; Su'ud, Zaki

    2016-01-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O 2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd 2 O 3 ) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively. (paper)

  20. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    Science.gov (United States)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  1. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.

    1986-01-01

    Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)

  2. Calculated neutron-source spectra from selected irradiated PWR fuel assemblies

    International Nuclear Information System (INIS)

    Rinard, P.M.; Bosler, G.E.; Phillips, J.R.

    1981-12-01

    The energy spectra of neutrons emitted from a pressurized-water-reactor fuel assembly have been calculated for a variety of exposures and cooling times. They are presented in graphical form. Some effects of initial enrichment are also included. Neutrons from spontaneous fissions were given either a Maxwellian temperature of 1.2 or 1.5 MeV, depending on whether they were due to plutonium and uranium nuclides or curium nuclides. A single (α,n) spectrum was deemed sufficient to represent the neutrons from all the alpha-emitting nuclides. The proportions of the nuclides undergoing spontaneous fission and those emitting alpha particles were determined from calculated atom densities. The particular pressurized-water-reactor fuel assembly assumed for this purpose was of the type used in the H.B. Robinson Unit-2 power plant

  3. Calculation of the internal pressure of fuel rod from measurements of krypton-85 at its plenum

    International Nuclear Information System (INIS)

    Arana, I.; Doncel, N.; Casado, C.

    2012-01-01

    ENUSA carried out numerous campaigns of measurement internal pressure of fuel rod irradiated. All of them have been performed of form destructively in a hot cell laboratory which implies a time high to obtain results and a high economic cost to obtain a single data by rod, representative of the end of the irradiation. The objective of the project is to develop a non-destructive measurement and a methodology for reliable calculation that eliminates these problems.

  4. Benchmark calculations of the solution-fuel criticality experiments by SRAC code system

    International Nuclear Information System (INIS)

    Senuma, Ichiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao

    1984-06-01

    Benchmark calculations were performed by using newly developed SRAC (Standard Reactor Analysis Code) system and nuclear data library based upon JENDL-2. The 34 benchmarks include variety of composition, concentration and configuration of Pu homogeneous and U/Pu homogeneous systems (nitrate, mainly), also include UO 2 /PuO 2 rods in fissile solution: a simplified model of the dissolver process of the fuel reprocessing plant. Calculation results shows good agreement with Monte Carlo method. This code-evaluation work has been done for the the part of the Detailed Design of CSEF (Critical Satety Experimental Facility), which is now in Progress. (author)

  5. Comparisons of calculated and measured parameters for a Pu-fueled LWHCR lattice

    International Nuclear Information System (INIS)

    Chawla, R.; Gmuer, K.; Hager, H.; Hettergott, E.; Paratte, J.M.; Seiler, R.; Stahel, D.

    1982-05-01

    The lack of suitable integral experiments for Pu-fueled LWHCR lattices renders it difficult to assess the adequacy of calculational methods and data being applied to the physics design of such reactors. The authors present results for the first of a series of cores being investigated in the PROTEUS reactor at Wuerenlingen to help fill the gap - a PuO 2 /UO 2 fueled test lattice with an effective Pu enrichment of 7% and a fuel/moderator ratio of 2.0. The measurements reported include core-centre reaction rate ratios involving the capture rate in 238 U and fission rates in 235 U, 238 U, 239 Pu and 241 Pu. Infinite-dilution reaction rates in the lattice were determined for the 10 B(n,α) reaction and for 232 Th, 233 U fission. Also measured were various radial and axial reaction rate traverses across the test zone to provide material-buckling, and hence ksub(infinity), related data. Comparisons of the measured parameters have been made with calculations based on the use of several different lattice codes and their associated cross-section libraries, viz. WIMS-D, EPRI-CPM and BOXER. For several of the calculated parameters, a strong dependence has been observed on the available data sets. These are discussed in the light of the experimental results, as also the unusual spectrum characteristics of the test lattice. (Auth.)

  6. Derivation of correction factor to be applied for calculated results of PWR fuel isotopic composition by ORIGEN2 code

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan); Mochizuki, Hiroki [The Japan Research Institute Ltd., Tokyo (Japan)

    2001-11-01

    For providing conservative PWR spent fuel compositions from the view point of nuclear criticality safety, correction factors applicable for result of burnup calculation by ORIGEN2 were evaluated. Its conservativeness was verified by criticality calculations using MVP. To calculate these correction factors, analyses of spent fuel isotopic composition data were performed by ORIGEN2. Maximum or minimum value of the ratio of calculation result to experimental data was chosen as correction factor. These factors are given to each set of fuel assembly and ORIGEN2 library. They could be considered as the re-definition of recommended isotopic composition given in Nuclear Criticality Safety Handbook. (author)

  7. Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations

    International Nuclear Information System (INIS)

    Arimescu, V.E.; Heins, L.

    2001-01-01

    Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect

  8. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  9. Analysis fuel of loading pattern for equilibrium RSG-GAS using 3.55 gU/cc U3Si2-Al fuel density

    International Nuclear Information System (INIS)

    Jati Susilo

    2007-01-01

    Fuel loading pattern decision is one part of the reactor in-core fuel management strategy. The purpose is to process burning of the fuel in the core can proceed effectively, so that it can yield optimum core fuel cycle length. In this research it has been analysed for 4 various fuel loading pattern of the equilibrium RSG-GAS core using 3.55 gU/cc U 3 Si 2 -Al fuel density. The pattern consist of 4 kinds, there are 5/1-8(core A), 6/1-7 (core B), 6/1-8 (core C) and 7/1-7 (core D) loading pattern. Burn-up calculation of the 2 dimensional core has been done using SRAC-ASMBURN computer code to know value of core fuel cycle length, fuel discharge burn-up, and excess reactivity at the BOC/EOC. Calculation results showed that fuel cycle length of the equilibrium RSG-GAS reactor core with fuel loading pattern 6/1-7, 5/1-8, 6/1-8 and 7/1-7 are 30.88 days, 35.60 days, 37.18 days and 42.52 days, respectively. The excess reactivity at BOC for each reactor shown the similar value that are 9.8920 %Δk/k,10.4308 %Δk/k, 9.9993 %Δk/k and 10.5435 %Δk/k, respectively. The equilibrium RSG-GAS using 3.55 gU/cc U 3 Si 2 -AI fuel density most effective and optimum if use 7/1-7 fuel loading pattern. That core can produce highest energy in one cycle (1275.6 MWD/cycle), totally shutdown time needed in one year is shortest (164.85 days), and average energy produced by each fuel is biggest (22.78 MWD/fuel) ,too. Fuel cycle length of equilibrium RSG-GAS due to great number existing fuel in the core and number grouping the fuel burn-up. (author)

  10. A new approach to calculating endurance in electric flight and comparing fuel cells and batteries

    International Nuclear Information System (INIS)

    Donateo, Teresa; Ficarella, Antonio; Spedicato, Luigi; Arista, Alessandro; Ferraro, Marco

    2017-01-01

    Highlights: • Gross endurance of an UAV calculated with literature correlations. • Net endurance calculated with an innovative mission-based approach. • Three state-of-the-art battery technologies compared to a PEM fuel cell. • Analysis with different values of energy stored on board. • Effect of powertrain mass and volume of aircraft empty mass and wing area. - Abstract: Electric flight is of increasing interest in order to reduce emissions of pollution and greenhouse gases in the aviation field in particular when the takeoff mass is low, as in the case of lightweight cargo transport or remotely controlled drones. The present investigation addresses two key issues in electric flight, namely the correct calculation of the endurance and the comparison between batteries and fuel cells, with a mission-based approach. As a test case, a light Unmanned Aerial Vehicle (UAV) powered exclusively by a Polymer Electrolyte Membrane fuel cell with a gaseous hydrogen tank was compared with the same aircraft powered by different kinds of Lithium batteries sized to match the energy stored in the hydrogen tank. The mass and the volume of each powertrain were calculated with literature data about existing technologies for propellers, motors, batteries and fuel cells. The empty mass and the wing area of the UAV were amended with the mass of the proposed powertrain to explore the range of application of the proposed technologies. To evaluate the efficiency of the whole powertrain a simulation software was used instead of considering only level flight. This software allowed an in-depth analysis on the efficiency of all sub-systems along the flight. The secondary demand of power for auxiliaries was taken into account along with the propulsive power. The main parameter for the comparison was the endurance but the takeoff performance, the volume of the powertrain and the environmental impact were also taken into account. The battery-based powertrain was found to be the most

  11. Spent Fuel Pool Dose Rate Calculations Using Point Kernel and Hybrid Deterministic-Stochastic Shielding Methods

    International Nuclear Information System (INIS)

    Matijevic, M.; Grgic, D.; Jecmenica, R.

    2016-01-01

    This paper presents comparison of the Krsko Power Plant simplified Spent Fuel Pool (SFP) dose rates using different computational shielding methodologies. The analysis was performed to estimate limiting gamma dose rates on wall mounted level instrumentation in case of significant loss of cooling water. The SFP was represented with simple homogenized cylinders (point kernel and Monte Carlo (MC)) or cuboids (MC) using uranium, iron, water, and dry-air as bulk region materials. The pool is divided on the old and new section where the old one has three additional subsections representing fuel assemblies (FAs) with different burnup/cooling time (60 days, 1 year and 5 years). The new section represents the FAs with the cooling time of 10 years. The time dependent fuel assembly isotopic composition was calculated using ORIGEN2 code applied to the depletion of one of the fuel assemblies present in the pool (AC-29). The source used in Microshield calculation is based on imported isotopic activities. The time dependent photon spectra with total source intensity from Microshield multigroup point kernel calculations was then prepared for two hybrid deterministic-stochastic sequences. One is based on SCALE/MAVRIC (Monaco and Denovo) methodology and another uses Monte Carlo code MCNP6.1.1b and ADVANTG3.0.1. code. Even though this model is a fairly simple one, the layers of shielding materials are thick enough to pose a significant shielding problem for MC method without the use of effective variance reduction (VR) technique. For that purpose the ADVANTG code was used to generate VR parameters (SB cards in SDEF and WWINP file) for MCNP fixed-source calculation using continuous energy transport. ADVATNG employs a deterministic forward-adjoint transport solver Denovo which implements CADIS/FW-CADIS methodology. Denovo implements a structured, Cartesian-grid SN solver based on the Koch-Baker-Alcouffe parallel transport sweep algorithm across x-y domain blocks. This was first

  12. Antineutrino flux and spectrum calculation for spent nuclear fuel for the Daya Bay antineutrino experiment

    Science.gov (United States)

    Ma, X. B.; Zhao, Y. F.; Chen, Y. X.; Zhong, W. L.; An, F. P.

    2017-10-01

    The antineutrino flux from spent nuclear fuel (SNF) is an important source of uncertainty when making estimates of a reactor neutrino flux. However, to determine the contribution from SNF, sufficient data is needed such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of each isotope in the SNF. A method to calculate this contribution is proposed. A reactor simulation code verified against experimental data has been used to simulate fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each of the six spent fuel pools, and the time variation of the antineutrino spectra after SNF discharging from the core. Results show that the SNF contribution to the total antineutrino flux is about 0.26%-0.34%, and the shutdown impact is about 20%. The SNF spectrum alters the softer part of the antineutrino spectra, and the maximum contribution from the SNF is about 3.0%. Nevertheless, there is an 18% difference between the line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible considering the uncertainties.

  13. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs

  14. Comparisons of calculated and measured parameters for a Pu-fueled LWHCR lattice

    International Nuclear Information System (INIS)

    Chawla, R.; Gmuer, K.; Hager, H.; Hettergott, E.; Paratte, J.M.; Seiler, R.; Stahel, D.

    1982-01-01

    The lack of suitable integral experiments for Pu-fueled LWHCR lattices renders it difficult to assess the adequacy of calculational methods and data being applied to the physics design of such reactors. The current paper presents results for the first of a series of Cores being investigated in the PROTEUS reactor at Wuerenlingen to help fill the gap - a PuO 2 /UO 2 fueled test lattice with an effective Pu enrichment of 7% and a fuel/moderator ratio of 2.0. The measurements reported include core-centre reaction rate ratios involving the capture rate in 238 U and fission rates in 235 U, 238 U, 239 Pu and 241 Pu. Infinite-dilution reaction rates in the lattice were determined for the 10 B(n,α) reaction and for 232 Th, 233 U fission. Also measured were various radial and axial reaction rate traverses across the test zone to provide material-buckling, and hence k/sub infinity/, related data. Comparisons of the measured parameters have been made with calculations based on the use of several different lattice codes and their associated cross-section libraries, viz. WIMS-D, EPRI-CPM and BOXER

  15. Post-test thermal calculations and data analyses for the Spent Fuel Test, Climax

    International Nuclear Information System (INIS)

    Montan, D.N.; Patrick, W.C.

    1986-06-01

    After the Spent Fuel Test - Climax (SFT-C) was completed, additional calculations were performed using the best available (directly measured or inferred from measurements made during the test) input parameters, thermal properties, and power levels. This report documents those calculations and compares the results with measurements made during the three-year heating phase and six-month posttest cooling phase of the SFT-C. Three basic types of heat-transfer calculations include a combined two-dimensional/three-dimensional, infinite-length, finite-difference model; a fully three-dimensional, finite-length, finite-difference model; and a fully three-dimensional, finite-length, analytical solution. The finite-length model much more accurately reflects heat flow near the ends of the array and produces cooler temperatures everywhere than does its infinite-length counterpart. 14 refs., 144 figs., 4 tabs

  16. Macroscopic calculational model of fission gas release from water reactor fuels

    International Nuclear Information System (INIS)

    Uchida, Masaki

    1993-01-01

    Existing models for estimating fission gas release rate usually have fuel temperature as independent variable. Use of fuel temperature, however, often brings an excess ambiguity in the estimation because it is not a rigorously definable quantity as a function of heat generation rate and burnup. To derive a mathematical model that gives gas release rate explicitly as a function of design and operational parameters, the Booth-type diffusional model was modified by changing the character of the diffusion constant from physically meaningful quantity into a mere mathematical parameter, and also changing its temperature dependency into power dependency. The derived formula was found, by proper choice of arbitrary constants, to satisfactorily predict the release rates under a variety of irradiation histories up to a burnup of 60,000 MWd/t. For simple power histories, the equation can be solved analytically by defining several transcendental functions, which enables simple calculation of release rate using graphs. (author)

  17. Experience with the RE fuel transition at the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Pazsit, I.; Saltvedt, K.

    1991-01-01

    Irradiation of 7 LEU fuel elements is underway in the Studsvik R2 reactor. Four of these have 490 g U-235, and three 320 g U-235 loading, and the enrichment is 19.7% for all of them. The irradiation of LEU fuel started in 1987. The heavier elements have burnup figures 67% (CERCA), 50% (B and W), 47% (NUKEM) and 19% (B and W). One of the lighter elements has reached a burnup of 65%. To support the whole-core conversion process, reactor physical calculations were performed to see if a one-step conversion is possible with a suitable fuel management strategy such that all HEU fuel is burned up. The calculations show that it is possible to perform such a conversion with fuel elements containing 400 g U-235. (orig.)

  18. Calculated temperature field in and around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Tarandi, T.

    1983-04-01

    Temperature distribution in and around the final storage has been calculated for BWR-fuel. The results are also applicable to PWR-fuel if the amount of fuel is adjusted so that the power per canister is the same. The calculations are made with the conservative assumption of the coefficient of thermal conductivity of 0.75 W/(m degreeC) in the bentonite and 3.0 W/(m degreeC) in the rock. The amount of BWR fuel is about 1.4 ton per canister. The canisters are deposited 40 years after withdrawal from the reactor. A number of different layouts in single and two-level storages have been studied. Finally, a two-level storage has been chosen as a basis for further project work. The maximum temperature increase of 59.2 degreeC at the surface of the canister is reached about 30 years after the time of deposition. However, in this twolevel storage there will be also a second temperature peak of 58.7 degreeC about 600 years after the deposition. The highest temperature increase in the rock, 56.8 degreeC, occurs about 600 years after the deposition. At the same time as the temperature continues to sink, there is a levelling out of the local temperature differences in the storage. These differences are negligible after about 1000 years. After 100000 years the temperatue in the storage is only a few degrees centigrade above the initial rock temperature. The heat from the storage reaches the ground surface about 200 years after the deposition. The maximum heat flow, 0.28 W/m 2 , occurs about 2000 years after deposition and is considered insignificant compared for example with solar energy flow of about 100 W/m 2 . (author)

  19. Calculation of unsteady temperature field for a fuel element - coolant system and the determination of a fuel-element thermal characteristics

    International Nuclear Information System (INIS)

    Markin, S.A.

    1976-01-01

    The non-stationary thermal conductivity problem was worked out for the multilayer cylindrical fuel rod - coolant system. The problem was solved taking account of multiple discontinuity in the thermal-and-physical parameters along the fuel rod radius and of the temperature dependence for thermal conductivity of fuel. The analytical solution of the problem for quasi-stationary conditions was achieved. The formulae are presented for calculation of contact conductivity in the gap and thermal conductivity in the fuel based on some characteristics measured during transients

  20. SFCOMPO: A new database of isotopic compositions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Michel-Sendis, Franco; Gauld, Ian

    2014-01-01

    The numerous applications of nuclear fuel depletion simulations impact all areas related to nuclear safety. They are at the basis of, inter alia, spent fuel criticality safety analyses, reactor physics calculations, burn-up credit methodologies, decay heat thermal analyses, radiation shielding, reprocessing, waste management, deep geological repository safety studies and safeguards. Experimentally determined nuclide compositions of well-characterised spent nuclear fuel (SNF) samples are used to validate the accuracy of depletion code predictions for a given burn-up. At the same time, the measured nuclide composition of the sample is used to determine the burn-up of the fuel. It is therefore essential to have a reliable and well-qualified database of measured nuclide concentrations and relevant reactor operational data that can be used as experimental benchmark data for depletion codes and associated nuclear data. The Spent Fuel Isotopic Composition Database (SFCOMPO) has been hosted by the NEA since 2001. In 2012, a collaborative effort led by the NEA Data Bank and Oak Ridge National Laboratory (ORNL) in the United States, under the guidance of the NEA Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF) of the Working Party on Nuclear Criticality Safety (WPNCS), has resulted in the creation of an enhanced relational database structure and a significant expansion of the SFCOMPO database, which now contains experimental assay data for a wider selection of international reactor designs. The new database was released online in 2014. This new SFCOMPO database aims to provide access to open experimental SNF assay data to ensure their preservation and to facilitate their qualification as evaluated assay data suitable for the validation of methodologies used to predict the composition of irradiated nuclear fuel. Having a centralised, internationally reviewed database that makes these data openly available for a large selection of international reactor designs is of

  1. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    International Nuclear Information System (INIS)

    B. McLeod

    2002-01-01

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M and O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M and O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report

  2. VSOP, Neutron Spectra, 2-D Flux Synthesis, Fuel Management, Thermohydraulics Calculation

    International Nuclear Information System (INIS)

    Teuchert, E.; Haas, K.A.

    1995-01-01

    1 - Description of problem or function: VSOP (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D and 3-D diffusion calculation, depletion and shut-down features, in- core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (steady state and transient). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of thermal reactors, their fuel cycles, thermal transients, and safety assessment. Besides its use in research and development work for the Gas Cooled High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors, MAGNOX, and RBMK. 2 - Method of solution: The nuclear data for 184 isotopes are contained in two libraries. Fast and epithermal data in a 68 group GAM-I structure have been prepared mainly from ENDF/B-V and JEF-1. Resonance cross section data are given as input. Thermal data in a 30 group THERMOS structure have been collapsed from a 96 group THERMALIZATION (GATHER) library by a relevant neutron energy spectrum generated by the THERMALIZATION code. Graphite scattering matrices are based on the Young phonon spectrum in graphite. The neutron spectrum is calculated by a combination of the GAM and THERMOS codes. They can simultaneously be employed for many core regions differing in temperature, burnup, and fuel element lay-out. The thermal cell code THERMOS has been extended to treat the grain structure of the coated particles inside the fuel elements, and the epithermal GAM code uses modified cross sections for the resonance absorbers prepared from double heterogeneous ZUT-DGL calculations. The diffusion module of the code is CITATION with 2 - 8 energy groups. It provides the neutron

  3. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflageration

    International Nuclear Information System (INIS)

    Crowe, R.D. Westinghouse Hanford

    1996-01-01

    The purpose of this calculation note is to provide the basis for In-Tank Fuel fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided

  4. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflagration

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for In-Tank Fuel Fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  5. Problems associated with high burnup of VVER reactor fuel

    International Nuclear Information System (INIS)

    Reshetnikov, F.G.; Golovin, I.S.; Bibilashvili, Yu.K.; Solyany, V.I.

    1981-01-01

    One of the principal direction of improving the characteristics of the thermal power reactor fuel cycle is to increase the burn-up of fuel in fuel elements. So in future for VVER-1000 elements the planned burn-up of fuel must be up to 40000-50000 MW-day/t U. The realization of those parameters would permit a substantial decrease in the consumption of natural uranium in the open fuel cycle, a considerable reduction of the load on fuel element fabrication and reprocessing plants, which will favourably affect the whole economics of the fuel - power cycle. However, the position of the optimum of the fuel component of the cost depending on burn-up is determined not only by the economy of uranium, the cost of fuel element fabrication processes, uranium enrichment and the chemical reprocessing of burnt fuel, but also by the provision of the required safety of high burn-up fuel elements. Thus, scientists and designing engineers face the problem of designing serviceable and reliable thermal power reactor fuel elements intended for longer service life and higher burn-ups and ensuring the safety of the whole reactor plant. This paper deals with some of the aspects of this most complicated problem for the fuel elements of VVER type only

  6. KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Kim, Young Il

    2006-12-01

    Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006

  7. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-levle database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the US

  8. Advanced characterization of MIMAS MOX fuel microstructure to quantify the HBS formation

    Energy Technology Data Exchange (ETDEWEB)

    Bouloré, Antoine, E-mail: antoine.boulore@cea.fr [CEA, DEN, DEC Fuel Research Department, Cadarache, F13108 Saint-Paul-lez-Durance (France); Aufore, Laurence; Federici, Eric [CEA, DEN, DEC Fuel Research Department, Cadarache, F13108 Saint-Paul-lez-Durance (France); Blanpain, Patrick [AREVA NP SAS, 10 rue Juliette Récamier, F-69456 Lyon (France); Blachier, Rémi [EDF, SEPTEN, 12-14 Av. Dutrievoz, F-69628 Villeurbanne (France)

    2015-01-15

    Highlights: • An advanced characterization of MIMAS MOX fuel based only on fresh fuel pellet characterization. • A probabilistic approach to model the High Burnup Structure formation in oxide fuels. • Validation of the method by comparing to experimental data obtained on fuel irradiated in the Halden reactor. - Abstract: Fission gas behaviour in accidental situations is closely related to the location of fission gas before the accident. More precisely, most of the fission gas in intergranular position is released during the accident and HBS zones contribute a lot to this intergranular quantity. So a methodology to characterize the HBS zones a priori from examination of unirradiated pellet has been developed at CEA. Characterization of plutonium distribution in MIMAS MOX fresh fuel pellets can be performed by image analysis on 1 mm{sup 2} X-ray mappings of plutonium acquired using Electron Probe Micro Analysis (EPMA). The specific software developed to describe the fuel using Pu X-ray mapping (ANACONDA) has been improved in order to simulate the fission products (FP) production and recoil during a given irradiation of the fuel, taking into account the evolution of the plutonium due to neutron irradiation. This simulation results from calculations with our fuel performance code ALCYONE combined with image processing. The final result is a mapping of local burn-up, but also the distribution of the relative FP concentration as a function of the local burn-up. A validation of this simulation process has been done by comparing the simulated mapping of neodymium to one measured on the same fuel batch after irradiation. Using previous studies of mechanisms for HBS formation, a probabilistic criterion for HBS formation has been proposed, based on the EPMA measurements of the decrease of the xenon signal as a function of the local burn-up. Combining the simulated FP cartography with this probabilistic HBS formation criterion, it is possible to calculate the surface

  9. Caramel fuel for research reactors

    International Nuclear Information System (INIS)

    Bussy, P.

    1979-11-01

    This fuel for research reactors is made of UO 2 pellets in a zircaloy cladding to replace 93% enriched uranium. It is a cold fuel, non contaminating and non proliferating, enrichment is only 7 to 8%. Irradiation tests were performed until burn-up of 50000 MWD/t [fr

  10. Sustainability of advanced fuel cycles

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.

    2013-01-01

    Features of Sustainability: • Minimisation of fuel fabrication & reprocessing by enhancing burn-up; • Minimisation of waste volume; • Reduced toxicity of waste; • Enhanced safety in operations; • Economy: operation of fuel cycle facilities at name plate capacity, enhanced plant life; • Reduced exposure to operators

  11. Preliminary decay heat calculations for the fuel loaded irradiation loop device of the RMB multipurpose Brazilian reactor

    Energy Technology Data Exchange (ETDEWEB)

    Campolina, Daniel; Costa, Antonio Carlos L. da; Andrade, Edison P., E-mail: campolina@cdtn.br, E-mail: aclp@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2017-07-01

    The structuring project of the Brazilian Multipurpose Reactor (RMB) is responsible for meeting the capacity to develop and test materials and nuclear fuel for the Brazilian Nuclear Program. An irradiation test device (Loop) capable of performing fuel test for power reactor rods is being conceived for RMB reflector. In this work preliminary neutronic calculations have been carried out in order to determine parameters to the cooling system of the Loop basic design. The heat released as a result of radioactive decay of fuel samples was calculated using ORIGEN-ARP and it resulted less than 200 W after 1 hour of irradiation interruption. (author)

  12. MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    2015-10-01

    MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)

  13. Neutronic study of nuclear reactors. Complete calculation of TRIGA MARKII reactor and calculations of fuel temperature coefficients. (Qualification of WIMS code)

    International Nuclear Information System (INIS)

    Benmansour, L.

    1992-01-01

    The present work shows a group of results, obtained by a neutronic study, concerning the TRIGA MARK II reactor and LIGHT WATER reactors. These studies aim to make cell and diffusion calculations. WIMS D-4 with extended library and DIXY programs are used and tested for those purposes. We also have proceeded to a qualification of WIMS code based on the fuel temperature coefficient calculations. 33 refs.; 23 figs.; 30 tabs. (author)

  14. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  15. Thorium-based Fuel Cycles: Reassessment of Fuel Economics and Proliferation Risk. Assessment of Proliferation Risk of Reactor-grade Plutonium regarding Construction of ‘Fizzle Bombs’ by Terrorists

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2013-01-01

    Interventions which add resonance absorbers to the fuel deteriorate the neutron economy. This reduces the burn-up and increases the HM in spent fuel, especially 241 Pu and largely defeats the purpose of the exercise

  16. Burnup calculation with estimated neutron spectrum of JMTR irradiation field. Development of the burnup calculation method for fuel pre-irradiated in the JMTR

    International Nuclear Information System (INIS)

    Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji

    1999-03-01

    As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times

  17. Comparative calculations of the WWER fuel rod thermophysical characteristics employing the TOPRA-s and the TRANSURANUS computer codes

    International Nuclear Information System (INIS)

    Scheglov, A.S.; Proselkov, V.N.; Sidorenko, V.D.; Passage, G.; Stefanova, S.; Haralampieva, Tz.; Peychinov, Tz.

    2000-01-01

    A short description of the TOPRA-s computer code is presented. The code is developed to calculate the thermophysical cross-section characteristics of the WWER fuel rods: fuel temperature distributions and fuel-to-cladding gap conductance. The TOPRA-s input does not require the fuel rod irradiation pre-history (time dependent distributions of linear power, fast neutron flux and coolant temperature along the rod). The required input consists of the considered cross-section data (coolant temperature, burnup, linear power) and the overall fuel rod data (burnup and linear power). TOPRA-s is included into the KASKAD code package. Some results of the TOPRA-s code validation using the SOFIT-1 and IFA-503.1 experimental data, are shown. A short description of the TRANSURANUS code for thermal and mechanical predictions of the LWR fuel rod behavior at various irradiation conditions and its version for WWER reactors, are presented. (Authors)

  18. Study of multiplication factor sensitivity to the spread of WWER spent fuel isotopics calculated by different codes

    International Nuclear Information System (INIS)

    Markova, L.

    2001-01-01

    As a sensitivity study the impact on the system reactivity was studied in the case that different calculational methodologies of spent fuel isotopic concentrations were used for WWER spent fuel inventory computations. The sets of isotopic concentrations obtained by calculations with different codes and libraries as a result of the CB2 international benchmark focused on WWER-440 burnup credit were used to show the spread of the calculated spent fuel system reactivity. Using the MCNP 4B code and changing the isotopics input data, the multiplication factor of an infinite array of the WWER-440 fuel pin cells was calculated. The evaluation of the results shows the sensitivity of the calculated reactivity to different calculational methodologies used for the spent fuel inventory computation. In the studied cases of the CB2 benchmark, the spread of the reference k-results relative to the mean was found less or about ±1% in spite of the fact that the data of isotopic concentrations were spread much more. (author)

  19. Development of a simplified statistical methodology for nuclear fuel rod internal pressure calculation

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Oh Hwan

    1999-01-01

    A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs

  20. Gamma spectrometric measurements of power distribution and burnup on irradiated fuel elements of light water reactors

    International Nuclear Information System (INIS)

    Bouchard, Jacques; Frejaville, Gerard; Robin, Michel.

    1977-08-01

    Based on experience gained from experiments at the COMIR laboratory and with the installation at the Adennes reactor and on the use of these results for evaluation of calculation methods, this report includes a synthesis of the aspects concerning in particular non-destructive measurement of irradiated fuel in water reactors, fuel assemblies or fuel pins. Following a brief summary of gamma emitting radioactive fission products and, measurement conditions, there is a description of the fuel cooling installation at the Ardennes reactor, including the results obtained with this installation as well as from measurements on the fuel pins. In conclusion, the problem concerning burn-up determination, especially the 134 Cs/ 137 Cs method, are discussed [fr

  1. Technique of calculating specific capital investments in the fuel extracting sectors of industry

    Energy Technology Data Exchange (ETDEWEB)

    Bugrov, V.A.; Filey, I.A.

    1980-01-01

    An analysis is made of the existing methods of calculating specific capital investments in the fuel extracting sectors of industry. Their shortcomings are shown. It is suggested that specific capital investments for extraction of coal and gas be defined as the ratio of capital investments to the conditional increase in extraction. Coal extraction should take int consideration all the capital investments associated with the input of new facilities, and the maintenance of the attained level of extraction and reconstruction of the enterprise, as well as all the newly introduced facilities both at the new and at the active enterprises associated with an increase in coal extraction and with maintenance of the facilities. The suggested technique completely corresponds to the ''Standard Technique for Developing a Technical-Industrial-Financial Plan,'' which stipulates determination of specific capital investments per unit of introduced facilities with only the difference that it takes into consideration the specific features of the fuel extracting sectors of industry.

  2. On the accuracy of reactor physics calculations for square HPLWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)]. E-mail: fabian.jatuff@psi.ch; Macku, K. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Chawla, R. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2006-01-15

    Although the supercritical-pressure or high-performance light water reactor (HPLWR) concept is largely based on the well-established technological experience available with conventional light water reactors, there is still no consensus on various key design features such as an optimal layout for the fuel assembly. This results mainly from the very large density variations of supercritical-pressure water in the core, which render it difficult to ensure reliable values for parameters such as power peaking factors and reactivity worths. The present paper describes studies carried out to compare deterministic and Monte Carlo codes for analysing a representative square HPLWR lattice with uniform 5%-enriched UO{sub 2} fuel. The main purpose has been to assess the prediction accuracies achievable for integral parameters such as the multiplication factor, control absorber effectiveness, moderator/coolant density reactivity feedback and pin power distributions. The results show good agreement between the deterministic and stochastic calculations for the unperturbed lattice. However, for certain perturbed situations involving, for example, local coolant density changes in the assembly or control absorber insertion, the observed discrepancies are large enough to question the basic viability of the reactor physics design, e.g. with respect to the thermal performance.

  3. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  4. Addendum to the procedure of KWU standard calculation for PWR fuel assembly with gadolinium

    International Nuclear Information System (INIS)

    Andrade, E.P. de

    1993-01-01

    The objective of this work is to solve a doubt appeared in the standard procedure of KWU/Siemens for fuel assembly (FA) with gadolinium. In this procedure, the σ's and form functions of such assembly are modified by his effective heterogeneity factor factor (f eff ), which is defined as the ratio between the heterogeneity factors (f het ) of FA's with and without poison. The doubt appeared at the time to calculated the f het of FA without poison: should one consider the pure FA or the FA with poison in which the concentration of gadolinium would be set to zero, but one should keep that of natural uranium? The best results were obtained considering the second hypothesis. (author)

  5. A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez, R.; Varela, M.

    1999-07-01

    The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.

  6. A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels

    International Nuclear Information System (INIS)

    Galan, A.; Gonzalez, R.; Varela, M.

    1999-01-01

    The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs

  7. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... by the Administrator based on historic vehicle-specific 5-cycle city fuel economy data. MT FTP FE... highway fuel economy data. MT HFET FE = the model type highway fuel economy determined under § 600.208-08... on fuel economy that is derived from vehicle-specific 5-cycle model type data as determined in...

  8. Fuel Cycle Cost Calculations for a 120,000 shp PWR for Ship Propulsion. RCN Report

    International Nuclear Information System (INIS)

    Dekker, N.H.; Foggi, C.; Giacomazzi, G.

    1972-02-01

    A parametric study of the fuel cycle costs for a 120,000 SHP PWR for ship propulsion has been carried out. Variable parameters are: fuel pellet diameter, moderating ratio and refuelling scheme. Minimum fuel cycle costs can be obtained at moderating ratios of about 2.2. Both fuel cycle costs and reactor control requirements favour the two batch core. (author)

  9. Nodal methods for calculating nuclear reactor transients, control rod patterns, and fuel pin powers

    International Nuclear Information System (INIS)

    Cho, Byungoh.

    1990-01-01

    Nodal methods which are used to calculate reactor transients, control rod patterns, and fuel pin powers are investigated. The 3-D nodal code, STORM, has been modified to perform these calculations. Several numerical examples lead to the following conclusions: (1) By employing a thermal leakage-to-absorption ratio (TLAR) approximation for the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-Werner (LMW) and the superprompt critical transient problems, the convergence of the conventional two-group scheme is accelerated. (2) By employing the steepest-ascent hill climbing search with heuristic strategies, Optimum Control Rod Pattern Searcher (OCRPS) is developed for solving control rod positioning problem in BWRs. Using the method of approximation programming the objective function and the nuclear and thermal-hydraulic constraints are modified as heuristic functions that guide the search. The test calculations have demonstrated that, for the first cycle of the Edwin Hatch Unit number-sign 2 reactor, OCRPS shows excellent performance for finding a series of optimum control rod patterns for six burnup steps during the operating cycle. (3) For the modified two-dimensional EPRI-9R problem, the least square second-order polynomial flux expansion method was demonstrated to be computationally about 30 times faster than a fine-mesh finite difference calculation in order to achieve comparable accuracy for pin powers. The basic assumption of this method is that the reconstructed flux can be expressed as a product of an assembly form function and a second-order polynomial function

  10. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Science.gov (United States)

    2010-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for... Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for...

  12. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy values for a model type. 600.208-08 Section 600.208-08 Protection of Environment... model type. (a) Fuel economy values for a base level are calculated from vehicle configuration fuel... update sales projections at the time any model type value is calculated for a label value. (iii) The...

  13. Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility

    International Nuclear Information System (INIS)

    Olson, W.O.; Nigg, D.W.

    1981-05-01

    The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft

  14. Influence of FGR complexity modelling on the practical results in gas pressure calculation of selected fuel elements from Dukovany NPP

    International Nuclear Information System (INIS)

    Lahodova, M.

    2001-01-01

    A modernization fuel system and advanced fuel for operation up to the high burnup are used in present time in Dukovany NPP. Reloading of the cores are evaluated using computer codes for thermomechanical behavior of the most loaded fuel rods. The paper presents results of parametric calculations performed by the NRI Rez integral code PIN, version 2000 (PIN2k) to assess influence of fission gas release modelling complexity on achieved results. The representative Dukovany NPP fuel rod irradiation history data are used and two cases of fuel parameter variables (soft and hard) are chosen for the comparison. Involved FGR models where the GASREL diffusion model developed in the NRI Rez plc and standard Weisman model that is recommended in the previous version of the PIN integral code. FGR calculation by PIN2k with GASREL model represents more realistic results than standard Weisman's model. Results for linear power, fuel centre temperature, FGR and gas pressure versus burnup are given for two fuel rods

  15. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    Science.gov (United States)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  16. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    Energy Technology Data Exchange (ETDEWEB)

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  17. Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wu Wan'e

    2012-01-01

    Full Text Available A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ±7.3%; in the formulation range (hydroxyl-terminated polybutadiene 28%–32%, ammonium perchlorate 30%–35%, magnalium alloy 4%–8%, catocene 0%–5%, and boron 30%, the variation of the calculation data is consistent with the experimental results.

  18. Criticality and shielding calculations for containers in dry of spent fuel of TRIGA Mark III reactor of ININ

    International Nuclear Information System (INIS)

    Barranco R, F.

    2015-01-01

    In this thesis criticality and shielding calculations to evaluate the design of a container of dry storage of spent nuclear fuel generated in research reactors were made. The design of such container was originally proposed by Argentina and Brazil, and the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico. Additionally, it is proposed to modify the design of this container to store spent fuel 120 that are currently in the pool of TRIGA Mark III reactor, the Nuclear Center of Mexico and calculations and analyzes are made to verify that the settlement of these fuel elements is subcritical limits and dose rates to workers and the general public are not exceeded. These calculations are part of the design criteria for security protection systems in dry storage system (Dss for its acronym in English) proposed by the Nuclear Regulatory Commission (NRC) of the United States. To carry out these calculations simulation codes of Monte Carlo particle transport as MCNPX and MCNP5 were used. The initial design (design 1) 78 intended to store spent fuel with a maximum of 115. The ININ has 120 fuel elements and spent 3 control rods (currently stored in the reactor pool). This leads to the construction of two containers of the original design, but for economic reasons was decided to modify (design 2) to store in a single container. Criticality calculations are performed to 78, 115 and fresh fuel elements 124 within the container, to the two arrangements described in Chapter 4, modeling the three-dimensional geometry assuming normal operating conditions and accident. These calculations are focused to demonstrate that the container will remain subcritical, that is, that the effective multiplication factor is less than 1, in particular not greater than 0.95 (as per specified by the NRC). Spent fuel 78 and 124 within the container, both gamma radiation to neutron shielding calculations for only two cases were simulated. First actinides and fission products generated

  19. Solubility of hot fuel particles from Chernobyl--influencing parameters for individual radiation dose calculations.

    Science.gov (United States)

    Garger, Evgenii K; Meisenberg, Oliver; Odintsov, Oleksiy; Shynkarenko, Viktor; Tschiersch, Jochen

    2013-10-15

    Nuclear fuel particles of Chernobyl origin are carriers of increased radioactivity (hot particles) and are still present in the atmosphere of the Chernobyl exclusion zone. Workers in the zone may inhale these particles, which makes assessment necessary. The residence time in the lungs and the transfer in the blood of the inhaled radionuclides are crucial for inhalation dose assessment. Therefore, the dissolution of several kinds of nuclear fuel particles from air filters sampled in the Chernobyl exclusion zone was studied. For this purpose filter fragments with hot particles were submersed in simulated lung fluids (SLFs). The activities of the radionuclides (137)Cs, (90)Sr, (239+240)Pu and (241)Am were measured in the SLF and in the residuum of the fragments by radiometric methods after chemical treatment. Soluble fractions as well as dissolution rates of the nuclides were determined. The influence of the genesis of the hot particles, represented by the (137)Cs/(239+240)Pu ratio, on the availability of (137)Cs was demonstrated, whereas the dissolution of (90)Sr, (239+240)Pu and (241)Am proved to be independent of genesis. No difference in the dissolution of (137)Cs and (239+240)Pu was observed for the two applied types of SLF. Increased solubility was found for smaller hot particles. A two-component exponential model was used to describe the dissolution of the nuclides as a function of time. The results were applied for determining individual inhalation dose coefficients for the workers at the Chernobyl construction site. Greater dose coefficients for the respiratory tract and smaller coefficients for the other organs were calculated (compared to ICRP default values). The effective doses were in general lower for the considered radionuclides, for (241)Am even by one order of magnitude. © 2013 Elsevier B.V. All rights reserved.

  20. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    Energy Technology Data Exchange (ETDEWEB)

    Vicroy, D.D.; Knox, C.E.

    1983-05-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  1. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    Science.gov (United States)

    Vicroy, D. D.; Knox, C. E.

    1983-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  2. Comparison of Calculational Results from Different Spent Nuclear Fuel (SNF) Crumbling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-25

    Several safety basis cases or scenarios using three different fuel crumbling or degradation approaches were simulated with a modified HANSF Code. Results of simulations are compared and discussed. The conclusion is that the safety basis fuel reaction enhancement factors are conservative and bound other fuel crumbling approaches for the results of interest.

  3. Thermal calculations for the design, construction, operation, and evaluation of the Spent Fuel Test - Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    Montan, D.N.; Patrick, W.C.

    1981-01-01

    The Spent Fuel Test-Climax (SFT-C) is a test of retrievable deep geologic storage of commercially generated spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with six electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978 LLNL secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This report documents a series of thermal calculations that were performed in support of the SFT-C. Early calculations employed analytical solutions to address such design and construction issues as drift layout and emplacement hole spacings. Operational aspects of the test required more detailed numerical solutions dealing with ventilation and guard-heater power levels. The final set of calculations presented here provides temperature histories throughout the test facility for evaluation of the response of the SFT-C and for comparison of calculations with acquired data. This final set of calculations employs the as-built test geometry and best-available material properties

  4. Composition calculations by the KARATE code system for the spent-fuel samples from the Novovoronezh reactor

    International Nuclear Information System (INIS)

    Hordosy, G.

    2006-01-01

    KARATE is a code system developed in KFKI AERI. It is routinely used for core calculation. Its depletion module are now tested against the radiochemical measurements of spent fuel samples from the Novovoronezh Unit IV, performed in RIAR, Dimitrovgrad. Due to the insufficient knowledge of operational history of the unit, the irradiation history of the samples was taken from formerly published Russian calculations. The calculation of isotopic composition was performed by the MULTICEL module of program system. The agreement between the calculated and measured values of the concentration of the most important actinides and fission products is investigated (Authors)

  5. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  6. Fuel burnup calculation of Ghana MNSR using ORIGEN2 and REBUS3 codes.

    Science.gov (United States)

    Abrefah, R G; Nyarko, B J B; Fletcher, J J; Akaho, E H K

    2013-10-01

    Ghana Research Reactor-1 core is to be converted from HEU fuel to LEU fuel in the near future and managing the spent nuclear fuel is very important. A fuel depletion analysis of the GHARR-1 core was performed using ORIGEN2 and REBUS3 codes to estimate the isotopic inventory at end-of-cycle in order to help in the design of an appropriate spent fuel cask. The results obtained for both codes were consistent for U-235 burnup weight percent and Pu-239 build up as a result of burnup. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. OECD-IAEA Paks Fuel Project. Detailed Description of the Results of Calculations

    International Nuclear Information System (INIS)

    2010-05-01

    On 10 April 2003 severe damage of fuel assemblies took place during an incident at Unit 2 of Paks Nuclear Power Plant in Hungary. The assemblies were being cleaned in a special tank below the water level of the spent fuel storage pool in order to remove crud buildup. That afternoon, the chemical cleaning of assemblies was completed and the fuel rods were being cooled by circulation of storage pool water. The first sign of fuel failure was the detection of some fission gases released from the cleaning tank during that evening. The cleaning tank cover locks were released after midnight and this operation was followed by a sudden increase in activity concentrations. The visual inspection revealed that all 30 fuel assemblies were severely damaged. The first evaluation of the event showed that the severe fuel damage happened due to inadequate coolant circulation within the cleaning tank. The damaged fuel assemblies will be removed from the cleaning tank in 2005 and will be stored in special canisters in the spent fuel storage pool of the Paks NPP. Following several discussions between expert from different countries and international organisations the OECD-IAEA Paks Fuel Project was proposed. The project is envisaged in two phases. - Phase 1 is to cover organization of visual inspection of material, preparation of database, performance of analyses and preparatory work for fuel examination. - Phase 2 is to cover the fuel transport and the hot cell examination

  8. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  9. Analytical calculation of the fuel temperature reactivity coefficient for pebble bed and prismatic high temperature reactors for plutonium and uranium-thorium fuels

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2007-01-01

    We analytically evaluated the fuel coefficient of temperature both for pebble bed and prismatic high temperature reactors when they utilize as fuel plutonium and minor actinides from light water reactors spent fuel or a mixture of 50% uranium, enriched 20% in 235 U, and 50% thorium. In both cores the calculation involves the evaluation of the resonances integrals of the high absorbers fuel nuclides 240 Pu, 238 U and 232 Th and it requires the esteem of the Dancoff-Ginsburg factor for a pebble bed or prismatic core. The Dancoff-Ginsburg factor represents the only discriminating parameter in the results for the two different reactors types; in fact, both the pebble bed and the prismatic reactors share the same the pseudo-cross-section describing an infinite medium made of graphite filled by TRISO particles. We considered only the resolved resonances with a statistical spin factor equal to one and we took into account 267, 72, 212 resonances in the range 1.057-5692, 6.674-14485, 21.78-3472 eV for 240 Pu, 238 U and 232 Th, respectively, for investigating the influence on the fuel temperature reactivity coefficient of the variation of the TRISO kernel radius and TRISO particles packing fraction from 100, 200 to 300 μm and from 10% to 50%, respectively. Finally, in the pebble bed core, we varied the radius of the pebble for setting a fuel temperature reactivity coefficient similar to the one of a prismatic core

  10. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear (CEN)]. E-mail: madamy@ipen.br

    2007-07-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  11. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A.

    2007-01-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  12. Calculations of fuel temperature transients in the LPTR following a main coolant system pump trip

    International Nuclear Information System (INIS)

    Stein, W.

    1976-01-01

    An analysis was made to determine the fuel temperature in the Livermore Pool Type Reactor, LPTR, during a transient involving a reactor scram following a cooling system pump trip. A computer code was obtained for this purpose from the University of Virginia. This code was used in preparation of UVAR-18, the SAR Manual of the University of Virginia Reactor. This reactor is very similar to the LPTR. The code incorporates a form of the reactor point kinetics equation with six delayed neutron groups, and standard heat transfer equations. The code was modified for use in this study. These modifications included rewriting the code in Fortran IV from ALGO, replacing a straight line pump coastdown by an equation closely following the actual pump RPM during a pump trip, modifying flow resistance equations to conform to the conditions in the LPTR, and replacing various constants with others applicable to the LPTR. The calculations in this study apply to a reactor scram from conditions at the ''safety limit'' settings

  13. Calculations of fuel temperature transients in the LPTR following a main coolant system pump trip

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.

    1976-09-28

    An analysis was made to determine the fuel temperature in the Livermore Pool Type Reactor, LPTR, during a transient involving a reactor scram following a cooling system pump trip. A computer code was obtained for this purpose from the University of Virginia. This code was used in preparation of UVAR-18, the SAR Manual of the University of Virginia Reactor. This reactor is very similar to the LPTR. The code incorporates a form of the reactor point kinetics equation with six delayed neutron groups, and standard heat transfer equations. The code was modified for use in this study. These modifications included rewriting the code in Fortran IV from ALGO, replacing a straight line pump coastdown by an equation closely following the actual pump RPM during a pump trip, modifying flow resistance equations to conform to the conditions in the LPTR, and replacing various constants with others applicable to the LPTR. The calculations in this study apply to a reactor scram from conditions at the ''safety limit'' settings.

  14. Methods For The Calculation Of Pebble Bed High Temperature Reactors With High Burnup Plutonium And Minor Actinide Based Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenter [Institute for Nuclear Technology and Energy Systems, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2008-07-01

    The graphite moderated Modular High Temperature Pebble Bed Reactor enables very flexible loading strategies and is one candidate of the Generation IV reactors. For this reactor fuel cycles with high burnup (about 600 MWd/kg HM) based on plutonium (Pu) and minor actinides (MA) fuel will be investigated. The composition of this fuel is defined in the EU-PuMA-project which aims the reduction of high level waste. There exist nearly no neutronic full core calculations for this fuel composition with high burnup. Two methods (deterministic and Monte Carlo) will be used to determine the neutronics in a full core. The detailed results will be compared with respect to the influence on criticality and safety related parameters. (authors)

  15. Methods For The Calculation Of Pebble Bed High Temperature Reactors With High Burnup Plutonium And Minor Actinide Based Fuel

    International Nuclear Information System (INIS)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenter

    2008-01-01

    The graphite moderated Modular High Temperature Pebble Bed Reactor enables very flexible loading strategies and is one candidate of the Generation IV reactors. For this reactor fuel cycles with high burnup (about 600 MWd/kg HM) based on plutonium (Pu) and minor actinides (MA) fuel will be investigated. The composition of this fuel is defined in the EU-PuMA-project which aims the reduction of high level waste. There exist nearly no neutronic full core calculations for this fuel composition with high burnup. Two methods (deterministic and Monte Carlo) will be used to determine the neutronics in a full core. The detailed results will be compared with respect to the influence on criticality and safety related parameters. (authors)

  16. About calculation results of heat transfer in the fuel assembly clusters cooled by water with supercritical parameters

    International Nuclear Information System (INIS)

    Grabezhnaya, V.A.

    2008-01-01

    Paper reviews the numerical investigation into the heat transfer in the supercritical water cooled fuel assemblies on the basis of the various commercial codes. The turbulence available models specified in the codes describe adequately the experimental data in tubes within the range of flow temperatures away from the pseudocritical point, as well as under high mass velocities. There are k-ε type turbulence models that show qualitatively the local acceleration (slowdown) of the heat transfer in tubes, but they fail to describe the mentioned phenomena quantitatively. To determine the effect of grid spacers on the suppression of the heat transfer local slowdown and on the heat transfer acceleration in fuel assemblies and to ensure more accurate calculation of the fuel element cladding maximum temperature one should perform a number of the experiments making use of the fuel assembly models [ru

  17. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  18. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  19. Results of the irradiation of mixed UO2 - PuO2 oxide fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L.

    1966-01-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO 2 containing about 10 per cent of PuO 2 . The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm 3 and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and γ-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [fr

  20. Calculations of the actinide transmutation with HELIOS for fuels of light water reactors

    International Nuclear Information System (INIS)

    Francois L, J.L.; Guzman A, J.R.

    2006-01-01

    In this work a comparison of the obtained results with the HELIOS code is made and those obtained by other similar codes, used in the international community, respect to the transmutation of smaller actinides. For this the one it is analyzed the international benchmark: 'Calculations of Different Transmutation Concepts', of the Nuclear Energy Agency. In this benchmark two cell types are analyzed: one small corresponding to a PWR standard, and another big one corresponding to a PWR highly moderated. Its are considered two types of burnt of discharge: 33 GWd/tHM and 50 GWd/tHM. The following types of results are approached: the k eff like a function of the burnt one, the atomic densities of the main isotopes of the actinides, the radioactivities in the moment in that the reactor it is off and in the times of cooling from 7 up to 50000 years, the reactivity by holes and the Doppler reactivity. The results are compared with those obtained by the following institutions: FZK (Germany), JAERI (Japan), ITEP (Russia) and IPPE (Russian Federation). In the case of the eigenvalue, the obtained results with HELIOS showed a discrepancy around 3% Δk/k, which was also among other participants. For the isotopic concentrations: 241 Pu, 242 Pu and 242m Am the results of all the institutions present a discrepancy bigger every time, as the burnt one increases. Regarding the activities, the discrepancy of results is acceptable, except in the case of the 241 Pu. In the case of the Doppler coefficients the discrepancy of results is acceptable, except for the cells with high moderation; in the case of the holes coefficients, the discrepancy of results increases in agreement with the holes fraction increases, being quite high to 95% of holes. In general, the results are consistent and in good agreement with those obtained by all the participants in the benchmark. The results are inside of the established limits by the work group on Plutonium Fuels and Innovative Fuel Cycles of the Nuclear

  1. Nondestructive analysis of the RA fuel burnup, Calculation of the gamma activity ratio of fission products in the fuel - program QU0C1

    International Nuclear Information System (INIS)

    Bulovic, V.F.

    1973-01-01

    The γ radiation of RA reactor fuel element was measured under precisely defined measuring conditions. The spectrum was analysed by spectrometer with semiconductor Ge(Li) detector. The gamma counting rate in the fuel spectrum is defined as a function of fission product activity, gamma energy and yield, fuel thickness and additional absorbers, dimensions of the gamma collimator. Activity ratio of two fission products is defined as a function of counting rate peaks and part of the mentioned quantities. Four options for calculating the activities for fission products are discussed. Three of them are covered by the QU0C1 code written in FORTRAN for the CDC 3600 computer. The code is included in this report [sr

  2. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  3. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  4. Contribution to the elaboration of the neutronic calculation scheme for the light water reactors with slab fuel elements

    International Nuclear Information System (INIS)

    Noel, Brigitte

    1978-05-01

    The use of slab fuel elements in the light water reactors is interesting for the thermohydraulic aspects but, of course, induces some difficulties for the neutronic calculations. This thesis is devoted to the discussion of some of them: comparison with the pin lattices, resonance capture by 238 U, effective temperature for the Doppler effect, reduction of the number of energy groups, adjustment of the fission cross section of 235 U in order to improve the temperature coefficient calculation. A complete calculation scheme is proposed and checked against experiment [fr

  5. MARMOT update for oxide fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Chao [Idaho National Lab. (INL), Idaho Falls, ID (United States); Aagesen, Larry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ahmed, Karim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tonks, Michael [Pennsylvania State Univ., University Park, PA (United States); Millett, Paul [Univ. of Arkansas, Fayetteville, AR (United States)

    2016-09-01

    This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UO$_2$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.

  6. Design study on PWR-type reduced-moderation light water core. Investigation of core adopting seed-blanket fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    As a part of the design study on PWR-type Reduced-Moderation Water Reactors (RMWRs), a light water cooled core with the seed-blanket type fuel assemblies has been investigated. An assembly with seed of 13 layers and blanket of 5 layers was selected by optimization calculations. The core was composed with the 163 assemblies. The following results were obtained by burn-up calculations with the MVP-BURN code; The cycle length is 15 months by 3-batch refueling. The discharge burn-up including the inner blanket is about 25 GWd/t. The conversion ratio is about 1.0. The void reactivity coefficient is about-26.1 pcm/%void at BOC and -21.7pcm%void at EOC. About 10% of MA makes conversion ratio decrease about 0.05 to obtain the same burn-up. The void reactivity coefficient increased significantly and it is necessary to reduce it. FP amount corresponding to about 2 % of total plutonium weight makes reactivity decrease about 0.5 %{delta}k/k and void reactivity coefficient increase, however these changes are within the design margins. Capability of multi-recycling of plutonium was confirmed, using discharged plutonium for 4 cycles, if fissile plutonium of 15.5wt% is used. The conversion ratio increases by about 0.026 with recycling. However, void reactivity coefficient increases and some effort to obtain negative void reactivity coefficient is necessary. (author)

  7. Use of ELOCA.Mk5 to calculate transient fission product release from CANDU fuel elements

    International Nuclear Information System (INIS)

    Walker, J.R.; de Vaal, J.W.; Arimescu, V.I.; McGrady, T.G.; Wong, C.

    1992-04-01

    A change in fuel element power output, or a change in heat transfer conditions, will result in an immediate change in the temperature distribution in a fuel element. The temperature distribution change will be accompanied by concomitant changes in fuel stress distribution that lead, in turn, to a release of fission products to the fuel-to-sheath gap. It is important to know the inventory of fission products in the fuel-to-sheath gap, because this inventory is a major component of the source term for many postulated reactor accidents. ELOCA.Mk5 is a FORTRAN-77 computer code that has been developed to estimate transient releases to the fuel-to-sheath gap in CANDU reactors. ELOCA.Mk5 is an integration of the FREEDOM fission product release model into the ELOCA fuel element thermo-mechanical code. The integration of FREEDOM into ELOCA allows ELOCA.Mk5 to model the feedback mechanisms between the fission product release and the thermo-mechanical response of the fuel element. This paper describes the physical model, gives details of the ELOCA.Mkt code, and describes the validation of the model. We demonstrate that the model gives good agreement with experimental results for both steady state and transient conditions

  8. Quantification of TRISO fuel heterogeneity effects in HTGR lattice physics calculations

    International Nuclear Information System (INIS)

    Perfetti, C. M.; Anghaie, S.; Dugan, E.; Marcille, T.

    2010-01-01

    A large number of LEU-MHR fuel compact models were generated with randomly distributed TRISO particle fuel and were simulated using MCNP5, and it was determined how several neutronic parameters, including k-infinite, the thermal and fast diffusion coefficients, and the four factors, varied across the randomly-generated cases. A sensitivity study was also performed to determine how the four factors depend on the definition of the thermal energy group. Values of k-infinite for the cases had a sample standard deviation of 248 pcm and were found to follow an approximately normal distribution about the mean value of k-infinite. Although all of the four factors were found to have similar sample standard deviations, the resonance escape probability was found to be the most variable parameter with a sample relative standard deviation between 0.07% and 0.08%. HTGR fuel compact homogenization methods typically examine only one reference fuel compact that contains a uniform distribution of TRISO particles, but in reality the TRISO particles are randomly distributed throughout the fuel compact. Thus, the neutronic parameters for actual fuel compacts differ randomly from those in the reference model. To license next-generation High-Temperature Gas Reactors engineers must quantify all uncertainties of the design and this random variation in neutron parameters is a previously unmeasured quantity; this study measures this uncertainty by examining the variation in k-infinite for HTGR fuel compact models with randomly distributed TRISO fuel. (authors)

  9. Release characteristics of cesium from green pellet fabricated with spent fuel under different sintering conditions

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, Dou Youn; Lee, Young Soon; Kim, Woong Ki; Lee, Jae Won; Lee, Jung Won; Yang, Myung Seung

    2005-01-01

    The dry process, known as DUPIC(Direct Use of spent PWR fuel in CANDU reactor), for fabricating fuel pellets from spent fuel as recycling technology has been well demonstrated by establishing an optimization process for fuel fabrication through a number of batch processes using typical PWR spent fuel. As considering a strategy for extending the burn-up in LWR fuel, experimental verification for analyzing the effect of spent fuel burn-up on fuel fabrication is necessary in some respects that one of key parameters influencing the fuel fabrication characteristic would amount of fission products contained as impurity elements in spent fuel. A high burn-up spent fuel has a higher amount of fission products compared with typical spent fuel irradiated in about 27,000 MWd/tU. A preliminary study showed that the sintered pellet density fabricated with a high burn-up fuel has a lower value than that of common fuel burn-ups of about 30,000 MWd/tU. To provide better understanding a remote fuel fabrication characteristic in an aspect of wide ranges of spent fuel generated from PWR reactor, the influence of fission products release on fabrication characteristics of the dry processed fuel with a high burn-up fuel of 65,000 MWd/tU were experimentally evaluated. It is expected that key fission product affecting fabrication characteristics in dry process is cesium isotope due to the boiling point of 670 .deg. C and the low dissociation temperature of its oxides(<700 .deg. C). This study focus to analyze the release characteristics of cesium from green pellets fabricated with a variation of compaction pressure under different sintering conditions using tubular furnace in IMEF M6 hot cell

  10. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    International Nuclear Information System (INIS)

    George, Nathan; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  11. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  12. RAP-3A Computer code for thermal and hydraulic calculations in steady state conditions for fuel element clusters

    International Nuclear Information System (INIS)

    Popescu, C.; Biro, L.; Iftode, I.; Turcu, I.

    1975-10-01

    The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  13. Reactivity Impact of Difference of Nuclear Data Library for PWR Fuel Assembly Calculation by Using AEGIS Code

    International Nuclear Information System (INIS)

    Ohoka, Yasunori; Tatsumi, Masahiro; Sugimura, Naoki; Tabuchi, Masato

    2011-01-01

    In 2010, the latest version of the Japanese Evaluated Nuclear Data Library (JENDL-4.0) has been released by JAEA. JENDL-4.0 is major update from JENDL- 3.3, and confirmed to give good accuracy by integral test for fission reactor systems such as fast neutron system and thermal neutron system. In this study, we evaluated the reactivity impact due to difference between ENDF/B-VII.0 and JENDL-4.0 for PWR fuel assembly burnup calculation using AEGIS code which has been developed by Nuclear Engineering, Ltd. in cooperation with Nuclear Fuel Industries, Ltd. and Nagoya University

  14. 40 CFR 600.113-08 - Fuel economy calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations for FTP... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test...

  15. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  16. A computer code for calculation of solvent-extraction separation in a multicomponent system with reference to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Carassiti, F.; Liuzzo, G.; Morelli, A.

    1982-01-01

    Nuclear technology development pointed out the need for a new assessment of the fuel cycle back-end. Treatment and disposal of radioactive wastes arising from nuclear fuel reprocessing is known as one of the problems not yet satisfactorily solved, together with separation process of uranium and plutonium from fission products in highly irradiated fuels. Aim of this work is to present an improvement of the computer code for solvent extraction process calculation previously designed by the authors. The modeling of the extraction system has been modified by introducing a new method for calculating the distribution coefficients. The new correlations were based on deriving empirical functions for not only the apparent equilibrium constants, but also the solvation number. The mathematical model derived for calculating separation performance has been then tested for up to ten components and twelve theoretical stages with minor modifications to the convergence criteria. Suitable correlations for the calculation of the distribution coefficients of Uranium, Plutonium, Nitric Acid and fission products were constructed and used to successfully simulate several experimental conditions. (Author)

  17. Evaluation of accuracy of calculations of WWER-1000 core states with incomplete covering of fuel by the absorber

    International Nuclear Information System (INIS)

    Tikhomirov, A.V.; Ponomarenko, G.L.

    2010-01-01

    An additional verification of bundled software SAPFIR 9 5 and RC and code KORSAR/GP was performed. Both software products were developed in A.P. Alexandrov NITI and certified by Rostekhnadzor of RF for numeric simulation of stationary, transitional and emergency conditions of WWER reactors. A benchmark model for neutronics calculations was created within the limits of this work. The cold subcritical state of VVER -1000 reactor stationary fuelling was simulated on the basis of fuel assemblies with an increased height of the fuel column (TVS-2M) considering detailed presentation of radial and front neutron reflectors. A case of passing of pure condensate slug through the core in initially deep subcritical state during start of the first RCP set after refueling was considered as an examined condition of reactor operation. A relatively small size of the slug, its spatial position near the reflectors (lower and lateral), as well as failure of the inserted control rods of the control and protection system to reach the lower limit of the fuel column stipulate for methodical complexity of a correct calculation of the neutron multiplication constant (K eff ) using engineering codes. Code RC was used as a test program in the process of reactor calculated 3-D modeling. Code MCNP5 was used as the precision program, which solves the equation of neutrons transfer by Monte-Carlo method and which was developed in the US (Los-Alamos). As a result of comparative calculations dependency of K eff on two parameters was evaluated-boron acid concentration (C b ) and CPS CR position. Reactivity effect was evaluated, which is implemented as a result of failure of all CPS control rods to reach the lower fuel limit calculated using the engineering codes mentioned above. (Authors)

  18. Quantitative and qualitative investigation of the fuel utilization and introducing a novel calculation idea based on transfer phenomena in a polymer electrolyte membrane (PEM) fuel cell

    International Nuclear Information System (INIS)

    Yousefkhani, M. Baghban; Ghadamian, H.; Massoudi, A.; Aminy, M.

    2017-01-01

    Highlights: • Investigation of fuel utilization in PEMFC within transfer phenomenon approach. • The main defect of the theoretical calculation of U F depends on Nernst equation. • U F has a differential nature so it is employed to do theoretical calculation. - Abstract: In this study, fuel utilization (U F ) of a PEMFC have been investigated within transfer phenomenon approach. Description of the U F and fuel consumption measurement is the main factor to obtain the U F . The differences between the experimental study and theoretical calculations results in the previous research articles reveal the available theoretical equations should be studied more based on the fundamental affairs of the U F . Hence, there is a substantial issue that the U F description satisfies the principles, and then it can be validated by the experimental results. The results of this study indicate that the U F and power grew by 1.1% and 1%, respectively, based on one degree increased temperature. In addition, for every 1 kPa pressure increment, U F improved considerably by 0.25% and 0.173% in the 40 °C and 80 °C, respectively. Furthermore, in the constant temperature, the power improved by 22% based on one atmospheric growth of the pressure. Results of this research show that the U F has a differential nature, therefore differential equations will be employed to do an accurate theoretical calculation. Accordingly, it seems that the main defect of the theoretical calculation depends on Nernst equation that can be modified by a differential nature coefficient.

  19. Radiation heat transfer calculations for the uranium fuel-containment region of the nuclear light bulb engine.

    Science.gov (United States)

    Rodgers, R. J.; Latham, T. S.; Krascella, N. L.

    1971-01-01

    Calculation results are reviewed of the radiant heat transfer characteristics in the fuel and buffer gas regions of a nuclear light bulb engine based on the transfer of energy by thermal radiation from gaseous uranium fuel in a neon vortex, through an internally cooled transparent wall, to seeded hydrogen propellant. The results indicate that the fraction of UV energy incident on the transparent walls increases with increasing power level. For the reference engine power level of 4600 megw, it is necessary to employ space radiators to reject the UV radiated energy absorbed by the transparent walls. This UV energy can be blocked by employing nitric oxide and oxygen seed gases in the fuel and buffer gas regions. However, this results in increased UV absorption in the buffer gas which also requires space radiators to reject the heat load.

  20. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; LePoire, D.J.

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors

  1. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  2. IEA-R1 reactor spent fuel element surveillance

    International Nuclear Information System (INIS)

    Damy, Margaret de Almeida; Terremoto, Luis Antonio Albiac; Silva, Jose Eduardo Rosa da; Silva, Antonio Teixeira e; Teodoro, Celso A.; Lucki, Georgi; Castanheira, Myrthes

    2005-01-01

    The irradiation surveillance is an important part of a qualification program of the U 3 O 8 -Al and U 3 Si 2 -Al dispersion nuclear fuels manufactured in IPEN/CNEN-SP. This work presents the surveillance results regarding the fuel and control elements irradiated in the IEA-R1 research reactor during the period from June/1999 until December/2003, which embraced register of visual inspections, irradiation conditions, burn-up calculations, thermal hydraulic parameters and failure occurrences. Also providing information that helps the safe operation of the IEA-R1 research reactor, the irradiation surveillance is a collaboration work involving researchers of the Centro de Engenharia Nuclear (CEN) and the operators' staff of the Centro do Reator de Pesquisas (CRPq), both from IPEN/CNEN-SP. (author)

  3. Computational Fluid Dynamics calculation of a planar solid oxide fuel cell design running on syngas

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-12-01

    Full Text Available The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.

  4. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    OpenAIRE

    Hector Luis Laurencio-Alfonso,; José Falcón-Hernández; Yoalbys Retirado-Mediaceja; Olga Pérez-Maliuk

    2012-01-01

    Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model...

  5. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    Shimooke, Takanori; Yoshida, Kazuo

    1979-05-01

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  6. Shielding analysis of a transport and storage cask for spent BWR fuel applicability of the code SAS4 and discussion of results

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, F. [Nuclear Cargo and Service GmbH, Hanau (Germany); Morishima, M.; Tamaki, H. [Mitsubishi Heavy Industries, Kobe (Japan)

    2004-07-01

    For the shielding analysis of transport and storage casks for spent fuel the use of computer codes is state of the art. However, in most applications the computer models used for the analysis are simplified to circular geometries to save modelling effort and calculation time. Furthermore, the active zone of the fuel is modelled as homogeneous zone with a uniform average burn-up. In the first part of the present paper it is shown that an exact model is feasible and the effect of the geometrical shape on the dose rates is illustrated. The second part of the paper shows the comparison of the dose rates calculated with 5 different fuel models. Finally, the accuracy of the calculations is discussed.

  7. As-built mechanical and thermomechanical calculations of a spent-fuel test in Climax Stock granite

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1981-09-01

    A generic test of geological storage of spent-fuel assemblies from an operating nuclear reactor in Climax Stock granite has been underway at the US Department of Energy's Nevada Test Site since spring 1980. The spent-fuel assemblies were emplaced in the floor of the central drift of three parallel drifts. Auxiliary electric heaters were installed in the floors of the side drifts to simulate a large repository. Calculational modeling of the spent-fuel repository was made with the finite element codes, ADINA stress analysis code and the compatible ADINAT heat flow code. The primary purpose for doing the calculations was to provide results with the best estimates of physical and mechanical rock properties and in situ stresses. Field measurements show the effective modulus of Climax Stock granite is a factor of two lower than that obtained in the laboratory on small samples. Comparative calculations using these field measurements and measurements obtained in the laboratory show displacements are approximately inversely proportional to the modulus. They also indicate the importance of knowing the effective in situ modulus. Another comparison, varying the in situ stress loading, shows the importance of knowing the correct value of in situ stress. Calculations using the best-estimate values of rock properties, effective in situ modulus and Poisson's ratio, and in situ stress are not intended to predict the displacement and stress changes from the mining and the imposition of a thermal load. The existing jointing in the Climax Stock granite could have a significant effect on the actual displacements and stress field. Such effects are not accounted for here. However, these calculations do indicate the direction and magnitude of displacements and stresses that would be expected in absence of jointing. Comparison of those results with actual field measurements will, thus, indicate the significance of including a joint model in future calculations

  8. PWR simplified fuel element simulation using calculation trailer ANSYS CFX and PARCS including pressure drop and turbulence in the spacer

    International Nuclear Information System (INIS)

    Pena-Monferrer, C.; Chiva, S.; Miro, R.; Barrachina, T.; Pellacani, F.; Macian-Juan, R.

    2012-01-01

    With the recent development of a new computational tool for calculations of nuclear reactors based on the coupling between the PARCS neutron transport code and computational fluid dynamics commercial code (CFD) ANSYS CFX opens new possibilities in the fuel element design that contributes to a better understanding and a better simulation of the processes of heat transfer and specific phenomena of fluid dynamics as the c rossflow .

  9. Fuel management for TRIGA reactor operators

    International Nuclear Information System (INIS)

    Totenbier, R.E.; Levine, S.H.

    1980-01-01

    One responsibility of the Supervisor of Reactor Operations is to follow the TRIGA core depletion and recommend core loading changes for refueling and special experiments. Calculations required to analyze such changes normally use digital computers and are extremely difficult to perform for one who is not familiar with computer language and nuclear reactor diffusion theory codes. The TRICOM/SCRAM program developed to perform such calculations for the Penn State TRIGA Breazeale Reactor (PSBR), has a very simple input format and is one which can be used by persons having no knowledge of computer codes. The person running the program need not understand computer language such as Fortran, but should be familiar with reactor core geometry and effects of loading changes. To further simplify the input requirements but still allow for all of the studies normally needed by the reactor operations supervisor, the options required for input have been isolated to two. Given a master deck of computer cards one needs to change only three cards; a title card, core energy history information card and one with core changes. With this input, the program can provide individual fuel element burn-up for a given period of operation and the k eff of the core. If a new loading is desired, a new master deck containing the changes is also automatically provided. The life of a new core loading can be estimated by feeding in projected core burn-up factors and observing the resulting loss in individual fuel elements. The code input and output formats have now been made sufficiently convenient and informative as to be incorporated into a standard activity for the Reactor Operations Supervisor. (author)

  10. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  11. Determination of the NPP Kr\\vsko spent fuel decay heat

    Science.gov (United States)

    Kromar, Marjan; Kurinčič, Bojan

    2017-07-01

    Nuclear fuel is designed to support fission process in a reactor core. Some of the isotopes, formed during the fission, decay and produce decay heat and radiation. Accurate knowledge of the nuclide inventory producing decay heat is important after reactor shut down, during the fuel storage and subsequent reprocessing or disposal. In this paper possibility to calculate the fuel isotopic composition and determination of the fuel decay heat with the Serpent code is investigated. Serpent is a well-known Monte Carlo code used primarily for the calculation of the neutron transport in a reactor. It has been validated for the burn-up calculations. In the calculation of the fuel decay heat different set of isotopes is important than in the neutron transport case. Comparison with the Origen code is performed to verify that the Serpent is taking into account all isotopes important to assess the fuel decay heat. After the code validation, a sensitivity study is carried out. Influence of several factors such as enrichment, fuel temperature, moderator temperature (density), soluble boron concentration, average power, burnable absorbers, and burnup is analyzed.

  12. High-Pressure Liquid Chromatography of Irradiated Nuclear Fue - Separation of Neodymium for Burn-up Determination

    DEFF Research Database (Denmark)

    Larsen, N. R.

    1979-01-01

    Neodymium is separated from solutions of spent nuclear fuel by high-pressure liquid chromatography in methanol-nitric acid-water media using an anion-exchange column. Chromatograms obtained by monitoring at 280 nm, illustrate the difficulties especially with the fission product ruthenium in nucle...... chemistry. Preseparation of the rare earths and trivalent actinides using a di(2-ethylhexyl)phosphoric acid/kieselguhr column is described....

  13. Evaluation of accuracy of calculations of VVER-1000 core states with incomplete covering of fuel by the absorber

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Ponomarenko, G. L.

    2012-01-01

    An additional verification of bundled software (BS) SAPFIR-95 and amp;RC [1] and code KORSAR/GP [2] was performed. Both software products were developed in A.P. Alexandrov NITI and certified by ROSTEKHNADZOR of RF for numeric simulation of stationary, transitional and emergency conditions of VVER reactors. A benchmark model for neutronics calculations was created within the limits of this work. The cold subcritical state of VVER - 1000 reactor stationary fuelling was simulated on the basis of FA with an increased height of the fuel column (TVS-2M) considering detailed presentation of radial and front neutron reflectors. A case of passing of pure condensate slug through the core in initially deep subcritical state during start of the first RCP set after refueling was considered as an examined condition of reactor operation. A relatively small size of the slug, its spatial position near the reflectors (lower and lateral), as well as failure of the inserted control rods of the control and protection system (CPS CR) to reach the lower limit of the fuel column stipulate for methodical complexity of a correct calculation of the neutron multiplication constant (K eff ) using engineering codes. Code RC was used as a test program in the process of reactor calculated 3-D modeling. Code MCNP5 [3] was used as the precision program, which solves the equation of neutrons transfer by Monte-Carlo method and which was developed in the US (Los-Alamos). As a result of comparative calculations dependency of K eff on two parameters was evaluated - boron acid concentration (Cb) and CPS CR position. Reactivity effect was evaluated, which is implemented as a result of failure of all CPS control rods to reach the lower fuel limit calculated using the engineering codes mentioned above. (authors)

  14. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    International Nuclear Information System (INIS)

    Pena, C.; Pellacani, F.; Macian Juan, R.; Chiva, S.; Barrachina, T.; Miro, R.

    2011-01-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has been

  15. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has

  16. Molybdenum-99 production calculation analysis of SAMOP reactor based on thorium nitrate fuel

    Science.gov (United States)

    Syarip; Togatorop, E.; Yassar

    2018-03-01

    SAMOP (Subcritical Assembly for Molybdenum-99 Production) has the potential to use thorium as fuel to produce 99Mo after modifying the design, but the production performance has not been discovered yet. A study needs to be done to obtain the correlation between 99Mo production with the mixed fuel composition of uranium and with SAMOP power on the modified SAMOP design. The study aims to obtain the production of 99Mo based thorium nitrate fuel on SAMOP’s modified designs. Monte Carlo N-Particle eXtended (MCNPX) is required to simulate the operation of the assembly by varying the composition of the uranium-thorium nitrate mixed fuel, geometry and power fraction on the SAMOP modified designs. The burnup command on the MCNPX is used to confirm the 99Mo production result. The assembly is simulated to operate for 6 days with subcritical neutron multiplication factor (keff = 0.97-0.99). The neutron multiplication factor of the modified design (keff) is 0.97, the activity obtained from 99Mo is 18.58 Ci at 1 kW power operation.

  17. Calculational studies for security justification of SVBR-100 reactor fuel cycle based on reprocessed uranium

    International Nuclear Information System (INIS)

    D'yachenko, A.I.; Balagurov, N.A.; Artisyuk, V.V.; Fedorov, M.I.; Solov'ev, S.V.

    2014-01-01

    Authors discuss the possible use of reprocessed uranium to form barriers against proliferation of fissile materials in SVBR-100 fuel cycle. Quantitative estimates of the required initial presence of 236 U isotope in order to reduce the attractiveness of plutonium from the view point of proliferation have also been made in the paper [ru

  18. Characterization program, management and isotopic inventory calculation, radiological and fuel thermal irradiated in nuclear power Cofrentes

    International Nuclear Information System (INIS)

    Albendea, M.; Diego, J. L. de; Urrea, M.

    2012-01-01

    Characterization is a very detailed and user-friendly program takes into account the history of irradiation individualized and real all the fuel, even taking into account the interim periods are periods of discharge and recharge cycles and which have not been used.

  19. Calculation of lifecycle greenhouse gas emissions for the renewable fuel standard

    Science.gov (United States)

    2009-06-25

    The Energy Independence and Security Act of 2007 (EISA, P.L. 110-140), significantly expanded the renewable fuel standard (RFS) established in the Energy Policy Act of 2005 (EPAct 2005, P.L.109-58). The RFS requires the use of 9.0 billion gallons of ...

  20. A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling

    International Nuclear Information System (INIS)

    De Roo, Guillaume; Parsons, John E.

    2011-01-01

    In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.

  1. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    International Nuclear Information System (INIS)

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-01-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  2. Thermal conductivity of fresh and irradiated U-Mo fuels

    Science.gov (United States)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  3. PWR Fuel licensing in France - from design to reprocessing: licensing of nuclear PWR fuel rod design to satisfy with criteria for normal and abnormal fuel operation in France

    International Nuclear Information System (INIS)

    Beraha, R.

    1999-01-01

    In this lecture are presented: French regulatory context; Current fuel management methods; Request from the french operator EdF; Most recent actions of the french Nuclear safety authority; Fuel assemblies deformations (impact of high burn-up; investigations during reactor's exploitation; control rods drop off times)

  4. Using of the Serpent code based on the Monte-Carlo method for calculation of the VVER-1000 fuel assembly characteristics

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2016-12-01

    Full Text Available The description of calculation scheme of fuel assembly for preparation of few-group characteristics is considered with help of Serpent code. This code uses the Monte-Carlo method and energy continuous microscopic data libraries. Serpent code is devoted for calculation of fuel assembly characteristics, burnup calculations and preparation of few-group homogenized macroscopic cross-sections. The results of verification simulations in comparison with other codes (WIMS, HELIOS, NESSEL etc., which are used for neutron-physical analysis of VVER type fuel, are presented.

  5. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  6. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  7. Calculated GCFR fuel rod behavior for steady state and transient operation

    International Nuclear Information System (INIS)

    Resch, S.C.

    1981-01-01

    The Idaho National Engineering Laboratory (INEL) was contracted to review the Preliminary Safety Information Document (PSID) Amendment 10 for Gas-Cooled Fast Reactors (GCFR). As part of this effort the light water reactor codes, FRAPCON-1 and FRAP-T5 were converted to model GCFR fuel rod behavior. The conversion and application of these codes for GCFR analyses is the subject of this paper

  8. 40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.

    Science.gov (United States)

    2010-07-01

    ... ideal gas; 40 CFR 1065.645 describes how to determine this value (referred to as xH 2 O). KH = 1 for two... follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an ideal gas; 40 CFR 1065.645..., see the following equation: ER03JY95.017 Where: α = Hydrogen/carbon atomic ratio of the fuel β...

  9. Model calculations of competing climatic effects of SO2 and CO2 in fossil fuel combustion

    International Nuclear Information System (INIS)

    Rajeevan, M.; Sinha Ray, K.C.; Srivastava, H.N.

    1995-01-01

    Fossil fuel combustion has two competing effects on the climate system, a warming due to the emission of CO 2 and other trace gases and a cooling due to sulphate particles formed from the SO 2 emission. A detailed parameterization of the relationship between fossil fuel burning and the SO 2 effect on backscattering and cloud albedo is implemented in a one-dimensional radiative-convective model for assessing the climatic impact. The results show that at present the cooling induced by the combined effect of SO 2 completely counteracts the CO 2 greenhouse warming. The model predicts that by the year 2060 the SO 2 -induced cooling reduces warming due to CO 2 by 66% in the Intergovernmental Panel for Climate Change (IPCC) scenario Business-as-Usual (BAU) and by 27% in the IPCC scenario D. Attempts to slow-pace the fossil fuel burning will decrease the SO 2 concentration, which could further increase global warming. (author). 26 refs., 7 figs

  10. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; Biwer, B.M.; LePoire, D.J.

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows trademark environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident

  11. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

  12. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    Science.gov (United States)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  13. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  14. Shielding considerations for advanced fuel irradiation experiments

    International Nuclear Information System (INIS)

    Kang, Young-Hwan; Kim, Hee-Moon; Kim, Bong-Goo; Kim, Hark-Rho; Lee, Dong-Soo

    2008-01-01

    An in-pile test program for the development of a high burn-up fuel is planned for the HANARO reactor. The source term originates from a leakage of fission products from the anticipated failed fuels into the gas flow tubes and around the instrumentation and control system. In order to quantify the fuel composition in the event of a fuel failure, the isotope generation and depletion code ORIGEN 2.0 was used. The computer program Microshield 6.2 was used to calculate the doses from specific locations, where a high radioactivity is expected during an irradiation. The results indicate that the equivalent dose in the investigated working areas is less than the permitted dose rate of 6.25 μSv/hr. However, access to the area of a decay vessel may need to be limited, and the installation of a Pb wall with a 20.5 cm thickness is recommended. From the analysis of a radioactive decay with time, most of the concerned gaseous nuclides with short half-lives after 3 months, were decayed, with one exception which was Kr-85, thus it should be released in accordance with applicable government laws after measuring its activity in individual holding vessels. (author)

  15. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  16. Mitsubishi PWR nuclear fuel with advanced design features

    Energy Technology Data Exchange (ETDEWEB)

    Kaua Goe, Toshiy Uki; Nuno kawa, Koi Chi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    2008-10-15

    In the last few decades, the global warming has been a big issue. As the breakthrough in this crisis, advanced operations of the water reactor such as higher burn up, longer cycle, and up rating could be effective ways. From this viewpoint, Mitsubishi Heavy Industries (MHI) has developed the fuel for burn up extension, whose assembly burn-up limit is 55GWd/t(A), with the original and advanced designs such as corrosion resistant cladding material MDA, and supplied to Japanese PWR utilities. On the other hand, MHI intends to supply more advanced fuel assemblies not only to domestic market but to the global market. Actually MHI has submitted the application for standard design certification of USA . Advanced Pressurized Water Reactor on Jan. 2nd 2008. The fuel assembly for US APWR is 17x17 type with active fuel length of 14ft, characterized with three features, to {sup E}nhance Fuel Economy{sup ,} {sup E}nable Flexible Core Operation{sup ,} and to {sup I}mprove Reliability{sup .} MHI has also been conducting development activities for more advanced products, such as 70GWd/t(A) burn up limit fuel with cladding, guide thimble and spacer grid made from M-MDATM alloy that is new material with higher corrosion resistance, such as 12ft and 14ft active length fuel, such as fuel with countermeasure against grid fretting, debris fretting, and IRI. MHI will present its activities and advanced designs.

  17. Technique for calculating temperature field of the vibropacked oxide fuel element taking into account redistribution of porosity and plutonium and oxygen contents

    International Nuclear Information System (INIS)

    Maershin, A.A.; Grachev, V.D.; Shajkhiev, A.I.; Zarudnev, N.E.; Golubenko, I.S.; Udal'tsova, M.V.

    1991-01-01

    Integro-interpolation technique is used for calculating temperature field and thermodiffusion, as well as fuel mass transfer and plutonium content in the fuel due to evaporation-condensation mechanism. The results obtained by numerical computing and other techniques are presented. 6 refs.; 8 figs

  18. Fissile Content Assay of Spent Fuel Using LSDS System

    International Nuclear Information System (INIS)

    Jeon, Ju Young; Lee, Yong Deok; Park, Chang Je

    2016-01-01

    About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through the pyro process. Fissile material contents in the resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. The new technology for an isotopic fissile material content assay is under development at KAERI using a lead slowing down spectrometer (LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. In an assay of fissile content of spent fuel and recycled fuel, an intense radiation background gives limits the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in a fissile assay. Based on the decided LSDS geometry set up, a self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as how much of the absorption is created inside the fuel area when it is in the lead. The self shielding effect provides a non-linear property in the isotopic fissile assay. When the self shielding is severe, the assay system becomes more complex and needs a special parameter to treat this non linear effect. Additionally, an assay of isotopic fissile content will contribute to an accuracy improvement of the burn-up code and increase the transparency and credibility for spent fuel storage and usage, as internationally increasing demand. The fissile contents result came out almost exactly with relative error ∼ 2% in case of Pu239, Pu241 for two different plutonium contents. In this study, meaningful results were

  19. Intact and Degraded Criticality Calculations for the Codisposal of Shippingport LWBR Spent Nuclear Fuel in a Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    L.M. Montierth

    2000-09-15

    The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the U.S. Department of Energy's (DOE) Shippingport Light Water Breeder Reactor (SP LWBR) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP), which is to be placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (K{sub eff}) for intact- and degraded-mode internal configurations of the codisposal WP containing Shippingport LWBR seed-type assemblies. The results of this calculation will be used to evaluate criticality issues and support the analysis that is planed to be performed to demonstrate the viability of the codisposal concept for the MGR. This calculation is associated with the waste package design and was performed in accordance with the DOE SNF Analysis Plan for FY 2000 (See Ref. 22). The document has been prepared in accordance with the Administrative Procedure AP-3.12Q, Calculations (Ref. 23).

  20. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of the equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX fuel rods used in the experiments are obtained by calculations and the modification of the equipment for the experiments are shown. (author)

  1. Characterization Of Cladding Hull Wastes From Used Nuclear Fuels

    Directory of Open Access Journals (Sweden)

    Kang K.H.

    2015-06-01

    Full Text Available Used cladding hulls from pressurized water reactor (PWR are characterized to provide useful information for the treatment and disposal of cladding hull wastes. The radioactivity and the mass of gamma emitting nuclides increases with an increase in the fuel burn-up and their removal ratios are found to be more than 99 wt.% except Co-60 and Cs-137. In the result of measuring the concentrations of U and Pu included in the cladding hull wastes, most of the residues are remained on the surface and the removal ratio of U and Pu are revealed to be over 99.98 wt.% for the fuel burn-up of 35,000 MWd/tU. An electron probe micro-analyzer (EPMA line scanning shows that radioactive fission products are penetrated into the Zr oxide layer, which is proportional to the fuel burn-up. The oxidative decladding process exhibits more efficient removal ratio of radionuclides.

  2. Standardization of the methodology used for fuel pressure drop evaluation to improve hydraulic calculation of heterogeneous cores

    International Nuclear Information System (INIS)

    Le Borgne, E.; Mattei, A.; Rome, M.; Rodriguez, J.M.

    2004-01-01

    The determination of hydraulic characteristics for fuel subassembly components is dependent on the hypotheses and the methodology considered. The results of hydraulic compatibility calculations using input data from different sources may thus be difficult to analyse, and their reliability will consequently be reduced. Electricite de France (EDF) and Commissariat a l'Energie Atomique (CEA) have initiated a common program aiming at controlling the consequences of such a situation, increasing the reliability of the values used in the hydraulic compatibility calculations, and proposing a standardization of the operating procedures. In a first step, this program is based on the measurements performed in the CEA HERMES P facility. Extension of this program is expected to the equivalent experimental facilities for which sufficient information will be made available. (author)

  3. Calculation of stricken to mortality and incidence cancers due to beyond design basis accidents of the Esfahan Fuel Production Factory

    International Nuclear Information System (INIS)

    Heydari Azar, A.; Shahshahani, M.; Roshanzamir, M.; Sabouhi, R.

    2008-01-01

    In this investigation the amount of absorbed doses by the different pathways of Cloud shine, Ground shine, deposition of radioactive materials on skin and cloths, ingestion, inhalation and the consequences of radioactive material releases due to Beyond Design Basis Accidents such as fire, sintering furnace explosion, criticality and earthquake in Esfahan Fuel Production factory by the residents are evaluated. The calculations related to atomic cloud distribution, estimation of delivered dose and decay chains are performed by PCCOSYMA dose. These computations are based on radioactive source terms, distribution height of radioactive materials. actions for reducing the absorbed dose, human body physiological characteristics, metrological condition and population distribution. Finally, the number of peoples who are stricken to mortality and morbidity cancers and risk values are calculated for 1 year and 50 years

  4. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  5. Preliminary calculations of release rates from spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.

    1991-01-01

    Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs

  6. Multiband method for resonance self-shielding calculation of fuel assembly in arbitrary geometries

    International Nuclear Information System (INIS)

    Huang Weibin; Wu Hongchun; Cao Liangzhi; Yang Weiyan

    2009-01-01

    A formula to calculate the multiband parameters is derived based on the multiband method. Adopting the method combining two-band and three-band, and based on the WIMSD4-69 library, a code named RESCAL is developed. The validation shows that the results of RESCAL code are well in accordance with MCNP's, and the numerical errors meet the practical requirement. Due to the limitation of WIMSD4 69-group library and the method adopted to calculate multiband parameters, the precision of RESCAL code is highly affected by the ratio of water to uranium. (authors)

  7. WIMSD4 calculations of the Westinghouse 'EDASA' lattices with plutonium dioxide fuel

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-03-01

    A series of Westinghouse critical PuO 2 /UO 2 pin-cell assemblies is analysed using the lattice code WIMSD4. The results are presented in terms of computed k-effective values, with comment on the choice of method for calculating high leakage systems and on the adequacy of WIMSD4 for evaluating plutonium enriched lattices. (author)

  8. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference

  9. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  10. Automation of potentiometric titration for the determination of uranium in nuclear fuel materials

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Kapoor, Y.S.; Kumar, Manish; Singh, Mamta; Fulzele, Ajeet; Prakash, Amrit; Afzal, Mohd; Panakkal, J.P.

    2010-01-01

    Advanced Fuel Fabrication Facility is fabricating various types of mixed oxide fuels, namely for PHWR, BWR, FBTR and PFBR. Precise determination of uranium in MOX fuel sample is important to get desired burn up in the reactor. The modified Davies and Gray method is routinely used for the potentiometric titration of uranium

  11. Experimental program on fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Languille, A.; Cecchi, P.

    1985-01-01

    During LMFBR plant operation, fuel developments are primarily concerned with the fuel pin irradiation behaviour under steady-state conditions up to high burn-up levels. But additional studies under off-normal conditions are necessary in order to assess fuel pin performance and to define operational limits. (author)

  12. Status of LMR fuel development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C. (AEA, Dounreay (United Kingdom)); Languille, A. (CEA, Cadarache (France)); Muehling, G. (KFK, Karlsruhe (Germany))

    1993-09-01

    The present status reached in the joint European programme for fuels, cladding and wrapper development enabled to designer to define a reference fuel element and clearly allows the assumption that the ambitious EFR targets (200 MWd/kg burn-up, 190 dpa NRT dose) can be reached. The existing knowledge and experience in this field is based mainly on the results of the large number of irradiated fuel assemblies in the European prototype reactors, where in total more than 265 000 fuel pins have been tested even at remarkable burn-up levels. In addition the programmes for testing fuel pins unde transient or even failed conditions confirm the excellent behaviour of the mixed oxide and provide a basis for a better assessment of operational limits. (orig.)

  13. Experimental verification of methods for gamma dose rate calculations in the vicinity of containers with the RA reactor spent fuel elements

    International Nuclear Information System (INIS)

    Milosevic, M.; Cupac, S.; Pesic, M.

    2005-01-01

    The methodology for equivalent gamma dose rate determination on the outer surface of existing containers with the spent fuel elements of the RA reactor is briefly summarised, and experimental verification of this methodology in the field of gamma rays near the aluminium channel with spent fuel elements lifted from the stainless steel containers no. 275 in the RA reactor hall is presented. The proposed methodology is founded on: the existing fuel burnup data base; methods and models for the photon source determination in the RA reactor spent fuel elements developed in the Vinca Institute, and validated Monte Carlo codes for the equivalent gamma dose rate calculations. (author) [sr

  14. 1982 Annual Status Report Plutonium Fuels and Actinide Programme

    International Nuclear Information System (INIS)

    Lindner, R.

    1983-01-01

    The programme of the Transuranium Institute has long included work on advanced fuels for fast breeder reactors. Study of the swelling of carbide and nitride fuels is now nearing completion, the retention of fission gases in bubbles of different sizes in the fuel having been quantified as function of burn-up and temperature. An important step forward has been achieved in the studies of the Equation of State of Nuclear Fuels up to 5000 K. Formation of some of the less abundant isotopes in PWR fuel has been determined experimentally. Aerosol formation during the fabrication of plutonium containing fuels, part of the activity Safe Handling of Plutonium Fuel has been studied. Head-End Processing of carbide fuels has continued experiments with high burn up mixed carbides. In the field of actinide research the preparation and characterisation of pure specimens is carried out. Effect of actinides on the properties of waste glasses is investigated

  15. Spent nuclear fuel project cold vacuum drying facility supporting data and calculation database

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-02-26

    This document provides a database of supporting calculations for the Cold Vacuum Drying Facility (CVDF). The database was developed in conjunction with HNF-SD-SNF-SAR-002, ''Safety Analysis Report for the Cold Vacuum Drying Facility'', Phase 2, ''Supporting Installation of Processing Systems'' (Garvin 1998). The HNF-SD-SNF-DRD-002, 1997, ''Cold Vacuum Drying Facility Design Requirements'', Rev. 2, and the CVDF Summary Design Report. The database contains calculation report entries for all process, safety and facility systems in the CVDF, a general CVD operations sequence and the CVDF System Design Descriptions (SDDs). This database has been developed for the SNFP CVDF Engineering Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. Experimental validation of calculated capture rate for nucleus involved in fuel cycle

    International Nuclear Information System (INIS)

    Benslimane-Bouland, A.

    1997-01-01

    This work has been realized in the framework of the estimation of actinides and fission products nuclear data for the today and future reactors. The first part presents the existing integral experiments for the calculated capture rate and the methods used in the design of reactor cores calculation formulary. The second part is devoted to the interpretation of three specific irradiation experiments which allow the evaluation of the today knowledge on studied data and their associated uncertainties. The last part presents a synthesis of results and the statistical methods used for the adjustment of data bases. This work shows that, in spite of the reactors Physics progresses on the knowledge of uranium and plutonium capture cross sections, uncertainties remain for minor actinides. (A.L.B.)

  17. Study on the Calculation of Pebble-Bed Reactor Multiplication Factor As a Function of Fuel Kernel Radius at Various Enrichments

    International Nuclear Information System (INIS)

    Zuhair; Suwoto

    2009-01-01

    Main characteristics of PBR comes from utilization of coated particle fuels dispersed in pebble fuels . Because of vibration, fuel kernel can be grouped into cluster and in these cases, neutronic characteristics of pebble fuel significantly changes . In this study, cluster is modeled structural form consisting of uniform cubic cells with eight neighborhood TRISO particles . Neutronic characteristics was investigated by calculating pebble-bed reactor multiplication factor as a function of fuel kernel radius at various enrichments . The calculation results using MCNP5 code with ENDF/BVI neutron library show that k eff value depends on the average fuel radius and reaches its minimum when all kernels have the same radius, i.e. 0.0280 cm . With this radius, the total kernel surface area achieves maximum value . The dependence of k eff on fuel kernel radius decreases in relation to the increase in uranium enrichment . However, k eff value is not affected by fuel kernel radius when the uranium is 100% enriched . From these result, it can be concluded that, exception of uranium enrichment, the selection of fuel kernel radius should be considered thoroughly in designing a PBR, since this parameter provides significant influences on neutronic characteristics of the reactor. (author)

  18. Fuel element reactivity worth in different rings of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Gomes do Prado Souza, Rose Mary

    2008-01-01

    The thermal power of the IPR-R1 TRIGA Reactor will be upgraded from 100 kW to 250 kW. Starting core: loaded with 59 aluminum cladded fuel elements; 1.34 $ excess reactivity; and 100 kW power. It is planned to go 2.5 times the power licensed, i.e., 250 kW. This forces to enlarge the reactivity level. Nuclear reactors must have sufficient excess reactivity to compensate the negative reactivity feedback effects caused by: the fuel temperature, fuel burnup, fission poisoning production, and to allow full power operation for predetermined period of time. To provide information for the calculation of the new core arrangement, the reactivity worth of some fuel elements in the core were measured as well as the determination of the core reactivity increase in the substitution of the original fuels, cladded with aluminium, for new ones, cladded with stainless steel. The reactivity worth of fuel element was measured from the difference in critical position of the control rods, calibrated by the positive period method, before and after the fuel element was withdrawn from the core. The magnitude of reactivity increase was determined when withdrawing the original Al-clad fuel (a little burned up) and the graphite elements, and inserting a fresh Al-clad fuel element, one by one. Experimental results indicated that to obtain enough reactivity excess to increase the rector power the addition of 4 new fuel elements in the core would be sufficient: - Substitution of 4 Al-clad fuel elements in ring C for fresh stainless steel clad fuel elements; - increase the reactivity ≅ 4 x 6.5 = 26 cents; - The removed 4 Al-clad F. E. (a little burned up) put in the core periphery, ring F, replacing graphite elements; - add exc ) of the core was estimated from control rod worth critical positions at low power, and from the calibration control rod curves. The excess reactivity of the core was increased by: re-shuffling 4 Al-clad fuel elements from C ring to F ring, replacing graphite elements

  19. Mechanical failure of SKB spent fuel disposal canisters. Mathematical modelling and scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Hiroyasu; Benbow, S.; Grindrod, P. [QuantiSci Ltd., Melton Mowbray (United Kingdom)

    1998-10-01

    According to the current design of SKB, a copper overpack with a cast steel inner component will be used as the disposal canister for spent nuclear fuel. A recent study considered the case of a breach in the copper overpack, through which groundwater could enter the canister. It has pointed out that hydrogen gas generated by an anaerobic corrosion could cushion the system and reduce or eventually stop further infiltration of water into the breached canister, and thence the spent fuel. One potential pitfall in this previous study lies in the fact that it did not consider any processes which might violate the following assumptions which are essential for the gas 'cushioning': 1. Hydrogen gas accumulated in the annular gap in the canister forms a free gas phase which is stable indefinitely into future; 2. Elevated gas pressure in the canister prevents further supply of groundwater except for diffusion of vapour. In the current study we developed a set of mathematical models for the above problem and applied it to carry out an independent assessment of the long-term behaviour of the canister. A key aim in this study was to clarify whether there are any alternative processes which may affect the result obtained by the previous study by violating one of the assumptions listed above. For this purpose, a scenario development exercise was conducted. The result supported the concept described in the previous study. One exception is that possible intrusion of bentonite gel followed by its desaturation could leave paths both for the gas and water simultaneously without forming a gas cushion. This is summarised in the first part of the report. In the second part, development of mathematical models and their applications are described. The key results are: 1. The model describing behaviour of gas and pore water in the canister and the buffer material reproduced the main results of the previous study; 2. The model considering intrusion of the bentonite gel pointed out

  20. Landscape modeling for dose calculations in the safety assessment of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Kautsky, Ulrik; Brydsten, Lars

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co.,(SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site. Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the landscape development, e.g. sea, lakes, agricultural areas, forest and wetlands (mire). The biosphere objects may switch from one ecosystem type to another during the

  1. Mechanical failure of SKB spent fuel disposal canisters. Mathematical modelling and scoping calculations

    International Nuclear Information System (INIS)

    Takase, Hiroyasu; Benbow, S.; Grindrod, P.

    1998-10-01

    According to the current design of SKB, a copper overpack with a cast steel inner component will be used as the disposal canister for spent nuclear fuel. A recent study considered the case of a breach in the copper overpack, through which groundwater could enter the canister. It has pointed out that hydrogen gas generated by an anaerobic corrosion could cushion the system and reduce or eventually stop further infiltration of water into the breached canister, and thence the spent fuel. One potential pitfall in this previous study lies in the fact that it did not consider any processes which might violate the following assumptions which are essential for the gas 'cushioning': 1. Hydrogen gas accumulated in the annular gap in the canister forms a free gas phase which is stable indefinitely into future; 2. Elevated gas pressure in the canister prevents further supply of groundwater except for diffusion of vapour. In the current study we developed a set of mathematical models for the above problem and applied it to carry out an independent assessment of the long-term behaviour of the canister. A key aim in this study was to clarify whether there are any alternative processes which may affect the result obtained by the previous study by violating one of the assumptions listed above. For this purpose, a scenario development exercise was conducted. The result supported the concept described in the previous study. One exception is that possible intrusion of bentonite gel followed by its desaturation could leave paths both for the gas and water simultaneously without forming a gas cushion. This is summarised in the first part of the report. In the second part, development of mathematical models and their applications are described. The key results are: 1. The model describing behaviour of gas and pore water in the canister and the buffer material reproduced the main results of the previous study; 2. The model considering intrusion of the bentonite gel pointed out possibility

  2. Studying the fuel burnup of MNSR reactor and estimating the concentrations of main fission products using the codes WIMS-D4 and CITATION

    International Nuclear Information System (INIS)

    Haj Hassan, H.; Ghazi, N.; Hainoun, A.

    2007-01-01

    The codes WIMSD-4 and BORGLES - part of the MTR-PC code package- have been applied to prepare the microscopic cross section library for the main elements of MNSR core for 6 neutron energy groups. The generated library was utilized from the 3D code CITATION to perform the calculation of fuel burn up and depletion including the identification of main fission products and its effects on the multiplication factor. In this regard some modifications have been introduced to the subroutine NUCY in CITATION to incorporate estimating the concentration of the related actinides and fission products. The burn up results indicated that the core life time of MNSR is being mainly estimated by Sm-149 following by Gd-157 and Cd-113. The accumulation of these actinides during 100 continuous operation days caused a reduction of ca. 2 mk for the excess reactivity. This result seems to be in good agreement with the available empirical value of 1.8 mk which relates to the whole discontinuous operation period of the reactor since its start and up to now. The calculation procedure simulates the sporadic operation with an adequate continuous operation period. This approximation is valid for the long lived actinides that mainly dictate the core life time. However, it is an overestimation for the concentration of short lived radioactive products like Xe-135. In the framework of this analysis the possibility of replacement of current MNSR fuel through low enriched fuels has been explored for two the fuel types U02-Mg and U3Si-Al. The results indicate that the first type (UO2-Mg) realize the criticality conditions with low enrichment of 20%, whereas the second type (U3Si-Al) required increasing the uranium enrichment up to 33%. For both fuel types the contribution of plutonium isotopes on the criticality has been also evaluated. Additionally, the influence of mixing burnable absorbers (Gd-113, Cd- 113) with the fresh fuels was investigated to identify their long-term control effect on the

  3. Calculation of a pressurized-water reactor and a boiling-water reactor fuel rod cluster using the finite element method with first order triangular elements

    International Nuclear Information System (INIS)

    Birkhold, U.; Schmidt, F.A.R.

    1975-07-01

    The FEM-2D programme was used to solve the two-dimensional, time-independent diffusion equation in multi-group form. FEM-2D stands for Finite Element Method two-dimensional Diffusion. Triangular elements with linear flow statement were chosen to describe the given geometrical figure - a pressurized-water reactor (PWR) type Biblis and a boiling-water reactor fuel rod cluster with 5 x 5 fuel rods. Calculations were performed with 301 and 1,204 elements in the pressurized-water reactor, and the boiling-water reactor fuel rod cluster with 900 or 1,296 elements. Calculations with FEM-2D with triangular elements of the 2nd order and calculations of the KWK with the computer programmes MEDIUM and EXTERMINATOR for the PWR or PDQ for the BWR fuel rod cluster were available for comparison. The results were most satisfactory. (orig./LH) [de

  4. Software system for fuel management at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Grant, C.; Pomerantz, M.E.; Moreno, C.A.

    2002-01-01

    capabilities are the following: retrieval of information from neutronic calculation, overall reactivity, bundle burn-ups; operating fuelling list generator; fuel element failure prevention assessment; cobalt 60 build up evaluation in adjuster rods; fuel element serial number updating; in-core vanadium detector burn-up calculation; files for the inventory base system required by regulatory boards. (author)

  5. A spent fuel assemblies monitoring device by nondestructive analysis 'PYTHON'

    International Nuclear Information System (INIS)

    Saad, M.; Broeskamp, M.; Hahn, H.; Bignan, G.; Boisset, M.; Silie, P.

    1995-01-01

    The monitoring of spent fuel assemblies (16 x 16 UOX) in KWG-reactor pool with the use of non-destructive methods (total Gamma and neutron counting) allow the control of average burn-up and the extremity burn-up. The measurements allow a safety-criticality control before loading the fuel assemblies into the transport casks. A device called PYTHON has been tested and qualified in France. This paper presents a description of the industrial PYTHON device and the results of the measurements. (orig.)

  6. Automated Characterization of Spent Fuel through the Multi-Isotope Process (MIP) Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schwantes, Jon M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-07-31

    This research developed an algorithm for characterizing spent nuclear fuel (SNF) samples based on simulated gamma spectra. The gamma spectra for a variety of light water reactor fuels typical of those found in the United States were simulated. Fuel nuclide concentrations were simulated in ORIGEN-ARP for 1296 fuel samples with a variety of reactor designs, initial enrichments, burn ups, and cooling times. The results of the ORIGEN-ARP simulation were then input to SYNTH to simulate the gamma spectrum for each sample. These spectra were evaluated with partial least squares (PLS)-based multivariate analysis methods to characterize the fuel according to reactor type (pressurized or boiling water reactor), enrichment, burn up, and cooling time. Characterizing some of the features in series by using previously estimated features in the prediction greatly improves the performance. By first classifying the spent fuel reactor type and then using type-specific models, the prediction error for enrichment, burn up, and cooling time improved by a factor of two to four. For some features, the prediction was further improved by including additional information, such as including the predicted burn up in the estimation of cooling time. The optimal prediction flow was determined based on the simulated data. A PLS discriminate analysis model was developed which perfectly classified SNF reactor type. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE.

  7. Perspectives for practical application of the combined fuel kernels in VVER-type reactors

    International Nuclear Information System (INIS)

    Baranov, V.; Ternovykh, M.; Tikhomirov, G.; Khlunov, A.; Tenishev, A.; Kurina, I.

    2011-01-01

    The paper considers the main physical processes that take place in fuel kernels under real operation conditions of VVER-type reactors. Main attention is given to the effects induced by combinations of layers with different physical properties inside of fuel kernels on these physical processes. Basic neutron-physical characteristics were calculated for some combined fuel kernels in fuel rods of VVER-type reactors. There are many goals in development of the combined fuel kernels, and these goals define selecting the combinations and compositions of radial layers inside of the kernels. For example, the slower formation of the rim-layer on outer surface of the kernels made of enriched uranium dioxide can be achieved by introduction of inner layer made of natural or depleted uranium dioxide. Other potential goals (lower temperature in the kernel center, better conditions for burn-up of neutron poisons, better retention of toxic materials) could be reached by other combinations of fuel compositions in central and peripheral zones of the fuel kernels. Also, the paper presents the results obtained in experimental manufacturing of the combined fuel pellets. (authors)

  8. Hydromechanics calculation for micro sphere UO2 fuel produced by sol-gelation method

    International Nuclear Information System (INIS)

    Jin Xin; Liang Tongxiang; Guo Wenli; Zhao Xingyu; Hao Shaochang

    2009-01-01

    Relation between the jet steam velocity in nozzle and height of glue solution level and relation between the jet steam velocity in nozzle and the pressure of glue solution level in pressure kettle are established with Bernoulli equation. The result calculated from this relations shows that the flow of gelation solution is of laminar, the effect of the height of solution level on the the jet steam velocity in nozzle is little and the maximum error for diameter of micro global UO 2 , resulting from the height of solution level, is far more less than the control error. (authors)

  9. An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1979-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)

  10. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  11. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    P. Bernot

    2001-01-01

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% 235 U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to

  12. Irradiation test of Dupic fuel

    International Nuclear Information System (INIS)

    Kee, Chan Song; Myung, Seung Yang; Hyun, Soo Park

    2002-01-01

    Simulated DUPIC fuel that had been fabricated from natural uranium oxide with simulated fission products was irradiated at the HANARO research reactor at KAERI in 1999. The objectives of this irradiation test were to estimate the in-core behaviour of DUPIC fuel, to verify the design of the non-instrumented irradiation rig developed for the irradiation test of DUPIC fuel and to ensure the irradiation requirements of DUPIC fuel at HANARO. The post-irradiation examinations, such as dimensional measurement, γ-scanning and EPMA, for irradiated simulated DUPIC fuel have been performed at the IMEF. The irradiation test of DUPIC fuel, fabricated with spent PWR fuel material, was performed at HANARO for two months as of May 2000. The resultant burn-up of irradiated DUPIC fuel was estimated to be 1 800 MWd/MTU. The irradiation behaviour of DUPIC fuel will be investigated based on the data from post-irradiation examinations. (authors)

  13. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  14. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  15. Design Study of 200MWth Gas Cooled Fast Reactor with Nitride (UN-PuN Fuel Long Life without Refueling

    Directory of Open Access Journals (Sweden)

    Syarifah Ratna Dewi

    2016-01-01

    Full Text Available Design study of 200 MWth Gas Cooled Fast Reactor with UN-PuN fuel long life without refueling has been done. GFR is one type reactor in Generation IV reactor system. It uses helium coolant and fast neutron spectrum. Helium is chemical inert, single phase and low neutron moderation. In this study the calculations are performed by using SRAC code with PIJ calculation for the fuel pin cell calculation and CITATION calculation for core calculation. The data libraries use JENDL 3.2. The variation fuel fractions are 50% until 60%. The diameter active core is 150 cm and the height active core is 100 cm. The reflector radial-axial width is 50 cm. The variation of the powers are 100 MWth up to 500 MWth. The high power causes the high k-eff value. The optimum design is reached when the power is 200 MWth, variation percentage Plutonium for fuel F1:F2:F3=9%:11%:13%. The comparation of fuel:cladding:coolant fraction = 55%:10%:35%. The cooling down time of Plutonium is nine months. The optimum k-eff value is 1.0142 with excess reactivity value 1.403%. The decay of Plutonium decrease k-eff value in the beginning of burn up.

  16. On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles

    International Nuclear Information System (INIS)

    Yuh-Shan Yueh; Ching-Chang Chieng

    1987-01-01

    A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--ε model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10 4 , 10 5 , 2 x 10 5 , and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data

  17. CANDU fuel sheath behavior in power ramp conditions

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O; Parvan, M.

    2009-01-01

    The purpose of this work is to determine by post-irradiation examination, the behavior of CANDU domestic fuel, irradiated in TRIGA14 reactor MW(th), into a multiple / various power ramp test. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel are used to confirm the security, reliability, fuel performance, and also for Romanian CANDU fuel development program. (authors)

  18. Criticality and shielding calculations of an interim dry storage system for the spent fuel from Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Silva, M

    2006-01-01

    The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina [es

  19. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  20. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Yashar [Islamic Azad Univ., Sari (Iran, Islamic Republic of). Dept. of Physics; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Ghofrani, Mohammad B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Energy Engineering; Sadighi, Mostafa [Ofogh Consulting Engineers, Tehran (Iran, Islamic Republic of)

    2016-12-15

    To calculate the optimum reloading pattern in the second cycle of BUSHEHR VVER-1000 reactor, it was necessary to first calculate the burnup and fuel composition of each fuel assembly at the end of the first operational cycle so that the types of applicable fuel assemblies in the second cycle could be determined. Time-dependent calculations were performed using the WIMSD-5B and CITATION-LDI2 codes coupled with thermo-hydraulic computations during the first cycle. A weighting factor was defined for all 16 types of fuel assemblies in the second cycle based on their types and fuel compositions. In the process of calculating the deterministic reloading pattern, the number of probable arrangements was reduced from 7.55 x 10{sup 22} cases to just 1 856 cases by using a weighting-factor method and the structural constraints of the reactor core. The thermo-neutronic parameters of each of the 1 856 arrangements were then calculated by coupling the WIMSD-5B and CITATION-LDI2 codes with the thermo-hydraulic program. Afterwards, the processes of screening the probable arrangements and searching for the optimal reloading pattern were carried out based on the values of these parameters.

  1. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method

    International Nuclear Information System (INIS)

    Rahmani, Yashar

    2016-01-01

    To calculate the optimum reloading pattern in the second cycle of BUSHEHR VVER-1000 reactor, it was necessary to first calculate the burnup and fuel composition of each fuel assembly at the end of the first operational cycle so that the types of applicable fuel assemblies in the second cycle could be determined. Time-dependent calculations were performed using the WIMSD-5B and CITATION-LDI2 codes coupled with thermo-hydraulic computations during the first cycle. A weighting factor was defined for all 16 types of fuel assemblies in the second cycle based on their types and fuel compositions. In the process of calculating the deterministic reloading pattern, the number of probable arrangements was reduced from 7.55 x 10 22 cases to just 1 856 cases by using a weighting-factor method and the structural constraints of the reactor core. The thermo-neutronic parameters of each of the 1 856 arrangements were then calculated by coupling the WIMSD-5B and CITATION-LDI2 codes with the thermo-hydraulic program. Afterwards, the processes of screening the probable arrangements and searching for the optimal reloading pattern were carried out based on the values of these parameters.

  2. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Science.gov (United States)

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are harmonically...

  3. An automated optimization of core fuel loading pattern for pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Renji

    1988-11-01

    An optimum method was adopted to search for an optimum fuel loading pattern in pressurized water reactors. A radial power peak factor was chosen as the objective function of the optimum loading. The direct search method with shuffling rules is used to find optimum solution. The search for an optimum loading pattern with the smallest radial power peak by exchanging fuel assemblies was made. The search process is divided into two steps. In the first step fresh fuels or high reactivity fuels are arranged which are placed in core interior to have a reasonable fuel loading pattern. To further reduce the radial power peak factor, the second step will be necessary to rearrange the exposed lower reactivity fuel around the assemblies which has the radial power peak. In optimum process 1.5 group coarse mesh diffusion theory or two group nodal Green function diffusion theory is utilized to calculate the two dimensional power distribution after each shuffle. Also, above two methods are combinatively utilized to calculate the state quantity. It is not only true to save CPU time, but also can obtian exact results. Besides above function, the code MSOFEL is used to search critical boron concentration and to predict burn-up. The code has been written with FORTRAN-4. The optimum loading pattern was chosen for OCONEE and QINSHAN nuclear power plants as reference examples. The validity and feasibility of MSOFEL was demonstrated

  4. Comparison of burnup calculation results using several evaluated nuclear data files

    International Nuclear Information System (INIS)

    Suyama, Kenya; Katakura, Jun-ichi; Nomura, Yasushi

    2002-01-01

    Burn-up calculation and comparison of the results were carried out to clarify the differences among the following latest evaluated nuclear data libraries: JENDL-3.2, ENDF/B-VI and JEF-2.2. The analyses showed that the differences seen among the current evaluated nuclear data libraries are small for evaluation of the amounts of many uranium and plutonium isotopes. However, several nuclides important for evaluation of nuclear fuel cycle as 238 Pu, 244 Cm, 149 Sm and 134 Cs showed large differences among used libraries. The chain analyses for the isotopes were conducted and the reasons for the differences were discussed. Based on the discussion, information of important cross section to obtain better agreement with the experimental results for 238 Pu, 244 Cm, 149 Sm and 134 Cs was shown. (author)

  5. The role of advanced calculation and simulation tools in the evolution of fuel; El papel de las herramientas avanzadas de calculo y simulacion en la evolucion del combustible

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Reja, C.; Cerracin, A.; Corpa, R.

    2015-07-01

    This article is focused on the role of the advanced calculation/simulation tools on the development of the fuel designs as well as in the assessment of the effect of the changes in the operation. With this purpose, the article describes and shows some examples of the use by ENUSA of some of these tools in the fuel engineering. To conclude, the future on the evolution of the advanced tools is also presented. (Author)

  6. Optimization of small long-life PWR based on thorium fuel

    Science.gov (United States)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  7. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  8. Calculation of radiation doses and thermal loads for specific situations that may occur during the transport and storage of spent fuel assemblies from the Rossendorf reactor

    International Nuclear Information System (INIS)

    Seifert, E.

    1995-01-01

    The CAeSAR-III transfer cask and the CASTOR MTR 2 transport and storage cask have been selected for accommodating the spent fuel assemblies from the Rossendorf reactor. The fuel assemblies are packed into the loading units consisting of Al cylinders provided with the suitable gaps for insertion of the spent fuel, according to the various types of fuel elements (EK10, WWR-M, WWR-M2, tubular elements). From among the various types of loading units, only type A designed for accepting 21 single fuel assemblies ( or 7 triple elements) of WWR-M or WWR-M2 is of significance in this context, as they represent the covering neutron and gamma source taken as the radiation source for the calculations. The CAeSAR cask can accommodate one of these loading units, and the CASTOR seven. The dose calculations performed with the MCNP Monte-Carlo code (equivalent dose rate) refer to the loaded casks and some hypothetical situations occurring during loading. The thermal load calculations include the heat-up curve in the event of ''Fire'' in the CASTOR cask, and the stationary temperature distribution in the CASTOR cask due to internal heat generation ( darioactive decay of the inserted fuel assemblies). The HEATING program is used for this purpose. (orig.) [de

  9. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  10. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  11. A model of the dose rate calculation for a spent fuel storage structure by Monte Carlo method using the modulated code system SCALE 4.4a

    International Nuclear Information System (INIS)

    Pantazi, D.; Mateescu, S.; Stanciu, M.; Mete, M.

    2001-01-01

    The modulated code system SCALE is used to perform a standardized shielding analysis for any facility containing spent fuel: handling devices, transport cask, intermediate and final storage facility. The neutron and gamma sources as well as the dose rates can be obtained using either discrete-ordinates or Monte Carlo methods. The shielding analysis control modules (SAS1, SAS2H and SAS4) provide a general procedure for cross-section preparation, fuel depletion/decay calculation and general onedimensional or multi-dimensional shielding analysis. The module SAS4 used in the analysis presented in this paper, is a three-dimensional Monte Carlo shielding analysis module, which uses an automated biasing procedure specialized for a nuclear fuel transport or storage container. The Spent Fuel Interim Storage Facility in our country is projected to be a parallelepiped concrete monolithic module, consisting of an external reinforced concrete structure with vertical storage cylinders (pits) arranged in a rectangular array. A pit is filled with sealed cylindrical baskets of stainless steel arranged in a stack, and with each basket containing spent fuel bundles in vertical position. The pit is closed with a concrete plug. The cylindrical geometry model is used in the shielding evaluation for a spent fuel storage structure (pit), and only the active parts of the superposed bundles is considered. The dose rates have been calculated in both the axial and radial directions using SAS4.(author)

  12. Behavior of water reactor fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1990-08-01

    This paper reviewed the fuels used widely in forms of (1) Zircaloy-sheathed UO 2 fuel in light water-commercial power reactor, (2) Zircaloy-sheathed PuO 2 -UO 2 fuel in plutonium-thermal reactor and advanced reactor (ATR), (3) aluminide and silicide fuel in Material Testing Reactors. From fundamental view points, physical/chemical properties and irradiation behaviors of both fuels and zircaloy claddings are briefly reviewed in chapters 1 and 2. Change of the fuel rod physical parameters with progress of burn-up are summed up in chapter 3. Some fuel troubles and failures encountered in past usage of worldwide LWR fuels are introduced with counterplans taken. In the last session of this chapter, recent results of R and D works have been carried out by fuel vendors are reviewed. Especially, in-core behaviors of PCI-remedy fuels developed to use for high burn-up extension and for load-follow operation are highlighted. Reactor accidents occurred through past forty years are surveyed and reviewed. Fuel behaviors during the reactivity initiated accident (RIA), the power-coolant mismatch (PCM), and the loss-of-coolant accident (LOCA) are taken into this review by using disclosed literatures. Safety criteria being used in Japanese licensing authorities are introduced relating to the fuel design limit. (author)

  13. Development of an interface between MCNP and ORIGEN codes for calculations of fuel evolution in nuclear systems. Initial project

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhaes

    2009-01-01

    In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)

  14. Comparison calculations of WWER-1000 fuel assemblies by using the MCNP 4.2 a KASSETA codes

    International Nuclear Information System (INIS)

    Trgina, M.

    1993-12-01

    The power multiplication and distribution factors are compared for various geometries and material configurations of WWER-1000 fuel assemblies. The calculations were performed in 2 ways: (i) using nuclear data, employing older and current data collections, and (ii) using the author's own model based on the KASSETA code. The comparison code MCNP 4.2 is described, intended for computerized simulation of the transport of neutrons, photons and electrons. This code uses its own cross section library. The methodology is outlined and a specification of the Monte Carlo method employed is given. The use of the refined data library gave rise to appreciable deviations of the multiplication factors in all variants. The use of the older data library led to identical criticality results for the variant with water holes. For inserted absorbers the discrepancies in criticality and in power distribution data are appreciable. The marked disagreement between the results of application of the MCNP 4.2 and KASSETA codes for the variants with inserted control elements is indicative of inappropriateness of the approximation procedure in the latter code. (J.B.). 2 tabs., 11 figs., 11 refs

  15. Influence of hydrogen simulating burn-up effects on the metallurgical and thermal-mechanical behaviour of M5TM and zircaloy-4 alloys under LOCA conditions

    International Nuclear Information System (INIS)

    Mardon, J.P.; Brachet, J.C.; Portier, L.; Maillot, V.; Forgeron, T.; Lesbros, A.; Waeckel, N.

    2005-01-01

    A few years ago, within the framework of the CEA/ EDF /Framatome ANP R and D cooperative program, we made the assumption that the burn-up influence on the thermal-mechanical behavior of the cladding tubes under LOCA conditions is strongly linked to the hydrogen uptake due to the in-service oxidation. Thus, since that time, an extensive experimental program has been conducted in CEA labs on as-received and pre-hydrided Zircaloy-4 and M5 TM alloys of Framatome-ANP to get a better insight into the influence of the hydrogen on the thermal-mechanical cladding behavior during the first phase of the LOCA transient (ballooning and rupture) and for post-quenched conditions (residual ductility / toughness). On the one hand, one of the main assumptions here was that the microstructural defects, and the resultant hardening produced under heavy neutron irradiation within the Zr matrix, are annealed early in the first phase of the LOCA transient (i.e. first thermal ramp) and thus, that the main effects of high burn-up should come from the hydrogen uptake. To assess this hypothesis, specific thermal-mechanical tests have been performed on as-received, pre-hydrided and irradiated cladding tubes. This confirmed that the effect of hydrogen uptake dominates over that of irradiation on the thermal-mechanical response of the materials. So, in a first part of the paper, we will summarize the main results obtained here and, from the metallurgical point of view, we will illustrate the strong influence of hydrogen on the decrease of the α-to-β phase transformation temperatures of the zirconium alloys studied. On the other hand, studies have been performed on the post-quench mechanical behavior of as-received and pre-hydrided cladding tubes after single-face oxidation at 1000-1200 degree C and quenching. In parallel with these mechanical tests, in-depth metallurgical investigations have been developed, to be able to quantify the resultant phases thickness (ZrO 2 , α-Zr(O) and ex-β phase

  16. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  17. Radioactivity of spent TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P. [Reactor Department, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  18. Cladding stress during extended storage of high burnup spent nuclear fuel

    Science.gov (United States)

    Raynaud, Patrick A. C.; Einziger, Robert E.

    2015-09-01

    In an effort to assess the potential for low temperature creep and delayed hydride cracking failures in high burnup spent fuel cladding during extended dry storage, the U.S. NRC analytical fuel performance tools were used to predict cladding stress during a 300 year dry storage period for UO2 fuel burned up to 65 GWd/MTU. Fuel swelling correlations were developed and used along with decay gas production and release fractions to produce circumferential average cladding stress predictions with the FRAPCON-3.5 fuel performance code. The resulting stresses did not result in cladding creep failures. The maximum creep strains accumulated were on the order of 0.54-1.04%, but creep failures are not expected below at least 2% strain. The potential for delayed hydride cracking was assessed by calculating the critical flaw size required to trigger this failure mechanism. The critical flaw size far exceeded any realistic flaw expected in spent fuel at end of reactor life.

  19. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  20. Cladding stress during extended storage of high burnup spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, Patrick A.C., E-mail: Patrick.raynaud@nrc.gov; Einziger, Robert E.

    2015-09-15

    In an effort to assess the potential for low temperature creep and delayed hydride cracking failures in high burnup spent fuel cladding during extended dry storage, the U.S. NRC analytical fuel performance tools were used to predict cladding stress during a 300 year dry storage period for UO{sub 2} fuel burned up to 65 GWd/MTU. Fuel swelling correlations were developed and used along with decay gas production and release fractions to produce circumferential average cladding stress predictions with the FRAPCON-3.5 fuel performance code. The resulting stresses did not result in cladding creep failures. The maximum creep strains accumulated were on the order of 0.54–1.04%, but creep failures are not expected below at least 2% strain. The potential for delayed hydride cracking was assessed by calculating the critical flaw size required to trigger this failure mechanism. The critical flaw size far exceeded any realistic flaw expected in spent fuel at end of reactor life.

  1. Assessment of the linear power level in fuel rods irradiated in the CALLISTO loop in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    Malambu, E.; Raedt, Ch. de; Weber, M.

    1999-01-01

    The pressurized light-water-cooled testing facility CALLISTO was designed to test the behaviour of advanced fuel rods (UO 2 or MOX, possibly with burnable poisons) under conditions representative of actual LWRs up to high burn-up rates. The accurate determination of the fission powers in each of the nine rods, and hence of the burn-up values, is carried out according to a rather elaborate procedure. (author)

  2. BURNY-SQUID, 2-D Burnup of UO2 and Mix UO2 PuO2 Fuel in X-Y or R-Z Geometry

    International Nuclear Information System (INIS)

    Rosa, I.; Zara, G.; Guidotti, R.

    1974-01-01

    1 - Nature of physical problem solved: - Multigroup neutron diffusion and burnup equations for two- to five- energy groups over a rectangular region of the x-y or r-z plane. - For a given geometry and initial enrichment, it calculates the two- to five- group flux distributions, the nuclides burnt in a time step t, and then the flux distribution again. This process is repeated until the maximum burn-up is reached. - Criticality search by uniform variation of a control isotope. - Solution of problems with fuel having different geometrical parameters, by means of super-compositions. - Recycle and restart options are available. - UO 2 and PUO 2 -UO 2 fuel can be handled. 2 - Method of solution: The zero-dimension burn-up program RIBOT-5 is coupled with the two-dimension program SQUID and alternately executed. The differential equations are solved by the difference method. 3 - Restrictions on the complexity of the problem: 200 maximum number of compositions 10,000 maximum number of mesh points 5 maximum Number of groups. 4 maximum number of super-compositions. Diagonal symmetry allowed

  3. Field experience of new nuclear fuel types on the Kola NPP

    International Nuclear Information System (INIS)

    Adeev, V.; Burlov, S.; Panov, A.; Saprykin, V.

    2008-01-01

    Specificity of the Kola nuclear power plant geographical position, conditions of region economics determine fuel management strategy. Isolation of Kola power supply system and, as a consequence, generating capacities redundancy cause operation of the nuclear power plant on reduced power level. At the same time there is a need to operate the power unit on the maximum power level in the case of not planned conditions. The basis of in-core fuel management is an achievement of the maximal burnup under providing of high installed capacity. At present there are not abilities to improve the fuel cycle based on traditional implementation fuel assemblies. Burnup maximum in these fuel cycles is achieved. At the core periphery installed highest possible quantity of the burned-up assemblies in the view of safety operation margins satisfaction. Works on application of the second generation fuel have been carried out on the Kola NPP since 2002. Fuel assemblies of this type are profiled. Burnable absorber, changed lattice spacing in relation to standard fuel, changed height of a fuel column, thickness of fuel pin clad are applied. In CR fuel followers modernized docking unit (with hafnium plates are intended for energy-release splash suppression) is used. At present 2-nd generation fuel is in experimental operation on unit 3 (18-21 fuel cycles, 2002-2007 years) and unit 4 (18-19 fuel cycles, 2005-2007 years). Safety margins did not exceeded. Coolant activity did not exceed the limiting value. There were not damaged fuel assemblies of second generation. Originally in the project of applications of new fuel it was supposed to refuel annually 78 fresh assemblies. At the moment annual refueling consists of 66 assemblies with effective enrichment 3.82 %. Cycle duration does not exceed 250-260 effective days. The part of assemblies is left on 5-th cycle of operation. In a similar fuel cycle in 2007 on the unit 1 operation with profiled fuel (enrichment of 3.82 %) of shakeproof type

  4. Structures and properties of (U,Pu)O2 containing non-active fission products. A simulation of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Schmitz, F.

    1969-01-01

    We have made oxides with the same uranium and plutonium content, the same stoichiometry and the same fission product content as an oxide fuel (U 0,8 PuO 2 )O 1,96 after 2 per cent burn up. We have calculated the stoichiometry changes due to irradiation and checked the calculation by X rays parameters measurements. We have calculated and measured the contraction of the oxide lattice due to fission products in solid solution. Microprobe analysis of precipitates have been made and have lead to the identification of non metallic barium containing compounds and have shown the particular behaviour of molybdenum. Some physical properties have been measured especially the electrical resistivity, the thermal diffusivity and the vapour pressure of zirconium in solid solution. (author) [fr

  5. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  6. IEA-R1 reactor spent fuel element surveillance; Acompanhamento da irradiacao dos elementos combustiveis do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret de Almeida; Terremoto, Luis Antonio Albiac; Silva, Jose Eduardo Rosa da; Silva, Antonio Teixeira e; Teodoro, Celso A.; Lucki, Georgi; Castanheira, Myrthes [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: madamy@ipen.br

    2005-07-01

    The irradiation surveillance is an important part of a qualification program of the U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}-Al dispersion nuclear fuels manufactured in IPEN/CNEN-SP. This work presents the surveillance results regarding the fuel and control elements irradiated in the IEA-R1 research reactor during the period from June/1999 until December/2003, which embraced register of visual inspections, irradiation conditions, burn-up calculations, thermal hydraulic parameters and failure occurrences. Also providing information that helps the safe operation of the IEA-R1 research reactor, the irradiation surveillance is a collaboration work involving researchers of the Centro de Engenharia Nuclear (CEN) and the operators' staff of the Centro do Reator de Pesquisas (CRPq), both from IPEN/CNEN-SP. (author)

  7. EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2000-09-14

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this

  8. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John (Jack) K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  9. THE APPLICATION OF MAMMOTH FOR A DETAILED TIGHTLY COUPLED FUEL PIN SIMULATION WITH A STATION BLACKOUT

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick; Ortensi, Javier; DeHart, Mark; Wang, Yaqi; Schunert, Sebastian; Novascone, Stephen; Hales, Jason; Williamson, Rich; Slaughter, Andrew; Permann, Cody; Andrs, David; Martineau, Richard

    2016-09-01

    Accurate calculation of desired quantities to predict fuel behavior requires the solution of interlinked equations representing different physics. Traditional fuels performance codes often rely on internal empirical models for the pin power density and a simplified boundary condition on the cladding edge. These simplifications are performed because of the difficulty of coupling applications or codes on differing domains and mapping the required data. To demonstrate an approach closer to first principles, the neutronics application Rattlesnake and the thermal hydraulics application RELAP-7 were coupled to the fuels performance application BISON under the master application MAMMOTH. A single fuel pin was modeled based on the dimensions of a Westinghouse 17x17 fuel rod. The simulation consisted of a depletion period of 1343 days, roughly equal to three full operating cycles, followed by a station blackout (SBO) event. The fuel rod was depleted for 1343 days for a near constant total power loading of 65.81 kW. After 1343 days the fission power was reduced to zero (simulating a reactor shut-down). Decay heat calculations provided the time-varying energy source after this time. For this problem, Rattlesnake, BISON, and RELAP-7 are coupled under MAMMOTH in a split operator approach. Each system solves its physics on a separate mesh and, for RELAP-7 and BISON, on only a subset of the full problem domain. Rattlesnake solves the neutronics over the whole domain that includes the fuel, cladding, gaps, water, and top and bottom rod holders. Here BISON is applied to the fuel and cladding with a 2D axi-symmetric domain, and RELAP-7 is applied to the flow of the circular outer water channel with a set of 1D flow equations. The mesh on the Rattlesnake side can either be 3D (for low order transport) or 2D (for diffusion). BISON has a matching ring structure mesh for the fuel so both the power density and local burn up are copied accurately from Rattlesnake. At each depletion time

  10. CALIPSO - a computer code for the calculation of fluiddynamics, thermohydraulics and changes of geometry in failing fuel elements of a fast breeder reactor

    International Nuclear Information System (INIS)

    Kedziur, F.

    1982-07-01

    The computer code CALIPSO was developed for the calculation of a hypothetical accident in an LMFBR (Liquid Metal Fast Breeder Reactor), where the failure of fuel pins is assumed. It calculates two-dimensionally the thermodynamics, fluiddynamics and changes in geometry of a single fuel pin and its coolant channel in a time period between failure of the pin and a state, at which the geometry is nearly destroyed. The determination of temperature profiles in the fuel pin cladding and the channel wall make it possible to take melting and freezing processes into account. Further features of CALIPSO are the variable channel cross section in order to model disturbances of the channel geometry as well as the calculation of two velocity fields including the consideration of virtual mass effects. The documented version of CALIPSO is especially suited for the calculation of the SIMBATH experiments carried out at the Kernforschungszentrum Karlsruhe, which simulate the above-mentioned accident. The report contains the complete documentation of the CALIPSO code: the modeling of the geometry, the equations used, the structure of the code and the solution procedure as well as the instructions for use with an application example. (orig.) [de

  11. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Matthias I.; Guenther-Leopold, Ines; Kivel, Niko; Restani, Renato [Laboratory for Materials Behavior, Nuclear Energy and Safety, Paul Scherrer Institut, Villigen, CH-5232 (Switzerland); Guillong, Marcel [Institute for Isotope Geology/Mineralogic Elements, ETH Zuerich, CH-8092 (Switzerland); Izmer, Andrei [Environmental and Resource Studies, Trent University, Peterborough, K9J 7B8 (Canada); Hellwig, Christian [Nuclear Technology Department, Nordostschweizerische Kraftwerke AG (NOK), Baden, CH-5401 (Switzerland); Guenther, Detlef [Laboratory for Inorganic Chemistry, Trace Elements and Microanalysis Group, ETH Zuerich, CH-8093 (Switzerland)

    2008-07-01

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in {mu}m-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 {mu}m and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  12. Nuclear fuel management and transients analysis in Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    De Loera De Haro, M.A.; Alvarez Gasca, J.

    1991-01-01

    Nuclear fuel management transient analysis are the set of activities which determine the load and reload of nuclear fuel inside the reactor, with the aim of getting the maximum performance in fuel burn up and heat remotion, without have an effect in the station safety. Nuclear fuel management and transient analysis has its basis on high precision quantitative analysis methodologies by means of simulation of nuclear and physical phenomena occurring both in normal and abnormal operation of nuclear power plants. On account of complexity of simulations and the required precision, those are carry out using codes type 'best estimate'. For the use of this tools it is necessary a deep knowledge of simulated nuclear and physical phenomena, as well as the used mathematical models and the numerical methods used. If different, the simulation results will be notably different actual processes owing to the use of models out of validity range, or incorrect calculations in the input parameters. On account of complexity of simulations and the required precision, those are carry out using codes type 'best estimate'. For the use of this tools it is necessary a deep knowledge of simulated nuclear and physical phenomena, as well as the used mathematical models and the numerical methods used. If different, the simulation results will be notably different actual processes owing to the use of models out of validity range, or incorrect calculations in the input parameters

  13. Analysis of radiation characteristics for casks loaded with spent RBMK-1500 nuclear fuel

    International Nuclear Information System (INIS)

    Smaizys, A.; Poskas, P.

    2001-01-01

    The objective of this paper is to present the analysis of radiation characteristics for the ductile cast iron CASTOR RBMK-1500 and heavy concrete CONSTOR RBMK-1500 casks loaded with spent nuclear fuel from Ignalina NPP RBMK-1500 reactors. These casks are designed for an interim storage (up to 50 years) of spent nuclear fuel at Ignalina NPP. Computer calculations have been performed using SCALE4.3 computer codes system. The dose rate calculations have been performed on the sidelong, upper and lower surface of the casks and for certain distance at the beginning of spent nuclear fuel storage in the casks and after 50 years of interim dry storage. The results obtained results show that dose rate values on the surface of the cask are much less than the design criteria value 1000 μSv/h when the average burn-up of fuel assembly is 20 GWd/tU. It was revealed that CONSTOR RBMK- 1500 cask has better shielding characteristics than CASTOR RBMK-1500 cask.(author)

  14. Determination of the Emission Factors from Burning Common Domestic Cooking Fuels in Vietnam and its Application for Calculation of their Pollution Load

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Ho

    2013-01-01

    Full Text Available The emission factors and the air pollution load of domestic cooking processes in Vietnam were investigated. All the measurement results were given from experiments implemented at equipment imitated common cooking ways of almost households in different areas of Vietnam. The commonly used fuels concerning to the investigation were fuel gas, kerosene, comb coal, fossil coal, firewood, straw and rice stubble. The main parameters emitted from fuel burning processes such as SO2, NOx, CO, TSP and PM10 and related parameters such as temperature, pressure, exhaust gas flow rate were measured by the suitable equipment. Based on the measurement data, emission factors and pollution load were calculated and compared with other data published in the world.

  15. Principles, design and fuel performance characteristics of gas cooled thermal reactors

    International Nuclear Information System (INIS)

    Boocock, P.M.; Eaton, J.R.P.

    1989-01-01

    Reactor output and availability are closely related to fuel design and performance and the SSEB, in collaboration with the Central Electricity Generating Board have followed a policy of continuous analysis and improvement. The position reached is set out and some views on further improvements, are given. The strategy of increasing fuel burn-up on Hunterston A power station has brought significant dividends in the form of major benefits in fuel cycle cost and station availability. Significant improvements in output and availability at Hunterston B have resulted from increasing the fuel cycle burn-up, from 18 GWd/t U to 21 GWd/t U and introducing on-load refuelling. Additional benefits are soon to be obtained by further extending the burn-up to 24 GWd/t U. Further reduction of typically Pound 2-7 million/year in fuel cycle costs over the remaining life of the stations would be made by extending the burn-up to 30 GWd/t U at Hunterston B and Torness. There would be additional savings of about Pound 4 million/year in replacement fuel costs if the reactors continued to be refuelled at 30% power at Hunterston B and 40% power at Torness. (author)

  16. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning

    International Nuclear Information System (INIS)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-01-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  17. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    Science.gov (United States)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  18. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    Science.gov (United States)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  19. Radiation Dose Calculation for a Large Break Loss of Coolant Accident for the Dry Process Fuel Core with a Dual Failure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Ho; Kim, Taek Mo; Choi, Hang Bok

    2005-05-15

    The compatibility of the direct use of spent pressurized water reactor fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel with the existing 713 MWe CANDU (CANDU-6) reactor has been analyzed for a limiting large break loss of coolant accident (LOCA) scenario such as 100% reactor outlet header break accompanied by a dual failure of the containment isolation logic. For the DUPIC fuel, the radiation source term was calculated for a 1/4 of fission products inventory in the fuel gap of the CANDU-6 reactor being steadily operated at the full power. However it was assumed that all the fission products of the DUPIC fuel core are instantaneously released to the containment building at 3 sec after the break, because the transient release model of the fission products has not yet been developed for the DUPIC fuel. The radiation effect was estimated for the personal dose of the critical age and the public dose. The calculations have shown that the personal doses are 231 mSv and 1954 mSv for the whole body and thyroid, respectively, which are blow the limits of 250 mSv and 2500 mSv. In fact, the personal doses of the DUPIC fuel core are higher than those of the natural uranium core, which is due to the assumption that all the fission products are instantaneously released into the containment building. Therefore if a realistic transient model of the fission products release is used, it is expected that the radiation doses of the DUPIC fuel core are much less that those of the natural uranium core. The public doses are 157 person-Sv and 1929 person-Sv for the whole body and thyroid, respectively, which are much less that the design limit of 10000 person-Sv. This study has confirmed that the personal and public doses of the DUPIC fuel core satisfy the design limits for the large break LOCA accompanied by a dual failure of the containment isolation logic.

  20. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received mu