WorldWideScience

Sample records for fuel operating experience

  1. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  2. LOFT instrumented fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    A summary description of the Loss-of-Fluid Test (LOFT) system instrumented core construction details and operating experience through reactor startup and loss-of-coolant experiment (LOCE) operations performed to date are discussed. The discussion includes details of the test instrumentation attachment to the fuel assembly, the structural response of the fuel modules to the forces generated by a double-ended break of a pressurized water reactor (PWR) coolant pipe at the inlet to the reactor vessel, the durability of the LOFT fuel and test instrumentation, and the plans for incorporation of improved fuel assembly test instrumentation features in the LOFT core

  3. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  4. Canadian fuel development program and recent operational experience

    International Nuclear Information System (INIS)

    Cox, D.S.; Kohn, E.; Lau, J.H.K.; Dicke, G.J.; Macici, N.N.; Sancton, R.W.

    1995-01-01

    This paper provides an overview of the current Canadian CANDU fuel R and D programs and operational experience. The details of operational experience for fuel in Canadian reactors are summarized for the period 1991-1994; excellent fuel performance has been sustained, with steady-state bundle defect rates currently as low as 0.02%. The status of introducing long 37-element bundles, and bundles with rounded bearing pads is reviewed. These minor changes in fuel design have been selectively introduced in response to operational constraints (end-plate cracking and pressure-tube fretting) at Ontario Hydro's Bruce-B and Darlington stations. The R and D programs are generating a more complete understanding of CANDU fuel behaviour, while the CANDU Owners Group (COG) Fuel Technology Program is being re-aligned to a more exclusive focus on the needs of operating stations. Technical highlights and realized benefits from the COG program are summarized. Re-organization of AECL to provide a one-company focus, with an outward looking view to new CANDU markets, has strengthened R and D in advanced fuel cycles. Progress in AECL's key fuel cycle programs is also summarized. (author)

  5. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  6. Physics operating experience and fuel management of RAPS-1

    International Nuclear Information System (INIS)

    Nakra, A.N.; Purandare, H.D.; Srinivasan, K.R.; Rastogi, B.P.

    1976-01-01

    Rajasthan Atomic Power Station Unit-1 achieved criticality on August 11, 1972. Thereafter the reactor was brought to power, in November, 1972. Due to non-availability of the depleted fuel, the loading of which was necessary to obtain full power to begin with, the core was loaded with all natural uranium fuel and only 70% of the full power could be achieved. During the reactor operation for the last three years, the reactor has seen more than one effective full power year and about 1400 fresh fuel bundles have been loaded in the core. The reactor was subjected to about 150 power cycles resulting in more than 30% variation in operating power level and about 10 fuel bundles have failed. For satisfactory fuel management and refuelling decisions, a three dimensional simulator TRIVENI was developed. This was extensively tested during the start-up experiments and was found to be a satisfactory tool for day to day operation of the plant. In this paper, a brief account of analysis of the start-up experiments, approach to full power, power distortions and flux peaking, fuel management service and analysis of the failed fuel data has been given. (author)

  7. The Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the two-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These two programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  8. Evolution of PHWR fuel transfer system based on operating experience

    International Nuclear Information System (INIS)

    Parvatikar, R.S.; Singh, Jaipal; Chaturvedi, P.C.; Bhambra, H.S.

    2006-01-01

    Fuel Transfer System facilitates loading of new fuel into Fuelling Machine, receipt of spent fuel from Fuelling Machine and its further transportation to Storage Bay. To overcome the limitations of transferring a pair of bundles in the single tube Airlock and Transfer Arm in RAPS-1 and 2/MAPS, a new concept of six tube Transfer Magazine was introduced in NAPS. This resulted in simultaneous loading of new fuel from Transfer Magazine into the Fuelling Machine and unloading of spent fuel from the Fuelling Machine through the exchange mode. It further facilitated the parallel/simultaneous operation of refuelling by Fuelling Machines on the reactor and transferring of spent fuel bundles from the Transfer Magazine to the bay. This new design of Fuel Transfer System was adopted for all standardised 220 MWe PHWRs. Based on the experience gained in 220 MWe PHWRs in the area of operation and maintenance, a number of improvements have been carried out over the years. These aspects have been further strengthened and refined in the Fuel Transfer System of 540 MWe units. The operating experience of the system indicates that the presence of heavy water in the Transfer Magazine poses limitations in its maintenance in the Fuel Transfer room. Further, Surveillance and maintenance of large number of under water equipment and associated valves, rams and underwater sensors is putting extra burden on the O and M efforts. A new concept of mobile light water filled Transfer Machine has been evolved for proposed 700 MWe PHWR units to simplify Fuel Transfer System. This has been made possible by adopting snout level control in the Fuelling Machine, elimination of Shuttle Transport System and locating the Storage Bay adjacent to the Reactor Building. This paper describes the evolution of Fuel Transfer System concepts and various improvements based on the experience gained in the operation and maintenance of the system. (author)

  9. Fuel design and operational experience in Loviisa NPP, future trends in fuel issues

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2001-01-01

    This paper summarizes the past operational experience of nuclear fuel with reference to most significant design changes during the years. In general, the fuel behaviour in Loviisa NPP in terms of leaking fuel assemblies has been good. The major improvements by fuel design changes in Lovissa NPP, including rod elongation margin, change in the pellet design and manufacturing process, upper grid modifications, change of material in the spacer grids and reduction of the shroud tube thickness are discussed and related to the number of failed fuel assemblies. The detailed investigation of fuel failure rates as function of different fuel and operation characteristics allows to classify the leaking fuel assemblies according to the cause of failure. In a brief discussion concerning new changes in the safety guide for nuclear design limits, re-issued by the Finnish Safety Authority (STUK), the frequencies for class 1 and class 2 accidents are determined. Another change in this guide is the introduction of design limits for the number of fuel rods experiencing DNB in class 1 accidents and number of failed rods in class 2 accidents. It is concluded that as far as normal operation is concerned, there seems to be sufficiently large margin between present operational limits in Loviisa and the design limits. The real limits do not come from fuel behaviour in the normal operation or operational occurrences but from the accident behaviour. At the moment, fuel assembly burnup extension beyond 45 MWd/kgU is clearly out of the question before further information and positive results are obtained on high burnup fuel behaviour in accident conditions

  10. Halden fuel and material experiments beyond operational and safety limits

    International Nuclear Information System (INIS)

    Volkov, Boris; Wiesenack, Wolfgang; McGrath, M.; Tverberg, T.

    2014-01-01

    One of the main tasks of any research reactor is to investigate the behavior of nuclear fuel and materials prior to their introduction into the market. For commercial NPPs, it is important both to test nuclear fuels at a fuel burn-up exceeding current limits and to investigate reactor materials for higher irradiation dose. For fuel vendors such tests enable verification of fuel reliability or for the safety limits to be found under different operational conditions and accident situations. For the latter, in-pile experiments have to be performed beyond some normal limits. The program of fuel tests performed in the Halden reactor is aimed mainly at determining: The thermal FGR threshold, which may limit fuel operational power with burn-up increase, the “lift-off effect” when rod internal pressure exceeds coolant pressure, the effects of high burn-up on fuel behavior under power ramps, fuel relocation under LOCA simulation at higher burn-up, the effect of dry-out on high burn-up fuel rod integrity. This paper reviews some of the experiments performed in the Halden reactor for understanding some of the limits for standard fuel utilization with the aim of contributing to the development of innovative fuels and cladding materials that could be used beyond these limits. (author)

  11. Initial operational experience with Gd-2M+ fuel at Dukovany NPP

    International Nuclear Information System (INIS)

    Borovička, M.; Zýbal, J.

    2015-01-01

    Trend of continuous development of nuclear fuel and fuel cycle can be observed from the very beginning of Dukovany NPP operation. The results of this development are documented on the one hand by extending the length of the cycle and on the other by significant reduction in the number of fresh FA’s which are loaded into reactor cores. As a continuation of this trend introduces Dukovany NPP evolutional change of nuclear fuel from the fuel Gd-2M to the Gd-2M + . (authors) Keywords: Gd-2M + , fuel assembly, operational experience

  12. Operational Experience of Nuclear Fuel in Finnish Nuclear Power Plants (with Emphasis on WWER Fuel)

    International Nuclear Information System (INIS)

    Teraesvirta, R.

    2009-01-01

    The four operating nuclear reactors in Finland, Loviisa-1 and -2 and Olkiluoto-1 and -2 have now operated approximately 30 years. The overall operational experience has been excellent. Load factors of all units have been for years among the highest in the world. The development of the fuel designs during the years has enabled remarkable improvement in the fuel performance in terms of burnup. Average discharge burnup has increased more than 30 percent in all Finnish reactor units. A systematic inspection of spent fuel assemblies, and especially all failed fuel assemblies, is a good and useful practise employed in Finland. A possibility to inspect the fuel on site using a pool side inspection facility is a relatively economic way to find out root causes of fuel failures and thereby facilitate developing remedies to prevent similar failures in the future

  13. Fuel reliability experience in Finland

    International Nuclear Information System (INIS)

    Kekkonen, L.

    2015-01-01

    Four nuclear reactors have operated in Finland now for 35-38 years. The two VVER-440 units at Loviisa Nuclear Power Plant are operated by Fortum and two BWR’s in Olkiluoto are operated by Teollisuuden Voima Oyj (TVO). The fuel reliability experience of the four reactors operating currently in Finland has been very good and the fuel failure rates have been very low. Systematic inspection of spent fuel assemblies, and especially all failed assemblies, is a good practice that is employed in Finland in order to improve fuel reliability and operational safety. Investigation of the root cause of fuel failures is important in developing ways to prevent similar failures in the future. The operational and fuel reliability experience at the Loviisa Nuclear Power Plant has been reported also earlier in the international seminars on WWER Fuel Performance, Modelling and Experimental Support. In this paper the information on fuel reliability experience at Loviisa NPP is updated and also a short summary of the fuel reliability experience at Olkiluoto NPP is given. Keywords: VVER-440, fuel reliability, operational experience, poolside inspections, fuel failure identification. (author)

  14. Operational experience using the OSTR flip fuel self-protection program

    International Nuclear Information System (INIS)

    Dodd, B.; Ringle, J.C.; Anderson, T.V.; Johnson, A.G.

    1982-01-01

    Recent changes in NRC Physical Security regulations make it highly desirable for a small number of TRIGA research reactor establishments to maintain each of the fuel elements in their reactor core above the self-protection dose rate criterion. OSTR operations personnel have written a computer program (SPOOF) which calculates the exposure rate (in Rhr -1 ) from an irradiated fuel element at 3 feet in air using the actual operating history of the reactor. The purpose of this current paper is to describe the operational experience gained over the last year and a half while using the SPOOF computer program, and while performing the quarterly dose rate measurements needed to confirm the continuing accuracy of the program, and, most importantly, the self-protection status of the OSTR fuel. The computer program in association with the quarterly dose rate measurements have been accepted by the NRC, and allow the OSTR to take credit for self-protecting FLIP fuel under the current physical security regulations

  15. Operation experience of the advanced fuel assemblies at Unit 1 of Volgodonsk NPP within four fuel cycles

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kobelev, S.; Kushmanov, S.

    2006-01-01

    The first commissioning of Volgodonsk NPP Unit 1 with standard reactor WWER-1000 (project V-320) was in 2001. The reactor core, starting from the first fuel charge, was arranged completely with Advanced Fuel Assemblies (AFAs). In this way, it is possible to obtain the experience in startup and operation of the core, completely arranged with AFAs, and also to get a possibility of performing the comprehensive check for justification of newly commissioned units and justification of design solutions accepted in the design of reactor core for Taiwan NPP, Bushehr NPP and Kudankulam NPP. The first fuel charge of the Volgodonsk NPP Unit 1 is a reference and unified for Tiawan NPP (V-428), Bushehr NPP (V-446), Kudankulam NPP(V-412) with small differences caused by design features of RP V-320. The first core charge of Unit 1 of Volgodonsk NPP was arranged of 163 AFAs, comprising 61 CPS ARs and 42 BAR bundles. The subsequent fuel charges were arranged of AFAs with gadolinium oxide integrated into fuel instead of BAR. By 2005 the results of operation of the core at Unit 1 of Volgodonsk NPP during four fuel cycles showed that AFA is sufficiently reliable and serviceable. The activity of the primary coolant of the Volgodonsk NPP is at stable low level. During the whole time of the core operation of the Volgodonsk NPP Unit 1 no leaky AFAs were revealed. The modifications of the internals, made during pre-operational work, are reasonable and effective to provide for fuel mechanical stability in the course of operation. The modifications, made in AFA structure during operation of the Volgodonsk NPP Unit 1, are aimed at improving the service and operational reliability of its components. Correctness of the solutions taken is confirmed by AFAs operation experience both at the Volgodonsk NPP, and at other operating Russian NPPs

  16. High Burnup Fuel: Implications and Operational Experience. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-08-01

    This publication reports on the outcome of a technical meeting on high burnup fuel experience and economics, held in Buenos Aires, Argentina in 2013. The purpose of the meeting was to revisit and update the current operational experience and economic conditions associated with high burnup fuel. International experts with significant experience in experimental programmes on high burnup fuel discussed and evaluated physical limitations at pellet, cladding and structural component levels, with a wide focus including fabrication, core behaviour, transport and intermediate storage for most types of commercial nuclear power plants

  17. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  18. Proceedings of the specialist meeting on nuclear fuel and control rods: operating experience, design evolution and safety aspects

    International Nuclear Information System (INIS)

    1997-01-01

    Design and management of nuclear fuel has undergone a strong evolution process during past years. The increase of the operating cycle length and of the discharge burnup has led to the use of more advanced fuel designs, as well as to the adoption of fuel efficient operational strategies. The analysis of recent operational experience highlighted a number of issues related to nuclear fuel and control rod events raising concerns about the safety aspects of these new designs and operational strategies, which led to the organisation of this Specialists Meeting on fuel and control rod issues. The meeting was intended to provide a forum for the exchange of information on lessons learned and safety concern related to operating experience with fuel and control rods (degradation, reliability, experience with high burnup fuel, and others). After an opening session 6 papers), this meeting was subdivided into four sessions: Operating experience and safety concern (technical session I - 6 papers), Fuel performance and operational issues (technical session II - 7 papers), Control rod issues (technical session III - 9 papers), Improvement of fuel design (technical session IV.A - 4 papers), Improvement on fuel fabrication and core management (technical session IV.B - 6 papers)

  19. Operational experience of the fuel cleaning facility of Joyo

    International Nuclear Information System (INIS)

    Mukaibo, R.; Matsuno, Y.; Sato, I.; Yoneda, Y.; Ito, H.

    1978-01-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 ∼ 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  20. Operational experience of the fuel cleaning facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Ito, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 {approx} 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  1. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  2. Experience with fuel damage caused by abnormal conditions in handling and transporting operations

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1983-01-01

    Pacific Northwest Laboratory (PNL) conducted a study to determine the expected condition of spent USA light-water reactor (LWR) fuel upon arrival at interim storage or fuel reprocessing facilities or, if fuel is declared a waste, at disposal facilities. Initial findings were described in an earlier PNL paper at PATRAM '80 and in a report. Updated findings are described in this paper, which includes an evaluation of information obtained from the literature and a compilation of cases of known or suspected damage to fuel as a result of handling and/or transporting operations. To date, PNL has evaluated 123 actual cases (98 USA and 25 non-USA). Irradiated fuel was involved in all but 10 of the cases. From this study, it is calculated that the frequency of unusual occurrences involving fuel damage from handling and transporting operations has been low. The damage that did occur was generally minor. The current base of experience with fuel handling and transporting operations indicates that nearly all of these unusual occurrences had only a minor or negligible effect on spent fuel storage facility operations

  3. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  4. Operating experiences in fuel handling system at KGS

    International Nuclear Information System (INIS)

    Reddy, G.P.; Nagabhushanam

    2006-01-01

    Refuelling operations were started at KGS in August, 2000. Rich and varied experience was gained during this period through internal discussion/Quality circles/Procedural reviews and analysis of various incidents that have taken place in KGS and other units of NPCIL Some of the unique jobs carried out at KGS include-Development of tools for in-situ replacement of FM front end cover in FM service area (which was done for the first time in NPCIL history), Modification of FM magazine rear end plate mounting screws to avoid the possibility of magazine rotation stalling, The incident of Stalling of B-Ram during installation of upstream shield plug in KGS - 1 has brought out many weakness that were existing in the system in a dormant manner. Review of maintenance procedures was carried out and a special underwater operated sensor was developed and installed in Transfer Magazine to sense the presence and proper positioning of fuel bundles in the Transfer magazine tube during fuel loading operation. Numerous modifications were carried out in the system to increase equipment reliability, ease of operation and maintenance, to reduce man-rem consumption. Most notable among these modifications include -zig saw panel modification, EFCV O-ring modification, Ram BF switch modification, provision for increase in SFSB level provision, snout clamp oil circuit modification, ball valve actuator modification, installation of additional switch for sensing STS carriage UP position etc, This paper focuses on the challenges tackled in achieving near perfect performance, innovations and improvements carried out in the system to strive for this goal and development of procedures for reducing man-rem consumption and life extension of critical components. (author)

  5. CANDU reactor experience: fuel performance

    International Nuclear Information System (INIS)

    Truant, P.T.; Hastings, I.J.

    1985-07-01

    Ontario Hydro has more than 126 reactor-years experience in operating CANDU reactors. Fuel performance has been excellent with 47 000 channel fuelling operations successfully completed and 99.9 percent of the more than 380 000 bundles irradiated operating as designed. Fuel performance limits and fuel defects have had a negligible effect on station safety, reliability, the environment and cost. The actual incapability charged to fuel is less than 0.1 percent over the stations' lifetimes, and more recently has been zero

  6. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Pushparaja; Gopalakrishnan, R.K.; Subramaniam, G.

    2000-01-01

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  7. Operation experiences of JOYO fuel failure detection system

    International Nuclear Information System (INIS)

    Tamura, Seiji; Hikichi, Takayoshi; Rindo, Hiroshi.

    1982-01-01

    Monitoring of fuel failure in the experimental fast reactor JOYO is provided by two different methods, which are cover gas monitoring (FFDCGM) by means of a precipitator, and delayed neutron monitoring (FFDDNM) by means of neutron detectors. The interpretation of signals which were obtained during the reactor operation for performance testings, was performed. The countrate of the CGM is approximately 120 cps at 75MW operation, whose sources are due to Ne 23 , Ar 41 , and Na 24 . And the countrate of the DNM is approximately 2300 cps at 75MW operation which is mainly due to leakage neutron from the core. With those background of the systems, alarm level for monitoring was set at several times of each background level. The reactor has been operated for 5 years, the burn-up of the fuel is 40,000 MWD/T at the most. No trace of any fuel failure has been observed. The fact is also proven by the results of cover gas and sodium sampling analysis. In order to evaluate sensitivity of the FFD systems, a preliminary simulation study has been performed. According to the results, a signal level against one pin failure of 0.5 mm 2 hole may exceed the alarm level of the FFDCGM system. (author)

  8. Fuel improvement and WWER-1000 FA main operational results

    International Nuclear Information System (INIS)

    Rozhkov, V.; Enin, A.; Bezborodov, Y.; Petrov, V.

    2003-01-01

    The JSC NCCP experience of WWER-1000 Fuel Assemblies (FAs) fabrication and operation confirms the adequate feasibility and efficiency of fuel operation in 3-4-x fuel cycles, high operating reliability and competitive capacity as compared with foreign analogues. The work on fuel improvement is aimed at an improvement of the operating reliability and an enhancement of the fuel use efficiency in WWER-1000 advanced FAs

  9. Operation databook of the fuel treatment system of the Static Experiment Critical Facility (STACY) and the Transient Experiment Critical Facility (TRACY). JFY 2004 to JFY 2008

    International Nuclear Information System (INIS)

    Kokusen, Junya; Sumiya, Masato; Seki, Masakazu; Kobayashi, Fuyumi; Ishii, Junichi; Umeda, Miki

    2013-02-01

    Uranyl nitrate solution fuel used in the Static Experiment Critical Facility (STACY) and the Transient Experiment Critical Facility (TRACY) is adjusted in the Fuel Treatment System, in which such parameters are varied as concentration of uranium, free nitric acid, soluble neutron poison, and so on. Operations for concentration and denitration of the solution fuel were carried out with an evaporator from JFY 2004 to JFY 2008 in order to adjust the fuel to the experimental condition of the STACY and the TRACY. In parallel, the solution fuel in which some kinds of soluble neutron poison were doped was also adjusted in JFY 2005 and JFY 2006 for the purpose of the STACY experiments to determine neutron absorption effects brought by fission products, etc. After these experiments in the STACY, a part of the solution fuel including the soluble neutron poison was purified by the solvent extraction method with mixer-settlers in JFY 2006 and JFY 2007. This report summarizes operation data of the Fuel Treatment System from JFY 2004 to JFY 2008. (author)

  10. MOX fuel transport: the French experience

    International Nuclear Information System (INIS)

    Sanchis, H.; Verdier, A.; Sanchis, H.

    1999-01-01

    In the back-end of the fuel cycle, several leading countries have chosen the Reprocessing, Conditioning, Recycling (RCR) option. Plutonium recycling in the form of MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants an several European countries. The COGEMA Group has developed the industrialized products to master the RCR operation including transport COGEMA subsidiary, TRANSNUCLEAIRE has been operating MOX fuel transports on an industrial scale for more than 10 years. In 1998, around 200 transports of Plutonium materials have been organised by TRANSNUCLEAIRE. These transports have been carried out by road between various facilities in Europe: reprocessing plants, manufacturing plants and power plants. The materials transported are either: PuO 2 and MOX powder; BWR and PWR MOX fuel rods; BWR and PWR MOX fuel assemblies. Because MOX fuel transport is subject to specific safety, security and fuel integrity requirements, the MOX fuel transport system implemented by TRANSNUCLEAIRE is fully dedicated. Packaging have been developed, licensed and manufactured for each kind of MOX material in compliance with relevant regulations. A fleet of vehicles qualified according to existing physical protection regulations is operated by TRANSNUCLEAIRE. TRANSNUCLEAIRE has gained a broad experience in MOX transport in 10 years. Technical and operational know-how has been developed and improved for each step: vehicles and packaging design and qualification; vehicle and packaging maintenance; transport operations. Further developments are underway to increase the payload of the packaging and to improve the transport conditions, safety and security remaining of course top priority. (authors)

  11. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  12. LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1980-01-01

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation

  13. Design and operational experience of the NUHOMS-24P spent fuel storage system

    International Nuclear Information System (INIS)

    McConaghy, W.J.; Lehnert, R.A.; Rasmussen, R.W.

    1991-01-01

    The NUHOMS spent fuel storage system provides a safe and economical method for the dry storage of spent fuel assemblies either at an independent spent fuel storage installation (ISFSI) at reactor or at a centralized storage facility away from reactor. The system consists of three major safety-related components: a dry shielded canister (DSC) which provides a high integrity containment boundary and a controlled storage environment for the fuel; a reinforced concrete horizontal storage module (HSM) which houses the stored DSCs and provides radiation shielding, protection against natural phenomena and an efficient means for decay heat removal; and a transfer cask which provides for the safe shielded transfer of DSCs from a plant spent fuel pool to a HSM. The NUHOMS system is designed and licensed to the requirements of 10 CFR 72 and ANS/ANSI 57.9 for ISFSIs. The NUHOMS concept was developed in early 1980s, and in 1987, a larger version of the NUHOMS system, 24P, was developed. The operational features of NUHOMS and the loading experience at Oconee are reported. (K.I.)

  14. Operating experience with Exxon nuclear advanced fuel assembly and fuel cycle designs in PWRs

    International Nuclear Information System (INIS)

    Skogen, F.B.; Killgore, M.R.; Holm, J.S.; Brown, C.A.

    1986-01-01

    Exxon Nuclear Company (ENC) has achieved a high standard of performance in its supply of fuel reloads for both BWRs and PWRs, while introducing substantial innovations aimed at realization of improved fuel cycle costs. The ENC experience with advanced design features such as the bi-metallic spacer, the dismountable upper tie plate, natural uranium axial blankets, optimized water-to-fuel designs, annular pellets, gadolinia burnable absorbers, and improved fuel management scenarios, is summarized

  15. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  16. Nuclear fuel in water reactors: Manufacturing technology, operational experience and development objectives in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Holzer, R.; Knoedler, D.

    1977-01-01

    The nuclear fuel industry in the Federal Republic of Germany comprises the full range of manufacturing capabilities for pressurized-, boiling- and heavy-water reactor technology. The existing manufacturing companies are Reaktor-Brennelement Union (RBU) and Alkem. RBU makes natural and enriched UO 2 -fuel assemblies, starting with powder preparation. Facilities to produce UO 2 -gadolinia and UO 2 -ThO 2 fuel are also available. Alkem manufactures mixed-oxide UO 2 /PuO 2 fuel and fuel rods. Zircaloy cladding tubes are produced by Nuklearrohr-Gesellschaft (NRG) and Mannesmannroehren-Werke (MRW). Construction of a new fuel manufacturing plant has been announced by Exxon. Supplementary to quality control, an integrated quality assurance system has been established between the reactor vendor's fuel design and engineering division and the existing manufacturing companies for fuel and tubing. Operating experience with LWR and HWR fuel dates back to 1964/65 and has shown good performance. Possible reasons for a small fraction of defective rods could be identified quickly by a fast feedback system incorporating close co-operation between Kraftwerk Union (KWU) and the utilities. KWU combines fuel development, hot-cell and pool-side service facilities as well as fuel technology linked to manufacturing. The responsibility of KWU for core and fuel design, which enabled an integral optimization, was also an important reason for the successful operation and design flexibility. (author)

  17. Operating experience in reprocessing

    International Nuclear Information System (INIS)

    Schueller, W.

    1983-01-01

    Since 1953, reprocessing has accumulated 180 years of operating experience in ten plants, six of them with 41 years of operation in reprocessing oxide fuel from light water reactors. After abortive, premature attempts at what is called commercial reprocessing, which had been oriented towards the market value of recoverable uranium and plutonium, non-military reprocessing technologies have proved their technical feasibility, since 1966 on a pilot scale and since 1976 on an industrial scale. Reprocessing experience obtained on uranium metal fuel with low and medium burnups can now certainly be extrapolated to oxide fuel with high burnup and from pilot plants to industrial scale plants using the same technologies. The perspectives of waste management of the nuclear power plants operated in the Federal Republic of Germany should be viewed realistically. The technical problems still to be solved are in a balanced relationship to the benefit arising to the national economy out of nuclear power generation and can be solved in time, provided there are clearcut political boundary conditions. (orig.) [de

  18. Safety evaluation of the NSRR facility relevant to the modification for improved pulse operation and preirradiated fuel experiments

    International Nuclear Information System (INIS)

    Inabe, Teruo; Terakado, Yoshibumi; Tanzawa, Sadamitsu; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-11-01

    The Nuclear Safety Research Reactor (NSRR) is a pulse reactor for the inpile experiments to study the fuel behavior under reactivity initiated accident conditions. The present operation modes of the NSRR consist of the steady state operation up to 300 kW and the natural pulse operation in which a sharp pulsed power is generated from substantially zero power level. In addition to these, two new modes of shaped pulse operation and combined pulse operation will be conducted in the near future as the improved pulse operations. A transient power up to 10 MW will be generated in the shaped pulse operation, and a combination of a transient power up to 10 MW and a sharp pulsed power will be generated in the combined pulse operation. Furthermore, preirradiated fuel rods will be employed in the future experiments whereas the present experiments are confined to the test specimens of unirradiated fuel rods. To provide for these programs, the fundamental design works relevant to the modification of the reactor facility including the reactor instrumentation and control systems and experimental provision were developed. The reactor safety evaluation is prerequisite for confirming the propriety of the fundamental design of the reactor facility from the safety point of view. The safety evaluation was therefore conducted postulating such events that would bring about abnormal conditions in the reactor facility. As a result of the safety evaluation, it has been confirmed as to the NSRR facility after modification that the anticipated transients, the postulated accidents, the major accident and the hypothetical accident do not result respectively in any serious safety problem and that the fundamental design principles and the reactor siting are adequate and acceptable. (author)

  19. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  20. FFTF operational experience

    International Nuclear Information System (INIS)

    Newland, D.J.; Krupar, J.J.

    1984-01-01

    In April 1982, the FFTF began its first nominally 100 day irradiation cycle. Since that time the plant has operated very well with steadily increasing plant capacity factors during its first four cycles. One hundred fifty fuel assemblies (eighty of which are experiments) and over 32,000 individual fuel pins have been irradiated, some in excess of 100 MWd/Kg burnup. Specialized equipment and systems unique to sodium cooled reactor plants have performed well

  1. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  2. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  3. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  4. Design and operational behaviour of the SNR-reactor fuel element structure

    International Nuclear Information System (INIS)

    Dietz, W.; Toebbe, H.

    1985-01-01

    The fuel element and core concept of a fast breeder reactor is described by the example of the SNR 300 (1st core), and the requirements made on the fuel elements with respect to burnup and neutron dose are listed for existing and projected plants. Irradiation experiments carried out and operational experience gained with fuel elements show that the residence time of the fuel elements is influenced mainly by the stability of shape of the fuel element components. The requirements made with reference to neutron loading for future advanced high-performance fuel elements can not be anticipated from the present state of experience. Besides optimization of fuel element design and checking-out of the limits of operation by PFADFINDERELEMENTE elements, R and D work for the improvement of fuel element materials is also necessary. (orig.) [de

  5. Shipment of spent research reactor fuel to US-operators experience

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    To ship 1500 spent fuel elements over more than 30 years to different reprocessing or storage sites a large amount of experience has been gotten. The most important partners for these activities have been US organizations. The development of the US policy for the receipt of foreign spent fuel elements of US origin is described briefly. The experience being made and lessons learned with the on May 13, 1996 renewed receipt program is described in detail, including US organizations, shipment and formal steps. (author)

  6. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  7. Results on Technical and Consultants Service Meetings on Lessons Learned from Operating Experience in Wet and Dry Spent Fuel Storage

    International Nuclear Information System (INIS)

    White, B.; Zou, X.

    2015-01-01

    Spent fuel storage has been and will continue to be a vital portion of the nuclear fuel cycle, regardless of whether a member state has an open or closed nuclear fuel cycle. After removal from the reactor core, spent fuel cools in the spent fuel pool, prior to placement in dry storage or offsite transport for disposal or reprocessing. Additionally, the inventory of spent fuel at many reactors worldwide has or will reach the storage capacity of the spent fuel pool; some facilities are alleviating their need for additional storage capacity by utilizing dry cask storage. While there are numerous differences between wet and dry storage; when done properly both are safe and secure. The nuclear community shares lessons learned worldwide to gain knowledge from one another’s good practices as well as events. Sharing these experiences should minimize the number of incidents worldwide and increase public confidence in the nuclear industry. Over the past 60 years, there have been numerous experiences storing spent fuel, in both wet and dry mediums, that when shared effectively would improve operations and minimize events. These lessons learned will also serve to inform countries, who are new entrants into the nuclear power community, on designs and operations to avoid and include as best practices. The International Atomic Energy Agency convened a technical and several consultants’ meetings to gather these experiences and produce a technical document (TECDOC) to share spent fuel storage lessons learned among member states. This paper will discuss the status of the TECDOC and briefly discuss some lessons learned contained therein. (author)

  8. Fuel performance experience at TVO nuclear power plant

    International Nuclear Information System (INIS)

    Patrakka, E.T.

    1985-01-01

    TVO nuclear power plant consists of two BWR units of ASEA-ATOM design. The fuel performance experience extending through six cycles at TVO I and four cycles at TVO II is reported. The experience obtained so far is mainly based on ASEA-ATOM 8 x 8 fuel and has been satisfactory. Until autumn 1984 one leaking fuel assembly had been identified at TVO I and none at TVO II. Most of the problems encountered have been related to leaf spring screws and channel screws. The experience indicates that satisfactory fuel performance can be achieved when utilizing strict operational rules and proper control of fuel design and manufacture. (author)

  9. Experience related to the safety of advanced LMFBR fuel elements

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1975-07-01

    Experiments and experience relative to the safety of advanced fuel elements for the liquid metal fast breeder reactor are reviewed. The design and operating parameters and some of the unique features of advanced fuel elements are discussed breifly. Transient and steady state overpower operation and loss of sodium bond tests and experience are discussed in detail. Areas where information is lacking are also mentioned

  10. Experience with respect to dose limitation in nuclear fuel service operations in the United Kingdom supporting civil nuclear power programmes

    International Nuclear Information System (INIS)

    Kennedy, J.W.

    1983-01-01

    Within the United Kingdom, the nuclear power generation programme is supported by nuclear fuel services including uranium enrichment, fuel fabrication and reprocessing, operated by British Nuclear Fuels Limited (BNFL). These have entailed the processing of large quantities of uranium and of plutonium and fission products arising in the course of irradiation of fuel in nuclear power stations and have necessitated substantial programmes for the radiological protection of the public and of the workers employed in the industry. This paper presents and reviews the statistics of doses recorded in the various sectors of nuclear fuel services operations against the background of the standards to which the industry is required to operate. A description is given of the development of BNFL policy in keeping with the objective of being recognized as among those industries regarded as safe and the resource implications of measures to reduce doses received by workers are reviewed in the light of experience. Finally, the paper reviews the epidemiological data which have been, and continue to be, collected for workers who have been employed in these nuclear fuel services. (author)

  11. Full core operation in JRR-3 with LEU fuels

    International Nuclear Information System (INIS)

    Murayama, Y.; Issiki, M.

    1995-01-01

    The new JRR-3 a 20MWT swimming pool type research reactor, is made up of plate type LEU fuel elements with U-Al x fuel at 2.2 gU/cm 3 . Reconstruction work for the new JR-3 was a good success, and common operation started in November 1990, and 7 cycles (26 days operation/cycle) have passed. We have no experience in using such a high uranium density fuel element with aluminide fuel. So we plan to examine the condition of the irradiated fuel elements with three methods, that is, measurement of the value of FFD in operation, observation of external view of the fuels in refueling work and postirradiation examination after maximum burn-up will be established. In the results of the first two methods, the fuel elements of JRR-3 is burned up normally and have no evidence of failure. (author)

  12. LMFBR operational and experimental in-core local-fault experience, primarily with oxide fuel elements

    International Nuclear Information System (INIS)

    Warinner, D.K.

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS-and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation

  13. Tailoring Vantage 5 (fuel) to suit each operator's need

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, D L; Secker, J R [Westinghouse Electric Corp., Philadelphia, PA (USA)

    1990-03-01

    By the end of 1989, Westinghouse Vantage 5 fuel had been reloaded into 36 nuclear power plants. The fuel offers a number of features operators can choose from to suit their own particular needs. Experience so far has shown the fuel to have performed well, with coolant activity levels remaining low. (author).

  14. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  15. Nuclear fuel operation at Balakovo NPP

    International Nuclear Information System (INIS)

    Morozov, A.

    2015-01-01

    The presentation addressed the positive experience of the TVS-2M assemblies implementation at Balakovo NPP in 18 month fuel cycles, at uprated power (104%) and the usage of the axial profiled Gd-rods in order to minimize the power peaking factors and linear heat rate in the upper part in some of the fuel rods. The results of the test operation of fuel rods with different claddings, made by E110M, E125 and E635M alloys at Balakovo NPP were also provided. The recently observed problem with the “white crust” on the cladding surfaces was also discussed

  16. Operational support of a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Chapman, T.J.; Gibb, R.A.

    1998-01-01

    The mandate of a station safety analysis group is to ensure that the station is operated and maintained in a manner consistent with the basis for our understanding of the safety consequences of process or human failures. As operating experience has developed an awareness of the significance of fuel manufacture and operating conditions on safety consequences has also grown. This awareness has led to a program that is designed to ensure that these influences are appropriately considered. This paper describes the projects that make up this program. (author)

  17. Framatome experience in fuel assembly repair and reconstitution

    International Nuclear Information System (INIS)

    Leroy, G.

    1998-01-01

    Since 1985, FRAMATOME has build up extensive experience in the poolside replacement of fuel rods for repair or R and D purposes and the reconstitution of fuel assemblies (i.e. replacement of a damaged structure to enable reuse of the fuel rod bundle). This experience feedback enables FRAMATOME to improve in steps the technical process and the equipment used for the above operations in order to enhance their performance in terms of setup, flexibility, operating time and safety. In parallel, the fuel assembly and fuel rod designs have been modified to meet the same goals. The paper will describe: - the overall experience of FRAMATOME with UO 2 fuel as well as MOX fuel; the usual technical process used for fuel replacement and the corresponding equipment set; - the usual technical process for fuel assembly reconstitution and the corresponding equipment set. This process is rather unique since it takes profit of the specific FRAMATOME fuel assembly design with removable top and bottom nozzles, so that fuel rods insertion by pulling through in the new structure is similar to what is done in the manufacturing plant; - the usual inspections done on the fuel rods and/or the fuel assembly; - the design of the new reconstitution equipment (STAR) compared with the previous one as well as their comparative performance. The final section will be a description of the alternative reconstitution process and equipment used by FRAMATOME in reactors in which the process cannot be used for several reasons such as compatibility or administrative authorization. This process involves the pushing of fuel rods into the new structure, requiring further precautions. (author)

  18. Design considerations and operating experience with wet storage of Ontario Hydro's irradiated fuel

    International Nuclear Information System (INIS)

    Frost, C.R.; Naqvi, S.J.; McEachran, R.A.

    1987-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor irradiated fuel storage water pools (or irradiated fuel bays) are described. There are two types of bay known respectively as primary bays and auxiliary bays, used for at-reactor irradiated fuel storage. Irradiated fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. The major considerations in irradiated fuel bay design, including site-specific requirements, reliability and quality assurance, are discussed. The monitoring of critical fuel bay components, such as bay liners, the development of high storage density fuel containers, and the use of several irradiated fuel bays at each reactor site have all contributed to the safe handling of the large quantities of irradiated fuel over a period of about 25 years. Routine operation of the irradiated fuel bays and some unusual bay operational events are described. For safety considerations, the irradiated fuel in storage must retain its integrity. Also, as fuel storage is an interim process, likely for 50 years or more, the irradiated fuel should be retrievable for downstream fuel management phases such as reprocessing or disposal. A long-term experimental program is being used to monitor the integrity of irradiated fuel in long-term wet storage. The well characterized fuel, some of which has been in wet storage since 1962 is periodically examined for possible deterioration. The evidence from this program indicates that there will be no significant change in irradiated fuel integrity (and retrievability) over a 50 year wet storage period

  19. Operational results of WWER fuel fabricated by MSZ (Elektrostal, Russia)

    International Nuclear Information System (INIS)

    Asatiani, I.; Balabanov, S.; Beglov, A.; Khryashchev, D.

    2009-01-01

    The presentation brings forth a statistical analysis of the WWER fuel manufactured by OAO MSZ, operational experience. A necessity of such an analysis is determined by the fact that objective operational results prove the appropriateness of the solutions and decisions made by vendor, designer, manufacturer and utility, as well as motivates further fuel improvements. (authors)

  20. Nuclear fuel in water reactors: manufacturing technology operational experience and development activities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Holzer, R.; Knoedler, D.

    1977-01-01

    The nuclear fuel industry in the F.R. Germany comprises the full range of manufacturing capabilities for pressurized - boiling- and heavy water reactor technology. The existing manufacturing companies are RBU and Alkem. RBU makes natural and enriched UO 2 -fuel assemblies, starting with powder preparation. Facilites to produce UO 2 -Gadolinia and UO 2 -ThO 2 fuel are also available. Alkem is manufacturing mixed oxide UO 2 /PuO 2 -fuel and -rods. Zircaloy cladding tubes are produced by NRG and MRW. This constitutes the largest single nuclear fuel manufacturing capacity outside the USA. The companies are interested in export and current capacity trends indicate some overcapacity caused by delays in plant schedules. Construction of a new fuel manufacturing plant in the FRG has been announced by Exxon. Supplementary to quality control in manufacturing an integrated quality assurance-system has been established between the reactor vendor KWU, fuel design and -engineering division, and the existing manufacturing companies for fuel and tubing. The operating experience with LWR and HWR fuel dates back to 1964/65 and proves good performance. No generic problems like densification or rod bow were encountered. Possible reasons for the small fraction of defective rods could be quickly identified by a fast feedback system incorporating a close cooperation between KWU and the utilities. KWU combines fuel development, hot-cell and poolside service facilities as well as fuel technology linking to manufacturing in one hand. The common responsibility of KWU for core- and fuel design which enabled an integral optimization was also an important reason for the successful operation and flexibility in design. Development efforts will be concentrated on tests to improve the understanding of power ramping capability under extreme operational and postulated abnormal conditions, on statistical evaluation of safety aspects and on improved economy. The LWR fuel development was sponsored by the

  1. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  2. Review of BNFL's operational experience of wet type flasks

    International Nuclear Information System (INIS)

    McWilliam, D.S.

    2004-01-01

    BNFL International Transport's operational experience includes shipping 6000te of spent fuel from Japan to Sellafield, through its dedicated terminal at Barrow, and to Cogema La Hague. This fuel was shipped under the PNTL (Pacific Nuclear Transport Ltd) banner for which BNFL is responsible. PNTL owned and operated a fleet of 5 ships for Japanese business and a fleet of 80 wet and 58 dry flasks, for the transport of Light Water Reactor (LWR) spent fuel, from both Pressurised Water Reactors (PWR) and Boiling Water Reactors (BWR). ''Wet'' or ''dry'' flask is the common terminology used to distinguish between spent fuel flasks transporting fuel where the fuel is immersed in water, or spent fuel flasks that have been drained of water and dried. This paper concentrates on the wet type of flask utilised to transport fuel to Sellafield, that is the Excellox type (including similar type NTL derivatives). It aims to provide a summary of operational experience during handling at power stations, shipment, unloading at reprocessors and from scheduled maintenance

  3. Operating experience with the DRAGON High Temperature Reactor experiment

    International Nuclear Information System (INIS)

    Simon, R.A.; Capp, P.D.

    2002-01-01

    The Dragon Reactor Experiment in Winfrith/UK was a materials test facility for a number of HTR projects pursued in the sixties and seventies of the last century. It was built and managed as an OECD/NEA international joint undertaking. The reactor operated successfully between 1964 and 1975 to satisfy the growing demand for irradiation testing of fuels and fuel elements as well as for technological tests of components and materials. The paper describes the reactor's main experimental features and presents results of 11 years of reactor operation relevant for future HTRs. (author)

  4. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  5. Experiences with fuels B30 and B 100 in haulage, railway operation and agricultural machinery

    Energy Technology Data Exchange (ETDEWEB)

    Matejovsky, V. [QMS Consulting, Prague (Czech Republic); Hendrych, K.; Mares, V. [PREOL, Lovosice (Czech Republic)

    2013-06-01

    High prices of diesel fuel have increased an interest in cheaper biodiesel, especially for vehicles with high fuel consumption and not only for haulage vehicle parks but also for railway vehicles and heavy agricultural machinery. When price difference between standard diesel B7 and cheaper biodiesel B100 reached more than 10% it was a sufficient benefit for operators to use biodiesel but this fuel had not been approved for all vehicles types by their manufacturers. Despite this problem, some operators have begun to use biodiesel also for vehicles not having the approval. To prevent operational problems and misgiving of engines damage, the transition to alternative fuel was organized as field tests of one or more vehicles from the operator's fleet. The tests usually started with B30 fuel and if no operational problems occurred the second stage continued with B100. The tested vehicles were under permanent surveillance at least during one year of operation and once a month and later once in a quarter a deeper inspections were made including engine diagnostics, emissions testing, engine oil sampling for laboratory examination, injectors tenting and filters and fuel hoses condition evaluation. The presentation includes the results of vehicles inspections and the measures that had to be done to prevent engines failure and to ensure trouble-free operation of vehicles using biofuels. (orig.)

  6. KNF's fuel service technologies and experiences

    International Nuclear Information System (INIS)

    Shin, Jung Cheol; Kwon, Jung Tack; Kim, Jaeik; Park, Jong Youl; Kim, Yong Chan

    2009-01-01

    In Korea, since 1978, the commercial nuclear power plant was operated. After 10 years, from 1988, the nuclear fuel was produced by KNF (Korea Nuclear Fuel). The Fuel Service Team was established at KNF in 1995. Through the technical self reliance periods in cooperate with advanced foreign companies for 5 years, KNF has started to carry out fuel service activities onsite in domestic nuclear power plants. By ceaseless improving and advancing our own methodologies, after that, KNF is able to provide the most safe and reliable fuel repair services and poolside examinations including the root cause analysis of failed fuels. Recently, KNF developed the fuel cleaning system using ultrasonic technique for crud removal, and the CANDU fuel sipping system to detect a failed fuel bundle in PHWR. In this paper, all of KNF's fuel service technologies are briefly described, and the gained experience in shown

  7. GNF2 Operating Experience

    International Nuclear Information System (INIS)

    Schardt, John

    2007-01-01

    GNF's latest generation fuel product, GNF2, is designed to deliver improved nuclear efficiency, higher bundle and cycle energy capability, and more operational flexibility. But along with high performance, our customers face a growing need for absolute fuel reliability. This is driven by a general sense in the industry that LWR fuel reliability has plateaued. Too many plants are operating with fuel leakers, and the impact on plant operations and operator focus is unacceptable. The industry has responded by implementing an INPO-coordinated program aimed at achieving leaker-free reliability by 2010. One focus area of the program is the relationship between fuel performance (i.e., duty) and reliability. The industry recognizes that the right balance between performance and problem-free fuel reliability is critical. In the development of GNF2, GNF understood the requirement for a balanced solution and utilized a product development and introduction strategy that specifically addressed reliability: evolutionary design features supported by an extensive experience base; thoroughly tested components; and defense-in-depth mitigation of all identified failure mechanisms. The final proof test that the balance has been achieved is the application of the design, initially through lead use assemblies (LUAs), in a variety of plants that reflect the diversity of the BWR fleet. Regular detailed surveillance of these bundles provides the verification that the proper balance between performance and reliability has been achieved. GNF currently has GNF2 lead use assemblies operating in five plants. Included are plants that have implemented extended power up-rates, plants on one and two-year operating cycles, and plants with and without NobleChem TM and zinc injection. The leading plant has undergone three pool-side inspections outages to date. This paper reviews the actions taken to insure GNF2's reliability, and the lead use assembly surveillance data accumulated to date to validate

  8. Transit experience with hydrogen fueled hybrid electric buses

    International Nuclear Information System (INIS)

    Scott, P.B.; Mazaika, D.M.; Levin, J.; Edwards, T.

    2006-01-01

    Both AC Transit and SunLine Transit operate hybrid electric hydrogen fueled buses in their transit service. ACT presently operates three fuel cell buses in daily revenue service, and SunLine operates a fuel cell bus and a HHICE (Hybrid Hydrogen Internal Combustion Engine) bus. All these buses use similar electric drive train and electric accessories, although the detailed design differs notably between the fuel cell and the hybrid ICE buses. The fuel cell buses use a 120kW UTC fuel cell and a Van Hool Chassis, whereas the HHICE bus uses a turbocharged Ford engine which is capable of 140kW generator output in a New Flyer Chassis. The HHICE bus was the first in service, and has been subjected to both winter testing in Manitoba, Canada and summer testing in the Palm Springs, CA region. The winter testing included passenger sampling using questionnaires to ascertain passenger response. The fuel cell buses were introduced to service at the start of 2006. All five buses are in daily revenue service use. The paper will describe the buses and the experience of the transit properties in operating the buses. (author)

  9. Operating experience feedback report: Assessment of spent fuel cooling. Volume 12

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.; Ornstein, H.L.; Pullani, S.V.

    1997-02-01

    This report documents the results of an independent assessment by a team from the Office of Analysis and Evaluation of Operational Data of spent-fuel-pool (SFP) cooling in operating nuclear power plants. The team assessed the likelihood and consequences of an extended loss of SFP cooling and suggested corrective actions, based on their findings

  10. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  11. Power ramping/cycling experience and operational recommendations in KWU power plants

    International Nuclear Information System (INIS)

    Jan, R. von; Wunderlich, F.; Holzer, R.

    1980-01-01

    The power cycling and ramping experience of KWU is based on experiments in test and commercial reactors, and on evaluation of plant operation (PHWR, PWR and BWR). Power cycling of fuel rods have never lead to PCI failures. In ramping experiments, for fast ramps PCI failure thresholds of 480/420 W/cm are obtained at 12/23 GWd/t(U) burn-up for pressurized PWR fuel. No failures occurred during limited exceedance of the threshold with reduced ramp rate. Operational recommendations used by KWU are derived from experiments and plant experience. The effects of ramping considerations on plant operation is discussed. No rate restrictions are required for start-ups during an operating cycle or load follow operation within set limits for the distortion of the local power distribution. In a few situations, e.g. start-up after refueling, ramp rates of 1 to 5 %/h are recommended depending on plant and fuel design

  12. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  13. Implementation and operational experience of an integrated fuel information service at the BNFL THORP facility

    International Nuclear Information System (INIS)

    Robson, D.N.; Ramsden, P.N.

    1995-01-01

    BNFL's THORP Plant, which started active operations early in 1994, has contracts to reprocess 7000t(U) of fuel belonging to 33 customers in 9 countries in the UK, Europe and Japan during its first 10 years of operation. Contracts are in place or being negotiated, and further business sought after, with the expectation of extending THORP's operations well beyond the initial 10 years. An integrated data management service, for the fuel storage areas of BNFL's THORP Division, is being implemented to replace several, independent, systems. This Fuel Information Service (FIS) will bring the Nuclear Materials Accountancy and Safeguards Records together with the Operating Records into one database from which all Safeguards Reports will be made. BNFL's contractual and commercial data and technical data on the stored fuel, required to support the reprocessing business, will also be brought into the common database. FIS is the first stage in a project to integrate the Materials Management systems throughout the THORP nuclear recycling business including irradiated fuel receipt and storage, reprocessing and storage of products, mixed oxide fuel manufacture and the conditioning and storage of wastes

  14. Transporting spent fuel and reactor waste in Sweden experience from 5 years of operation

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1990-01-01

    This paper reports that since the Final Repository for Reactor Waste, SFR, was taken into operation in 1988, the SKB sea transportation system is operating at full capacity by transporting spent fuel and now also reactor waste from the 12 Swedish reactors to CLAB and SFR. Transports from the National Research Center, Studsvik to the repository has recently also been integrated in the system. CLAB, the central intermediate storage for spent fuel, has been in operation since 1985. The SKB Sea Transportation System consists today of the purpose built ship M/s Sigyn, 10 transport casks for spent fuel, 2 casks for spent core components, 27 IP-2 shielded steel containers for reactor waste and 5 terminal vehicles. During an average year about 250 tonnes of spent fuel and 3 -- 4000 m 3 of reactor waste are transported to CLAB and SFR respectively, corresponding to around 30 sea voyages

  15. Operating experience of Fugen-HWR in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, F [Reactor Regulation Division, Nuclear Safety Bureau, Science and Technology Agency, Tokyo (Japan)

    1991-04-01

    Fugen is a 165 MWe prototype heavy water reactor which mainly uses plutonium-uranium mixed oxide (MOX) fuel. Power Reactor and Nuclear Fuel Development Corporation (PNC) has taken responsibility for the advanced thermal reactor (ATR) project, with its name 'FUGEN' taken from the Buddhist God of Mercy. The project started in October 1967, to develop and establish the technology for this new type of reactor and to clarify MOX fuel performance in the reactor. Site construction began in December 1970 at Tsuruga and the plant commenced commercial operation on March 20, 1979. Since then, Fugen has been operated successfully for more than twelve years. The plant performance and reliability of this type of reactor has been demonstrated through the operation. All these operational experiences have contributed to the establishment of the ATR technology.

  16. Operating experience of Fugen-HWR in Japan

    International Nuclear Information System (INIS)

    Yoshino, F.

    1991-01-01

    Fugen is a 165 MWe prototype heavy water reactor which mainly uses plutonium-uranium mixed oxide (MOX) fuel. Power Reactor and Nuclear Fuel Development Corporation (PNC) has taken responsibility for the advanced thermal reactor (ATR) project, with its name 'FUGEN' taken from the Buddhist God of Mercy. The project started in October 1967, to develop and establish the technology for this new type of reactor and to clarify MOX fuel performance in the reactor. Site construction began in December 1970 at Tsuruga and the plant commenced commercial operation on March 20, 1979. Since then, Fugen has been operated successfully for more than twelve years. The plant performance and reliability of this type of reactor has been demonstrated through the operation. All these operational experiences have contributed to the establishment of the ATR technology

  17. Fuel cracking in relation to fuel oxidation in support of an out-reactor instrumented defected fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.; Thiriet, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Lewis, B., E-mail: brent.lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada); Corcoran, E., E-mail: emily.corcoran@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    An experimental program funded by the CANDU Owners Group (COG) is studying an out-reactor instrumented defected fuel experiment in Stern Laboratories (Hamilton, Ontario) with guidance from Atomic Energy of Canada Limited (AECL). The objective of this test is to provide experimental data for validation of a mechanistic fuel oxidation model. In this experiment a defected fuel element with UO{sub 2} pellets will be internally heated with an electrical heater element, causing the fuel to crack. By defecting the sheath in-situ the fuel will be exposed to light water coolant near normal reactor operating conditions (pressure 10 MPa and temperature 265-310{sup o}C) causing fuel oxidation, especially near the hotter regions of the fuel in the cracks. The fuel thermal conductivity will change, resulting in a change in the temperature distribution of the fuel element. This paper provides 2D r-θ plane strain solid mechanics models to simulate fuel thermal expansion, where conditions for fuel crack propagation are investigated with the thermal J integral to predict fuel crack stress intensity factors. Finally since fuel crack geometry can affect fuel oxidation this paper shows that the solid mechanics model with pre-set radial cracks can be coupled to a 2D r-θ fuel oxidation model. (author)

  18. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  19. Operational experience with the first eighteen slightly enriched uranium fuel assemblies in the Atucha-1 nuclear power plant

    International Nuclear Information System (INIS)

    Higa, M.; Perez, R.; Pineyro, J.; Sidelnik, J.; Fink, J.; Casario, J.A.; Alvarez, L.

    1997-01-01

    Atucha I is a 357 Mwe nuclear station, moderated and cooled with heavy water, pressure vessel type of German design, located in Argentina. Fuel assemblies (FA) are 36 active natural UO2 rod clusters, 5.3 meters long and fuel is on power. Average FA exit burnup is 6 MWd/kg U. The reactor core contains 252 FA. To reduce the fuel costs about 6 MU$S/yr a program of utilization of SEU (0.85 %w U235) fuel was started at the beginning of 1995 with the introduction of 12 FA in the first step. The exit burnup of FA is approx. 10 MWd/kgU. It is planned to increase gradually the number of them up to having a full core with SEU fuel with an expected FA average exit burnup of 11 MWd/kgU. The SEU program has also the advantage of a strong reduction of spent fuel volume, and a moderate reduction of fuelling machine use. This paper presents the satisfactory operation experience with the introduction of the first 12 SEU fuel assemblies and the planned activities for the future. The fresh SEU fuel assemblies were introduced in six fuel channels located in an intermediate zone located 136 cm from the center of the reactor and selected because they have higher margins to the channel powers limits to accommodate the initial 15 to 20 % relative channel power increase. To verify the design and fuel management calculations, comparisons have been made of the calculated and measured values of the variation of channel ΔT, regulating rods insertion and flux reading in in-core detectors near to the refueled channel. The agreement was good and in most of the cases within the measurement errors. Cell calculations were made with WIMS-D4, and reactor calculations with PUMA. a fuel management 3D diffusion program developed in Argentina. With SEU fuel with a greater burnup in the central high power core region, new operating procedures were developed to prevent PCI failures in fuel power ramps that arise during operation. Some fuel rod and structural assembly design changes were introduced on the

  20. Practical experience with the leaky-fuel monitoring at Bohunice NPP

    International Nuclear Information System (INIS)

    Kacmar, M.; Cizek, J.

    2001-01-01

    The first part of this paper describes practical experience with the fuel monitoring in operating reactors from point of view possible leakages. Summarized in the paper are numbers leaky fuel assemblies both for NPP and for particular units. Some failure causes are discussed for operational conditions of Bohunice NPP. In the second part of paper critical power ramps on hot fuel rod of leaky fuel assemblies are analysed to eliminate failures from PCI. The main aim of the paper is the need to understand the mechanism and causes of failures (Authors)

  1. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  2. Spent fuel and HLW transportation the French experience

    International Nuclear Information System (INIS)

    Giraud, J.P.; Charles, J.L.

    1995-01-01

    With 53 nuclear power plants in operation at EDF and a fuel cycle with recycling policy of the valuable materials, COGEMA is faced with the transport of a wide range of radioactive materials. In this framework, the transport activity is a key link in closing the fuel cycle. COGEMA has developed a comprehensive Transport Organization System dealing with all the sectors of the fuel cycle. The paper will describe the status of transportation of spent fuel and HLW in France and the experience gathered. The Transport Organization System clearly defines the role of all actors where COGEMA, acting as the general coordinator, specifies the tasks to be performed and brings technical and commercial support to its various subcontractors: TRANSNUCLEAIRE, specialized in casks engineering and transport operations, supplies packaging and performs transport operations, LEMARECHAL and CELESTIN operate transport by truck in the Vicinity of the nuclear sites while French Railways are in charge of spent fuel transport by train. HLW issued from the French nuclear program is stored for 30 years in an intermediate storage installation located at the La Hague reprocessing plant. Ultimately, these canisters will be transported to the disposal site. COGEMA has set up a comprehensive transport organization covering all operational aspects including adapted procedures, maintenance programs and personnel qualification

  3. Experiment operations plan for the MT-4 experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700 0 F)

  4. Storage experience in Hungary with fuel from research reactors

    International Nuclear Information System (INIS)

    Gado, J.; Hargitai, T.

    1996-01-01

    In Hungary several critical assemblies, a training reactor and a research reactor have been in operation. The fuel used in the research and training reactors are of Soviet origin. Though spent fuel storage experience is fairly good, medium and long term storage solutions are needed. (author)

  5. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  6. Operational experience with Dragon reactor experiment of relevance to commercial reactors

    International Nuclear Information System (INIS)

    Capp, P.D.; Simon, R.A.

    1976-01-01

    An important part of the experience gained during the first ten years of successful power operation of the Dragon Reactor is relevant to the design and operation of future High Temperature Reactors (HTRs). The aspects presented in this paper have been chosen as being particularly applicable to larger HTR systems. Core performance under a variety of conditions is surveyed with particular emphasis on a technique developed for the identification and location of unpurged releasing fuel and the presence of activation and fission products in the core area. The lessons learned during the reflector block replacement are presented. Operating experience with the primary circuit identifies the lack of mixing of gas streams within the hot plenum and the problems of gas streaming in ducts. Helium leakage from the circuit is often greater than the optimum 0.1%/d. Virtually all the leakage problems are associated with the small bore instrument pipework essential for the many experiments associated with the Dragon Reactor Experiment (DRE). Primary circuit maintenance work confirms the generally clean state of the DRE circuit but identifies 137 Cs and 110 Agsup(m) as possible hazards if fuel emitting these isotopes is irradiated. (author)

  7. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  8. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Tarigan, Alim

    1999-01-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U 3 O 8 -Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  9. ERB-II operating experience

    International Nuclear Information System (INIS)

    Smith, R.N.; Cissel, D.W.; Smith, R.R.

    1977-01-01

    As originally designed and operated, EBR-II successfully demonstrated the concept of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle (mini-nuclear park). Subsequent operation has been as an irradiation facility, a role which will continue into the foreseeable future. Since the beginning of operation in 1961, operating experience of EBR-II has been very satisfactory. Most of the components and systems have performed well. In particular, the mechanical performance of heat-removal systems has been excellent. A review of the operating experience reveals that all the original design objectives have been successfully demonstrated. To date, no failures or incidents resulting in serious in-core or out-of-core consequences have occurred. No water-to-sodium leaks have been detected over the life of the plant. At the present time, the facility is operating very well and continuously except for short shutdowns required by maintenance, refueling, modification, and minor repair. A plant factor of 76.9% was achieved for the calendar year 1976

  10. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  11. ENEL's experience in the management of irradiated fuel. Old and new problems encountered by nuclear station operators

    International Nuclear Information System (INIS)

    Ariemma, A.; Cuzzaniti, M.; Zaffiro, B.; Bertini, A.

    1983-01-01

    The experience acquired in recent years in the management of spent fuel discharged from ENEL's reactors has revealed a substantial change in the attitude of nuclear station operators in connection with the end of the fuel cycle downstream from the reactor (back-end). While in the past, after President Carter's outline of US policy in April 1977, the utilities had to face great difficulty in reprocessing their fuel owing to inadequate capacity, today the same problem is regarded as a matter of cost-benefit analysis from an industrial standpoint and of appropriate planning for the utilization of the recovered fissile materials. Since the present technology allows spent fuel storage (dry or underwater) to be planned for rather long periods and plutonium utilization requires a very stringent schedule, the present trend is to ensure medium-term storage of spent fuel and to seek a greater flexibility in the final reprocessing stages so as to render plutonium availability consistent with the programmes for its utilization. As a consequence, the solution to the problems posed by high-activity waste disposal is being delayed, thus allowing an exhaustive and detailed analysis of all the possible solutions to be made. The paper describes a number of solutions to the problems ENEL has encountered in the fuel cycle back-end. (author)

  12. Operational method for demonstrating fuel loading integrity in a reactor having accessible 235U fuel

    International Nuclear Information System (INIS)

    Ward, D.R.

    1979-07-01

    The Health Physics Research Reactor is a small pulse reactor at the Oak Ridge National Laboratory. It is desirable for the operator to be able to demonstrate on a routine basis that all the fuel pieces are present in the reactor core. Accordingly, a technique has been devised wherein the control rod readings are recorded with the reactor at delayed critical and corrections are made to compensate for the effects of variations in reactor height above the floor, reactor power, core temperature, and the presence of any massive neutron reflectors. The operator then compares these readings with the values expected based on previous operating experience. If this routine operational check suggests that the core fuel loading might be deficient, a more rigorous follow-up may be made

  13. Final report on development and operation of instrumented irradiation capsules for creep experiments on nuclear fuels at FR2

    International Nuclear Information System (INIS)

    Haefner, H.E.; Philipp, K.; Blumhofer, M.

    1980-02-01

    The capsule test rig No. 154 removed from FR2 in April 1979 was the last irradiation rig in a long series of creep experiments. The target of the irradiation tests, started exactly ten years ago, was to investigate the creep behaviour of various ceramic nuclear fuels under different in-pile irradiation conditions. An irradiation test rig had been developed for this purpose which allowed the continuous measurement of changes in length of fuel specimens. A total of 28 capsule test rigs each containing two packages of creep specimens have been irradiated in FR2 during this decade. They included 23 specimen stacks of UO 2 , 16 specimen stacks of UO 2 -PuO 2 , 4 specimen stacks of UN, 10 specimen stacks of (U,Pu) C, and 13 reference specimens of molybdenum. Besides the description of the test facility, the report provides above all a survey of the operation data applicable to the specimens and of the operating experience gathered as well as of the findings obtained in post-irradiation examinations. (orig.) [de

  14. The agnion Heatpipe-Reformer - operating experiences and evaluation of fuel conversion and syngas composition

    Energy Technology Data Exchange (ETDEWEB)

    Gallmetzer, Georg; Ackermann, Pascal [Highterm Research GmbH, Hettenshausen (Germany); Schweiger, Andreas; Kienberger, Thomas [Highterm Research GmbH, Graz (Austria); Groebl, Thomas; Walter, Heimo [Technische Universitaet Wien, Institut fuer Energietechnik und Thermodynamik, Wien (Austria); Zankl, Markus; Kroener, Martin [Agnion Technologies GmbH, Hettenshausen (Germany)

    2012-09-15

    Fluidized bed gasification of solid fuels is considered as one of the core technologies for future sustainable energy supply. Whereas autothermal oxygen-driven gasification is applied in large-scale substitute natural gas (SNG) and Fischer-Tropsch (FT) plants or small-scale combined heat and power (CHP) plants, the allothermal steam-reforming process of the agnion Heatpipe-Reformer is designed for cost- and fuel-efficient syngas generation at small scales for distributed applications. The Heatpipe-Reformer's pressurized syngas generation provides a number of benefits for SNG, biomass to liquid (BTL) and CHP applications. A modified gas engine concept uses the pressurized and hydrogen-rich syngas for increased performance and tar tolerance at decreased capital expenses. Agnion has installed and operated a 500-kW thermal input pilot plant in Pfaffenhofen, Germany, over the last 2 years, showing stable operation over a variety of operating points. The syngas composition has been measured at values expected by thermodynamic models. An influence of the steam-to-fuel ratio and reformer temperature was observed. Tar and sulphur contents have been monitored and correlated to operation parameters, showing influences on stoichiometry and carbon conversion. The mass and energy streams of the plant were balanced. One of the main observations in the monitoring programme is the fact that syngas output, efficiency and syngas quality correlate to high values if the carbon conversion is high. Carbon conversion rates and cold gas efficiencies are comparably high in respect to today's processes, promising economic and fuel-efficient operation of the Heatpipe-Reformer applications. (orig.)

  15. Design of experiments for test of fuel element reliability

    International Nuclear Information System (INIS)

    Boehmert, J.; Juettner, C.; Linek, J.

    1989-01-01

    Changes of fuel element design and modifications of the operational conditions have to be tested in experiments and pilot projects for nuclear safety. Experimental design is an useful statistical method minimizing costs and risks for this procedure. The main problem of our work was to investigate the connection between failure rate of fuel elements, sample size, confidence interval, and error probability. Using the statistic model of the binomial distribution appropriate relations were derived and discussed. A stepwise procedure based on a modified sequential analysis according to Wald was developed as a strategy of introduction for modifications of the fuel element design and of the operational conditions. (author)

  16. Fuel canister and blockage pin fabrication for SLSF Experiment P4

    International Nuclear Information System (INIS)

    Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W.; Delucchi, T.A.

    1983-01-01

    As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO 2 . Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power

  17. Design considerations, operating and maintenance experience with wet storage of Ontario Hydro's used fuel

    International Nuclear Information System (INIS)

    Frost, C.R.

    1989-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor used fuel storage water pools (or used fuel bays) are described. There are two types of bay, known respectively as primary bays and auxiliary bays, used for at- reactor used fuel storage. Used fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. With on- power fueling of reactors, each reactor of greater than 500 MW(e) net discharges an average of 10 or more used fuel bundles to bay storage every full power day. The logistics of handling such large quantities of used fuel bundles (corresponding to about 300 te/year of uranium for a 4 unit station) present a challenge to designers and operators. The major considerations in used fuel bay design, including site- specific requirements, reliability and quality assurance, are discussed

  18. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Van Velde, AA. de; Burtak, F.

    2000-01-01

    In this paper authors deals with nuclear fuel cycle and their economic aspects. At Siemens, the developments focusing on the reduction of fuel cycle costs are currently directed on .further batch average burnup increase, .improvement of fuel reliability, .enlargement of fuel operation margins, .improvement of methods for fuel design and core analysis. These items will be presented in detail in the full paper and illustrated by the global operating experience of Siemens fuel for both PWRs and BWRs. (authors)

  19. Experience of TVSA fuel implementation at Kozloduy NPP

    International Nuclear Information System (INIS)

    Kamenov, K.; Kamenov, AI.; Hristov, D.

    2011-01-01

    The base design of the Russian fuel assemblies TVSA have been under operation at Kozloduy NPP WWER-1000 reactors since 2004. The old type fuel assemblies TVS-M were gradually substituted till 2008. The TVSA assembly distinguishes itself with much stronger construction. As a burnable absorber it has a mixture of uranium and uniformly distributed Gd in 6 or more fuel rods. This enables to increase the safety and effectiveness of fuel cycles. The experience gained during TVSA fuel implementation on units 5 and 6 and KASKAD code package validation was presented at the eightieth International conference on WWER 'Fuel performance, modelling and experimental support in 2009'. Additional information about TVSA fuel implementation at Kozloduy NPP WWER-1000 units in a 4-year fuel cycle with 42 and 48 fresh fuel assemblies reloading scheme is presented in the paper. (Authors)

  20. International co-operation in the supply of nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The paper draws on British Nuclear Fuels' (BNFL) wide experience of international collaboration in nuclear fuel process activities to examine the pros and cons of international agreements. Initially, the factors that influence the need to co-operate, the extent of possible co-operation and the alternative types of agreement, are reviewed. Next, the benefits, problems and risks associated with each function, such as management, financial R and D, marketing and operations that could be covered within the scope of an international agreement, are examined in detail. The paper continues by calling upon specific experience obtained by BNFL in the co-operation with other organizations over several years in both major and much smaller agreements, illustrating the rationale behind the co-operation, the resolution of 'teething' troubles and the present status of these organizations. In conclusion, the paper comments upon the effectiveness of collaboration agreements and identifies several requirements for international co-operation to succeed. (author)

  1. Operational experience for the latest generation of ATRIUM trademark 10 fuel assemblies

    International Nuclear Information System (INIS)

    Schoss, Volker; Hoffmann, Petra Britt; Schaefer, Jens

    2011-01-01

    AREVA NP's ATRIUM trademark 10 product family was first introduced to the BWR market in 1992. Lead test campaigns confirmed the outstanding product performance and justified introduction of reload quantities. Further development of particular product features was demonstrated and implemented in the fuel design to meet highest expectations for reliability and fuel economics. The latest generation called ATRIUM trademark 10XP and subsequently ATRIUM trademark 10XM was introduced in 2002 and 2005, respectively. The first lead test assemblies completed their operation successfully after seven cycles. (orig.)

  2. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  3. Commentary on spent fuel storage at Morris operation

    International Nuclear Information System (INIS)

    Eger, K.J.; Zima, G.E.

    1979-10-01

    The General Electric Company is providing technical support to Battelle Pacific Northwest Laboratories in the analysis of the design, operation, and maintenance experience in the handling of nuclear fuel at the Independent Spent Fuel Storage Facility. The purpose of this report is to provide a description of spent fuel handling activities and systems, and an analysis of the storage performance as developed over the seven year operational history of the Morris Operation. Design considerations and performance are analyzed for both the basin and key supporting systems. The bases for this analysis are the provisions for containing radioactive by-product materials, for shielding from the radiation they emit, and for preventing the formation of a critical array. These provisions have been met effectively over the history of storage at Morris. The release of radioactive materials is minimized by the protection of the cladding integrity, the containment of the basin water, the removal of radioactive and other contaminants from the water, and by filtering and then dispersing the basin air. Four auxiliary systems are provided to accomplish this, the basin leak detection system, the filter, the coolers, and the building ventilation system. This successful history notwithstanding, action to reduce personnel exposure, to improve fuel handling reliability and to lessen the potential for accidents continues to be taken

  4. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  5. Commissioning and Operational Experience in Power Reactor Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: spradhan@barctara.gov.in [Tarapur Based Reprocessing Plant, Bhabha Atomic Research Centre, Tarapur (India)

    2014-10-15

    After completing design, construction, commissioning, operation and maintenance experience of the reprocessing plants at Tarapur, Mumbai and Kalpakkam a new reprocessing plant is commissioned and put into operation at BARC, Tarapur since 2011. Subsequent to construction clearance, commissioning of the plant is taken in many steps with simultaneous review by design and safety committees. In spite of vast experience, all the staff was retrained in various aspects of process and utility operations and in operation of innovative changes incorporated in the design. Operating personnel are licensed through an elaborate procedure consisting of various check lists followed by personnel interview. Commissioning systems were divided in sub-systems. Sub-systems were commissioned independently and later integrated testing was carried out. For commissioning, extreme operating conditions were identified in consultation with designers and detailed commissioning procedures were made accordingly. Commissioning was done in different conditions to ensure safety, smooth operation and maintainability. Few modifications were carried out based on commissioning experience. Technical specifications for operation of the plant are made in consultation with designers and reviewed by safety committees. Operation of the plant was carried out after successful commissioning trials with Deep Depleted Uranium (DDU). Emergency operating procedures for each design basis accident were made. Performance of various systems, subsystems are quite satisfactory and the plant has given very good capacity factor. (author)

  6. KNF's fuel service technologies and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Cheol; Kwon, Jung Tack; Kim, Jaeik; Park, Jong Youl; Kim, Yong Chan [KNF, Daejeon (Korea, Republic of)

    2009-04-15

    In Korea, since 1978, the commercial nuclear power plant was operated. After 10 years, from 1988, the nuclear fuel was produced by KNF (Korea Nuclear Fuel). The Fuel Service Team was established at KNF in 1995. Through the technical self reliance periods in cooperate with advanced foreign companies for 5 years, KNF has started to carry out fuel service activities onsite in domestic nuclear power plants. By ceaseless improving and advancing our own methodologies, after that, KNF is able to provide the most safe and reliable fuel repair services and poolside examinations including the root cause analysis of failed fuels. Recently, KNF developed the fuel cleaning system using ultrasonic technique for crud removal, and the CANDU fuel sipping system to detect a failed fuel bundle in PHWR. In this paper, all of KNF's fuel service technologies are briefly described, and the gained experience in shown.

  7. Fort Saint Vrain operational experience

    International Nuclear Information System (INIS)

    Fuller, C.H.

    1989-01-01

    Fort St. Vrain (FSV), on the system of the Public Service Company of Colorado, is the only high temperature gas-cooled (HTGR) power reactor in the United States. The plant features a helium-cooled reactor with a uranium-thorium fuel cycle. The paper describes the experience made during its operation. (author). 2 refs, 4 figs, 2 tabs

  8. TSTA Piping and Flame Arrestor Operating Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  9. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  10. Processing biogas to obtain motor fuel - Operational experience

    International Nuclear Information System (INIS)

    Seifert, M.

    2008-01-01

    This article takes a look at how raw biogas can be processed in order to remove carbon dioxide and corrosive substances and thus bring it up to natural gas quality. The ecological advantages of using biogas as a fuel are discussed and the situation in Europe and Switzerland is examined. Also, feeding biogas into the normal natural gas mains is discussed and the technologies necessary for the cleaning and preparation of the biogas are described. These include absorption and adsorption processes as well as membrane systems that are used to remove excessive carbon dioxide. The costs involved are discussed on the basis of experience gained in Sweden and Switzerland. Finally, the environmental aspects of methane losses are discussed.

  11. Fission gas release in LWR fuel measured during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Skattum, E.; Osetek, D.J.

    1980-01-01

    A series of fuel behavior experiments are being conducted in the Heavy Boiling Water Reactor in Halden, Norway, to measure the release of Xe, Kr, and I fission products from typical light water reactor design fuel pellets. Helium gas is used to sweep the Xe and Kr fission gases out of two of the Instrumented Fuel Assembly 430 fuel rods and to a gamma spectrometer. The measurements of Xe and Kr are made during nuclear operation at steady state power, and for 135 I following reactor scram. The first experiments were conducted at a burnup of 3000 MWd/t UO 2 , at bulk average fuel temperatures of approx. 850 K and approx. 23 kW/m rod power. The measured release-to-birth ratios (R/B) of Xe and Kr are of the same magnitude as those observed in small UO 2 specimen experiments, when normalized to the estimated fuel surface-to-volume ratio. Preliminary analysis indicates that the release-to-birth ratios can be calculated, using diffusion coefficients determined from small specimen data, to within a factor of approx. 2 for the IFA-430 fuel. The release rate of 135 I is shown to be approximately equal to that of 135 Xe

  12. Operations experience with the NAC-1 legal weight truck cask

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Hoffman, C.C.

    1978-01-01

    The first three years of operation of Nuclear Assurance Corporation's (NAC) four (4) NAC-1 Casks have demonstrated that shipments of spent fuel, fuel rods and other highly irradiated reactor components can be moved routinely by legal weight truck transport. Shipments of these materials have involved some 800,000 miles of highway travel and cask handling at some fifteen different nuclear facilities. This paper presents details on NAC's operations experience with these casks including cask description, cask handling (loading and unloading), pre-shipment testing, facility turnaround and transit times, operator exposure, transport vehicles and shipper/carrier/cask owner responsibilities, actual experience with regard to facility interfacing requirements and operational procedures. Cask and equipment utilization is discussed together with the methods used to control operation costs and to improve the economics of truck transport

  13. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  14. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    As of December 1, 1998, 32 Europeans LWRs are loaded with MOX fuel. It clearly means that plutonium recycling in MOX fuels is a mature industry, with successful operational experience in fabrication plants in some European countries, especially in France. Indeed, the recycling of plutonium generated in LWRs is one of the objectives of the full Reprocessing-Conditioning-Recycling (RCR) strategy chosen by France in the 70's. The most impressive results of this strategy, is the fact that 31 of the 32 reactors are loaded with MOX fuels supplied by the COGEMA Group from the same efficient fabrication process, the MIMAS process, improved for the MELOX plant to become the A-MIMAS process. In France, 17 reactors are already loaded and 11 additional reactors are technically suited to do so. Indeed, the EDF MOX program plans to use MOX in 28 of its 57 reactors. An EDF 900 MWe reactor core contains 157 assemblies of 264 rods each. 52 fuel assemblies per year are necessary for a 'UO 2 3-batches-MOX 3-batches' core management. In this case, a third of the UO 2 and a third of the MOX assemblies are replaced yearly, that means 36 UO 2 fuel assemblies and 16 MOX fuel assemblies. Some MOX fuelled reactors have now switched from the previously described core management to a so-called 'hybrid core management'. In this case, a quarter of UO 2 assemblies is replaced yearly. The first EDF reactor loaded with MOX fuel was Saint-Laurent B1, in 1987. The in-core experience, based on several hundred assemblies loaded, with reloading on a 1/3 cycle basis, shows that there is no operational difference between UO 2 and MOX fuels, both in terms of performance and safety. MOX fueling of 900 MWe EDF's PWRs, with a limited in-core MOX ratio of 30%, has needed only minor adaptations, such as addition of control rods, modification of the boron concentration in the cooling system and precaution against radiation exposure, easy to set up (optimisation of the fresh MOX fuel handling process, remote

  15. Implementation of ICRP recommendation in nuclear fuel cycle operations: challenges and achievements

    International Nuclear Information System (INIS)

    Gupta, V.K.

    1999-01-01

    The operating experience with regard to occupational exposure and environmental releases in Nuclear Fuel Cycle Facilities are described. The achievements of Nuclear Fuel Cycle Facilities in adhering to the revised radiological protection standards are highlighted, with particular reference to Nuclear Power Plants (NPPs). The downward trend of occupational and public doses due to nuclear power plant operation is emphasised. Some of the important radiologically significant jobs executed at NPPs are listed. With the vast experiences in the field of radiological protection, vis-a-vis stringent regulatory requirements, and design modifications envisaged in future facilities the radiological impact, both in the occupational and public domain is bound to be minimum. (author)

  16. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  17. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  18. Effect of wood fuels on power plant operability

    International Nuclear Information System (INIS)

    Orjala, M.; Ingalsuo, R.

    2001-01-01

    The objective of the research is to determine the critical properties of wood fuels on the basis of power plant operability, to determine the optimal conditions for reduction of harmful detriments, and to study how the storage and processing of wood fuels effect on the operability. Both the CFB and BFB technologies are studied. The project started in December 2000 and it will be ended by the end of 2002. Experts of the Fuels and Combustion research field of VTT Energy carry out the main parts of the research. Experts of the research field of Mineral Processing of VTT Chemical Technology, located in Outokumpu, and Kemian tutkimuspalvelut Oy/Oulu University, located in Outokumpu, participate in the analytics, and the research field of Materials and Manufacturing Technology of VTT Manufacturing Technology in Otaniemi participates in the research on material effects. System Technology Laboratory of Oulu University carries out the power plant automation and boiler control technology research under supervision of Professor Urpo Kortela. Co-operation with the materials research unit of EU's JRC, located in Petten, which started in the research 'Combustion of Forest Chips', will be continues in this research. Co-operation will be made with Swedish Vaermeforsk in the field of information exchange on experiences in utilisation of wood fuels in Swedish power plants and possibilities to join in the projects of Vaermeforsk in this research field. Following companies participate in the project: Etelae-Savon Energia Oy, Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpele pasteboard factory of M-Real Oyj and Vaermeforsk AB (Sweden). (orig.)

  19. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  20. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  1. Quality surveillance experience of PHWR fuel

    International Nuclear Information System (INIS)

    Kulkarni, P.G.; Bandyopadhyay, A.K.; Shah, B.K.

    1997-01-01

    Quality Surveillance activities are being carried out for PHWR fuel for over 25 years in India. A large number of fuel bundles of 19 element design have been produced and successfully irradiated. The quality surveillance practices follow the guidelines given in various Quality Assurance Codes and Guides. An independent third party surveillance is provided to cover major manufacturing and quality control operations. A system of design basis review periodic quality audit and regulatory safety review is in place. Over the years there have been modifications in the quality assurance procedures to comply with changing requirements. Also many innovative improvements have been introduced in the manufacturing procedures. Similarly quality control activities are also modified. Developments in fuel has remained a continuous activity. The paper summarizes the experience gathered over many years in this exciting process of innovation and improvement. (author)

  2. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  3. Operational experience gained with the failed fuel rod detection system in nuclear power plants

    International Nuclear Information System (INIS)

    Boehm, H.H.; Forch, H.

    1985-01-01

    Brown Boveri Reaktor GmbH together with Krautkramer Company developed such a FAILED FUEL ROD DETECTION SYSTEM (FFRDS) which allows to located defective fuel rods without dismantling the fuel assembly or pulling of individual rods. Since 1979 the FFRDS is employed successfully in various nuclear power plants in Europe, USA, Japan, and Korea. The short inspection time and the high reliability of the method make the FFRDS a true competitor to the sipping method. In this paper the authors discuss the method and the design of the system, the equipment set-up, its features and the experience gained so far. The system has been performed and automated to such an extent that within a short installation period series of fuel assemblies can be tested with relatively short intervals of time (5 minutes for BWR and 7 minutes for PWR fuel assemblies per side). The ability of the system for deployment under various conditions and the experience gained during the past six years have made this system universally applicable and highly sensitive to the requirements of NDT during outages and for transport of FAs to intermediate storage facilities. Comparison of FFRDS to conventional sipping has indicated in several instances that the FFRDS is superior to the latter technique

  4. Emission and operating performance of a biomethane tractor with dual fuel engine

    International Nuclear Information System (INIS)

    Mautner, Sebastian; Emberger, Peter; Thuneke, Klaus; Remmele, Edgar

    2016-01-01

    The use of biomethane as fuel for agricultural machinery with dual fuel technology is contributing to climate protection and ensures safe fuel supply. So far, hardly any documented operational experiences are known. The aim of the project, funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology, was to investigate practicability for daily use and the emission behaviour of a Valtra N101 prototype tractor (exhaust stage IIIA). The retrofitted dual-fuel technology of the former conventional diesel tractor simultaneously uses biomethane or natural gas and diesel as ignition fuel. During the field test over 590 working hours, the tractor showed overall high reliability. On average the operating range in dual-fuel mode with one complete filling of the gas tanks was about 11.5 hours. On the tractor test bench a significant improvement of the exhaust emissions could be observed, since the gas ECU had been optimized and changed by the manufacturer. For dual-fuel operation, nitrogen oxides (NO x ) are lower, whereas carbon monoxide (CO), hydrocarbons (HC) and particulate matter emissions (PM) are higher compared to solely diesel operation. In particular, HC emissions exceed the proposed limiting value, submitted by the European Commission. This is due to incomplete gas combustion and insufficient conversion by the exhaust after-treatment-system (methane slip). A big potential for optimization is expected by adjusting the operating point-specific gasdiesel ratio and improving the exhaust gas aftertreatment system.

  5. The experience of five years operation of Phenix

    International Nuclear Information System (INIS)

    Conte, F.; Lacroix, A.

    1980-01-01

    Two long periods of exceptional operation have satisfied the hopes of the designers and all parameters, power, efficiency, load factor, fuel behaviour, were better than was expected. The experience resulting from the only major incident provided a series of complementary data. Modern technology has need of sanction by experiment. The Phenix type reactor is a tool which is convenient to operate and to maintain. The two aspects of the demonstration, correct operation and ease of maintenance, take a concrete form in the harmlessness of Phenix on men and on the environment. There is no irradiation and few releases. (orig./DG)

  6. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  7. Fuel element failure detection experiments, evaluation of the experiments at KNK II/1 (Intermediate Report)

    CERN Document Server

    Bruetsch, D

    1983-01-01

    In the frame of the fuel element failure detection experiments at KNK II with its first core the measurement devices of INTERATOM were taken into operation in August 1981 and were in operation almost continuously. Since the start-up until the end of the first KNK II core operation plugs with different fuel test areas were inserted in order to test the efficiency of the different measuring devices. The experimental results determined during this test phase and the gained experiences are described in this report and valuated. All three measuring techniques (Xenon adsorption line XAS, gas-chromatograph GC and precipitator PIT) could fulfil the expectations concerning their susceptibility. For XAS and GC the nuclide specific sensitivities as determined during the preliminary tests could be confirmed. For PIT the influences of different parameters on the signal yield could be determined. The sensitivity of the device could not be measured due to a missing reference measuring point.

  8. One year of operation of the Belgonucleaire (Dessel) plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Leblanc, J.M.

    1975-01-01

    Based on experience with plutonium since 1958, Belgonucleaire has successively launched a pilot plant and then a fuel fabrication plant for mixed uranium and plutonium oxides in 1968 and 1973 respectively. After describing briefly the plants and the most important stages in the planning, construction and operation of the Dessel plant, the present document describes the principal problems which were met during the course of operation of the plant and their direct incidence on the capacity and quality of the production of fuel elements

  9. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  10. Design improvements, construction and operating experience with BWRs in Japan

    International Nuclear Information System (INIS)

    Uchigasaki, G.; Yokomi, M.; Sasaki, M.; Aoki, R.; Hashimoto, H.

    1983-01-01

    (1) The first domestic-made 1100-MW(e) BWR in Japan commenced commercial operation in April 1982. The unit is the leading one of the subsequent three in Fukushima Daini nuclear power station owned by the Tokyo Electric Power Company Inc. (Tepco). Based on the accumulated construction and operation experience of 500-MW(e) and 800-MW(e) class BWRs, improvements in various aspects during both the design and construction stages were introduced in core and fuel design with advanced gadolinia distribution, reactor feedwater treatment technology for crud reduction, a radwaste island, control and instrumentation to cope with the lessons learned through Three Mile Island assessment etc. (2) Based on many operating experiences with BWRs, an improved BWR core, which has easier operability and higher load factor than the conventional core, has been developed. The characteristic of the improved core is ''axially two-zoned uranium enrichment distribution''; the enrichment of the upper part of the fuel is slightly higher than that of the lower part. Through the improved core it became possible to optimize the axial power flattening and core reactivity control separately by axial enrichment distribution and burnable poison content. The improved fuels were loaded into operating BWRs and successfully proved the performance by this experience. (3) To shorten annual outage time, to reduce radiation exposure, to save manpower, and to achieve high reliability and safety of inspection operation, the remote automatic service and inspection equipment were developed in Japan. This paper presents the concept, distinctive features, and actual operation experience of the automatic refuelling machine, control-rod drive (CRD) remote-handling machine, improved main steam line isolation plug, and the automated ultrasonic inspection system with a computerized data processing unit, which have been developed by Hitachi, Ltd. with excellent results. (author)

  11. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  12. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  13. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  14. Data sheets of fission product release experiments for light water reactor fuel, (2)

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo; Yamamoto, Katsumune; Nakazaki, Chozaburo.

    1979-07-01

    This is the second data sheets of fission products (FP) release experiments for light water reactor fuel. Results of five FP release experiments from the third to the seventh are presented: results of pre-examinations of UO 2 pellets, photographs of parts of fuel rod assemblies for irradiation and the assemblies, operational conditions of JMTR and OWL-1, variations of radioiodine-131 level in the main loop coolant during experimental periods, and representative results of post-irradiation examinations of respective fuel rods. (author)

  15. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  16. Palliative effects of H2 on SOFCs operating with carbon containing fuels

    Science.gov (United States)

    Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.

    2017-12-01

    Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.

  17. Initial cathode processing experiences and results for the treatment of spent fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Laug, D.V.; Brunsvold, A.R.; Roach, P.D.

    1996-01-01

    As part of the spent fuel treatment demonstration at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a batch operation termed ''cathode processing.'' Cathode processing is performed in a retort furnace which enables the production of a stable uranium product that can be isotopically diluted and stored. To date, experiments have been performed with two distillation units; one for prototypical testing and the other for actual spent fuel treatment operations. The results and experiences from these initial experiments with both units will be discussed as well as problems encountered and their resolution

  18. Behaviour of short-lived iodines in operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Lipsett, J.J.; Hastings, I.J.; Hunt, C.E.L.

    1984-11-01

    Sweep gas experiments have been done to determine the behaviour of short-lived fission products within operating UO 2 fuel elements at linear powers of 45, 54, and 60 KW/m, and to burnups of 70, 80, and 50 MWh/kgU respectively. Although radioiodine transport was not observed directly during normal operation, equilibrium gap inventories for I-131 were deduced from the shutdown decay behaviour of the fission gases. These inventories were a strong function of fuel power and ranged from 10 GBq (0.27 Ci) to 100 GBq (2.7 Ci) over the range tested. We conclude that the iodine inventory was adsorbed onto the fuel and/or sheath surfaces with a volatile fraction of less than 10 -2 and a charcoal-filter-penetrating fraction of less than 2x10 -4

  19. Experience of developments and implementation of advanced fuel cycles of WWER-440 reactors

    International Nuclear Information System (INIS)

    Gagarinski, A.A.; Lizorkin, M.P.; Novikov, A.N.; Proselkov, V.N.; Saprykin, V.V.

    2000-01-01

    The paper presents the experience of development and implementation of advanced four- and five-year fuel cycles in the WWER-440 reactors, the results of experimental operation of the new fuel design and the main neutronic characteristics of the core. (Authors)

  20. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    Science.gov (United States)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  1. HANARO operation experience in the year 2004

    International Nuclear Information System (INIS)

    Oh, Soo-Youl; Kim, Heonil; Cho, Yeong-Garp; Jun, Byung-Jin

    2006-01-01

    The experiences of the HANARO operation and maintenance in the year 2004 are presented in this article. The operation of HANARO, a 30 MW research reactor operated by the Korea Atomic Energy Research Institute (KAERI), aims at a safe and effective operation to enhance its utilization in various fields of scientific research and industry. Regardless of its importance of the routine operation, this article is devoted to rather unusual matters such as irregular maintenance events and incidents. Since the first criticality in 1995, it has been a long-cherished task to reach the designed power level of 30 MW from the temporarily approved 24 MW. By resolving the concern on the fuel integrity, the designed level could be licensed and, eventually, it was achieved last November. On the other hand, after its 9 years of operation, the mechanical integrity of the heavy water reflector tank was checked. The measurement of the vertical straightness of the tank inner shell indicated its integrity. Meanwhile, the HANARO fuel production facility was completed at the KAERI site, and it will begin to supply centrifugally atomized fuels, instead of conventional comminuted fuels, to HANARO shortly. There were several incidents in 2004, which have all been cleared, including a leak of heavy water, melting of a sample in an irradiation hole for the neutron activation analysis, and a condensation problem in a horizontal beam tube. The progress of and lessons from each incident are presented. The utilization of HANARO is expanding every year and the trend will also continue in 2005. The operation mode has been changed from an 18-day continuous operation and 10-day shutdown (18-10 mode) to the 23-12 mode since the end of 2004, and a further extension is planned to the 30-12 mode. Thanks to this extended operation term, an increased power level and, most importantly, a reliable operation, the HANARO is gaining more and more credit from the end users. (author)

  2. Increasing the flexibility of base-load generating units in operation on fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Girshfel' d, V Ya; Khanaev, V A; Volkova, E D; Gorelov, V A; Gershenkroi, M L

    1979-01-01

    Increasing the flexibility of base-load generating units operating on fossil fuel by modifying them is a necessary measure. The highest economic effect is attained with modification of gas- and oil-fired generating units in the Western United Power Systems of the European part of the SPSS. On the basis of available experience, 150- and 200-MW units can be extensively used to regulate the power in the European part of the SPSS through putting them into reserve for the hours of the load dip at night. The change under favorable conditions of 150- and 200-MW units operating on coal to a district-heating operating mode does not reduce the possibilities for flexible operation of these units because it is possible greatly to unload the turbines while the minimum load level of the pulverized fuel fired boiler is retained through transferring a part of the heat load to the desuperheater. It is necessary to accumulate and analyze experience with operation of generating units (especially of supercritical units) with regular shutdowns and starts of groups of units and to solve the problems of modification of generating units, with differentiation with respect to types of fuel and to the united power supply system.

  3. Software in support of fuel operation in WWERS

    International Nuclear Information System (INIS)

    Evdokimov, I.A; Novikov, V.V; Ugrumov, A.V; Shishkin, A.A

    2013-01-01

    A software package comprising computer codes and fuel monitoring tools is under development in Russia in support of WWER fuel operation. The software package includes an expert computer system designed for failure diagnosis in course of reactor operation, prediction of activity evolution in primary coolant and express analysis of pellet-to-cladding mechanical interaction (PCMI) on rod-by-rod basis under normal and transient modes of operation. Coupled with the expert system, the first version of a graphical interface computer program is developed for NPP operating bodies. One of the features of this program is to launch automatically a fuel performance code for a series of detailed calculations for fuel rods with severe PCMI. The particular rods for calculations are determined by the expert system during the express core analysis. A greater attention is paid to recent results in prediction of fuel behavior after a primary failure has occurred. One of the major risks to further operation of leaking fuel comes from secondary fuel degradation due to massive cladding hydriding. Threshold conditions for initiation of secondary hydriding have been found on the basis of physical modeling. Final criteria of secondary failure occurrence were deduced by applying the model to analysis of post-irradiation examinations of leaking WWER fuel. (authors)

  4. Experience in producing LEU fuel elements for the RSG-GAS

    International Nuclear Information System (INIS)

    Suripto, A.; Soentono, S.

    1991-01-01

    To achieve a self-reliance in the operation of the 30 MW Multipurpose Research Reactor at Serpong (the RSG-GAS), a fuel element production facility has been constructed nearby. The main task of the facility is to produce MTR type fuel and control elements containing U 3 O 8 -Al dispersion LEU fuel for the RSG-GAS. The hot commissioning activity has started in early 1988 after completion of the cold commissioning using depleted uranium in 1987, marking the beginning of the real production activity. This paper briefly describes the main features of the fuel production facility, the production experience gained so far, and its current production activity. (orig.)

  5. Quarterly Progress Report Fuels Development Operation: October - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1960-01-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  6. Quarterly Progress Report Fuels Development Operation: January - March 1958

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1958-04-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  7. Quarterly Progress Report Fuels Development Operation: July - September 1957

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Wallace, W. P. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1957-10-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  8. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  9. 14 CFR 29.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  10. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  11. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  12. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  13. Regulatory experience with fuel failures in Switzerland

    International Nuclear Information System (INIS)

    Adam, L.

    2015-01-01

    In this paper the main ENSI activities like: supervision of reactor and radiation safety and security; supervision of safety of transports of nuclear materials and assess the safety of proposed solutions for the geological disposal are listed. Recent events concerning the reactor core, common causes for fuel failures, findings during inspections and potential root cause for fuel failures are discussed. Management of fuel failures, started from reporting of the event – evaluation of the need of imminent action; identification of the fuel element if possible till evaluation by the plant and fuel vendor and allowance by ENSI for repair of the fuel element and definition of measures (short and long term) are also presented. The following Conclusions by ENSI about status of fuel failures are made: 1) Number of fuel failures was reduced regardless more economic operation in all plants; 2) Old PWR and BWR reactors achieved 15 to 29 years operation without leakers, but two minor fuel damage during fuel handling appeared; 3) Newer plants are not better in achieving operation without leakers than older plants; 4) Technical improvements at fuel elements parallel to changes in operation strategy and improvements in manufacturing quality but single effects difficult to judge. The issues about how to implement “Zero Failure Rates” in regulations and how to achieve “Zero Failure Rates” as well as some future measures by ENSI are discussed

  14. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-10-15

    At the beginning of 1963 nuclear power plants produced some 3 500 000kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4-8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  15. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-10-15

    At the beginning of 1963 nuclear power plants produced some 3 500 000 kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4 -8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear , plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  16. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  17. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    International Nuclear Information System (INIS)

    Thoms, K.R.

    1975-04-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 (Ta-8 percent W-2 percent Hf) and uranium dioxide (UO 2 ) fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1 percent Zr. A total of nine fuel pins was irradiated (four containing porous UN, two containing dense, nonporous UN, and three containing dense UO 2 ) at average cladding temperatures ranging from 931 to 1015 0 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO 2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of 10 -5 . (U.S.)

  18. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel

  19. Dual-fuel HCCI operation with DME/LPG/gasoline/hydrogen

    International Nuclear Information System (INIS)

    Bae, C.

    2009-01-01

    The advantages of homogeneous charge compression ignition (HCCI) engines include usage of the different type of fuels, ultra low nitrogen oxide and particulate matter emissions and improved fuel economy. Disadvantages include an excessive combustion rate, engine noise, and hydrocarbon and carbon emissions. An experiment on dual-fuel HCCI operation with dimethyl ether (DME)/liquefied petroleum gas (LPG)/gasoline/hydrogen was presented. The advantages and disadvantages were first presented and the dual-fuel HCCI combustion engine was illustrated through an experimental apparatus. The experimental conditions were also presented in terms of engine speed, DME injection quantity, LPC injection quantity, and LPC composition. Experimental results were discussed for output performance and indicated mean effective pressure (IMEP). It was concluded that the effect of LPG composition in a DME-LPG dual-fueled HCCI engine at various injection quantity and injective timing were observed. Specifically, it was found that propane was a more effective way to increase IMEP in this study, and that in a DME HCCI engine, higher load limit was extended by using LPG as an ignition inhibitor. tabs., figs.

  20. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  1. Fuel management for TRIGA reactor operators

    International Nuclear Information System (INIS)

    Totenbier, R.E.; Levine, S.H.

    1980-01-01

    One responsibility of the Supervisor of Reactor Operations is to follow the TRIGA core depletion and recommend core loading changes for refueling and special experiments. Calculations required to analyze such changes normally use digital computers and are extremely difficult to perform for one who is not familiar with computer language and nuclear reactor diffusion theory codes. The TRICOM/SCRAM program developed to perform such calculations for the Penn State TRIGA Breazeale Reactor (PSBR), has a very simple input format and is one which can be used by persons having no knowledge of computer codes. The person running the program need not understand computer language such as Fortran, but should be familiar with reactor core geometry and effects of loading changes. To further simplify the input requirements but still allow for all of the studies normally needed by the reactor operations supervisor, the options required for input have been isolated to two. Given a master deck of computer cards one needs to change only three cards; a title card, core energy history information card and one with core changes. With this input, the program can provide individual fuel element burn-up for a given period of operation and the k eff of the core. If a new loading is desired, a new master deck containing the changes is also automatically provided. The life of a new core loading can be estimated by feeding in projected core burn-up factors and observing the resulting loss in individual fuel elements. The code input and output formats have now been made sufficiently convenient and informative as to be incorporated into a standard activity for the Reactor Operations Supervisor. (author)

  2. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable.

  3. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    International Nuclear Information System (INIS)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk

    2016-01-01

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable

  4. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  5. LOFT fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1978-01-01

    The purpose of the LOFT fuel is to provide a pressurized water reactor core that has (1) test instrumentation for measurement of core conditions and (2) materials and geometric features to ensure heat transfer, hydraulic, mechanical, chemical, metallurgical and nuclear behaviors are typical of large pressurized water reactors (LPWRS) during the loss-of-coolant accident (LOCA) sequence. The LOFT core is unique because it is designed for exposure to several LOCAs without loss of function

  6. Storage of spent fuel from power reactors in India management and experience

    International Nuclear Information System (INIS)

    Changrani, R.D.; Bajpai, D.D.; Kodilkar, S.S.

    1999-01-01

    The spent fuel management programme in India is based on closing the nuclear fuel cycle with reprocessing option. This will enable the country to enhance energy security through maximizing utilization of available limited uranium resources while pursuing its Three Stage Nuclear Power Programme. Storage of spent fuel in water pools remains as prevailing mode in the near term. In view of inventory build up of spent fuel, an Away-From-Reactor (AFR) On-Site (OS) spent fuel storage facility has been made operational at Tarapur. Dry storage casks also have been developed as 'add on' system for additional storage of spent fuels. The paper describes the status and experience pertaining to spent fuel storage practices in India. (author)

  7. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  8. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  9. Some UK experience and practice in the packaging and transport of irradiated fuel

    International Nuclear Information System (INIS)

    Edney, C.J.; Rutter, R.L.

    1977-01-01

    The origin and growth of irradiated fuel transport within and to the U.K. is described and the role of the organisations presently carrying out transport operations is explained. An explanation of the relevant U.K. regulations and laws affecting irradiated fuel transport and the role of the controlling body, the Department of the Environment is given. An explanation is given of the technical requirements for the transport of irradiated Magnox fuel and of the type of flask used, and the transport arrangements, both within the U.K. and to the U.K., from overseas is discussed. The technical requirements for the transport of C.A.G.R. fuel are outlined and the flask and transport arrangements are discussed. The transport requirements of oxide fuel from water reactors is outlined and the flask and shipping arrangements under which this fuel is brought to the U.K. from overseas is explained. The shipping arrangements are explained with particular reference to current international and national requirements. The requirements of the transport of M.T.R. fuel are discussed and the flask type explained. The expected future expansion of the transport of irradiated fuel within and to the U.K. is outlined and the proposed operating methods are briefly discussed. A summary is given of the U.K. experience and the lessons to be drawn from that experience

  10. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  11. Experiences on operation, maintenance and utilization in JRR-2

    International Nuclear Information System (INIS)

    1994-08-01

    The Japan Research Reactor No.2 (JRR-2) is a high performance 10 MW multi purpose research reactor, heavy water moderated and cooled enriched uranium fuel used. Since the first criticality was attained in October, 1960, JRR-2 has been operated to satisfy the utilization demands, such as irradiation of fuel and materials, neutron beam experiments, radio isotope production and B.N.C.T (Boron Neutron Capture Therapy). During the operation, various kinds of troubles mainly caused by the old design concept had been occurred at the JRR-2 systems and components. Those troubles were solved with adequate countermeasures of timely repairs and large scale modifications with newest techniques. The works above were completely carried out by the staff of JRR-2 and related divisions. As a result, JRR-2 became one of the oldest research reactors which are still under operation in the world. Since JRR-2 has been utilized for more than 30 years, the operation mode was changed from 12 days-one cycle to 3 days-one cycle in April, 1994, taking into consideration aging of the reactor systems. In this paper, the experiences of JRR-2 for more than 30 years such as operation, maintenance, repair, modifications and utilization on JRR-2 are described. (author)

  12. Fuel failure detection in operating reactors

    International Nuclear Information System (INIS)

    Seigel, B.; Hagen, H.H.

    1977-12-01

    Activity detectors in commercial BWRs and PWRs are examined to determine their capability to detect a small number of fuel rod failures during reactor operation. The off-gas system radiation monitor in a BWR and the letdown line radiation monitor in a PWR are calculated to have this capability, and events are cited that support this analysis. Other common detectors are found to be insensitive to small numbers of fuel failures. While adequate detectors exist for normal and transient operation, those detectors would not perform rapidly enough to be useful during accidents; in most accidents, however, primary system sensors (pressure, temperature, level) would provide adequate warning. Advanced methods of fuel failure detection are mentioned

  13. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  14. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  15. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  16. Status report: Nuclear fuel operating experience in implementing the program for power generation increase at VVER NPPs of JSC concern Rosenergoatom

    International Nuclear Information System (INIS)

    Ryabinin, Y.

    2015-01-01

    The power uprate program of operating WWER-1000 plants was performed by Rosenergoatom using FA-2M and FAA-PLUS for 18-month fuel cycles. Their operation was justified at 104% of the rated power, and extension to 18-month fuel cycles was carried out at WWER-1000 units (except for Kalinin NPP-1). The analysis of actual performance data confirmed the efficiency of the actions implemented, and issues addressed related to the introduction of new fuel type, extended fuel cycles and spent nuclear fuel storage and removal

  17. Fuel utilization experience in Slovak Republic

    Energy Technology Data Exchange (ETDEWEB)

    Petenyi, V [Nuclear Regulatory Authority of the Slovak Republic, Bajkalska (Slovakia)

    1997-12-01

    The paper summarizes shortly the gained experience in utilization of the fuel in the four-year fuel cycles and describes the future activities in fuel management. The spent fuel management is also included. (author). 2 refs, 2 figs, 1 tab.

  18. Failed fuel diagnosis during WWER reactor operation using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Afanasieva, E.; Sorokin, A.; Evdokimov, I.; Kanukova, V.; Khromov, A.

    2006-01-01

    The mechanistic code RTOP-CA is developed for objectives of failed fuel diagnosis during WWER reactor operation. The RTOP-CA code enables to solve a direct problem: modelling the failed fuel behavior and prediction of primary coolant activity if characteristics of failures in the reactor core are known. Results of verification of the RTOP-CA code are presented. Separate physical models were verified on small-scale in-pile and out-of-pile experiments. Integral verification cases included data obtained at research reactors and at nuclear power plants. The RTOP-CA code is used for development of a neural-network approach to the inverse problem: detection of failure characteristics on the base of data on primary coolant activity during reactor operation. Preliminary results of application of the neural-network approach for evaluation of fuel failure characteristics are presented. (authors)

  19. U.S. Department of Energy operational experience with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Massey, Charles D.; Mustin, Tracy P.

    1998-01-01

    On May 13, 1996, the U.S. Department of Energy issued a Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The goal of the long-term policy is to recover enriched uranium exported from the United States, while giving foreign research reactor operators sufficient time to develop their own long-term solutions for storage and disposal of spent fuel. The spent fuel accepted by the U.S. DOE under the policy must be out of the research reactors by May 12, 2006 and returned to the United States by May 12, 2009. (author)

  20. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  1. TSTA piping and flame arrestor operating experience data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C., E-mail: Lee.Cadwallader@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Willms, R. Scott [ITER International Organization, Cadarache (France)

    2015-10-15

    Highlights: • Experiences from the Tritium Systems Test Assembly were examined. • Failure rates of copper piping and a flame arrestor were calculated. • The calculated failure rates compared well to similar data from the literature. • Tritium component failure rate data support fusion safety assessment. - Abstract: The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility was operated with tritium for its research and development program from 1984 to 2001, running a prototype fusion fuel processing loop with ∼100 g of tritium as well as small experiments. There have been several operating experience reports written on this facility's operation and maintenance experience. This paper describes reliability analysis of two additional components from TSTA, small diameter copper gas piping that handled tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  2. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  3. Operational reliability testing of FBR fuel in EBR-II

    International Nuclear Information System (INIS)

    Asaga, Takeo; Ukai, Shigeharu; Nomura, Shigeo; Shikakura, Sakae

    1991-01-01

    The operational reliability testing of FBR fuel has been conducting in EBR-II as a DOE/PNC collaboration program. This paper reviews the achieved summary of Phase-I test as well as outline of progressing Phase-II test. In Phase-I test, the reliability of FBR fuel pins including 'MONJU' fuel was demonstrated at the event of operational transient. Continued operation of the failed pins was also shown to be feasible without affecting the plant operation. The objectives of the Phase-II test is to extend the data base relating with the operational reliability for long life fuel, and to supply the highly quantitative evaluation. The valuable insight obtained in Phase-II test are considerably expected to be useful toward the achievement of commercial FBR. (author)

  4. Experience of developing the imitators of the fuel element for the WWER reactors

    International Nuclear Information System (INIS)

    Balashov, S.M.; Boltenko, Eh.A.; Vinogradov, V.A.

    1998-01-01

    Peculiarities of designs of fuel elements imitators for the WWER-type reactors of nominal capacity and with single-ended current feed positioning are considered. The data on the filler heat conductivity and the results of tests and application of the fuel elements imitators at various testing facilities are presented. The possibility of equipping one of the non operating WWER reactors with the fuel element imitators for conduct of large-scale experiment is indicated

  5. Recent advances in PWR fuel design and performance experience at ABB-CENF

    International Nuclear Information System (INIS)

    Corsetti, Lawrence V.

    2004-01-01

    Utilities in the United States continue to move towards longer cycles and higher burnups to improve fuel cycle economics. This has placed increased demands for improved burnable absorber concepts. Zircaloy-4 corrosion behavior remains a high burnup performance concern. Over the past several years there has also been increasing utility interest in fuel reliability improvements. The development and application of erbia as a burnable absorber mixed directly with urania fuel will be discussed. Debris resistant fuel assembly designs and operating experience are reviewed. Oxide thickness measurements showing the improved corrosion resistance of optimized, low-tin Zircaloy-4 are presented. (author)

  6. International co-operation in the supply of nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The paper draws on B.N.F.L.'s wide experience of international collaboration in nuclear fuel process activities to examine the pros and cons of international agreements. Initially, the factors that influence the need to co-operate, the extent of possible co-operation and the alternative types of agreement are reviewed. Next, the benefits, problems and risks associated with each function, such as managmenet, financial, R and D, marketing and operations that could be covered within the scope of an international agreement, are examined in detail. The paper continues by calling upon specific experience obtained by B.N.F.L. in co-operation with other organisations over several years in operating both major and much smaller agreements illustrating the rationale behind the co-operation, the resolution of 'teething' troubles and the current status of these organisations. In conclusion, the paper comments upon the effectiveness of collaboration agreements and identifies several requirements for internation co-operation to succeed

  7. Vented fuel experiment for gas-cooled fast reactor application

    International Nuclear Information System (INIS)

    Longest, A.W.; Gat, U.; Conlin, J.A.; Campana, R.J.

    1976-01-01

    A pressure-equalized and vented fuel rod is being irradiated in an instrumented capsule designated GB-10 to approximately 100MWd/kg-heavy metal. The fuel is a sol-gel-derived 88 at.% uranium (approximately 9% 235 U) and 12 at.% plutonium oxide, and the cladding is 20% cold-worked 316 stainless steel. The capsule is being irradiated in the Oak Ridge Research Reactor (ORR) and has exceeded a burnup of 70MWd/kg. The fuel has been operated at linear power rates of 39 and 44kW/m, and peak outer cladding temperature of 565 and 630 0 C respectively. A similar fuel rod in a previous capsule (GB-9) was subjected to 48kW/m (685 0 C). Helium gas sweeps through any portion of the three regions of the fuel rod, namely: fuel, blanket, and charcoal trap. The charcoal trap is operated at about 300 0 C. An on-line Ge(Li) detector is used to analyse release rates of several gamma-emitting noble gas isotopes. Analyses are performed primarily on sweep gas flowing through the entire fuel rod, and for sweeps over the top of the charcoal trap. Sweep gas samples are analyzed for stable noble gas isotopes. Results in the form of ratios of release rate over birth rate (R/B) and venting rate over birth rate (V/B) are derived. R/B rates range from 10 -4 % to 30% while V/B ranges from 10 -6 % to 30%. Flow conductance in the capsule was monitored by recording the flow rate and pressure drop across the fuel rod and inlet sweep line. The flow conductance has been falling with increasing burnup, currently restricting the flow to about 20ml (s.t.p.)/min at a pressure difference of about 1.5MPa. Venting rates of the gaseous fission products as a function of gas pressure in the range 6.9 to 1.4MPa have also been measured. Planned future experiments include the monitoring of tritium release, venting and cladding permeation rates, and its molecular form. First measurements have been made. A simulated leak experiment will determine the mixture of fission gases as a function of flow rate and the most

  8. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  9. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  10. Operating Experience of MACSTOR Modules at CANDU 6 Stations

    International Nuclear Information System (INIS)

    Beaudoin, Robert R.

    2005-01-01

    Over the last three decades, Atomic Energy of Canada Limited (AECL) has contributed to the technology development and implementation of dry spent fuel management facilities in Canada, Korea and Romania During that period, AECL has developed a number of concrete canister models and the MACSTOR200 module, a medium size air-cooled vault with a 228 MgU (Mega grams of Uranium) capacity. AECL's dry storage technologies were used for the construction of eight large-scale above ground dry storage facilities for CANDU spent fuel. As of 2005, those facilities have an installed capacity in excess of 5,000 MgU. Since 1995, the two newest dry storage installations built for CANDU 6 reactors at Gentilly 2 (Canada) and Cernavoda (Romania) used the MACSTOR 200 module. Seven such modules have been built at Gentilly 2 during the 1995 to 2004 period and one at Cernavoda in 2003. The construction and operating experience of those modules is reviewed in this paper. The MACSTOR 200 modules were initially designed for a 50-year service life, with recent units at Gentilly 2 licensed for a 100-year service life in a rural (non-maritime) climate. During the 1995-2005 period, six of the eight modules were loaded with fuel. Their operation has brought a significant amount of experience on loading operations, performance of fuel handling equipment, radiation shielding, heat transfer, monitoring of the two confinement boundaries and radiation dose to personnel. Heat dissipation performance of the MACSTOR 200 was initially licensed using values derived from full scale tests made at AECL's Whiteshell Research Laboratories, that were backed-up by temperature measurements made on the first two modules. Results and computer models developed for the MACSTOR 200 module are described. Korea Hydro and Nuclear Power (KHNP) and its subsidiary Nuclear Environment Technology Institute (NETEC), in collaboration with Hyundai Engineering Company Ltd. (HEC) and AECL, are developing a new dry storage module to

  11. Plutonium-enriched thermal fuel production experience in Belgium

    International Nuclear Information System (INIS)

    LeBlanc, J.M.

    1983-01-01

    Taking into account the strategic aspects of nuclear energy such as availability and sufficiency of resources and independence of energy supply, most countries planning to use plutonium look mainly to its use in fast reactors. However, by recycling the recovered uranium and plutonium in light water reactors, the saving of the uranium that would otherwise be required could already be higher than 35%. Therefore, until fast reactors are introduced, for macro- or microeconomic reasons, the plutonium recycle option seems to be quite valuable for countries having the plutonium technology. In Belgium, Belgonucleaire has been developing the plutonium technology for more than 20 yr and has operated a mixed oxide fuel fabrication plant since 1973. The past ten years of plant operation have provided for many improvements and relevant new documented experiences establishing a basis for new modifications that will be beneficial to the intrinsic quality, overall safety, and economy of the fuel

  12. Reliabilityy and operating margins of LWR fuels

    International Nuclear Information System (INIS)

    Strasser, A.A.; Lindquist, K.O.

    1977-01-01

    The margins to fuel thermal operating limits under normal and accident conditions are key to plant operating flexibility and impact on availability and capacity factor. Fuel performance problems that do not result in clad breach, can reduce these margins. However, most have or can be solved with design changes. Regulatory changes have been major factors in eroding these margins. Various methods for regaining the margins are discussed

  13. Safety of operations in the manufacture of driver fuel for the first charge of the Dragon Reactor and modifications to the safety document for the Dragon Fuel Element Production Building

    International Nuclear Information System (INIS)

    Beutler, H.; Cross, J.; Flamm, J.

    1965-01-01

    The manufacture of the zirconium containing 'driver' fuel and fuel elements for the First Charge of the Dragon Reactor Experiment has been completed without incident. This is a report on the safety of operations in the Dragon Fuel Element Production Building during an approximately six month period when the 'driver' fuel was manufactured and 25 elements containing this fuel were assembled and exported to the Reactor Building. The opportunity is taken to bring the Safety Document up-to-date and to report on any significant operational failures of equipment. (author)

  14. Operation control device for a nuclear reactor fuel exchanger

    International Nuclear Information System (INIS)

    Aida, Takashi.

    1984-01-01

    Purpose: To provide a operation control device for a nuclear reactor fuel exchanger with reduced size and weight capable of optionally meeting the complicated and versatile mode of the operation scope. Constitution: The operation range of a fuel exchanger is finely divided so as to attain the state capable of discriminating between operation-allowable range and operation-inhibitive range, which are stored in a memory circuit. Upon operating the fuel exchanger, the position is detected and a divided range data corresponding to the present position is taken out from the memory circuit so as to determine whether the fuel exchanger is to be run or stopped. Use of reduced size and compact IC circuits (calculation circuit, memory circuit, data latch circuit) and input/output interface circuits or the likes contributes to the size reduction of the exchanger control system to enlarge the floor maintenance space. (Moriyama, K.)

  15. Niobia-doped UO2 fuel manufacturing experience at British nuclear fuels Ltd

    International Nuclear Information System (INIS)

    Marsh, G.; Wood, G.A.; Perkins, C.P.

    1998-01-01

    BNFL Fuel Division has made niobia doped fuel for over twenty years in its Springfields Research and Development facilities. This paper reviews this experience together with feedback from successful in-reactor and laboratory tests. Recent experience in qualifying and manufacturing niobia doped fuel pellets for a European PWR will be described. (author)

  16. Operating results and simulations on a fuel cell for residential energy systems

    International Nuclear Information System (INIS)

    Hamada, Yasuhiro; Goto, Ryuichiro; Nakamura, Makoto; Kubota, Hideki; Ochifuji, Kiyoshi

    2006-01-01

    This paper describes the performance evaluation of a polymer electrolyte fuel cell (PEFC) prototype and demonstration experiments of the electric power and domestic hot water system using it from a pragmatic view-point. Three types of demonstration experiments were carried out applying standard electric power and hot water demands. It was shown that the primary energy reduction rate of this system as compared to the conventional system reached up to 24% under double daily start and stop (DSS) operation. The amount of primary energy reduction in experiments using the energy demand of a household in Sapporo in winter exceeded the experimental results of the standard energy demand, demonstrating that the effects of the introduction of a fuel cell in cold regions could be considerable, in particular, during the winter season

  17. LOFT fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    The objective of the LOFT fuel design and fabrication effort was to provide a pressurized water reactor core that has (1) materials and geometric features to ensure that heat transfer, hydraulic, mechanical, chemical, metallurgical and nuclear behaviors are typical of large pressurized water reactors (PWR) during the loss-of-coolant accident (LOCA) sequence and (2) test instrumentation for measurement of core conditions. The LOFT core is unique because it is designed for exposure to several LOCAs without loss of function. This paper summarizes the design effort and extent to which the design objectives have been achieved

  18. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  19. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  20. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  1. Analysis of recent fuel-disruption experiments

    International Nuclear Information System (INIS)

    Kramer, J.M.; Kraft, T.E.; DiMelfi, R.J.; Fenske, G.R.; Gruber, E.E.

    1982-01-01

    Recent USDOE-sponsored DEH, FGR, and TREAT F series fuel-disruption experiments are analyzed with existing analytical models. The experiments are interpreted and the results used to evaluate the models. Calculations are presented using the FRAS3 fission-gas-behavior code and the DiMelfi-Deitrich fuel-response model

  2. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  3. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  4. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  5. Influence of the fuel operational parameters on the aluminium cladding quality of discharged fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Czajkowski, W.; Borek-Kruszewska, E. [Institute of Atomic Energy, Otwock Swierk (POLAND)

    2002-07-01

    In the last two years, the new MR6 type fuel containing 1550 g of U with 36% enrichment has been loaded into MARIA reactor core. Its aluminium cladding thickness is 0,6 mm and typical burnup -about 4080 MWh (as compared to 2880 MWh for the 80% enriched fuel used). However, increased fission product release from these assemblies was observed near the end of its operational time. The results presented earlier [1] show that the corrosion behaviour of aluminium cladding depends on the conditions of fuel operation in the reactor. The corrosion process in the aluminum of fuel cladding proceeds faster then in the aluminum of constructional elements. This tendency was also observed in MR-6/80% and in WWR- SM fuel assemblies. Therefore the visual tests of discharged MR-6/36% fuel elements were performed. Some change of appearance of aluminum cladding was observed, especially in the regions with large energy generation i.e. in the centre of reactor core and in the strong horizontal gradient of neutron flux. In the present paper, the results of visual investigation of discharged fuel assemblies are presented. The results of the investigation are correlated with the operational parameters. (author)

  6. French LEU fuel for research reactor with emphasis on the Osiris experience of core conversion and reactor operation with the new fuel

    International Nuclear Information System (INIS)

    Cerles, J.-M.

    1981-09-01

    One of the various activities carried out in France concerned with the design, fabrication and development of nuclear fuels was the development by the CEA of a plate type fuel (Caramel fuel). A Caramel fuel element is in the form of a plate consisting of two tight covering zircaloy sheets in which the UO 2 platelets are confined themselves within the network of a zircaloy grid. The plane geometry provides an effective means of overcoming the drawback of poor uranium oxide conductivity, and makes it possible to combine high specific power with low fuel temperature. The chief advantages of this fuel are the following: it is a very low enriched fuel. It can be used in research reactors demanding high volumetric powers and neutron fluxes, with a required enrichment significantly lower than 20% 235 U. The difference between the densities of UO 2 matrix and U-Al, 10.3 and 1.6 g/cm respectively, leads to a higher uranium charge, making it possible to reduce the enrichment to between 3 and 10%. Owing to fuel dispersion, any loss of tightness only puts a small amount of fissile material in contact with the coolant, thus limiting any contamination of the primary circuit. Another safety factor is the operating temperature, which is considerably lower than the temperature at which fission gases are liberated

  7. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  8. US nuclear power plant operating cost and experience summaries

    International Nuclear Information System (INIS)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov)

  9. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  10. The need for integral critical experiments with low-moderated MOX fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The use of MOX fuel in commercial reactors is a means of burning plutonium originating from either surplus weapons or reprocessed irradiated uranium fuel. This requires the fabrication of MOX assemblies on an industrial scale. The OECD/NEA Expert Group on Experimental Needs for Criticality Safety has highlighted MOX fuel manufacturing, as an area in which there is a specific need for additional experimental data for validation purposes. Indeed, integral experiments with low-moderated MOX fuel are either scarce or not sufficiently accurate to provide an appropriate degree of validation of nuclear data and computer codes. New and accurate experimental data would enable a better optimisation of the fabrication process by decreasing the uncertainties in the determination of multiplication factors of configurations such as the homogenization of MOX powders. In this context, the OECD/NEA Nuclear Science Committee organised a workshop to address the following topics: expression and justification of the need for critical or near-critical experiments employing low-moderated MOX fuels; proposals for experimental programmes to address these needs; prospects for an international co-operative programme. The workshop was held at OECD headquarters in Paris on 14-15 April 2004. (author)

  11. Operating experience with a 250 kW el molten carbonate fuel cell (MCFC) power plant

    Science.gov (United States)

    Bischoff, Manfred; Huppmann, Gerhard

    The MTU MCFC program is carried out by a European consortium comprising the German companies MTU Friedrichshafen GmbH, Ruhrgas AG and RWE Energie AG as well as the Danish company Energi E2 S/A. MTU acts as consortium leader. The company shares a license and technology exchange agreement with Fuel Cell Energy Inc., Danbury, CT, USA (formerly Energy Research Corp., ERC). The program was started in 1990 and covers a period of about 10 years. The highlights of this program to date are: Considerable improvements regarding component stability have been demonstrated on laboratory scale. Manufacturing technology has been developed to a point which enables the consortium to fabricate the porous components on a 250 cm 2 scale. Several large area stacks with 5000-7660 cm 2 cell area and a power range of 3-10 kW have been tested at the facilities in Munich (Germany) and Kyndby (Denmark). These stacks have been supplied by FCE. As far as the system design is concerned it was soon realized that conventional systems do not hold the promise for competitive power plants. A system analysis led to the conclusion that a new innovative design approach is required. As a result the "Hot Module" system was developed by the consortium. A Hot Module combines all the components of a MCFC system operating at the similar temperatures and pressures into a common thermally insulated vessel. In August 1997 the consortium started its first full size Hot Module MCFC test plant at the facilities of Ruhrgas AG in Dorsten, Germany. The stack was assembled in Munich using 292 cell packages purchased from FCE. The plant is based on the consortium's unique and proprietary "Hot Module" concept. It operates on pipeline natural gas and was grid connected on 16 August 1997. After a total of 1500 h of operation, the plant was intentionally shut down in a controlled manner in April 1998 for post-test analysis. The Hot Module system concept has demonstrated its functionality. The safety concept has been

  12. Safety analysis to support a safe operating envelope for fuel

    International Nuclear Information System (INIS)

    Gibb, R.A.; Reid, P.J.

    1998-01-01

    This paper presents an approach for defining a safe operating envelope for fuel. 'Safe operating envelope' is defined as an envelope of fuel parameters defined for application in safety analysis that can be related to, or used to define, the acceptable range of fuel conditions due to operational transients or deviations in fuel manufacturing processes. The paper describes the motivation for developing such a methodology. The methodology involved four steps: the update of fission product inventories, the review of sheath failure criteria, a review of input parameters to be used in fuel modelling codes, and the development of an improved fission product release code. This paper discusses the aspects of fuel sheath failure criteria that pertain to operating or manufacturing conditions and to the evaluation and selection of modelling input data. The other steps are not addressed in this paper since they have been presented elsewhere. (author)

  13. Experiment on continuous operation of the Brazilian IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Freitas Pintaud, M. de

    1994-01-01

    In order to increase the radioisotope production in the IEA-R1 research reactor at IPEN/CNEN-SP, it has been proposed a change in its operation regime from 8 hours per day and 5 days per week to continuous 48 hours per week. The necessary reactor parameters for this new operation regime were obtained through an experiment in which the reactor was for the first time operated in the new regime. This work presents the principal results from this experiment: xenon reactivity, new shutdown margins, and reactivity loss due to fuel burnup in the new operation regime. (author)

  14. CERCA'S experience in UMO fuel manufacturing

    International Nuclear Information System (INIS)

    Jarousse, Ch.; Lavastre, Y.; Grasse, M.

    2003-01-01

    Considered as a suitable solution for non-proliferation and reprocessing purposes, UMo fuel has been chosen and studied by the RERTR program since 1996. Involved in the RERTR fuel developments since 1978, with more than 20 years of U 3 SI 2 fuel production, and closely linked to the French Commissariat a l'Energie Atomique, CERCA was able to define properly, from the beginning, the right R and D actions plan for UMo fuel development. CERCA has already demonstrated during the last 4 years its ability to manufacture plates and fuel elements with high density UMo fuel. UMo full size plates produced for 4 irradiation experiments in 3 European reactors afforded us a unique experience. In addition, as a main part of our R and D effort, we have always studied in depth a key part of the CERCA process outline which is the plate rolling stage. After some preliminary investigation in order to define the phenomenological model describing the behavior of the fuel core when rolling, we have developed a rolling digital simulator. (author)

  15. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  16. Operational indices of WWER-1000 fuel assemblies and their improvements

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, I; Demin, E [Opytno-Konstruktorskoe Byuro Gidropress, Podol` sk (Russian Federation)

    1994-12-31

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: (1) `packing` density (tight-lattice) of fuel rods within the fuel assemblies; (2) simple handling of fuel assemblies and its small vulnerability; (3) good conditions for coolant mixing; (4) protection of the absorber rods against coolant effect; (5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig.

  17. Operational indices of WWER-1000 fuel assemblies and their improvements

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Demin, E.

    1994-01-01

    The most general design features of WWER-1000 fuel assembly are discussed. The following advantages of design are stated as well as their operational confirmation and occurrences: 1) 'packing' density (tight-lattice) of fuel rods within the fuel assemblies; 2) simple handling of fuel assemblies and its small vulnerability; 3) good conditions for coolant mixing; 4) protection of the absorber rods against coolant effect; 5) adaptability to manufacture that provides stable quality. The main operational indices gathered during a ten-year period (1982-1992) at 17 WWER-1000 units in Russia and Ukraine are outlined. Provisions for emergency protection reliability are described. Future directions to improve fuel economy and control rod operability are discussed. 1 fig

  18. Mutual influences of reactor operation and fuel cycle management

    International Nuclear Information System (INIS)

    Lewiner, C.; Schaerer, R.

    1989-01-01

    OPEN (Organisation des Producteurs d'Energie Nucleaire) comprises the electricity producers from seven European countries which now operate or intend to operate nuclear power plants. Its activities include the study of technical, economic and legal subjects related to nuclear electricity. A continuous analysis of the fuel cycle market has been pursued within OPEN for almost 15 years. For the past few years, OPEN has also been concerned with the subject of fuel management in the reactors operated by its members. The purpose of this effort was to obtain an overall picture of possible fuel improvements and to evaluate the effects, in particular the economic ones, of diverse fuel reload managements and of reprocessed uranium and plutonium recycling. The conclusions of this study are as follows: Increase in burn-ups produces notable savings in electricity generating costs. It also permits adaptation of fuel loading mode to the desirable irradiation campaign length. This allows for better management of the country's overall means of electricity generation (nuclear, fossil-fuelled or hydro plants), and adjustment to the electrical demand. These new reload schemes have various impacts on natural uranium consumption and enrichment, but, above all, they affect directly all fuel cycle operations linked to the number of assemblies (fabrication, reprocessing, etc.). 6 figs

  19. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    International Nuclear Information System (INIS)

    Stefanova, S.; Vitkova, M.; Simeonova, V.; Passage, G.; Manolova, M.; Haralampieva, Z.; Scheglov, A.; Proselkov, V.

    1997-01-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab

  20. Modelling of WWER-440 fuel rod behaviour under operational conditions with the PIN-micro code

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Haralampieva, Z [National Electric Company Ltd., Kozloduy (Bulgaria); Scheglov, A; Proselkov, V [Institute of Nuclear Reactors, RSC Kurchatov Inst., Moscow (Russian Federation)

    1997-08-01

    The report summarizes the first practical experience obtained by fuel rod performance modelling at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The results of application of the PIN-micro code and the code modification PINB1 for thermomechanical analysis of WWER-440 fuel assemblies (FAs) are presented. The aim of this analysis is to study the fuel rod behaviour of the operating WWER reactors. The performance of two FAs with maximal linear power and varying geometrical and technological parameters is analyzed. On the basis of recent publications on WWER fuel performance modelling at extended burnup, a modified PINB1 version of the standard PIN-micro code is shortly described and applied for the selected FAs. Comparison of the calculated results is performed. The PINB1 version predicts higher fuel temperatures and more adequate FGR rate, accounting for the extended burnup. The results presented in this paper prove the existence of sufficient safety margins, for the fuel performance limiting parameters during the whole considered period of core operation. (author). 8 refs, 16 figs, 1 tab.

  1. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  2. Dry spent fuel storage experience at overseas nuclear stations focus USA

    International Nuclear Information System (INIS)

    Bradley, T. L.; Kumar, S.; Marcelli, D. G.

    1997-01-01

    This paper provides a summary of US dry spent fuel storage experience, including application of this experience outside the United States. Background information on the US nuclear and spent fuel storage industry is provided as a basis for discussing the various types of options and systems available. An overview of technology options is presented, including systems being used and/or considered by the US government and private sector, as well as a discussion of overall system design, licensing and operation. Factors involved in selecting the best available technology option for a specific site or group of sites are presented, along with a typical timeline for project implementation. Cross-geographical use of technologies under different regulatory and technological regimes is also discussed. The paper concludes that dry storage is safe and reliable based on a successful ten year period. The information presented may be considered for use in the development of dry spent fuel storage in Korea and other countries. (author)

  3. Power-Cooling-Mismatch Test Series Test PCM-7. Experiment operating specifications

    International Nuclear Information System (INIS)

    Sparks, D.T.; Smith, R.H.; Stanley, C.J.

    1979-02-01

    The experiment operating specifications for the Power-Cooling-Mismatch (PCM) Test PCM-7 to be conducted in the Power Burst Facility are described. The PCM Test Series was designed on the basis of a parametric evaluation of fuel behavior response with cladding temperature, rod internal pressure, time in film boiling, and test rod power being the variable parameters. The test matrix, defined in the PCM Experiment Requirements Document (ERD), encompasses a wide range of situations extending from pre-CHF (critical heat flux) PCMs to long duration operation in stable film boiling leading to rod failure

  4. Introduction of HTR-PM Operation and Fuel Management System

    International Nuclear Information System (INIS)

    Liu Fucheng; Luo Yong; Gao Qiang

    2014-01-01

    There is a big difference between High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) and PWR in operation mode. HTR-PM is a continually refuelled reactor, and the operation and fuel management of it, which affect each other, are inseparable. Therefore, the analysis of HTR-PM fuel management needs to be carried out “in real time”. HTR-PM operation and fuel management system is developed for on-power refuelling mode of HTR-PM. The system, which calculates the core neutron flux and power distribution, taking high-temperature reactor physics analysis software-VSOP as a basic tool, can track and predict the core state online, and it has the ability to restructure core power distribution online, making use of ex-core detectors to correct and check tracking calculation. Based on the ability to track and predict, it can compute the core parameters to provide support for the operation of the reactor. It can also predict the operation parameters of the reactor to provide reference information for the fuel management.The contents of this paper include the development purposes, architecture, the main function modules, running process, and the idea of how to use the system to carry out HTR-PM fuel management. (author)

  5. The safety of operations in the Dragon fuel element production building during the manufacture of thorium fuel for the first charge of the Dragon Reactor experiment

    International Nuclear Information System (INIS)

    Beutler, H.; Gardham, B.; Holliday, J.

    1965-04-01

    The first charge of fuel and fuel elements for the Dragon Reactor has been completed without significant difficulty. This report covers the safety of operations during the production of the 10 thorium elements together with the final 2 driver elements needed to complete the 37 element charge. (author)

  6. Nuclear power plant operating experience. Annual report, 1978

    International Nuclear Information System (INIS)

    Beebe, M.R.

    1979-12-01

    This report is the fifth in a series of reports issued annually that summarizes the operating experience of US nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure for each plant are presented. Summary highlights of these areas are discussed. The report includes 1978 data from 65 plants - 25 boiling water reactor plants and 40 pressurized water reactor plants. Discussion of radioactive effluents which has been a part of this report in previous years, has not been included in this issue because of late acquisition of data

  7. Typical IAEA operations at a fuel fabrication plant

    International Nuclear Information System (INIS)

    Morsy, S.

    1984-01-01

    The IAEA operations performed at a typical Fuel Fabrication Plant are explained. To make the analysis less general the case of Low Enriched Uranium (LEU) Fuel Fabrication Plants is considered. Many of the conclusions drawn from this analysis could be extended to other types of fabrication plants. The safeguards objectives and goals at LEU Fuel Fabrication Plants are defined followed by a brief description of the fabrication process. The basic philosophy behind nuclear material stratification and the concept of Material Balance Areas (MBA's) and Key Measurement Points (KMP's) is explained. The Agency operations and verification methods used during physical inventory verifications are illustrated

  8. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  9. BNFL's experience in the sea transport of irradiated research reactor fuel to the USA

    International Nuclear Information System (INIS)

    Hudson, I.A.; Porter, I.

    2000-01-01

    BNFL provides worldwide transport for a wide range of nuclear materials. BNFL Transport manages an unique fleet of vessels, designed, built, and operated to the highest safety standards, including the highest rating within the INF Code recommended by the International Maritime Organisation. The company has some 20 years of experience of transporting irradiated research reactor fuel in support of the United States' programme for returning US obligated fuel from around the world. Between 1977 and 1988 BNFL performed 11 shipments of irradiated research reactor fuel from the Japan Atomic Energy Research Institute to the US. Since 1997, a further 3 shipments have been performed as part of an ongoing programme for Japanese research reactor operators. Where possible, shipments of fuel from European countries such as Sweden and Spain have been combined with those from Japan for delivery to the US. (author)

  10. Two-year experience of the Loviisa-1 nuclear power plant operation in Finland

    International Nuclear Information System (INIS)

    Palmgren, A.; Simola, P.; Skyutta, P.; Malkov, Yu.V.; Mal'tsev, B.K.; Shasharin, G.A.

    1979-01-01

    The description of experience of creation and operation of the Loviisa-1 nuclear power plant in Finland is presented. The main stages of power block development were the following: functional tests of systems and equipment, hydraulic tests of the reactor and primary circuit, inspection of equipment, hot testing, testing of protective envelope, second inspection, reactor assembling and fuel loading, physical and power start-up of the reactor, testing of the plant as a whole. Tests of the APP operation on load were particularly extensive. These tests were carried out on the 5, 15, 30, 50, 75 and 92 % thermal power levels of the reactor and covered: physical reactor tests, electric and dynamic tests of the power unit, tests with failures in equipment operation, chemical tests, studies of shielding effectiveness, thermal and guarantee tests. The positive experience of the Loviisa-1 nuclear power plant operation, reactor reliability, fuel element tightness, high efficiency (33.9 %) and satisfactory operation of turbo-generator confirm the success of the Loviisa-1 NPP project

  11. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    International Nuclear Information System (INIS)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of the equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX fuel rods used in the experiments are obtained by calculations and the modification of the equipment for the experiments are shown. (author)

  12. Experimental study on the impact of operating conditions and fuel composition on PCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Leermakers, C.A.J.

    2010-03-15

    Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition (SI) engine with the efficiency of a compressionignition (CI) engine. In a short term scenario, PCCI combustion will be used in the low load part of the engine operating range only. This would guarantee low engine-out emission levels at operating conditions where exhaust temperatures are too low for effective NOx reduction through catalytic after treatment. At higher loads, the engine would run in conventional CI combustion mode, with emission requirements met through catalytic NOx reduction. Implicit with this scenario is that engine hardware design would be very close to that of current modern diesel engines. Compression ratio could be made load dependent through implementation of variable valve actuation. The PCCI experiments presented here have been performed using a modified 6 cylinder 12.6 liter heavy duty DI DAF XE 355 C engine. Experiments are conducted in one dedicated cylinder, which is equipped with a stand-alone fuel injection system, EGR circuit, and air compressor. For the low to medium load operating range the compression ratio has been lowered to 12:1 by means of a thicker head gasket. As engine hardware should - in the short term - preferably remain close to current diesel engines, optimizing operating conditions should focus on parameters like EGR level, intake temperature, intake pressure and injection timing. While past work in the Combustion Technology group has focused on low load PCCI combustion, in this report the effects on engine performance and emission behavior are investigated for both low and medium load PCCI combustion, up to 40% of full load. In the interpretation of experimental results, emphasis lies on the effect on combustion phasing and maximum pressure rise rate, which are inherent challenges to enable viable PCCI combustion. As in the short term scenario fuels will be used that are not too

  13. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  14. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  15. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  16. Experience with underwater storage of spent fuel in CIRUS and DHRUVA

    International Nuclear Information System (INIS)

    Sharma, S.K.

    1996-01-01

    CIRUS, a 40 MWt Research Reactor and DHRUVA, a 100 MWt Research Reactor have been in operation since 1960 and 1985 respectively at the Bhabha Atomic Research Centre, Trombay, Bombay. Over three decades of experience in handling and storage of irradiated fuel in Cirus has been extensively utilized for making several design improvements in Dhruva. Details of some of the important experiences in Cirus and the design improvements made in Dhruva are presented in this paper. (author)

  17. Comparison of problems and experience of core operation with distorted fuel element assemblies in VVER-1000 and PWR reactors

    International Nuclear Information System (INIS)

    Afanas'ev, A.

    1999-01-01

    The main reactors leading to distortion of fuel element assemblies during reactor operation were studied. A series of actions which compensate this effect was proposed. Criteria of operation limitation in VVER-1000 and PWR reactors are described

  18. Operating performance and reliability of CANDU PHWR fuel channels in Canada

    International Nuclear Information System (INIS)

    Strachan, B.; Brown, D.R.

    1983-03-01

    CANDU nuclear plants use many small-diameter high-pressure fuel channels. Good operating performance from the CANDU fuel channels has made a major contribution to the world-leading operating record of the CANDU nuclear power plants. As of 1982 December 31, there were 7,480 fuel channels installed in 18 CANDU reactors over 500 MW(e) in size. Eight of these reactors have been declared in-service and have accumulated 24,000 fuel channel-years of operation. The only significant operating problems with fuel channels have been the occurrence of leaking cracks in 70 fuel channels and a larger amount of axial creep on the early reactors than was originally provided for in the design. Both of these problems have been corrected on all CANDU reactors built since the Bruce GS 'A' station and the newer reactors should exhibit even better performance

  19. Current operations and experiments at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1985-01-01

    The Tritium Systems Test Assembly (TSTA) has continued to move toward operation of a fully-integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent, nonloop experiments have answered important questions on new components and issues such as palladium diffusion membranes, ceramic electrolysis cells, regenerable tritium getters, laser Raman spectroscopy, unregenerable tritium inventory on molecular sieves, tritium contamination problems and decontamination methods, and operating data on reliability, emissions, doses, and wastes generated. 4 refs., 2 figs

  20. Experience with Pu-recycle fuel for large light water reactors in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Stehle, H.; Spierling, H.; Eickelpasch, N.; Stoll, W.

    1977-01-01

    In general, design and operational performance of Pu-bearing recycle fuel are quite similar to those of Uranium fuel. Up to Nov. 1976 153 Pu-bearing fuel assemblies with altogether 8000 fuel rods, fabricated by ALKEM, have been or are in operation in German power reactors. Their performance is very satisfactory. In the Obrigheim and in the Gundremmingen plant up to 20% of the core are made up of Pu-fuel. In either case all-Pu fuel assemblies are used, graded in their Pu-content for compatibility with the surrounding U-fuel. The physics calculations are accomplished with basically the same methods as applied for U-fuel. Theoretical investigations and physics measurements have shown that differences in reactivity balance can be minimized by proper loading patterns. In additional experiments at elevated temperature (KRITZ) the neutron physics methods were verified in greater detail. The main feature of fabrication of mixed oxide pellets is mechanical blending of natural UO 2 - and PuO 2 -powder before pressing green pellets, and a rather high degree of mechanisation in all fabrication steps including sintering, wet grinding, and rod filling operations. The Zircaloy cladding know-how, welding techniques, final surface treatment etc. were all taken from the large experience of KWU in the LWR fuel area. Several fuel assemblies have been examined in the spent fuel pools and in hot cell laboratories after a maximum burn-up of 30 GWd/t. The examinations revealed no significant differences compared to U-fuel. Fission gas release is somewhat higher, attributed to the inhomogeneous fissioning on the microscopic scale in the mechanically mixed oxide. For the same reason the rate of densification is reduced. No Pu-redistribution has been observed. β-scans ( 140 La) and isotopic analyses confirmed the adequate accuracy of the calculation methods. In order to investigate the thermo-mechanical behaviour especially under power ramping conditions in greater depth mixed oxide test

  1. Results of trial operation of the WWER advanced fuel assemblies

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Dragunov, Y.; Mikhalchuk, A.

    2001-01-01

    The paper describes results from experimental operation of advanced WWER-1000 fuel assemblies (AFA) at five units in Balakovo NPP. Advanced fuel is developed according to the concept of standard WWER-1000 fuel assembly (jacket-free). The new features includes: 1) zirconium guiding channels (alloy E-635 and E-110) and spacer grids (alloy E-110); 2) integrated burnable absorber gadolinium; 3) extended service life of fuel assemblies (FA) and absorber rods (possibility of repair of FA); 4) improved adoption to reactor conditions. Some results of AFA pilot operation of a three year operation are presented and analyses of effectiveness of improvements are made concerning application of zirconium channels and grids; application of integrated burnable absorbers; extension of FA and absorbing rods service life and FA repairability. These new features of WWER-1000 fuel design allow: 1) to reduce the average fuel enrichment to the 3.77% instead of 4.31% in U-235; 2) to reduce the FA axial load in reactor hot state by 40%,; 3) increasing of fuel operation in reactor to the 30000 effective days with possibility to have a 5-year residence time in the reactor. The design of new generation FA for WWER-440 reactors involves few key changes. Fuel inventory in new fuel design is increased due to elongation of fuel stack and reducing the diameter of the central hole. Vibration stability is enhanced as a result of: no-play junction of the fuel rod with the lower grid; change of SG arrangements; strengthening of the lower grid unit; secure of the central tube in the gap. Water-uranium ration is increased. Introduction of all these kinds of modernization in a 5-year fuel cycle reduces fuel component in the energy cost to the 7%

  2. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  3. Spent fuel receipt and storage at the Morris Operation

    International Nuclear Information System (INIS)

    Astrom, K.A.; Eger, K.J.

    1978-06-01

    Operating and maintenance activities in an independent spent fuel storage facility are described, and current regulations governing such activities are summarized. This report is based on activities at General Electric's licensed storage facility located near Morris, Illinois, and includes photographs of cask and fuel handling equipment used during routine operations

  4. An analysis of recent fuel disruption experiments

    International Nuclear Information System (INIS)

    Kramer, J.M.; Kraft, T.E.; Dimelfi, R.J.; Fenske, G.R.; Gruber, E.E.

    1982-01-01

    Recent USDOE-Sponsored DEH, FGR, and TREAT F series fuel disruption experiments are analyzed with existing analytical models. The experiments are interpreted and the results used to evaluate the models. Calculations are presented using the FRAS3 fission gas behavior code and the DiMelfi-Deitrich fuel response model

  5. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  6. Operation and maintenance manuals for VEGA apparatus on radionuclide release from irradiated fuel

    International Nuclear Information System (INIS)

    Hayashida, Retsu; Hidaka, Akihide; Nakamura, Takehiko; Kudo, Tamotsu; Ohtomo, Takashi; Uetsuka, Hiroshi

    2001-03-01

    An experimental program, Verification Experiments of radionuclides Gas/Aerosol release (VEGA), was initiated at JAERI from September 1999 to improve source term predictabilities for hypothetical severe accidents. In the experiment, a short fuel segment taken from LWR fuels irradiated in Japanese power reactors is inductively heated to high temperatures (∼3273K) in a hot cell under high pressure conditions up to 1.0MPa. Particularly, a focus will be placed on the release and transport behaviors of low-volatile fission products (FP), actinides and short-life FP which have not been well investigated in previous studies. This experimental apparatus was completed in February 1999 and three experiments were performed by the end of 2000. Most of these experiments were successfully conducted, but some problems were also found. Especially, in the first VEGA-1 test with the purpose of shakedown and reference data acquisition, there were problems such as flow blockage at the outlet of furnace due to structure melting, malfunction of heaters and so on. Therefore, the design for these defective parts was changed for future experiments. Moreover, the apparatus is not so big but the entire processes are very complicated. Accordingly, the operators should well understand the details of the apparatus including the recent change of design. This report describes outlines of the VEGA apparatus and the procedures for operation and maintenance. (author)

  7. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  8. Tests of the SNR fuel pin behaviour in case of operational transients in the HFR Petten

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-05-01

    The loadings on fast reactor fuel pins under operational transients (power and temperature increases in the design area) have been studied in the High-Flux-Reactor HFR in Petten with sodium cooled irradiation capsules. The results of the first campaign of transient experiments are described in the report. No cladding defects have been observed, and the fuel pins of the Mark-I and Mark-II type resisted to linear power levels of more than 800 W/cm, thus demonstrating the required design margins. The plans for further experiments are outlined

  9. Experiences from Swedish demonstration projects with phosphoric acid fuel cells; Erfarenheter fraan svenska demonstrationsprojekt med fosforsyrabraensleceller

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Per [Sycon Energikonsult AB, Stockholm (Sweden); Sarkoezi, Laszlo [Vattenfall Utveckling AB, Stockholm (Sweden)

    1999-10-01

    In Sweden, there are today two phosphoric acid fuel cells installed, one PC25A which have been in operation in more than 4 years, and one PC25C which have been in operation for two years. The aim with this project has been two compare operation characteristics, performance, and operation experiences for these two models.

  10. MOX fuel development: Experience in Argentina

    International Nuclear Information System (INIS)

    Marchi, D.E.; Adelfang, P.; Menghini, J.E.

    1999-01-01

    Since 1973, when a laboratory conceived for the safe manipulation of a few hundred grams of plutonium was built, the CNEA (Argentinean Atomic Energy Commission) has been involved in the small-scale development of MOX fuel technology. The plutonium laboratory consists in a glove box facility (α Facility) featuring the necessary equipment to prepare MOX fuel rods for experimental irradiations and to carry out studies on preparative processes development and chemical and physical characterization. The irradiation of the first prototypes of (U,Pu)O 2 fuels fabricated in Argentina began in 1986. These experiments were carried out in the HFR (High Flux Reactor)- Petten , Holland. The rods were prepared and controlled in the CNEA's a Facility. The post-irradiation examinations (PIE) were performed in the KFK (Kernforschungszentrum Karlsruhe), Germany and the JRC (Joint Research Center), Petten. In the period 1991-1995, the development of new laboratory methods of co-conversion of uranium and plutonium were carried out: reverse strike co-precipitation of ADU-Pu(OH) 4 and direct denitration using microwaves. The reverse strike process produced pellets with a high sintered density, excellent micro-homogeneity and good solubility in nitric acid. Liquid wastes showed a very low content of actinides and the process is easy to operate in a glove box environment. The microwave direct denitration was optimized with uranium alone and the conditions to obtain high density pellets, with a good microstructure, without using a milling step, have been developed. At present, new experiments are being carried out to improve the reverse strike co-precipitation process and direct microwave denitration. A new glove box is being installed at the plutonium laboratory, this glove box has process equipment designed to recover scrap from previous fabrication campaigns, and to co-convert mixed U-Pu solutions by direct microwave denitration. (author)

  11. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  12. Recent TMX-U central cell heating and fueling experiments

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Barter, J.; Dimonte, G.; Falabella, S.; Molvik, A.W.; Pincosy, P.; Turner, W.C.

    1986-01-01

    Recent experiments have begun to test new methods of heating and fueling of the TMX-U central cell plasma. Heating is with ICRH and 2kV neutral beams. Fueling is by the 2kV beams and by gas puffing. The ICRH system used for fundamental-frequency slow-wave heating consists of two double half-turn antennas, with one on each side of the central cell midplane at mirror ratios of 1:3 and 1:5. Gas fueling is between these two antennas to ensure that recently ionized particles pass through an ICRH resonance before entering the thermal barrier and cells. In recent gas-fed experiments with 100 to 200kW power on each antenna, the end loss temperature was measured to increase from 30eV to above 150eV with perpendicular (cc) temperatures of >500eV. The TMX-U central cell has been equipped with 10 low energy neutral-beam injectors (LENI). These beams are designed to operate at 2kV (net) accel-voltage and deliver 17 atom amperes each to the TMX-U plasma. This low energy was selected to improve trapping (relative to higher energy) on the initial ICRH heated plasma (2X10/sup 12/ cm/sup -3/). At 2keV the beams are predicted to be capable of building up and fueling to 10/sup 13/ cm/sup -3/ density, with ion-ion scattering providing a warm, isotropic ion component in the central cell

  13. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  14. Operating results and experience and operating regimes in changing demands of energy world

    International Nuclear Information System (INIS)

    Hobza, L.

    2004-01-01

    In this paper, there are stated some operating results and experience obtained from trial operation of Temelin NPP. In Europe, Temelin NPP is presently one of the latest implemented projects of the series of VVER 1000 nuclear units with proven V-320 pressurized water reactor. The distinction between Temelin NPP and original project lays mainly in supply of nuclear fuel and in I and C systems delivered by Westinghouse Company. Temelin NPP has passed through commissioning period and trial operation. The main goal of the trial operation was to meet the requirements of section 2, par. 4, point b) of Decree No. 106/98 Sb. and verification of project parameters and stability of operation, and the situation leading to violation of safety functions fulfilment according to Pre-operational Safety Report should not occur. The integral part of trial operation assessment was also successful performing of determined monitoring programmes, first refuelling and performing of prescribed tests and operational inspections. Simultaneously, first experience was obtained with nuclear fuel; providing of ancillary services; reliability of important components; operation of turbine-generator 1000 MW; chemical regime; influence to environment; and quality of contractors. As safety is the most important indicator, it can be stated that: no facts which would lead to decreasing of safety systems operability have been detected; no facts which would lead to negative affecting of barriers against fading the radioactivity into both working areas and environment, have been detected; good condition of fire safety has been continuously documented; requirements of limits for releasing waste water into environment have been continuously complied with; requirements of limits for releasing radioactive substances (in gaseous and/or liquid state) into environment have been continuously complied with. From the operation regimes point of view is clear, that it would be suitable for the power plant if the

  15. Experience in WWER fuel assemblies vibration analysis

    International Nuclear Information System (INIS)

    Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.

    2003-01-01

    It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature

  16. Fuel operation of EDF nuclear fleet presentation of the centralized organization for operational engineering at the nuclear generation division

    International Nuclear Information System (INIS)

    Paulin, Ph.

    2006-01-01

    The main feature of EDF Nuclear Fleet is the standardization, with 'series' of homogeneous plants (same equipment, fuel and operation technical documents). For fuel operation, this standardization is related to the concept of 'fuel management scheme' (typical fuel reloads with fixed number and enrichment of fresh assemblies) for a whole series of plants. The context of the Nuclear Fleet lead to the choice of a centralized organization for fuel engineering at the Nuclear Generation Division (DPN), located at UNIPE (National Department for Fleet Operation Engineering) in Lyon. The main features of this organization are the following: - Centralization of the engineering activities for fuel operation support in the Fuel Branch of UNIPE, - Strong real-time link with the nuclear sites, - Relations with various EDF Departments in charge of design, nuclear fuel supply and electricity production optimization. The purposes of the organization are: - Standardization of operational engineering services and products, - Autonomy with independent methods and computing tools, - Reactivity with a technical assistance for sites (24 hours 'hot line'), - Identification of different levels (on site and off site) to solve core operation problems, - Collection, analysis and valorization of operation feedback, - Contribution to fuel competence global management inside EDF. This paper briefly describes the organization. The main figures of annual engineering production are provided. A selection of examples illustrates the contribution to the Nuclear Fleet performance. (authors)

  17. Design, Construction and Operation of a Molten Carbonate Fuel Cell (MCFC) in the 100-kW-Class

    International Nuclear Information System (INIS)

    Heiming, Andreas; Huppmann, Gerhard; Aasberg-Petersen, Kim

    1999-01-01

    In fuel cells, the electrochemical energy of the fuel is converted directly into electricity and heat. The electrochemical conversion is inherently related to high electrical efficiencies and very low pollutant emissions. Fuel cells with sufficiently high operating temperatures such as (1) the phosphoric acid fuel cell (PAFC), operating temperature: 200 o C, (2) the molten carbonate fuel cell (MCFC), operating temperature: 650 o C and (3) the solid oxide fuel cell (SOFC), operating temperature: around 900 o C are best suited for decentralised combined heat and power (CHP) applications. This is due to the fact, that the heat of the exothermic reaction taking place in the fuel cell can be used in the domestic, commercial and industrial sector for heating and hot water or steam production. At the present time, gas-engines or gas-turbines are the preferred CHP-technologies for these applications. Nowadays, the PAFC is commercially available. More than 160 plants, each with a power of 200 kW, have been installed world-wide. Ruhrgas has investigated the behaviour of a 200 kW PAFC at its research centre in Dorsten, Germany, and at the site of a local utility. High temperature fuel cells such as MCFC or SOFC promise electrical efficiencies above 50 % in simple cycle mode. Up to now, MCFC-test plants have been built and operated in the 100 kW to 1 MW power range. The largest MCFC ever operated consisted of 16 identical stacks of 125 kW each, resulting in a plant power of 2 MW. The initial experience with SOFC in this power-range is currently gained from the operation of a 100 kW plant. In this paper, the result of the construction and operation of a highly innovatively designed 280 kW MCFC will be presented. This plant has been designed, built and operated by a European consortium for the development and market introduction of the MCFC. Members of the consortium are MTU-Friedrichshafen GmbH, Haldor Topsoee NS, Elkraft A.m.b.H., RWE Energie AG and Ruhrgas AG. (author)

  18. Operation experience at the Neuherberg Research Reactor (FRN) with several modifications of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Demmeler, M; Rau, G [Gesellschaft fuer Strahlen- und Umweltforschung mbH, Neuherberg (Germany)

    1974-07-01

    Since the first full power operation in September 1972 up till now (Dec. 1973) the TRIGA Mark III reactor FRN has run more than 500 MWh in steady state operation and has been pulsed for 265 times. During startup experiments, neutron- and gamma-flux mapping has been performed with special technical devices in the core and in several irradiation positions, mainly in the thermal column and in the exposure room. Furthermore reactivity values of each fuel element have been measured at full power of 1 MW, thus enabling a more accurate burnup calculation. Troubles with the rotary specimen rack occurred at power rates above 280 kW; here, the lazy susan stuck, caused by thermal stress. Thus it will be replaced by a hydraulic-operated type, which has been developed at the TRIGA reactor Heidelberg. In order to increase irradiation capacity, a new core configuration has been set up a few months ago, replacing several fuel-reflector-elements by irradiation tubes within the grid-plate positions E-22, G-2, G-17 and G-36. Four additional fuel elements had to be inserted to compensate for the resulting reactivity losses. The original plan of regaining sufficient excess-reactivity by inserting a fuel element in grid-plate position A-l failed because of local boiling in the center of the core by 1 MW-operation. Experiments at the reactor started with the begin of routine-operation in September 1973. Up till now, a total of 450 neutron- and gamma- irradiations have been performed, mainly for neutron-activations. (author)

  19. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  20. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  1. Mox fuel experience: present status and future improvements

    International Nuclear Information System (INIS)

    Blanpain, P.; Chiarelli, G.

    2001-01-01

    Up to December 2000, more than 1700 MOX fuel assemblies have been delivered by Framatome ANP/Fragema to 20 French, 2 Belgian and 3 German PWRs. More than 1000 MOX fuel assemblies have been delivered by Framatome ANP GmbH (formerly Siemens) to 11 German PWRs and BWRs and to 3 Swiss PWRs. Operating MOX fuel up to discharge burnups of about 45,000 MWd/tM is done without any penalty on core operating conditions and fuel reliability. Performance data for fuel and materials have been obtained from an outstanding surveillance program. The examinations have concluded that there have been no significant differences in MOX fuel assembly characteristics relative to UO 2 fuel. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models necessary for the continuing improvement of the MOX product. As MOX fuel has reached a sufficient maturity level, the short term step is the achievement of the parity between UO 2 and MOX fuels in the EdF French reactors. This involves a single operating scheme for both fuels with an annual quarter core reload type and an assembly discharge burnup goal of 52,000 MWd/tM. That ''MOX parity'' product will use the AFA-3G assembly structure which will increase the fuel rod design margins with regards to the end-of-life internal pressure criteria. But the fuel development objective is not limited to the parity between the current MOX and UO 2 products: that parity must remain guaranteed and the MOX fuel managements must evolve in the same way as the UO 2 ones. The goal of the MOX product development program underway in France is the demonstration over the next ten years of a fuel capable of reaching assembly burnups of 70,000 MWd/tM. (author)

  2. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  3. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Williams, D.F.; Peretz, F.J.

    1996-01-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions

  4. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  5. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  6. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  7. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  8. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  9. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  10. Development of wireless vehicle remote control for fuel lid operation

    Science.gov (United States)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  11. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  12. Worldwide experience with light water reactor fuel - a review

    International Nuclear Information System (INIS)

    Strasser, A.A.

    1986-01-01

    Continued attention to fuel performance has over the years improved fuel reliability and reduced fuel related failures. But further improvements can still be made by increased attention to reactor operating and maintenance methods, as well as to quality control during fuel fabrication. (author)

  13. Status and operational experience report of spent fuel storage facility in Kozloduy NPP for the period 1990 - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kalimanov, M [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1994-12-31

    Spent Fuel Storage Facility (SFSF) of Kozloduy NPP is designed for a long-term storage of 4920 spent fuel assemblies which are generated by all units for ten year operational period. The assemblies are stored in SFSF after 3 year storage in the reactor cooling pool. The SFSF operational safety is ensured by a number of strictly followed regulations related to: arrangement of the assemblies and conditions at which they are stored; transportation of the assemblies to the facility; residual heat removal; quality of the water used in the storage pool; water temperature and level control. Two independent groups of experts have carried out investigations to study the building safety. Their reports have been considered and accepted by the council of the Ministry of Environment which was the final step in licensing the SFSF.

  14. Operational experience in the spent fuel receipt and storage facility at the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Nakashima, S.; Yamaguchi, Y.; Iimura, I.; Yamamura, O.; Ogata, Y.

    1992-01-01

    The development of the double containment system led to the reduction of labor time for the cask decontamination to one-tenth compared to the original manner. And also it led to the great decrease of floor contamination in the receipt and storage facility. The decrease permitted as many as about 20,000 visitors to take tours in the fuel receipt and storage facility in the past three years without contamination trouble with the visitors. Different types of spent fuels can be easily handled and stored by the specially designed tools in the pool water. The exchange of the cooling water in the transport cask before unloading and the use of the storage container keep contamination of the pool water to a minimum. The pool water treatment system has been successfully operated. As result, the pool water condition has been well-controlled

  15. Application of robotics in remote fuel fabrication operations

    International Nuclear Information System (INIS)

    Nyman, D.H.; Nagamoto, T.T.

    1984-01-01

    The Secure Automated Fabrication (SAF) line, an automated and remotely controlled manufacturing process, is scheduled for startup in 1987 and will produce mixed uranium/plutonium oxide fuel pins for the Fast Flux Test Facility (FFTF). The application of robotics in the fuel fabrication and supporting operations is described

  16. Field experience of new nuclear fuel types on the Kola NPP

    International Nuclear Information System (INIS)

    Adeev, V.; Burlov, S.; Panov, A.; Saprykin, V.

    2008-01-01

    Specificity of the Kola nuclear power plant geographical position, conditions of region economics determine fuel management strategy. Isolation of Kola power supply system and, as a consequence, generating capacities redundancy cause operation of the nuclear power plant on reduced power level. At the same time there is a need to operate the power unit on the maximum power level in the case of not planned conditions. The basis of in-core fuel management is an achievement of the maximal burnup under providing of high installed capacity. At present there are not abilities to improve the fuel cycle based on traditional implementation fuel assemblies. Burnup maximum in these fuel cycles is achieved. At the core periphery installed highest possible quantity of the burned-up assemblies in the view of safety operation margins satisfaction. Works on application of the second generation fuel have been carried out on the Kola NPP since 2002. Fuel assemblies of this type are profiled. Burnable absorber, changed lattice spacing in relation to standard fuel, changed height of a fuel column, thickness of fuel pin clad are applied. In CR fuel followers modernized docking unit (with hafnium plates are intended for energy-release splash suppression) is used. At present 2-nd generation fuel is in experimental operation on unit 3 (18-21 fuel cycles, 2002-2007 years) and unit 4 (18-19 fuel cycles, 2005-2007 years). Safety margins did not exceeded. Coolant activity did not exceed the limiting value. There were not damaged fuel assemblies of second generation. Originally in the project of applications of new fuel it was supposed to refuel annually 78 fresh assemblies. At the moment annual refueling consists of 66 assemblies with effective enrichment 3.82 %. Cycle duration does not exceed 250-260 effective days. The part of assemblies is left on 5-th cycle of operation. In a similar fuel cycle in 2007 on the unit 1 operation with profiled fuel (enrichment of 3.82 %) of shakeproof type

  17. Assessment of radiological and non-radiological hazards in the nuclear fuel cycle - The Indian experience

    International Nuclear Information System (INIS)

    Krishnamony, S.; Gopinath, D.V.

    1996-01-01

    Design and operational aspects of nuclear fuel cycle facilities have several features that distinguish them from nuclear power plants. These are related to (i) the nature of operations which are chiefly mining, metallurgical and chemical; (ii) the nature and type of radio-active materials handled, their specific activities and inventories; and (iii) the physical and chemical processes involved and the associated containment provisions. Generally the radioactive materials are present in an already highly dispersible or mobile form, in the form of solutions, slurries and powders, often associated with a wide variety of reactive and corrosive chemicals. There are further marked differences between the front-end and back-end of the fuel cycle. Whereas the front-end is characterized by the presence of large quantities of low specific activity naturally occurring radioactive materials, the back-end is characterized by high specific activities and concentrations of fission products and actinides. Radioactive characteristics of waste arisings are also different in different phases of the nuclear fuel cycle. Potential for internal exposure in the occupational environment is another distinguishing feature as compared with the more common designs of nuclear power reactors. Potential for accidents, their phenomenology and the resulting consequences are also markedly different in fuel cycle operations. The non-radiological hazards in fuel cycle operations are also of significance, since the operations are mostly mining, metallurgical and chemical in nature. These aspects are examined and evaluated in this paper, based on the Indian experience. (author). 12 refs, 10 tabs

  18. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-01-01

    CANDU (Canada Deuterium Uranium) fuel has operated in power reactors since 1962. Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) A thorough understanding of the fundamental behaviour of CANDU fuel. (b) Data showing that the predicted high utilization of uranium has been achieved. Actual fuelling costs in 1976 at the Pickering Generating Station are 1.2 m$/kWh (1976 Canadian dollars) with the simple oncethrough natural-UO 2 fuel cycle. (c) Criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to ''CANLUB'' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases. (d) Proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). Involvement by the utility in all stages of fuel development has resulted in efficient application of this fundamental knowledge to ensure proper fuel specifications, procurement, scheduling into the reactor and feedback to developers, designers and manufacturers. As of mid-1976 over 3 x 10 6 individual elements have been built in a well-estabilished commercially competitive fuel fabrication industry and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification. Development work on UO 2 and other fuel cycles (plutonium and thorium) is continuing, and, because CANDU reactors use on-power fuelling, bundles can be inserted into power reactors for testing. Thus new fuel designs can be quickly adopted to ensure that the CANDU system continues to provide low-cost energy with high reliability

  19. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  20. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  1. On site PWR fuel inspection measurements for operational and design verification

    International Nuclear Information System (INIS)

    1996-01-01

    The on-site inspection of irradiated Pressurized Water Reactor (PWR) fuel and Non-Fuel Bearing Components (NFBC) is typically limited to visual inspections during refuelings using underwater TV cameras and is intended primarily to confirm whether the components will continue in operation. These inspections do not normally provide data for design verification nor information to benefit future fuel designs. Japanese PWR utilities and Nuclear Fuel Industries Ltd. designed, built, and performed demonstration tests of on-site inspection equipment that confirms operational readiness of PWR fuel and NFBC and also gathers data for design verification of these components. 4 figs, 3 tabs

  2. Visual observations of fuel disruption in in-pile LMFBR accident experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.

    1982-01-01

    Sandia National Laboratories has been investigating initiation phase phenomena in a series of Fuel Disruption (FD) experiments since 1977. In this program high speed cinematography is used to observe fuel disruption in in-pile experiments that simulate loss of flow accidents. Thus, these experiments provide high resolution measurements of initial fuel and clad motion with prototypic materials and prototypic heating conditions. The main objective of the FD experiment is to determine the timing (relative to fuel temperature) and the mode of fuel disruption under LOF heating conditions. Observed modes of disruption include fuel swelling, solid state breakup, cracking, ejection of a molten fuel jet, slumping, and rapid expansion of small particles. Because the temperature and character of the fuel at disruption are known, disruption can be correlated with the mechanisms driving the disruption such as fuel vapor pressure, molten fuel expansion, fission gases, and impurity gases

  3. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  4. Fuel element structure - design, production and operational behaviour

    International Nuclear Information System (INIS)

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  5. Transit experience with hydrogen fueled hybrid electric buses

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.B.; Mazaika, D.M. [ISE Corp., Poway, CA (United States)

    2006-07-01

    Mass transit buses are ideal candidates for hydrogen implementation due to their capability of carrying 30 to 60 kg of hydrogen. ISE Corporation is a supplier of hydrogen fueled buses, including the first hybrid electric fuel cell bus which was commercialized in 2002, the hybrid electric fuel cell bus, and the hybrid hydrogen internal combustion engine (HHICE) bus which was commercialized in 2004. The configuration of a HHICE bus was illustrated with reference to its engine, control system, energy storage, generator, drive motor, inverter and accessories. Although these vehicles are expensive, the cost is amortized over a large base of hours used and passengers carried. The buses are operated primarily in urban areas where quiet and clean operation is needed the most. ISE has established a joint venture with Thor industries to develop a series of fuel cell buses equipped with a 60 kW PEM fuel cell. A schematic illustrating the energy flow in HHICE bus was also presented. It was shown that regenerative braking recovers the energy of motion. When using regenerative braking, most of the braking energy is saved in the battery. ISE drive systems convert 30 per cent or more of the bus energy to electrical energy to be used in later acceleration. Reduced fuel consumption also reduces the vehicle emissions. Testing of HHICE buses in both summer and winter operating conditions have shown that the range needs to be improved along with engine component reliability and durability. Fuel supply is also a major issue. A comparison with a fuel cell hybrid system was also presented. In the United States, more than 100,000 miles have been logged for the use of hydrogen hybrid buses, fuel cell buses and HHICE buses. The HHICE bus offers low capital cost, familiar technologies, but some NOx. CAT absorber technology offers the possibility of near zero emission capability. The fuel cell bus was found to be more fuel efficient, and can travel nearly twice as far per unit energy as

  6. LWR mox fuel experience in Belgium and France with special emphasis on results obtained in BR3

    International Nuclear Information System (INIS)

    Bairiot, H.; Haas, D.; Lippens, M.; Motte, F.; Lebastard, G.; Marin, J.F.

    1986-09-01

    The course of the paper reflects two main topics: LWR MOX fuel experience in Belgium and France, summarizing the fabrication techniques, the references, the underlying MOX fuel technology and the current R and D programs for expanding the data base; behaviour of MOX fuel rods irradiated under steady state and transient operating conditions, focusing on MOX fuel technology features acquired through the irradiations performed in the BR3 PWR, supplemented by tests in the BR2 MTR. This paper focuses on the thermomechanical behaviour of LWR MOX fuel rods, which is intimately related to the fabrication technique and vice-versa. 22 refs

  7. Alternative concepts for spent fuel storage basin expansion at Morris Operation

    International Nuclear Information System (INIS)

    Graf, W.A. Jr.; King, C.E.; Miller, G.P.; Shadel, F.H.; Sloat, R.J.

    1980-08-01

    Alternative concepts for increasing basin capabilities for storage of spent fuel at the Morris Operation have been defined in a series of simplified flow diagrams and equipment schematics. Preliminary concepts have been outlined for (1) construction alternatives for an add-on basin, (2) high-density baskets for storage of fuel bundles or possible consolidated fuel rods in the existing or add-on basins, (3) modifications to the existing facility for increasing cask handling and fuel receiving capabilities and (4) accumulation, treatment and disposal of radwastes from storage operations. Preliminary capital and operating costs have been prepared and resource and schedule requirements for implementing the concepts have been estimated. The basin expansion alternatives would readily complement potential dry storage projects at the site in an integrated multi-stage program that could provide a total storage capacity of up to 7000 tonnes of spent fuel

  8. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  9. Injection of zinc in plants of ANAV. Impact on fuel and operation experience; Inyeccion de cinc en las plantas de ANAV. Impacto sobre el combustible y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Doncell, N.; Gago, J. L.

    2015-07-01

    Zinc injection performed in the three ANAV (Asociacion Nuclear Asco-Vandellos) plants is part of an overall primary water chemistry program, material management and dose reduction program. The application of zinc shown significant benefits in radiation field reduction as well as in mitigation of PWSCC initiation. Although zinc injection also reduces general corrosion rates and consequently reduces corrosion product transport to the fuel, and evaluation of the risks with respect to fuel performance should be done. ANAV and ENUSA, following industry recommendations, have coordinated the task related to the viability of the program in Asco and Vandellos including monitoring, inspections and control parameters. finally, this article includes a comprehensive review of operating experience and an assessment of fuel performance effects. (Author)

  10. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    International Nuclear Information System (INIS)

    Reid, RL

    2003-01-01

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports

  11. Recent fuel handling experience in Canada

    International Nuclear Information System (INIS)

    Welch, A.C.

    1991-01-01

    For many years, good operation of the fuel handling system at Ontario Hydro's nuclear stations has been taken for granted with the unavailability of the station arising from fuel handling system-related problems usually contributing less than one percent of the total unavailability of the stations. While the situation at the newer Hydro stations continues generally to be good (with the specific exception of some units at Pickering B) some specific and some general problems have caused significant loss of availability at the older plants (Pickering A and Bruce A). Generally the experience at the 600 MWe units in Canada has also continued to be good with Point Lepreau leading the world in availability. As a result of working to correct identified deficiencies, there were some changes for the better as some items of equipment that were a chronic source of trouble were replaced with improved components. In addition, the fuel handling system has been used three times as a delivery system for large-scale non destructive examination of the pressure tubes, twice at Bruce and once at Pickering and performing these inspections this way has saved many days of reactor downtime. Under COG there are several programs to develop improved versions of some of the main assemblies of the fuelling machine head. This paper will generally cover the events relating to Pickering in more detail but will describe the problems with the Bruce Fuelling Machine Bridges since the 600 MW 1P stations have a bridge drive arrangement that is somewhat similar to Bruce

  12. Operation experiences of biofuel dryers; Drifterfarenheter fraan aangtorkar och direkta roekgastorkar

    Energy Technology Data Exchange (ETDEWEB)

    Berge, Christian; Dejfors, Charlotte [AaF Energikonsult Stockholm AB (Sweden)

    2000-01-01

    A study regarding operation experiences of indirect steam dryers and direct flue gas dryers of biofuels has been conducted. In the study, plants with the two types of dryers have been visited and operational experiences have been gathered and analysed. Results show that the well proven technique with flue gas dryers has a higher availability than the steam dryers. Several plants have problem with the feeding and discharge systems. Material selection is very important to prevent corrosion. Indirect steam dryers have more environmental regulations than flue gas dryers because of the generated condensate from the fuel drying process. Future work should concentrate on material selections, refining the feeding and discharge systems and control system.

  13. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  14. Third international conference on CANDU fuel

    International Nuclear Information System (INIS)

    Boczar, Peter

    1992-01-01

    These proceedings contain full texts of all 49 papers from the ten sessions and the banquet address. The sessions were on the following subjects: International experience and programs; Fuel behaviour and operating experience; Fuel modelling; Fuel design; Advanced fuel and fuel cycle technology; AECL's concept for the disposal of nuclear fuel waste. The individual papers have been abstracted separately

  15. Fuel performance annual report for 1981

    International Nuclear Information System (INIS)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included

  16. BR3/Vulcain Nuclear Power Station. Construction and Operational Experience

    Energy Technology Data Exchange (ETDEWEB)

    Storrer, J. [Belgonucleaire, S.A., Brussels (Belgium)

    1968-04-15

    A full-scale reactor experiment was set out as the main objective of the Vulcain research and development programme agreed in May 1962 between the UKAEA and BelgoNucleaire, manager of ''Syndicat Vulcain''. Vulcain uses variable moderation as the long-term method to control reactivity: the reactor is cooled and moderated by a mixture of heavy and light water, the D{sub 2}O content being stepwise reduced to permit power operation with all control rods completely out of the core. To carry out the Vulcain power experiment it was decided to modify the BR3 nuclear power plant located at Mol, Belgium, which had operated from 1962 to 1964 as a conventional PWR with outputs of 40.9 MW(th) and 11.45 MW(e). The BR3/Vulcain plant was started in December 1966 and since then is running with a load factor around 90%. It is the first time that such a reactor type has been built and operated and the experience gained by its design, construction, commissioning and operation has proven to be most valuable. D{sub 2}O is being used at a pressure (2000 lb/in{sup 2} abs.) never before achieved in a heavy-water reactor and the leak rate from the HP primary systems to the atmosphere has been kept to a negligible value, around 1 to 2 grams/h. Commissioning of the primary plant had been carried out with light water first without fuel, and thereafter with fuel, at which time the water was poisoned with boric acid. The reactor vessel contains experimental devices such as 65 in-pile instrumentation detectors and four hydraulically operated Zircaloy control rods. They required the interposition of a collar between the vessel and its lid. Refuelling is performed under boronated light water, the interchange between the primary water and the H{sub 2}O being carried out by means of a draining and spraying system. The reactor had been operated for two years before its modifications for Vulcain: many lessons have therefore been learned about working on irradiated systems. The BR3/Vulcain core has a

  17. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    Science.gov (United States)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  18. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  19. Experience of European irradiated fuel transport - the first four hundred tonnes

    International Nuclear Information System (INIS)

    Curtis, H.W.

    1977-01-01

    The paper describes the successful integration of the experience of its three shareholders into an international company providing an irradiated fuel transport service throughout Europe. The experience of transporting more than 400 tonnes of irradiated uranium from fifteen power reactors is used to illustrate the flexibility which the transport organisation requires when the access and handling facilities are different at almost every reactor. Variations in fuel cross sections and lengths of fuel elements used in first generation reactors created the need for first generation flasks with sufficient variants to accommodate all reactor fuels but the trend now is towards standardisation of flasks to perhaps two basic types. Increases in fuel rating have raised the flask shielding and heat dissipation requirements and have influenced the design of later flasks. More stringent criticality acceptance criteria have tended to reduce the flask capacity below the maximum number of elements which could physically be contained. Reprocessing plant acceptance criteria initiated because of the presence of substantial quantities of loose crud released in the flask and the need to transport substantial numbers of failed elements have also reduced the flask capacity. Different modes of transport have been developed to cater for the various limitations on access to reactor sites arising from geographical and routing considerations. The safety record of irradiated fuel transport is examined with explanation of the means whereby this has been achieved. The problems of programming the movement of a pool of flasks for fifteen reactors in eight countries are discussed together with the steps taken to ensure that the service operates fairly to give priority to those reactors with the greatest problems. The transport of European irradiated fuel can be presented as an example of international collaboration which works

  20. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  1. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O 2 F 2 solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs

  2. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  3. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  4. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  5. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  6. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  7. Influence of start-ups with fuel-oil on the operation of electrostatic precipitators in pulverised coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, B.; Vilches, L.F.; Canadas, L.; Salvador, L. [University of Seville, Seville (Spain)

    2004-04-01

    This article describes the results of a series of tests carried out in a pilot fly ash electrostatic precipitation facility operating with real gases from a 550 MWe pulverized coal-fired power station. The main goal of these tests was to determine the effects of boiler start-ups on the performance of the electrostatic preciptator. The tests were carried out during start-ups of the power station boiler. All tests were carried out with the same fuel. An evaluation was made of the effects of the use of fuel-oil as auxillary fuel in start-ups and shut-downs of the boiler, and different electrostatic precipitators operation procedures were tested during start-ups and shut-downs. The results of the experiments made it possible to assess the relative importance of different variables on the possible deterioration of the efficiency of the precipitators. Also evaluated were operational modes that have demonstrated an improvement in the performance of the precipitators after the transient stage of these operations. As a result of this study, a number of important operational recommendations are made on boiler start-up and shut-down procedures.

  8. Operation results of 3-rd generation nuclear fuel WWER-440 in initial period

    International Nuclear Information System (INIS)

    Adeev, V.; Panov, A.

    2011-01-01

    On unit 4 of Kola NPP trial operation of 3-rd generation's fuel began in 2010. Fuel assemblies of 3-rd generation (FA-3) have a number of design features that provide better operational characteristics. Concise description of a design and the basic advantages of fuel of 3-rd generation are described in articles. Increasing of efficiency of nuclear fuel usage will be achieved by reduction of the parasitic capture of thermal neutrons in constructional materials (weight of zirconium is reduced), optimization of uranium-water relation (increase in fuel elements step), increasing of uranium loading (usage of fuel pellets with increased diameter and without central hole in them). By results of trial operation mass transition to use of given type of assemblies in WWER-440 is possible. This report presents the basic outcomes of the trial operation, a brief survey of the obtained data. The basic characteristics of the reactor core with fuel of 3-rd generation are resulted in work. (authors)

  9. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  10. CANDU operating experience

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.; Thurygill, E.W.

    1980-05-01

    The CANDU-PHW program is based upon 38 years of heavy water reactor experience with 35 years of operating experience. Canada has had 72 reactor years of nuclear-electric operations experience with 10 nuclear units in 4 generating stations during a period of 18 years. All objectives have been met with outstanding performance: worker safety, public safety, environmental emissions, reliable electricity production, and low electricity cost. The achievement has been realized through total teamwork involving all scientific disciplines and all project functions (research, design, manufacturing, construction, and operation). (auth)

  11. Fuel performance annual report for 1990

    International Nuclear Information System (INIS)

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A.; Wu, S.L.

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate

  12. EBR-II operating experience

    International Nuclear Information System (INIS)

    Smith, C.R.F.

    1978-07-01

    Operation of the EBR-2 reactor is presented concerning the performance of the heat removal system; reactor materials; fuel handling system; sodium purification and sampling system; cover-gas purification; plant diagnostics and instrumentation; recent improvements in identifying fission product sources in EBR-2; and EBR-2 safety

  13. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  14. Experience with failed or damaged spent fuel and its impacts on handling

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1989-12-01

    Spent fuel management planning needs to include consideration of failed or damaged spent light-water reactor (LWR) fuel. Described in this paper, which was prepared under the Commercial Spent Fuel Management (CSFM) Program that is sponsored by the US Department of Energy (DOE), are the following: the importance of fuel integrity and the behavior of failed fuel, the quantity and burnup of failed or damaged fuel in storage, types of defects, difficulties in evaluating data on failed or damaged fuel, experience with wet storage, experience with dry storage, handling of failed or damaged fuel, transporting of fuel, experience with higher burnup fuel, and conclusions. 15 refs

  15. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  16. Operating experience feedback from safety significant events at research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  17. Operating experience feedback from safety significant events at research reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  18. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  19. Emission and operating performance of a biomethane tractor with dual fuel engine; Emissions- und Betriebsverhalten eines Biomethan-Traktors mit Zuendstrahlmotor

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, Sebastian [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Emberger, Peter; Thuneke, Klaus; Remmele, Edgar

    2016-08-01

    The use of biomethane as fuel for agricultural machinery with dual fuel technology is contributing to climate protection and ensures safe fuel supply. So far, hardly any documented operational experiences are known. The aim of the project, funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology, was to investigate practicability for daily use and the emission behaviour of a Valtra N101 prototype tractor (exhaust stage IIIA). The retrofitted dual-fuel technology of the former conventional diesel tractor simultaneously uses biomethane or natural gas and diesel as ignition fuel. During the field test over 590 working hours, the tractor showed overall high reliability. On average the operating range in dual-fuel mode with one complete filling of the gas tanks was about 11.5 hours. On the tractor test bench a significant improvement of the exhaust emissions could be observed, since the gas ECU had been optimized and changed by the manufacturer. For dual-fuel operation, nitrogen oxides (NO{sub x}) are lower, whereas carbon monoxide (CO), hydrocarbons (HC) and particulate matter emissions (PM) are higher compared to solely diesel operation. In particular, HC emissions exceed the proposed limiting value, submitted by the European Commission. This is due to incomplete gas combustion and insufficient conversion by the exhaust after-treatment-system (methane slip). A big potential for optimization is expected by adjusting the operating point-specific gasdiesel ratio and improving the exhaust gas aftertreatment system.

  20. Fuel cell bus operation, system investigation H2 bus

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The WP covers two tasks: - Prepartion of Technical Catalogue: In cooperation with ICIL, AR have compiled a technical catalogue, providing the impartial descriptions, both of existing technology and regulations, and the likely future developments of these, as to remedy the first problem faced by a potential hydrogen bus fleet operator viz the absence of an impartial description of the available vehicle and fuels systems together with the absence of a description of regulatory and safety factors which need consideration. - Fuel Cell Bus Operation - System Investigation H 2 Bus: The application of fuel cell electric generation systems to hybrid electrical buses or electrical busses without any storage system on board is considered. The task will cover safety and environmental aspects, a cost estimate and a market evaluation. (orig.)

  1. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-05-01

    Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) a thorough understanding of the fundamental behaviour of CANDU fuel; (b) data showing that the predicted high utilization of uranium has been achieved; (c) criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to 'CANLUB' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases; (d) proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). As of mid-1976 over 3 x 10 6 individual elements have been built and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification

  2. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  3. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  4. Operational report, Formation of the XXVII reactor core, plan of fuel exchange

    International Nuclear Information System (INIS)

    Martinc, R.

    1977-01-01

    Plan for fuel exchange for formation of the reactor core No. XXVII is presented. This report includes: the quantity of 80% enriched fuel which is input in the core, description of the fuel 'transfer' through the core within this fuelling scheme. It covers the review of reactor safety operating with the core No. XXVII related to reactivity change, thermal load of the fuel channels and fuel burnup. These data result from the analysis based on the same correlated calculation method which was applied for planning the first regular fuel exchange with 80% enriched fuel (core No. XXVI configuration), which has been approved in february 1977. Based on the enclosed data and the fuel exchange according to the proposed procedure it is expected that the reactor operation with core No. XXVII configuration will be safe [sr

  5. Method and Result of Experiment for Support of Technical Solutions in the Field of Perfection of a Nuclear Fuel Cycle for Future PWR Reactors

    International Nuclear Information System (INIS)

    Ostrovskiy, V.; Kudryavtsev, E.; Tutnov, I.

    2011-01-01

    The paper presents the basics of approach of planning and carrying out of experiments to validate safety PWR reactors of the future when accepting technical solutions concerning using of improved fuel rods in fuel assembly. Basic principles and criteria used for the validation of technical solutions and developments in improving of nuclear fuel cycle of PWR reactors of the future are presented from the point of safety of future operation of modified fuel rods. We explore the questions of safety operation of PWR reactors with fuel assemblies, containing fuel rods with different length of fuel. The paper discusses the ways of solving of important tasks of critical facility experiments conducting for verification of new technical solutions in the sphere of PWR nuclear fuel cycle improvement on the base of international standards ISO 2000:9000 and functional safety recommendations of IEC (International Electromechanical Commission). New Federal laws of Russian Federation define the main principle for demands to NPP and any supplier of nuclear techniques. The principle is 'quantity indicators of risk should not exceed comprehensible social size of the established indicators of safety for any moment of operation of NPP'. On the other hand the second principle should be applied to extraction of the greatest benefit from operation of the equipment, systems or the NPP as whole: 'The long operation and full commercial use of resource and service properties of the equipment, systems and the NPP as a whole'. Realization of this principle assumes development and introduction of new technical solutions for a validation of guarantees of safety of the future operation of NPP or it separate components. Solving the practical problems of a validation of safety use of fuel rods with the increased length of a fuel column in fuel assembly in nuclear reactors of the future, we should choose new strategies and programs of verification experiments on the base of the analysis of guarantees

  6. French experience of regulation and operation on reprocessing facilities of LWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, J P [DES/SESUL (France)

    1992-02-01

    This presentation describes the French experience of regulation and operation on reprocessing facilities: how the safety assessment was made of UP3-A plant of the La Hague establishment for the building permit and operating license within the context of French nuclear regulations and the national debate on the need for reprocessing. Other factors discussed are how the public was involved, how the regulations were improved in the process and what the different stages of commissioning consisted of. In the design studies of a reprocessing facility, three complementary approaches are used: - observance of regulations born of technical considerations, and good practice, - analysis of the hazards, using deterministic and probabilistic methods, within the framework of a safety report, - review of experience feedback from such a facility or like plants. The design of the facility must permit the prevention of accidents and limit their consequences. Moreover, during all foreseeable cases (normal operating, incidents and accidents), the safety of the staff, the public and the environment with regard to consequences of radioactive releases and ionising radiations must be ensured. In the evaluation of these consequences, the approach used is voluntarily pessimistic in order to take into account every possible case. It is based on the main following principles: definition of the events considered for the dimensioning of the facility; redundancy and diversification; defense in depth which consists of the multiplication of the barriers. The experience feedback comes, on the one hand from operator's findings aiming at improving its facility, on the other hand from incidents, the lessons of which being taken into account after careful analysis. These incidents are analyzed by the Safety Authority upon presentation of the data by the operator and on site findings of inspections. In other respects, the aim of inspections is to check that the plant and its operating practices are

  7. KUCA critical experiments using MEU fuel (II)

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    1983-09-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  8. KUCA critical experiments using MEU fuel (II)

    International Nuclear Information System (INIS)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu

    1983-01-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  9. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, School of Nuclear Science and Engineering, 116 Radiation Center, Corvallis, OR 97331 (United States); Wachs, D.M.; Robinson, A.B.; Lillo, M.A. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers. - Highlights: • New experimental data is presented on oxide layer thickness of irradiated aluminum fuel. • Five oxide growth correlations and four convective heat transfer correlations are used to compute the oxide layer thickness. • The oxide layer thickness distribution is predicted via correlation for each respective experiment. • The measured experiment and predicted distributions correlate well, with few outliers.

  10. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  11. Analysis of WWER-440 fuel performance under normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, Oe; Koese, S; Akbas, T [Atomenerjisi Komisyonu, Ankara (Turkey); Colak, Ue [Ankara Nuclear Research and Training Center (Turkey)

    1994-12-31

    FRAPCON-2 code originally developed for LWR fuel behaviour simulation is used to analyse the WWER-440 fuel rod behaviour at normal operational conditions. The code is capable of utilizing different models for mechanical analysis and gas release calculations. Heat transfer calculations are accomplished through a collocation technique by the method of weighted residuals. Temperature and burnup element properties are evaluated using MATPRO package. As the material properties of Zr-1%Nb used as cladding in WWER-440s are not provided in the code, Zircaloy-4 is used as a substitute for Zr-1%Nb. Mac-Donald-Weisman model is used for gas release calculation. FRACAS-1 and FRACAS-2 models are used in the mechanical calculations. It is assumed that the reactor was operated for 920 days (three consecutive cycles), the burnup being 42000 Mwd/t U. Results of the fuel rod behaviour analysis are given for three axial nodes: bottom node, central node and top node. The variations of the following characteristic fuel rod parameters are studied through the prescribed power history: unmoved gap thickness, gap heat transfer coefficient, fuel axial elongation, cladding axial elongation, fuel centerline temperature and ZrO-thickness at cladding surface. The value of each parameter is calculated as a function of the effective power days for the three nodes by using FRACAS-1 and FRACAS-2 codes for comparison.The results show that calculations with deformable pellet approximation with FRACAS-II model could provide better information for the behaviour of a typical fuel rod. Calculations indicate that fuel rod failure is not observed during the operation. All fuel rod parameters investigated are found to be within the safety limits. It is concluded, however, that for better assessment of reactor safety these calculations should be extended for transient conditions such as LOCA. 1 tab., 10 figs., 4 refs.

  12. Fuel performance annual report for 1989

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.; Wu, S.

    1992-06-01

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included

  13. A survey on fuel pellet cracking and healing phenomena in reactor operation

    International Nuclear Information System (INIS)

    Faya, S.C.S.

    1981-10-01

    In normal reactor operation, oxide fuel pellets will crack. The majority of the pellet segments will lie against the cladding. When temperature in the central region of the fuel during irradiation is raised to the plastic region, crack healing occurs. The repetition of cracking-healing-cracking sequence resulting from repeated power cycle has a significant effect on fuel relocation. The fuel pellet relocation must be known since it effects the cladding life time. The fuel pellet cracking and healing phenomeno in reactor operation are described and the pertinant method of analysis is also discussed. (Author) [pt

  14. Post operation: The changing characteristics of nuclear fuel cycle costs

    International Nuclear Information System (INIS)

    Frank, F.J.

    1986-01-01

    Fundamental changes have occurred in the nuclear fuel cycle. These changes forged by market forces, legislative action, and regulatory climate appear to be a long term characteristic of the nuclear fuel cycle. The nature of these changes and the resulting emerging importance of post-operation and its impact on fuel cycle costs are examined

  15. Fuel Consumption and Emissions from Airport Taxi Operations

    Science.gov (United States)

    Jung, Yoon

    2010-01-01

    Developed a method to calculate fuel consumption and emissions of phases of taxi operations. Results at DFW showed that up to 18% of fuel can be saved by eliminating stop-and-go situations. Developed an energy efficient and environmentally friendly surface concept: Spot and Runway Departure Advisory (SARDA) tool. The SARDA tool has been identified as a potential candidate for a technology transfer to the FAA.

  16. Experiences with a Japanese-American fusion fuel processing hardware project

    International Nuclear Information System (INIS)

    Barnes, J.W.; Anderson, J.L.; Bartlit, J.R.; Carlson, R.V.; Konishi, S.; Inoue, M.; Naruse, Y.

    1992-01-01

    This paper reports that the United States Department of Energy (USDOE) and the Japan Atomic Energy Research Institute (JAERI) have installed a full-sale fuel cleanup system (JFCU) for testing at Los Alamos. The JFCU was designed by JAERI and built by Mitsubishi Heavy Industries (MHI) in Kobe, Japan. Experience gained by Japanese working at Los Alamos facilitated development of a system consistent with Los Alamos operations and standards. US or equivalent Japanese standards were generally used for design resulting in minor problems at electrical interfaces. Frequent written interchanges were essential to project success, as spoken communications can be misunderstood. Differing work styles required detailed pre-planning, separation of responsibilities, and daily scheduling meetings. Safety and operational documentation drafted by JAERI personnel was revised at Los Alamos to assure conformance with USDOE and Los Alamos standards. The project was successful because both Japanese and American participants worked hard to overcome potential problems. These experiences will be valuable in conducting future international fusion projects

  17. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    This paper discusses several metallic fuel element designs which have been tested and used as driver fuel in Experimental Breeder Reactor II (EBR-II). The most recent advanced designs have all performed acceptably in EBR-H and can provide reliable performance to high burnups. Fuel elements tested have included use of U-l0Zr metallic fuel with either D9, 316 or HT9 stainless steel cladding; the D9 and 316-clad designs have been used as standard driver fuel. Experimental data indicate that fuel performance characteristics are very similar for the various designs tested. Cladding materials can be selected that optimize performance based on reactor design and operational goals

  18. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  19. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  20. Fuel performance-experience to date and future potential

    International Nuclear Information System (INIS)

    Proebstle, R.A.; Klepfer, H.H.

    1987-01-01

    The experience in the USA to date, as reported in the Federal Energy Regulatory Commission data, conforms a very favorable cost trend for nuclear fuel costs relative to fossil fuel costs. The nuclear fuel cost promose relative to other fuels looks even better in future. Uranium supply surplus and advances in enrichment technology suggest that this trend should continue. Threats to the economic potential for nuclear fuel costs include unexpected problems in actural versus projected core and fuel technical performance. The New designs for BWR's nuclear fuel are extended to 38,000 MWd/MTU and the fuel rod reliabilities of 0.999994 are achievable. This reliability is equivalent to less than 3 fuel rod failures over the 40 year life of a reactor. (Liu)

  1. Fuel performance annual report for 1991. Volume 9

    International Nuclear Information System (INIS)

    Painter, C.L.; Alvis, J.M.; Beyer, C.E.; Marion, A.L.; Kendrick, E.D.

    1994-08-01

    This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry's focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided

  2. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    International Nuclear Information System (INIS)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-01-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel

  3. Indigenous development of system integration for proton exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Hussain, S.; Arshad, M.; Anjum, A.R.

    2011-01-01

    System integration was developed for fuel cell to control various parameters including voltage, current, power, temperature, pressure of gas (H/sub 2/), humidification, etc. The compact software has also been developed for monitoring different parameters of fuel cell system. System integrated was installed on fuel cell stack to manipulate these parameters. The compact software has been linked with the integrated system for visual monitoring of different parameters of fuel cell system during operation on PC. The installation of software and integrated system on fuel cell stack is the key achievement for the safe operation of fuel cell stack and for the provision of requisite power to any electric device for optimum performance. The compact software was developed for micro controller in KIEL. Control card and driver card are controlled by software-driven micro controller. A communication protocol was designed and developed. PC software has been developed to control and watch the values of all parameters of fuel cell such as voltage, current, power, temperature, pressure of hydrogen, pressure of oxygen, operational times and performance of the system on computer screen. (author)

  4. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  5. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  6. Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orban, G.; Shelton, C.

    2015-07-01

    Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)

  7. Control of nuclear material hold-up: The key factors for design and operation of MOX fuel fabrication plants in Europe

    International Nuclear Information System (INIS)

    Beaman, M.; Beckers, J.; Boella, M.

    2001-01-01

    Full text: Some protagonists of the nuclear industry suggest that MOX fuel fabrication plants are awash with nuclear materials which cannot be adequately safeguarded and that materials 'stuck in the plant' could conceal clandestine diversion of plutonium. In Europe the real situation is quite different: nuclear operators have gone to considerable efforts to deploy effective systems for safety, security, quality and nuclear materials control and accountancy which provide detailed information. The safeguards authorities use this information as part of the safeguards measures enabling them to give safeguards assurances for MOX fuel fabrication plants. This paper focuses on the issue of hold-up: definition of the hold-up and of the so-called 'hidden inventory'; measures implemented by the plant operators, from design to day to day operations, for minimising hold-up and 'hidden inventory'; plant operators' actions to manage the hold-up during production activities but also at PIT/PIV time; monitoring and management of the 'hidden inventory'; measures implemented by the safeguards authorities and inspectorate for verification and control of both hold-up and 'hidden inventory'. The examples of the different plant specific experiences related in this paper reveal the extensive experience gained in european MOX fuel fabrication plants by the plant operators and the safeguards authorities for the minimising and the control of both hold-up and 'hidden inventory'. MOX fuel has been fabricated in Europe, with an actual combined capacity of 2501. HM/year subject, without any discrimination, to EURATOM Safeguards, for more than 30 years and the total output is, to date, some 1000 t.HM. (author)

  8. Performance of Combustion Engineering fuel in operating PWRs

    International Nuclear Information System (INIS)

    Andrews, M.G.; Freeburn, H.R.; Wohlsen, W.D.

    1979-01-01

    Performance data on fuel assembly components from seven (7) operating reactors are presented, and discussed in detail where potential problems have occurred and been resolved. Fuel rod performance has continually improved over the last four (4) years with the gradual changeover to the current C-E fuel design. The reliability level is estimated at better than 99.99%, based on activity levels obtained through January 1979 at each plant. Control rod guide tubes have shown various degrees of wear caused by vibration of the control rods in their fully-withdrawn position. The retrofit of wear sleeves within the top portion of the affected guide tubes during routine refueling has permitted the use of these fuel assemblies with no significant loss in performance or safety margins

  9. Experience in the manufacture and performance of CANDU fuel for KANUPP

    International Nuclear Information System (INIS)

    Salim, M.; Ahmed, I.; Butt, P.

    1995-01-01

    Karachi Nuclear Power Plant (KANUPP) a 137 MWe CANDU unit is In operation since 1971. Initially, it was fueled with Canadian fuel bundles. In July 1980 Pakistani manufactured fuel was introduced in the reactor core, irradiated to a burnup of about 7500 MWd-teU -1 and successfully discharged in May 1984. The core was progressively fuelled with Pakistani fuel and in August 1990 the reactor core contained all Pakistani made fuel. As of the present, 3 core equivalent Pakistani fuel bundles have been successfully discharged at an average bumup of 6500 MWd-teU -1 . with a maximum burnup of ∼ 10,200 MWd-teU -1 . No fuel failure of Pakistani bundles has been observed so far. This paper presents the indigenous efforts towards manufacture and operational aspects of KANUPP fuel and compares its behaviour with that of Canadian supplied fuel. The Pakistani fuel has performed well and is as good as the Canadian fuel. (author)

  10. GENUSA Fuel Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Choithramani, Sylvia; Malpica, Maria [ENUSA Industrias Avanzadas, GENUSA, Josefa Valcarcel, 26 28027 Madrid (Spain); Fawcett, Russel [Global Nuclear Fuel (United States)

    2009-06-15

    GNF ENUSA Nuclear Fuel S.A. (GENUSA) was formed in Madrid in May 1996. GENUSA is a corporation organized and existing under the laws of Spain, jointly owned by GNF-A and ENUSA. GENUSA consolidates all European BWR fuel marketing activities of GNF-A and ENUSA, primarily providing marketing and project management. In its standard way of operating, it will obtain engineering, components and conversion from GNF-A and engineering, fabrication and fuel related services from ENUSA. GENUSA's development philosophy over the past decades has been to introduce evolutionary designs, supported by our global experience base, that deliver the performance needed by our customers to meet their operating strategies. GENUSA considers, as one of our strengths, the ever-increasing experience base that provides the foundation for such evolutionary changes. This experience is supported and complemented with an even greater GNF experience. Over the last 40 years, GNF and ENUSA have designed, fabricated, and placed in operation over 144,000 BWR fuel bundles containing over 9.7 million fuel rods. This experience base represents the widest range of operating conditions of any BWR fuel vendor, reflecting varying reactor power densities, operating strategies, and water chemistry environments. It covers operating periods of up to {approx}10 years and bundle average exposures up to 68 MWd/kgU.. It provides the confirmation of our understanding and ability to model fuel performance behavior, and has been instrumental in the identification and characterization of each encountered failure mechanism. With the knowledge gained from this extensive experience base, mitigating actions have been developed and progressively implemented by GENUSA as part of a continuous program toward improved fuel reliability and performance. GENUSA's evolutionary product introduction strategy has been extremely successful. There has been a continuous stream of new products/processes that were developed to

  11. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  12. Operating experience with the Harwell thermo-mechanical generators

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1980-06-01

    The Stirling-cycle thermo-mechanical generator (TMG) provides small amounts of electrical power continuously over long periods, while requiring much less fuel than other power sources running from hydrocarbon fuel or radio-isotopes. Two of these 25-watt generators, fuelled by propane, have been used to power the UK National Buoy on two successive missions. A total of more than three years experience at sea has now been accumulated. In addition, a 60-watt version has provided the power for a major lighthouse for more than a year. An early development version of the Thermo-mechanical Generator, adapted to run from the heat of a radio-isotope source, was loaded with strontium 90 titanate in October 1974 and has run continuously in the laboratory ever since. The improvements and changes found necessary in the course of 90,000 generator-hours of running time are described, and the improvements in operational performance and reliability which have resulted are outlined. (author)

  13. Lessons learned from MELOX plant operation and support to design of new MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Tourre, Joel; Gattegno, Robert; Guay, Philippe; Bariteau, Jean-Pierre

    2005-01-01

    AREVA is participating in the design of the US MOX Fuel Fabrication Facility (MFFF). To support this project and allow the U.S. Department of Energy (DOE) client to reap full benefit from the MELOX operating experience, AREVA, through COGEMA and its engineering subsidiary SGN have implemented a rigorous process to prudently apply MELOX Lessons Learned to the MFFF design. This paper describes the Lessons Learned process, how the process supports the advancement of fuel fabrication technology and, how the results of the process are benefiting the client. (author)

  14. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  15. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  16. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation

  17. Operating experience feedback

    International Nuclear Information System (INIS)

    Cimesa, S.

    2007-01-01

    Slovenian Nuclear Safety Administration (SNSA) has developed its own system for tracking, screening and evaluating the operating experiences of the nuclear installations. The SNSA staff regularly tracks the operating experiences throughout the world and screens them on the bases of applicability for the Slovenian nuclear facilities. The operating experiences, which pass the screening, are thoroughly evaluated and also recent operational events in these facilities are taken into account. If needed, more information is gathered to evaluate the conditions of the Slovenian facilities and appropriate corrective actions are considered. The result might be the identification of the need for modification at the licensee, the need for modification of internal procedures in the SNSA or even the proposal for the modification of regulations. Information system helps everybody to track the process of evaluation and proper logging of activities. (author)

  18. FFTF operating experience, 1982-1984

    International Nuclear Information System (INIS)

    Waldo, J.B.; Franz, G.R.; Loika, E.F.; Krupar, J.J.

    1984-01-01

    The Fast Flux Test Facility (FFTF) is a 400 Mwt sodium-cooled fast reactor operating at the Hanford Engineering Development Laboratory, Richland, Washington, to conduct fuels and materials testing in support of the US Liquid Metal Fast Breeder Reactor (LMFBR) program. Startup and initial power testing included a comprehensive series of nonnuclear and nuclear tests to verify the thermal, hydraulic, and neutronic characteristics of the plant. A specially designed series of natural circulation tests were then performed to demonstrate the inherent safety features of the plant. Early in 1982, the FFTF began its first 100-day irradiation cycle. Since that time the plant has operated very well, achieving a cycle capacity factor of 94% in the most recent irradiation cycle. Seventy-five specific test assemblies and 25,000 individual fuel pins have been irradiated, some in excess of 80 MWd/Kg

  19. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  20. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-01-01

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs

  1. Fuel performance annual report for 1986

    International Nuclear Information System (INIS)

    Bailey, W.J.; Wu, S.

    1988-03-01

    This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs

  2. Fuel performance: Annual report for 1987

    International Nuclear Information System (INIS)

    Bailey, W.J.; Wu, S.

    1989-03-01

    This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs

  3. Cracking and relocation of UO2 fuel during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Dagbjartsson, S.J.

    1981-01-01

    Cracking and relocation of light water reactor (LWR) fuel pellets affect the axial gas flow path within nuclear reactor fuel rods and the thermal performance of the fuel. As part of the Nuclear Regulatory Commission's Water Reactor Safety Research Fuel Behavior Program, the Thermal Fuels Behavior Program of EG and G Idaho, Inc., is conducting fuel rod behavior studies in the Heavy Boiling Water Reactor in Halden, Norway. The Instrumental Fuel Assembly-430 (IFA-430) operated in that facility is a multipurpose assembly designed to provide information on fuel cracking and relocation, the long-term thermal response of LWR fuel rods subjected to various internal pressures and gas compositions, and the release of fission gases. This report presents the results of an analysis of fuel cracking and relocation phenomena as deduced from fuel rod axial gas flow and fuel temperature data from the first 6.5 GWd/tUO 2 burnup of the IFA-430

  4. Operating experiences with 1 MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  5. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  6. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  7. FSV experience in support of the GT-MHR reactor physics, fuel performance, and graphite

    International Nuclear Information System (INIS)

    Baxter, A.M.; McEachern, D.; Hanson, D.L.; Vollman, R.E.

    1994-11-01

    The Fort St. Vrain (FSV) power plant was the most recent operating graphite-moderated, helium-cooled nuclear power plant in the United States. Many similarities exist between the FSV design and the current design of the GT-MHR. Both designs use graphite as the basic building blocks of the core, as structural material, in the reflectors, and as a neutron moderator. Both designs use hexagonal fuel elements containing cylindrical fuel rods with coated fuel particles. Helium is the coolant and the power densities vary by less than 5%. Since material and geometric properties of the GT-MHR core am very similar to the FSV core, it is logical to draw upon the FSV experience in support of the GT-MHR design. In the Physics area, testing at FSV during the first three cycles of operation has confirmed that the calculational models used for the core design were very successful in predicting the core nuclear performance from initial cold criticality through power operation and refueling. There was excellent agreement between predicted and measured initial core criticality and control rod positions during startup. Measured axial flux distributions were within 5% of the predicted value at the peak. The isothermal temperature coefficient at zero power was in agreement within 3%, and even the calculated temperature defect over the whole operating range for cycle 3 was within 8% of the measured defect. In the Fuel Performance area, fuel particle coating performance, and fission gas release predictions and an overall plateout analysis were performed for decommissioning purposes. A comparison between predicted and measured fission gas release histories of Kr-85m and Xe-138 and a similar comparison with specific circulator plateout data indicated good agreement between prediction and measured data. Only I-131 plateout data was overpredicted, while Cs-137 data was underpredicted

  8. Experience feedback from the transportation of Framatome fuel assemblies

    International Nuclear Information System (INIS)

    Robin, M.E.; Gaillard, G.; Aubin, C.

    1998-01-01

    Framatome, the foremost world nuclear fuel manufacturer, has for 25 years been delivering fuel elements from its three factories (Dessel, Romans, Pierrelatte) to the various sites in France and abroad (Germany, Sweden, Belgium, China, Korea, South Africa, Switzerland). During this period, Framatome has built up experience and expertise in fuel element transportation by road, rail and sea. In this filed, the range of constraints is very wide: safety and environmental protection constraints; constraints arising from the control and protection of nuclear materials, contractual and financial constraints, media watchdogs. Through the experience feedback from the transportation of FRAMATOME assemblies, this paper addresses all the phases in the transportation of fresh fuel assemblies. (authors)

  9. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    Directory of Open Access Journals (Sweden)

    Patsch Marek

    2015-01-01

    Full Text Available Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  10. Fuel performance annual report for 1983. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  11. Operating Experience at NPP Krsko

    International Nuclear Information System (INIS)

    Kavsek, D.; Bach, B.

    1998-01-01

    Systematic analysis of operational experience by assessment of internal and industry events and the feedback of lessons learned is one of the essential activities in the improvement of the operational safety and reliability of the nuclear power plant. At NPP Krsko we have developed a document called ''Operating Experience Assessment Program''. Its purpose is to establish administrative guidance for the processing of operating events including on-site and industry events. Assessment of internal events is based on the following methods: Event and Causal Factor Charting, Change Analysis, Barrier Analysis, MORT (Management Oversight and Risk Tree Analysis) and Human Performance Evaluation. The operating experience group has developed a sophisticated program entitled ''Operating experience tracking system'' (OETS) in response to the need for a more efficient way of processing internal and industry operating experience information. The Operating Experience Tracking System is used to initiate and track operational events including recommended actions follow up. Six screens of the system contain diverse essential information which allows tracking of operational events and enables different kinds of browsing. OETS is a part of the NPP Krsko nuclear network system and can be easily accessed by all plant personnel. (author)

  12. Fuel utilization experience in Bohunice NPP and regulatory requirements for implementation of progressive fuel management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Patenyi, V [Nuclear Regulatory Authority, Bratislava (Slovakia); Darilek, P; Majercik, J [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1994-12-31

    The experience gained in fuel utilization and the basic requirements for fuel licensing in the Slovak NPPs is described. The original project of WWER-440 reactors supposes 3-year fuel cycle with cycle length of about 320 full power days (FPD). Since 1984 it was reduced to 290 FPD. Based on the experience of other countries, a 4-year fuel cycle utilization started in 1987. It is illustrated with data from the Bohunice NPP units. Among 504 fuel assemblies left for the fourth burnup cycle no leakage was observed. The mean burnup achieved in the different units varied from 33.1 to 38.5 Mwd/kg U. The new fuel assemblies used are different from the recent ones in construction, thermohydraulics, water-uranium ratio, enrichment and material design. To meet the safety criteria, regulatory requirements for exploitation of new fuel in WWER-440 were formulated by the Nuclear Regulatory Authority of Slovak Republic. 1 tab., 5 refs.

  13. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  14. The first critical experiment with a new type of fuel assemblies IRT-3M on the training reactor VR-I

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    1997-01-01

    The paper 'The first critical experiment with a new type of fuel assemblies IRT-3M on training reactor VR-1 presents basic information about the replacement of fuel on the reactor VR-1 run on FJFI CVUT in Prague. In spring 1997 the IRT-2M fuel type used till then was replaced by the IRT-3M type. When the fuel was replaced, no change in its enrichment was made, i.e. its level remained as 36% 235 U. The replacement itself was carried out in tight co-operation with the Nuclear Research Institute Rez plc., as related to the operation of the research reactor LVR-15. The fuel replacement on the VR-I reactor is a part of the international program RERTR (Reduced Enrichment for Research and Test Reactors) in which the Czech Republic participates. (author)

  15. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  16. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    International Nuclear Information System (INIS)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  17. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  18. The qualification of a new fuel - the operator's perspective

    International Nuclear Information System (INIS)

    Koonen, E.

    2001-01-01

    Operators of a research reactor generally have as their primary mission to provide the users with a safe, reliable and economic source of neutrons. They have to assure the availability of that source, while respecting the requirements of the license. The fuel management is one of the major aspects they have to tackle in order to fulfill their mission. This sometimes includes the qualification of a new fuel and the core conversion. The operator has to assure that the whole process is conducted in such manner that the availability of the neutron source is only minimally disturbed, that the costs are kept under control and the characteristics of the neutron source are preserved. This paper gives an overview of the various issues that the operator has to consider. (author)

  19. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  20. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  1. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  2. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  3. Operational Readiness Review Final Report for K Basin Fuel Transfer System

    International Nuclear Information System (INIS)

    DAVIES, T.H.

    2002-01-01

    An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR

  4. Reliability of fast reactor mixed-oxide fuel during operational transients

    International Nuclear Information System (INIS)

    Boltax, A.; Neimark, L.A.; Tsai, Hanchung; Katsuragawa, M.; Shikakura, S.

    1991-07-01

    Results are presented from the cooperative DOE and PNC Phase 1 and 2 operational transient testing programs conducted in the EBR-2 reactor. The program includes second (D9 and PNC 316 cladding) and third (FSM, AST and ODS cladding) generation mixed-oxide fuel pins. The irradiation tests include duty cycle operation and extended overpower tests. the results demonstrate the capability of second generation fuel pins to survive a wide range of duty cycle and extended overpower events. 15 refs., 9 figs., 4 tabs

  5. MOX use in PWRs. EDF operation experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2011-01-01

    From the origin, EDF back-end fuel cycle strategy has focused on 'closing the fuel cycle', in other words integrating fuel reprocessing, with vitrification of high level waste concentrated within small volumes, and the recycling of valuable materials. The implementation of this policy was marked in 1987 by the first loading of sixteen MOX. By December 2010, 20 reactors have been loaded with 1750 tHM of MOX. EDF current strategy is to match the reprocessing program with MOX manufacturing capacity to limit the quantity of separated plutonium. This is routinely called the 'flow ad-equation' strategy. Currently, the MOX Parity core management achieves balance of MOX and UOX performance with a significant increase of the MOX discharge burn-up. Globally, the behavior under irradiation of MOX fuel assemblies has been satisfactory. So far, from the beginning of MOX use in EDF PWRs, only 6 MOX FAs with rod leakage have been identified, which gives a very satisfactory level of reliability. The industrial maturity of MOX fuel, with increased performances, allows the improvement of nuclear KWh competitiveness and of the plant operation performance, while maintaining in operation the same safety level, without significant impact on environment and radiological protection. (author)

  6. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  7. The achivements of Japanese fuel irradiation experiments in HBWR

    International Nuclear Information System (INIS)

    Ichikawa, Michio; Yanagisawa, Kazuaki; Domoto, Kazunari

    1984-02-01

    OECD Halden Reactor Project celebrated the 25th anniversary in 1983. The JAERI has been participating in the Project since 1967 on behalf of Japanese Government. Since the participation, thirty-six Japanese instrumented fuel assemblies have been irradiated in HBWR. The irradiation experiments were either sponsored by JAERI or by domestic organizations under the joint research agreements with JAERI, beeing steered by the Committee for the Joint Research Programme. The cooperative efforts have attained significant contributions to the development of water reactor fuel technology in Japan. This report review the irradiation experiments of Japanese fuel assemblies. (author)

  8. Operating experiences at the Finnish TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, Seppo

    1988-01-01

    The Finnish TRIGA reactor has been in operation since March 1962. There are still 57 original Al-clad fuel elements in the core. So far we have had only two fuel cladding failures in 1981 and 1988. The first one was an Al-clad element and the second one a SS-clad. The low rate of fuel cladding failures has made it possible to use continuously also the Al-clad fuel elements. Although some conventional irradiations of certain type have been repeated successfully tens of times, new and unexpected incidents can still take place. As an example an event of a leaking irradiation capsule is described

  9. The case for reprocessing: the operational experience of a modern reprocessing industry

    International Nuclear Information System (INIS)

    Giraud, J.P.; Kelly, W.

    1993-01-01

    Reprocessing is a high-tech industry that works. An impressive effort of R and D, industrial deployment and operational experience has been accumulated by COGEMA and BNFL, leading these companies to offer a commercial service which is the only proper management of spent fuel and waste that is both technically demonstrated and qualified by the safety authorities of European and overseas countries. Reprocessing, as every technology-based industry will continue to progress in the future. Recycling the fissile materials reclaimed from spent fuel: uranium and plutonium, is the complementary and indispensable last link to effectively close the fuel cycle and control in particular the production of plutonium and other long-lived actinides. This paper will describe the state of development attained in France and Great Britain and will underline the main advantages of the reprocessing/recycling strategy

  10. Survey of experience with dry storage of spent nuclear fuel and update of wet storage experience

    International Nuclear Information System (INIS)

    1988-01-01

    Spent fuel storage is an important part of spent fuel management. At present about 45,000 t of spent water reactor fuel have been discharged worldwide. Only a small fraction of this fuel (approximately 7%) has been reprocessed. The amount of spent fuel arisings will increase significantly in the next 15 years. Estimates indicate that up to the year 2000 about 200,000 t HM of spent fuel could be accumulated. In view of the large quantities of spent fuel discharged from nuclear power plants and future expected discharges, many countries are involved in the construction of facilities for the storage of spent fuel and in the development of effective methods for spent fuel surveillance and monitoring to ensure that reliable and safe operation of storage facilities is achievable until the time when the final disposal of spent fuel or high level wastes is feasible. The first demonstrations of final disposal are not expected before the years 2000-2020. This is why the long term storage of spent fuel and HLW is a vital problem for all countries with nuclear power programmes. The present survey contains data on dry storage and recent information on wet storage, transportation, rod consolidation, etc. The main aim is to provide spent fuel management policy making organizations, designers, scientists and spent fuel storage facility operators with the latest information on spent fuel storage technology under dry and wet conditions and on innovations in this field. Refs, figs and tabs

  11. Experiments with preirradiated fuel rods in the Nuclear Safety Research Reactor

    International Nuclear Information System (INIS)

    Horiki, O.; Kobayashi, S.; Takariko, I.; Ishijima, K.

    1992-01-01

    In the Nuclear Safety Research Reactor (NSRR) owned and operated by Japan Atomic Energy Research Institute (JAERI), extensive experimental studies on the fuel behavior under reactivity initiated accident (RIA) conditions have been continued since the start of the test program in 1975. Accumulated experimental data were used as the fundamental data base of the Japanese safety evaluation guideline for reactivity initiated events in light water cooled nuclear power plants established by the nuclear safety commission in 1984. All of the data used to establish the guideline were, however, limited to those derived from the tests with fresh fuel rods as test samples because of the lack of experimental facility to handle highly radioactive materials.The guideline, therefore, introduces the peak fuel enthalpy of 85 cal/g which was adopted from the SPERT-CDC data as a provisional failure threshold of preirradiated fuel rod and, says that this value should be revised based on the NSRR experiments in the future. According to the above requirement, new NSRR experimental program with the preirradiated fuel rods as test samples was started in 1989. Test fuel rods are prepared by refabrication of the long-sized fuel rods preirradiated in commercial PWRs and BWRs into short segments and by preirradiation of short-sized test fuel rods in the Japan Material Testing Reactor(JMTR). For the tests with preirradiated fuel rods as test samples, the special experimental capsules, the automatic instrumentation fitting device, the automatic capsule assembling device and the capsule loading device were newly developed. In addition, the existing hot cave was modified to mount the capsule assembling device and the other inspection tools and, a new small iron cell was established adjacent to the cave to store the instrumentation fitting device. (author)

  12. Recent advances and achievements in WWER-1000 fuel design performance and operation

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Molchanov, V.

    2009-01-01

    In this paper the main results of TVS-2 (TVS-2M) basic design operation like TVS-2 - 1216 pcs., including 687 in operation, TVS-2M - 66 pcs. in operation (Balakovo-1); reliability -1,6·10-6 in 2008 and the Balakovo NPP capacity factor - 90% are presented. Average efficient operating time of the Balakovo power units, calculated capacity factor for the Balakovo NPP at transition to fuel cycle 3x1,5, contemporary operational requirements for fuel and their realization as well as SPND axial position variation in the core with TVS - 2M and CPS AR usage are shown

  13. Irradiation Experiments on Plutonium Fuels for Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, B. R.T.; Wait, E. [Atomic Energy Research Establishment Harwell, Berks. (United Kingdom)

    1967-09-15

    An assessment carried out some years ago indicated that cermet fuels might provide the high burn-up and integrity required for fast reactors. An irradiation programme was started at Harwell on (U, Pu)O{sub 2} -SS cermet plates and rods, mainly In thermal neutron fluxes, to gain experience of dimensional stability at temperatures typical of modern sodium-cooled fast reactor designs (600-650 Degree-Sign C). A subsequent assessment showed that cermets carried a large penalty as far as breeding was concerned and (U, Pu)C was chosen by Harwell for long-term study as an alternative, economic, fast reactor fuel. However, the results from the cermet experiments were of sufficient promise to proceed with parallel irradiation programmes on cermets and carbide. The studies of cermets showed that dimensional instability (swelling and cladding rupture) were caused by the pressures exerted on the steel matrix by the fuel particles, and that the initial density of the fuel particles was important in determining the burn-up at which failure occurred. Further, it was shown that cermets provided a useful vehicle for studying the changes occurring in oxide fuel particles with increasing burn-up. The disappearance of initial porosity and its replacement by fission gas bubbles and segregated solid fission products was studied in some detaiL No significant differences were observed between UO{sub 2} and(U,Pu)O{sub 2} particles. The initial studies of (U, Pu)C were concerned with the effect of varying composition and structure on swelling and fission gas release. A tantalum-lined nickel alloy cladding material was used to contain both pellet and powder specimens In an irradiation experiment in the core of the Dounreay fast reactor. This showed that the presence of a metal phase in the fuel led to a high swelling rate, that fission gas release was low up to {approx} 3% bum-up, and that a low density powder accommodated the swelling without excessive straining of the can. A subsequent

  14. Performance Evaluation and Suggestion of Upgraded Fuel Handling Equipment for Operating OPR1000

    International Nuclear Information System (INIS)

    Chang, Sang Gyoon; Hwang, Jeung Ki; Choi, Taek Sang; Na, Eun Seok; Lee, Myung Lyul; Baek, Seung Jin; Kim, Man Su; Kunik, Jack

    2011-01-01

    The purpose of this study is to evaluate the performance of upgraded FHE (Fuel Handling Equipment) for operating OPR 1000 (Optimized Power Reactor) by using data measured during the fuel reloading, and make some suggestions on enhancing the performance of the FHE. The fuel handling equipment, which serves critical processes in the refueling outage, has been upgraded to increase and improve the operational availability of the plant. The evaluation and suggestion of this study can be a beneficial tool related to the performance of the fuel handling equipment

  15. Safety standards, legislation and codes of practice for fuel cell manufacture and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.P.

    1999-07-01

    This report examines safety standards, legislation and codes of practice for fuel cell manufacture and operation in the UK, Europe and internationally. Management of health and safety in the UK is discussed, and the characteristics of phosphoric acid (PAFC), proton exchange membrane (PEM), molten carbonate (MCFC), solid oxide (SOFC) fuel cells are described. Fuel cell power plant standards and manufacture in the UK, design and operational considerations, end of life disposal, automotive fuel cell system, and fuelling and vehicular concerns are explored, and standards, legislation and codes of practice are explained in the appendix.

  16. FFTF [Fast Flux Test Facility] fuel handling experience (1979--1986)

    International Nuclear Information System (INIS)

    Romrell, D.M.; Art, D.M.; Redekopp, R.D.; Waldo, J.B.

    1987-05-01

    The Fast Flux Test Facility (FFTF)is a 400 MW (th) sodium-cooled fast flux test reactor located on the Hanford Site in southeastern Washington State. The FFTF is operated by the Westinghouse Hanford Company for the United States Department of Energy. The FFTF is a three loop plant designed primarily for the purpose of testing full-scale core components in an environment prototypic of future liquid metal reactors. The plant design emphasizes features to enhance this test capability, especially in the area of the core, reactor vessel, and refueling system. Eight special test positions are provided in the vessel head to permit contact instrumented experiments to be installed and irradiated. These test positions effectively divide the core into three sectors. Each sector requires its own In-Vessel Handling Machine (IVHM) to access all the core positions. Since the core and the in-vessel refueling components are submerged under sodium, all handling operations must be performed blind. This puts severe requirements on the positioning ability are reliability of the refueling components. This report addresses the operating experience with the fuel handling system from initial core loading in November, 1979 through 1986. This includes 9 refueling cycles. 2 refs., 8 figs

  17. Analyses for inserting fresh LEU fuel assemblies instead of fresh HEU fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam

    International Nuclear Information System (INIS)

    Hanan, N. A.; Deen, J.R.; Matos, J.E.

    2005-01-01

    Analyses were performed by the RERTR Program to replace 36 burned HEU (36%) fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam with either 36 fresh fuel assemblies currently on-hand at the reactor or with LEU fuel assemblies to be procured. The study concludes that the current HEU (36%) WWR-M2 fuel assemblies can be replaced with LEU WWR-M2 fuel assemblies that are fully-qualified and have been commercially available since 2001 from the Novosibirsk Chemical Concentrates Plant in Russia. The current reactor configuration using re-shuffled HEU fuel began in June 2004 and is expected to allow normal operation until around August 2006. If 36 HEU assemblies each with 40.2 g 235 U are inserted without fuel shuffling over the next five operating cycles, the core could operate for an additional 10 years until June 2016. Alternatively, inserting 36 LEU fuel assemblies each containing 49.7 g 235 U without fuel shuffling over five operating cycles would allow normal operation for about 14 years from August 2006 until October 2020. The main reason for the longer service life of the LEU fuel is that its 235 U content is higher than the 235 U content needed simply to match the service life of the HEU fuel. Fast neutron fluxes in the experiment regions would be very nearly the same in both the HEU and LEU cores. Thermal neutron fluxes in the experiment regions would be lower by 1-5%, depending on the experiment type and location. (author)

  18. Swedish plans and experience regarding management of spent fuel and core components

    International Nuclear Information System (INIS)

    Grahn, P.H.; Hedin, G.

    2005-01-01

    In Sweden, the duties and responsibilities involved in handling radioactive waste were defined in the seventies. The 1976 Stipulation Law provides for the originator of the waste to be fully responsible for te waste arising in the course of plant operation. SKB, Swedish Nuclear Fuel and Waste Management Co., was founded by the Swedish operators of nuclear power plants in 1972 to take care of nuclear power plant waste management and radioactive waste treatment. In the eighties, the Finance Act was adopted which provides for the establishment of a fund to finance complete disposal of nuclear power plant waste, including radioactive waste and spent fuel. Over the past few years, there have been various developments in nuclear power plant waste management: - Reprocessing of spent fuel is no longer part of the waste management strategy. The fuel elements are stored in a central interim store, CLAB, which has been in operation since 1985 and now holds approx. 4 000 t of fuel elements. - A transport system for radioactive waste and spent fuel has been in operation successfully since 1985. - A repository for low- and medium-level waste has been in operation since 1985. - Work has been underway for the past twenty years in research, development, and construction of an underground repository for spent fuel. Development has now reached a stage which will allow a decision to be taken within the next five or ten years about the sites of the conditioning plant and the repository. (orig.)

  19. Determination of fission gas release of spent nuclear fuel in puncturing test and in leaching experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    González-Robles, E., E-mail: ernesto.gonzalez-robles@kit.edu [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Metz, V. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Wegen, D.H. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Herm, M. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Papaioannou, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Bohnert, E. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Gretter, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Müller, N. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany); Nasyrow, R.; Weerd, W. de; Wiss, T. [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), P.O. Box 2340, 76125, Karlsruhe (Germany); Kienzler, B. [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), P.O. Box 3640, D-76021, Karlsruhe (Germany)

    2016-10-15

    During reactor operation the fission gases Kr and Xe are formed within the UO{sub 2} matrix of nuclear fuel. Their quantification is important to evaluate their impact on critical parameters regarding the fuel behaviour during irradiation and (long-term) interim storage, such as internal pressure of the fuel rod and fuel swelling. Moreover the content of Kr and Xe in the plenum of a fuel rod and their content in the UO{sub 2} fuel itself are widely used as indicators for the release properties of {sup 129}I, {sup 137}Cs, and other safety relevant radionuclides with respect to final disposal of spent nuclear fuel. The present study deals with the fission gas release from spent nuclear fuel exposed to simulated groundwater in comparison with the fission gas previously released to the fuel rod plenum during irradiation in reactor. In a unique approach we determined both the Kr and Xe inventories in the plenum by means of a puncturing test and in leaching experiments with a cladded fuel pellet and fuel fragments in bicarbonate water under 3.2 bar H{sub 2} overpressure. The fractional inventory of the fission gases released during irradiation into the plenum was (8.3 ± 0.9) %. The fraction of inventory of fission gases released during the leaching experiments was (17 ± 2) % after 333 days of leaching of the cladded pellet and (25 ± 2) % after 447 days of leaching of the fuel fragments, respectively. The relatively high release of fission gases in the experiment with fuel fragments was caused by the increased accessibility of water to the Kr and Xe occluded in the fuel.

  20. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  1. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    International Nuclear Information System (INIS)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa; Bando, Masaru.

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  2. Evaluation of radiation exposures to personnel during maintenance operations and fuel recharging at NPP with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Beskrestnov, N.V.; Vasil'ev, Eh.S.; Kozlov, V.F.; Odinokov, Yu.Yu.; Romanov, V.P.; Tsypin, S.G.

    1983-01-01

    A unified data acquisition and analysis system is presented. The system is intended to assess radiation exposures to personnel and perform radiation monitoring during periodic maintenance operations sna fuel recharging at NPPs with WWER-440 reactors. The basic principles of developing this system, patterns of danita collection are considered, points of radiation motoring chosen with account of the NPP operating experience are pointed out

  3. Overview of the SEU project for extended burnup at the Atucha-I NPP. Four years of operating experience

    International Nuclear Information System (INIS)

    Fink, J.M.; Higa, M.; Perez, R.; Pineyro, J.; Sidelnik, J.; Casario, J.A.; Alvarez, L.

    2002-01-01

    Atucha I is a 357 MWe nuclear station moderated and cooled with heavy water, of German design located in Argentina. Fuelling is on-power and the plant was originally fuelled with natural uranium. To reduce fuel costs a program was initiated in August 1993 to introduce gradually slightly enriched uranium (SEU) fuel (0.85 w% U-235) with an associated burnup increase from 5900 MWd/tU to 11300 MWd/tU. The introduction of SEU fuel started in January 1995 and the program was divided in three Phases with an upper limit of SEU FA in the core: 12, 60 and 252 (full core) and licensing documentation was prepared for each Phase. This paper describes the most important aspects of the operating and project experience, and some factors limiting the burnup extension from an operation point of view. After four years of the program and with 181 SEU FA (71%) of the core, the operating experience has been good and without unfavourable effects due to the use of SEU fuel with the only exception of a small increase of the time to reach full power in plant startups or power cycling. In particular, the new criteria to prevent PCI failures in power ramps for higher burnup SEU fuel in refueling operations, plant startups or power cycling has been effective. The average discharge burnup of the SEU fuel taken out of the reactor in 1998 was 11263 MWd/tU. The average discharge burnup of the natural fuel in the same year was 6640 MWd/tU, with an increase of about 12% of the original value for a natural fuel core. The average number of fresh fuel assemblies per full power day was being reduced from 1.31 to 0.92 in 1998 and 0.83 in 1999. The fuel costs dropped gradually during the program from 9.38 (with natural uranium fuel) to 6.57 $/MWh in the first four months of 1999 (taking as reference the NU and SEU FA costs for 1999). Because of this the SEU program has been an important contribution to the reduction of Atucha I operating costs and to the competitiveness of nuclear power generation against

  4. Environmental and ventilation benefits for underground mining operations using fuel cell powered production equipment

    International Nuclear Information System (INIS)

    Kocsis, C.; Hardcastle, S.

    2007-01-01

    The benefits of replacing diesel engines with fuel cells in mine production equipment were discussed. The paper was part of a multi-year feasibility study conducted to evaluate the use of hydrogen fuel cell-powered equipment to replace diesel engine powered equipment in underground mining operations. The feasibility study demonstrated that fuel cells are capable of eliminating the unwanted by-products of combustion engines. However, the use of fuel cells also reduced the amount of ventilation that mines needed to supply, thereby further reducing energy consumption. This study examined the benefits of replacing diesel engines with fuel cells, and discussed the mitigating qualifiers that may limit ventilation energy savings. Solutions to retaining and maintaining additional ventilation in the event of hydrogen leaks from fuel cell stacks were also investigated. The analyses were conducted on 6 operating mines. Current operating costs were compared with future operating conditions using fuel cell powered production vehicles. Operating costs of the primary ventilation system were established with a mine ventilation simulator. The analysis considered exhaust shaft velocities, heating system air velocities, and levels of silica exposure. Canadian mine design criteria were reviewed. It was concluded that appropriate safeguards are needed along hydrogen distribution lines to lower the impacts of hydrogen leaks. Large financial commitments may also be required to ensure a spark-free environment. 20 refs., 6 tabs., 3 figs

  5. Risk management for operations of the LANL Critical Experiments Facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators

  6. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    Highlights: • We present a practical fuel and emissions modeling tool for alternative fuel buses. • The model assesses well-to-wheels emissions impacts of bus fleet decisions. • Mode-based approach is used to account for duty cycles and local conditions. • A case study using real-world operations data from Atlanta, GA is presented. • Impacts of alternative bus options depend on operating and geographic features. - Abstract: Hybrid and electric powertrains and alternative fuels (e.g., compressed natural gas (CNG), biodiesel, or hydrogen) can often reduce energy consumption and emissions from transit bus operations relative to conventional diesel. However, the magnitude of these energy and emissions savings can vary significantly, due to local conditions and transit operating characteristics. This paper introduces the transit Fuel and Emissions Calculator (FEC), a mode-based life-cycle emissions modeling tool for transit bus and rail technologies that compares the performance of multiple alternative fuels and powertrains across a range of operational characteristics and conditions. The purpose of the FEC is to provide a practical, yet technically sophisticated tool for regulatory agencies and policy analysts in assessing transit fleet options. The FEC’s modal modeling approach estimates emissions as a function of engine load, which in turn is a function of transit service parameters, including duty cycle (idling and speed-acceleration profile), road grade, and passenger loading. This approach allows for customized assessments that account for local conditions. Direct emissions estimates are derived from the scaled tractive power (STP) operating mode bins and emissions factors employed in the U.S. EPA’s MOVES (MOtor Vehicle Emissions Simulator) model. Life-cycle emissions estimates are calculated using emissions factors from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model. The case study presented in this paper

  7. Transport of MOX fuel

    International Nuclear Information System (INIS)

    Porter, I.R.; Carr, M.

    1997-01-01

    The regulatory framework which governs the transport of MOX fuel is set out, including packages, transport modes and security requirements. Technical requirements for the packages are reviewed and BNFL's experience in plutonium and MOX fuel transport is described. The safety of such operations and the public perception of safety are described and the question of gaining public acceptance for MOX fuel transport is addressed. The paper concludes by emphasising the need for proactive programmes to improve the public acceptance of these operations. (Author)

  8. Staged air biomass gasification. Operation experiences and process optimisation. Final report; Trinopdelt forgasning. Erfaringsindhentning og optimering. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Kyster, L.

    2011-05-15

    The project's aim was to optimize the drying plant for wood chips, and to accumulate operating experience from the entire facility through a half year of operation. Based on theoretical considerations the potential for improving the drying process was evaluated. Possibilities to take into the flue gas humidity as a control parameter was studied, but after a few simple measurements it was concluded that the most relevant change was to seal of the plant to minimize the risk of ingress of cold air into the fuel. After finding the cause of the leaking a new fuel inlet to the dryer has been constructed, and the original, leaky rotary valve has been replaced. Both changes have led to a significant improvement of the drying plant. Operational experience from plant operation showed with clarity that the energy loss from charcoal in the ashes was significantly higher than desirable. The volume meant that the handling and disposal of charcoal in itself constituted a major operational cost. At the end of the project, promising experiments with incorporation of an extra step in the gasification process were carried out. It seems to be an effective method to convert the remaining carbon matter to flammable gas and increase gas generator efficiency. Work on reducing charcoal production now continues in a new project. (ln)

  9. Operating experience of vault type dry storage and its relevance to future storage needs

    International Nuclear Information System (INIS)

    Maxwell, E.O.; Deacon, D.

    1982-01-01

    An outline description of the early passive cooled vault type dry stores for irradiated magnox fuel at the Wylfa Nuclear Power Station together with the valuable operating experience gained over many years. An outline description of the world's first air-cooled vault type dry store (350 Te) and comments on its construction and successful operation. A description of the basic principles that were used in the design of this store and how these principles have been developed for use on vault type storage systems for oxide fuel and vitrified waste. An examination of the basic parameters that the author's consider should be used to measure the adequacy of the many storage options currently being considered around the world is included in order that a better assessment of the various systems may be obtained

  10. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1985-01-01

    Experiments are being conducted on nuclear power plant (NPP) control room training simulators by the Oak Ridge National Laboratory, its subcontractor, General Physics Corporation, and participating utilities. The experiments are sponsored by the Nuclear Regulatory Commission's (NRC) Human Factors and Safeguards Branch, Division of Risk Analysis and Operations, and are a continuation of prior research using simulators, supported by field data collection, to provide a technical basis for NRC human factors regulatory issues concerned with the operational safety of nuclear power plants. During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE boiling water reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of (a) senior reactor operator (SRO) experience, (b) operating crew augmentation with an STA and (c) practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator. Methodology and results to date are reported

  11. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  12. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  13. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  14. Analysis experiment in the mechanical non-oxidization decladding of the simulated spent fuel

    International Nuclear Information System (INIS)

    Jung, Jae Hoo; Yoon, Ji Sup; Hong, Dong Hee; Kim, Young Hwan; Lee, Jong Youl; Park, Gee Yung; Kim, Do Woo

    2000-11-01

    A decladding process, the first process of the fuel recycling, is accomplished by two different methods, chemical(wet type) method and mechanical(dry type) method. The chemical method is widely used in the existing commercial reprocessing plants because of its high efficiency, however, this process generates a lot of liquid radioactive wastes. To deal with this problem, the mechanical decladding process using the pressing mechanism is considered in this research. The pressing type decladding process is to extract the fuel pellet by inserting the pin into the fuel clad and by pressing out the fuel pellet. The pressing type decladding device equipped with two manually driven handles had been developed in the first step, and the performance of this device had been tested by using the simulated fuel rods filled with the plaster instead of spent fuel pellet. The experimental result showed that the best fuel extraction and recovery rate can be obtaind with the pellet size of 30 mm. In the second step, the manually driven handle had been replaced with the motor drive machanism. Also, the design of the device had been modified in consideration of the remote operation, in consideration of the hot cell operation. Several problems had been revealed such as the dust generation, difficulty in quantification of fuel mass, contamination of a spring module, difficulty in remote disassembly of the servo motor, and inaccurate positioning of the rotary plate. Considering these problems, the design has been again modified, at this year, by installing a dust collection device, a brushing mechanism, a countermeter, a pellet recognization sensor; by modifying the positioning mechanism of the rotary plate; and by modularizing the press pin mechanism. Also, in this modification, the 3 dimensional graphic design method has been adopted. with this modifications, the improved mechanical decladding device has been developed and its performance is investigated through a series of experiments

  15. Qinshan NPP in-core fuel management improvement

    International Nuclear Information System (INIS)

    Kong Deping; Liao Zejun; Wu Xifeng; Wei Wenbin; Wang Yongming; Li Hua

    2006-01-01

    In the 10-year operation of Qinshan Nuclear Power Plant, the initial designed reloading strategy has been improved step by step based on the operation experiences and the advanced domestic and international fuel management methods. Higher burnup has been achieved and more economic operation gained through the loading pattern improvement and the fuel enrichment increased. The article introduces the in-core fuel management strategy improvement of Qinshan Nuclear Power Plant in its 10-year operation. (authors)

  16. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  17. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  18. The FLIP fuel experience at Washington State University

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1977-01-01

    The Washington State University TRIGA-fueled modified G.E. reactor was refueled with a partial TRIGA-FLIP core in February, 1976. The final core loading consisted of 35 FLIP and 75 Standard TRIGA fuel rods and provided a core excess reactivity of $7.98. The observed performance of the reactor did not deviate significantly from the design predictions and specifications. Pulsing tests revealed a maximum power output of 1850 MW with a fuel temperature of 449 deg. C from a $2.50 pulse. Slight power fluctuations at 1 Megawatt steady-state operation and post-pulse power oscillations were observed. (author)

  19. Final environmental statement related to the operation of the Barnwell Fuel Receiving and Storage Station (Docket No. 70-1729)

    International Nuclear Information System (INIS)

    1976-01-01

    The proposed action is to issue a materials license, pursuant to 10 CFR Parts 30, 40 and 70 of the Commission's regulations, authorizing Allied-General Nuclear Services to receive and handle fuel casks containing spent reactor fuel elements and to store spent reactor fuel at the Barnwell Nuclear Fuel Plant (BNFP), in the Barnwell Fuel Receiving and Storage Station (BFRSS). The BFRSS is a part of, and contiguous to, the BNFP-Separations Facility which is being constructed on a small portion of a 1700 acre site about six miles west of the city of Barnwell in Barnwell County, South Carolina. Construction of the BFRSS facility has been completed and the BNFP Separations Facility is more than 90% complete. A uranium Hexafluoride Facility is being constructed on the same site, and a Plutonium Product Facility is proposed to be constructed adjacent to the Separations Facility. The license that is the subject of this action will, if issued, allow lthe use of the BFRSS separate4 from the operation of the Separations Facility. Impacts resulting from the construction of the BFRSS have already occurred and mitigating measures have been and are being implemented to offset any adverse impacts. Operation of the BFRSS will not interfere with water sources, and should cause no noticeable damage to the terrestrial or aquatic environments. Operating experience at other fuel receiving and storage facilities has shown that radioactive concentrations discharged to the environs (the more significant process effluents) have been well below applicabhle state and federal limits. The small quantities to be released during operation of the BFRSS will result in negligible environmental impact. 20 figs

  20. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  1. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  2. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    International Nuclear Information System (INIS)

    2009-06-01

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing facilities. - 3. Advances in Water

  3. FFTF fuel pin design procedure verification for transient operation

    International Nuclear Information System (INIS)

    Baars, R.E.

    1975-05-01

    The FFTF design procedures for evaluating fuel pin transient performance are briefly reviewed, and data where available are compared with design procedure predictions. Specifically, burst conditions derived from Fuel Cladding Transient Tester (FCTT) tests and from ANL loss-of-flow tests are compared with burst pressures computed using the design procedure upon which the cladding integrity limit was based. Failure times are predicted using the design procedure for evaluation of rapid reactivity insertion accidents, for five unterminated TREAT experiments in which well characterized fuel failures were deliberately incurred. (U.S.)

  4. Evaluation of gap heat transfer model in ELESTRES for CANDU fuel element under normal operating conditions

    International Nuclear Information System (INIS)

    Lee, Kang Moon; Ohn, Myung Ryong; Im, Hong Sik; Choi, Jong Hoh; Hwang, Soon Taek

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. 13 figs., 3 tabs., 16 refs. (Author)

  5. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels

    Science.gov (United States)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.

  6. IMPROVEMENT OF PERFORMANCE OF DUAL FUEL ENGINE OPERATED AT PART LOAD

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2010-12-01

    Full Text Available Rising petroleum prices, an increasing threat to the environment from exhaust emissions, global warming and the threat of supply instabilities has led to the choice of inedible Mahua oil (MO as one of the main alternative fuels to diesel oil in India. In the present work, MO was converted into biodiesel by transesterification using methanol and sodium hydroxide. The cost of Mahua oil biodiesel (MOB is higher than diesel. Hence liquefied petroleum gas (LPG, which is one of the cheapest gaseous fuels available in India, was fumigated along with the air to reduce the operating cost and to reduce emissions. The dual fuel engine resulted in lower efficiency and higher emissions at part load. Hence in the present work, the injection time was varied and the performance of the dual fuel engine was studied. From the engine tests, it is observed that an advanced injection time results in higher efficiency and lower emissions. Hence, advancing the injection timing is one of the ways of increasing the efficiency of LPG+MOB dual fuel engine operated at part load.

  7. NPD Operating Experience

    Energy Technology Data Exchange (ETDEWEB)

    Horton, E. P. [Hydro-Electric Power Commission of Ontario, Rolphton, ON (Canada)

    1968-04-15

    NPD has demonstrated high-capacity factor operation and for the past three years has achieved an average net capacity factor of 98% for the ''winter-peak'' period. The net capacity factor for the year 1966 was 88% and for the period from the end of commissioning (October 1962) to the end of 1966 was 71%. The output of the station has been stretched from 22 MW(e) gross to 25 MW(e) gross. This was aided by the installation of an internal steam separator in the turbine but no basic modifications to the reactor-boiler systems were required. The turbine has also been modified by the installation of chrome steel diaphragms as a solution to an erosion problem. The station also continues as a test facility to develop new components and techniques. This includes the recent successful replacement of two reactor pressure tubes and the conversion of the reactor vault ventilation system to a ''dry'' atmosphere using a molecular sieve to collect heavy-water leakage and control the concentration of acidic oxides of nitrogen. Fuel performance has been excellent and the average burn-up in the core is now 84 MWh/kg U which is slightly above the equilibrium design value. Only three fuel bundles have been found with sheath failures and none of these was due to a deficiency in the fuel but was as a result of handling problems with the refuelling equipment. In spite of undesirably high maintenance time, the fuelling machines have now inserted over 1000 fuel bundles into the reactor ''on power''. Heavy-water loss rates have been acceptable and are improving. The average loss rate from leaks during 1966 was 210 g/h. A proposal to modify the NPD heavy-water heat transport system to allow boiling is under consideration. (author)

  8. Loss-of-coolant accident test series TC-1 experiment operating specifications

    International Nuclear Information System (INIS)

    Yackle, T.R.

    1979-09-01

    The purpose of this document is to specify the experiment operating procedure for the test series TC-1. The effects of externally mounted cladding thermocouples on the fuel rod thermal behavior during LOCA blowdown and reflood cycles will be investigated in the test. Potential thermocouple effects include: (a) delayed DNB, (b) momentary cladding rewets following DNB, (c) premature cladding rewet during a blowdown two-phase slug period, and (d) early cladding rewet during reflood. The two-phase slug period will be controlled by momentarily opening the hot leg valve. The slug will consist of lower plenum liquid that is sent through the flow shrouds and will be designed to quench the fuel rods at a rate that is similar to the slug experienced early in the LOFT L2-2 and L2-3 tests

  9. Rules for the licensing of new experiments in BR2: application to the test irradiation of new MTR-fuels

    International Nuclear Information System (INIS)

    Joppen, F.

    2000-01-01

    New types of MTR fuel elements are being developed and require a qualification before routine operation could be authorized. During the test irradiation the new fuel elements .are considered as experimental devices and their irradiation is allowed according to the procedures for experiments. Authorization is based on the advice .of a consultative committee on experiments. This procedure is valid as long as the irradiation is covered by the actual reactor license. An additional license or an amendment is only required if due to the experiment the risk for the workers or the environment is increased in a significant way. A few experimental fuel plates loaded in the primary loop of the reactor will not increase this risk. The source term for potential radioactive releases remains more or less the same. The probability for an accident can be limited by restricting the heat flux and surface temperature. (author)

  10. Operator aid system for Dhruva fueling machine

    International Nuclear Information System (INIS)

    Misra, S.M.; Ramaswamy, L.R.; Gohel, N.; Bharadwaj, G.; Ranade, M.R.; Khadilkar, M.G.

    1997-01-01

    Systems with significant software contents are replacing the old hardware logic systems. These systems not only are versatile but are easy to make changes in the program. Extensive use of such systems in critical real-time operation environment warrants not only excessive training on simulators, documentation but also fault tolerant system to bring the operation to a safe state in case of error. With new graphic user software interface and advancement in personal computer hardware design, the dynamic status of the physical environment can be shown on the visual display at near real time. These visual aids along with the software covering all the interlocks aids an operator in his professional work. This paper highlights the operator aid system for Dhruva fueling machine. (author). 6 refs., 1 fig

  11. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  12. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  13. Idling operation apparatus for multicylinder fuel injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Kanahira, A

    1974-11-20

    A device to cut off the fuel supply to a number of cylinders at idling is described for those engines equipped with multicylinder fuel injection systems. The discontinuation of the fuel gas supply to the cylinders is made by a magnetically operated valve which is related to the accelerator. When the engine is idling, a switch activates the magnetic valve and the tube leading to the cylinder closes while a valve on the tube leading to a dual tank opens, and the pumped gas returns to the tank. This valve is installed on several cylinders, but not on all. Thus, at idling only a certain number of cylinders are firing, which lowers the hydrocarbon levels in the exhaust gas since non-firing cylinders intake and discharge only air.

  14. Operating experience of a portable thermophotovoltaic power supply

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1999-03-01

    Two configurations of man-portable thermophotovoltaic (TPV) power supplies based on Thermo Power's supported continuous fiber emitter have been designed, built, and are being tested. The systems use narrow-band, fibrous, ytterbia emitters radiating to bandgap matched silicon photovoltaic arrays with dielectric stack filters for optical energy recovery and recuperators for thermal energy recovery. The systems have been designed for operation with propane and with combustion air preheat temperatures of up to 1250 K. To operate at air preheat temperatures above the auto-ignition temperature of the fuel, a unique fuel delivery system was devised which results in the micromixing and rapid combustion of the fuel and air right in the emitter fibers. This allows the ytterbia emitter fibers to run much hotter (˜2000 K) than any of the surrounding structure.

  15. The Influence of Fuel Sulfur on the Operation of Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov

    The present work focusses on SO3/H2SO4 formation and sulfuric acid (H2SO4) condensation in a large low speed 2-stroke marine diesel engine. SO3 formation is treated theoretically from a formulated multizone engine model described in this work that includes a detailed and validated sulfur reaction...... mechanism. Model results show that for a large marine engine generally about 3 % - 6 % of the fuel sulfur converts to SO3 while the remainder leaves the engine as SO2 from which the SO3 is formed during the expansion stroke. SO3 formation scales with the cylinder pressure and inversely with the engine speed...... as also demonstrated by a number of SO3 experiments described in this work. The experiments are carried out with a heavy duty medium speed 4 stroke diesel engine operating on heavy fuel oil including ≈ 2 wt. % sulfur. SO3 was measured successfully in the exhaust gas with the PENTOL SO3 analyzer...

  16. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  17. A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels

    International Nuclear Information System (INIS)

    Wu, Q X; Zhao, T S; Chen, R; Yang, W W

    2010-01-01

    Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO 2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.

  18. Risk management for operations of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly (SHEBA 2--Solution high-Energy Burst Assembly), two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines which may be configured with nuclear materials and assembled by remote control. SNM storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations which can include critical assembly fuel loading. The operational sequences of each mode are very nearly the same, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs

  19. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  20. Dodewaard fuel supply agreement - a model for the future

    International Nuclear Information System (INIS)

    Raven, L.F.; Hubers, C.

    1980-01-01

    An Agreement between the Utility GKN and the Fuel Supplier BNFL has eliminated any Utility imposed penalty clauses for fuel failure due to operational conditions and, consequently, there are no restrictions imposed by the Fuel Supplier on the reactor operational manoeuvres. The result is that the Utility can now decide if the risk of fuel clad failure during a reactor power ramp outweighs the financial loss due to slower ramp rates. It is the Utility and not the Fuel Supplier who is in the best position to make this judgment provided adequate operational experience and computer codes are available to quantify the risk. The paper discusses the reactor operational experience, including the fuel failure rate and the confirmation of PCI failure by post irradiation examination. It establishes the practicality of the Agreement for the Dodewaard reactor and suggests such arrangements could be beneficial to other Utilities. (author)

  1. Experience with unconventional gas turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D K [ABB Power Generation Ltd., Baden (Switzerland)

    1997-12-31

    Low grade fuels such as Blast Furnace Gas, biomass, residual oil, coke, and coal - if used in conjunction with appropriate combustion, gasification, and clean-up processes and in combination with a gas turbine combined cycle -offer attractive and environmentally sound power generation. Recently, the Bao Shan Iron and Steel Company in Shanghai placed an order with Kawasaki Heavy Industries, Japan, to supply a combined-cycle power plant. The plant is to employ ABB`s GT 11N2 with a combustor modified to burn blast furnace gas. Recent tests in Shanghai and at Kawasaki Steel, Japan, have confirmed the burner design. The same basic combustor concept can also be used for the low BTU gas derived from airblown gasification processes. ABB is also participating in the API project: A refinery-residual gasification combined-cycle plant in Italy. The GT 13E2 gas turbine employees MBTU EV burners that have been successfully tested under full operating conditions. These burners can also handle the MBTU gas produced in oxygenblown coal gasification processes. ABB`s vast experience in burning blast furnace gas (21 plants built during the 1950s and 1960s), residuals, crude, and coal in various gas turbine applications is an important asset for building such power plants. This presentation discusses some of the experience gained in such plants. (orig.) 6 refs.

  2. Experience with unconventional gas turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D.K. [ABB Power Generation Ltd., Baden (Switzerland)

    1996-12-31

    Low grade fuels such as Blast Furnace Gas, biomass, residual oil, coke, and coal - if used in conjunction with appropriate combustion, gasification, and clean-up processes and in combination with a gas turbine combined cycle -offer attractive and environmentally sound power generation. Recently, the Bao Shan Iron and Steel Company in Shanghai placed an order with Kawasaki Heavy Industries, Japan, to supply a combined-cycle power plant. The plant is to employ ABB`s GT 11N2 with a combustor modified to burn blast furnace gas. Recent tests in Shanghai and at Kawasaki Steel, Japan, have confirmed the burner design. The same basic combustor concept can also be used for the low BTU gas derived from airblown gasification processes. ABB is also participating in the API project: A refinery-residual gasification combined-cycle plant in Italy. The GT 13E2 gas turbine employees MBTU EV burners that have been successfully tested under full operating conditions. These burners can also handle the MBTU gas produced in oxygenblown coal gasification processes. ABB`s vast experience in burning blast furnace gas (21 plants built during the 1950s and 1960s), residuals, crude, and coal in various gas turbine applications is an important asset for building such power plants. This presentation discusses some of the experience gained in such plants. (orig.) 6 refs.

  3. Experience of development of the methods and equipment and the prospects for creation of WWER fuel examination stands

    International Nuclear Information System (INIS)

    Pavlov, S.; Smirnov, V.

    1998-01-01

    The report presents the basic methods and equipment developed for inspection of the fuel elements and fuel assemblies in the spent fuel pools. It considers their characteristics and results of the tests under laboratory and experimental fuel examination stand conditions. In particular, the following techniques are presented: visual inspection, measurement of the geometrical dimensions, definition of the form change in fuel assemblies and fuel elements, detection of the failed fuel elements, etc. The experience of the experimental fuel examination stand operation is generalized. The concept of the creation of the WWER-440 and WWER-1000 FA and FE inspection stands is presented. The concept is based on the modular principle which runs as follows. A set of the basic functional blocks is being developed based on which it is possible to make such a stand configuration which is necessary to fulfil the specific program of the examination at the particular nuclear power plant. (author)

  4. Recent U.S. reactor operating experience

    International Nuclear Information System (INIS)

    Stello, V. Jr.

    1977-01-01

    A qualitative assessment of U.S. and foreign reactor operating experience is provided. Recent operating occurrences having potentially significant safety impacts on power operation are described. An evaluation of the seriousness of each of these issues and the plans for resolution is discussed. A quantitative report on U.S. reactor operational experience is included. The details of the NRC program for evaluating and applying operating reactor experience in the regulatory process is discussed. A review is made of the adequacy of operating reactor safety and environmental margins based on actual operating experience. The Regulatory response philosophy to operating reactor experiences is detailed. This discussion indicates the NRC emphasis on the importance of a balanced action plan to provide for the protection of public safety in the national interest

  5. Material Control and Accountability Experience at the Fuel Conditioning Facility

    International Nuclear Information System (INIS)

    Vaden, D.; Fredrickson, G.L.

    2007-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials. Material accountancy is necessary at FCF for two reasons: 1) it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security, and 2) it provides a periodic check of inventories to ensure that processes and materials are within control limits. Material Control and Accountability is also a Department of Energy (DOE) requirement (DOE Order 474.1). The FCF employs a computer based Mass Tracking (MTG) System to collect, store, retrieve, and process data on all operations that directly affect the flow of materials through the FCF. The MTG System is important for the operations of the FCF because it supports activities such as material control and accountability, criticality safety, and process modeling. To conduct material control and accountability checks and to monitor process performance, mass balances are routinely performed around the process equipment. The equipment used in FCF for pyro-processing consists of two mechanical choppers and two electro-refiners (the Mark-IV with the accompanying element chopper and Mark-V with the accompanying blanket chopper for processing driver fuel and blanket, respectively), and a cathode processor (used for processing both driver fuel and blanket) and casting furnace (mostly used for processing driver fuel). Performing mass balances requires the measurement of the masses and compositions of several process streams and equipment inventories. The masses of process streams are obtained via in-cell balances (i.e., load cells) that weigh containers entering and leaving the process equipment. Samples taken at key locations are analyzed to determine the composition of process streams and equipment inventories. In cases where equipment or containers cannot be

  6. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Adigun, Babatunde John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division

    2016-10-31

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuel therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible

  7. Experiments in MARIUS on HTR tubular fuel with loose particles

    Energy Technology Data Exchange (ETDEWEB)

    Bosser, R; Langlet, G

    1972-06-15

    The work described on HTR tubular fuel with loose particles is the first part of a program in three points. The cell is the same in the three experiments, only particles in the fuel container are changed. The aim of the experiment is to achieve the buckling in a critical facility. A description of the techniques of measurements, calculations, and results are presented.

  8. Improvement in operating incident experience at the Savannah River Burial Ground

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1979-01-01

    Low-level radioactive wastes generated at the Savannah River Plant and Laboratory are stored at the Savannah River burial ground. These wastes have accumulated from >20 years of reprocessing nuclear fuels and materials for defense programs at the Savannah River Plant. Burial in earthen trenches and aboveground storage for transuranic materials are the principal modes of storage. The infrequent operating incidents that have occurred during the 20-year period have been analyzed. The incidents can be categorized as those causing airborne contamination, waterborne contamination, or vegetation contamination through penetration of plant roots into contaminated soil. Contamination was generally confined to the immediate area of the burial ground. Several incidents occurred because of unintentional burial or exhumation of material. The frequency of operating incidents decreased with operating experience of the burial ground, averaging only about two incidents per year during the last six years of operation

  9. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  10. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  11. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  12. Experiences of operation for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Kashimoto, Shigeyuki

    1979-01-01

    No. 1 plant in the Ikata Nuclear Power Station, Shikoku Electric Power Co., Inc., is a two-loop PWR unit with electric output of 566 MW, and it began the commercial operation on September 30, 1977, as the first nuclear power station in Shikoku. It is the 13th LWR and 7th PWR in Japan. The period of construction was 52 months since it had been started in June, 1973. During the period, it became the object of the first administrative litigation to seek the cancellation of permission to install the reactor, and it was subjected to the influence of the violent economical variation due to the oil shock, but it was completed as scheduled. After the start of operation, it continued the satisfactory operation, and generated about 2.35 billion KWh for 4300 operation hours. It achieved the rate of utilization of 96.7%. Since March 28, 1978, the first periodical inspection was carried out, and abnormality was not found in the reactor, the steam generator and the fuel at all. The period of inspection was 79 days and shorter than expected. The commercial operation was started again on June 14. The outline of the Ikata Nuclear Power Station, its state of operation, and the periodical inspection are reported. Very good results were able to be reported on the operation for one year, thanks to the valuable experiences offered by other electric power companies. (Kako, I.)

  13. Conventional transport fuels quality and ATF : recent Asian experience

    Energy Technology Data Exchange (ETDEWEB)

    Desbiens, R. [Consultec, Montreal, PQ (Canada)

    2002-07-01

    The experience gained in Manila, Philippines, with regard to transport fuels, was discussed during this presentation. It is estimated that 70 to 80 per cent of air pollution in the city of Manila is generated by vehicular traffic. Diesel-fueled vehicles operate all hours of the day, and motorized tricycles powered by a two-stroke engine, are cause for concern for local authorities. Several factors play a role in the problems experienced: vehicle ownership, poor air, congestion and noise in urban areas, poor transport infrastructure, coupled with policy problems such as fuel and vehicle quality standards, poor monitoring, ancient technologies, etc. The motorization of cities was examined, and special emphasis was places on the situation in Asia. The situation in China was looked at, where approximately 15 million automobiles are in use, with an annual increase of 11 to 13 per cent. The air pollution caused by motor vehicles in China was discussed, and new vehicle emission standards for China were presented. The issue of fuel injection systems for motorcycles in China was discussed, and the author mentioned that cost and reliability problems require further improvement. The use of compressed natural gas vehicles in Beijing was looked at, and some of the barriers are lack of public awareness, capital shortages, high price of natural gas, and shortage of advanced technologies. A feasibility study for the introduction of compressed natural gas vehicles in Beijing was conducted and the main findings presented. Public transport management in Hong Kong was reviewed, including the use of alternative environmentally friendly vehicles and fuel. A look at India, and specifically Delhi, was presented. The norms concerning vehicle emissions in India were briefly reviewed, followed by fuel quality improvements, and compressed natural gas vehicles. The author then discussed alternative fuels in Korea and the country's compressed natural gas bus promotion policy. The next

  14. A Mobile Robot for Emergency Operation of Fuel Exchange Machine

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongchil; Lee, Sunguk; Kim, Changhoi; Shin, Hochul; Jung, Seungho; Choi, Changhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    A Pressurized Heavy Water Reactor (PHWR) uses a heavy water as the coolant and moderator because it does not attenuate the neutron inside the reactor, which makes it possible to use natural uranium for nuclear fuels. However, since the uranium ratio is too low within the natural uranium, the reactor should be refueled everyday while the reactor is working. For that purpose, there is a fuel exchange machine. However as the time passes by, the durability and reliability become a problem. While the fuel handling machine exchanges the reactor fuel, it can be stuck to the pressure tube attached in the Calandra. Although this kind of situation is rarely happen, it can make the reactor be shutdown for normalizing the operation. Since the refueling is performed while the reactor is working, the radiation level is extremely high and the machine can be located at a high position up to nine meters from the floor, that is, the human worker can not approach the machine, so the fuel handling machine should be released remotely. To cope with this situation, the fuel handling machine has a manual drive mechanism at the rear side of it as shown in the circled images. If the worker can handle these manual drive mechanisms, the fuel handling machine can be released form the pressure tube. The KAERI had developed a long-reach manipulator system with a telescophic mast mechanism which can be deployed in the basement of the reactor room and manipulate the manual lever of the fuel exchange machine. Since the manipulator is located in the basement, there are several problems for its application such that the plug hole should be removed before the operation and the vibration of the mast mechanism make it difficult to locate the end effecter of the manipulator.

  15. A Mobile Robot for Emergency Operation of Fuel Exchange Machine

    International Nuclear Information System (INIS)

    Seo, Yongchil; Lee, Sunguk; Kim, Changhoi; Shin, Hochul; Jung, Seungho; Choi, Changhwan

    2007-01-01

    A Pressurized Heavy Water Reactor (PHWR) uses a heavy water as the coolant and moderator because it does not attenuate the neutron inside the reactor, which makes it possible to use natural uranium for nuclear fuels. However, since the uranium ratio is too low within the natural uranium, the reactor should be refueled everyday while the reactor is working. For that purpose, there is a fuel exchange machine. However as the time passes by, the durability and reliability become a problem. While the fuel handling machine exchanges the reactor fuel, it can be stuck to the pressure tube attached in the Calandra. Although this kind of situation is rarely happen, it can make the reactor be shutdown for normalizing the operation. Since the refueling is performed while the reactor is working, the radiation level is extremely high and the machine can be located at a high position up to nine meters from the floor, that is, the human worker can not approach the machine, so the fuel handling machine should be released remotely. To cope with this situation, the fuel handling machine has a manual drive mechanism at the rear side of it as shown in the circled images. If the worker can handle these manual drive mechanisms, the fuel handling machine can be released form the pressure tube. The KAERI had developed a long-reach manipulator system with a telescophic mast mechanism which can be deployed in the basement of the reactor room and manipulate the manual lever of the fuel exchange machine. Since the manipulator is located in the basement, there are several problems for its application such that the plug hole should be removed before the operation and the vibration of the mast mechanism make it difficult to locate the end effecter of the manipulator

  16. Field experience with failed-fuel detection - PWRs [pressurized water reactors

    International Nuclear Information System (INIS)

    File, P.

    1990-01-01

    Industry sensitivity to in-reactor fuel reliability has been heightened recently for several reasons: increased Institute of Nuclear Power Operations attention (fuel reliability indicator), impact of fuel failures on operating and maintenance costs, and concern about personnel contaminations caused by small radioactive particles (often fragments from failed rods). As a result, utilities often perform inspection and repair campaigns at the end of a cycle where fuel failures have been evident in order to avoid experiencing the effects of those failures during the subsequent cycle. At Calvert Cliffs, the first full-core inspection associated with concern over fuel integrity occurred in early 1984 after unit 2 cycle 5. Lessons learned from this campaign are discussed in this paper. While significant improvement has been made relative to the ability to discern failed rods from sound rods, ultrasonic testing should be evaluated by people experienced with mechanisms that can produce questionable indications. The speed and accuracy of UT systems make UT a practical tool for performing inspections with minimal impact on the schedule

  17. The modeling experience of fuel element units operation under MSC.MARC and MENTAT 2008R1

    International Nuclear Information System (INIS)

    Kulakov, G.; Kashirin, B.; Kosaurov, A.; Konovalov, Y.; Kuznetsov, A.; Medvedev, A.; Novikov, V.; Vatulin, A.

    2009-01-01

    MSC Software is leading developer of CAE-software in the world, so behaviour of fuel elements modeling with MSC.MARC use is of great practical importance. Behaviour of fuel elements usually is modeled in the elastic-viscous-plastic statement with account on fuel swelling during irradiation. For container type fuel elements contact interaction between fuel pellets and cladding or other parts of fuel element in top and bottom plugs must be in account. Results of simulated behaviour of various type fuel elements - container type fuel elements for PWR and RBMK reactors, dispersion type fuel elements for research reactors are presented. (authors)

  18. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  19. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    Science.gov (United States)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  20. Operating experience feedback in TVO

    Energy Technology Data Exchange (ETDEWEB)

    Piirto, A [Teollisuuden Voima Oy (Finland)

    1997-12-31

    TVO is a power company operating with two 710 MW BWR units at Olkiluoto. For operating experience feedback TVO has not established a separate organizational unit but rather relies on a group of persons representing various technical disciplines. The ``Operating Experience Group`` meets at about three-week intervals to handle the reports of events (in plant and external) which have been selected for handling by an engineer responsible for experience feedback. 7 charts.

  1. Nuclear units operating improvement by using operating experience

    International Nuclear Information System (INIS)

    Rotaru, I.; Bilegan, I.C.

    1997-01-01

    The paper presents how the information experience can be used to improve the operation of nuclear units. This areas include the following items: conservative decision making; supervisory oversight; teamwork; control room distraction; communications; expectations and standards; operator training and fundamental knowledge, procedure quality and adherence; plant status awareness. For each of these topics, the information illustrate which are the principles, the lessons learned from operating experience and the most appropriate exemplifying documents. (authors)

  2. Impact of Zr + 2.5% Nb alloy corrosion upon operability of RBMK-1000 fuel channels

    International Nuclear Information System (INIS)

    Kovyrshin, V.; Zaritsky, N.

    1999-01-01

    The basic components of RBMK-1000 core (fuel channels, bimetal adapters, claddings of fuel elements, etc.) are of zirconium alloys. Their corrosion is one of factors influencing upon fuel channels operability. Dynamics of channel tubes nodular corrosion development is presented by the results of in-reactor investigation at ChNPP. Radiation-induced mechanism of corrosion damage of tubes surface in contact with coolant was formulated and substantiated by data of post-reactor studies. Within the certain time period of operation corrosion of zirconium alloy of lower bimetal adapter along with removal from there of corrosion products are predominant within the whole process of reactor elements corrosion. The experimental and calculating method was proposed and substantiated to predict time duration up to loss of fuel channels leak tightness. The approaches were generalized to control state of fuel channels material to assess their operability under operation of RBMK-1000 reactors. (author)

  3. Study of Exhaust Emissions Reduction of a Diesel Fuel Operated Heater During Transient Mode of Operation

    Directory of Open Access Journals (Sweden)

    Miklánek Ľubomír

    2014-10-01

    Full Text Available Diesel fuel operated heaters (FOHs are generally used as an independent heat source for any system in which a diesel fuel and battery power is available. Based on the fact that future engines will become even more efficient and thus less waste heat will be available to heat the passenger compartment, independent heat sources will be even more necessary.

  4. Summary report on the fuel performance modeling of the AFC-2A, 2B irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pavel G. Medvedev

    2013-09-01

    The primary objective of this work at the Idaho National Laboratory (INL) is to determine the fuel and cladding temperature history during irradiation of the AFC-2A, 2B transmutation metallic fuel alloy irradiation experiments containing transuranic and rare earth elements. Addition of the rare earth elements intends to simulate potential fission product carry-over from pyro-metallurgical reprocessing. Post irradiation examination of the AFC-2A, 2B rodlets revealed breaches in the rodlets and fuel melting which was attributed to the release of the fission gas into the helium gap between the rodlet cladding and the capsule which houses six individually encapsulated rodlets. This release is not anticipated during nominal operation of the AFC irradiation vehicle that features a double encapsulated design in which sodium bonded metallic fuel is separated from the ATR coolant by the cladding and the capsule walls. The modeling effort is focused on assessing effects of this unanticipated event on the fuel and cladding temperature with an objective to compare calculated results with the temperature limits of the fuel and the cladding.

  5. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  6. Operating experiences in the reprocessing of LWR fuels in the WAK

    International Nuclear Information System (INIS)

    Huppert, K.L.

    40 tons of fuel have been processed in the WAK. Problems encountered are reviewed. Through constant control and advance preparation for nonroutine procedures, the average monthly dosage has dropped from more than 100 mrem to 40 to 50 mrem

  7. The Caramel fuel in OSIRIS

    International Nuclear Information System (INIS)

    Cherruau, Francois.

    1980-11-01

    This paper presents the main characteristics of the caramel fuel, a description of OSIRIS transformations that were decided in line with its conversion and the results of its operation since then. The Caramel fuel is made from sintered UO 2 pellets contained in zircaloy clads forming the plates of the fuel assembly reducing the enrichment need to as little as 3 to 10% instead of 93% enriched U/Al in the previous fuel. The first year of experience shows the capacity under a statistic scale of the caramel fuel to fulfil the most severe operation requirements for use in low and medium power research reactors

  8. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  9. Combustion performance of an aluminum melting furnace operating with liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nieckele, Angela Ourivio; Naccache, Monica Feijo; Gomes, Marcos Sebastiao de P. [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica], E-mails: nieckele@puc-rio.br, naccache@puc-rio.br, mspgomes@puc-rio.br

    2010-10-15

    The characteristics associated with the delivery of the fuel to be used as the energy source in any industrial combustion equipment are of extreme importance, as for example, in improving the performance of the combustion process and in the preservation of the equipment. A clean and efficient combustion may be achieved by carefully selecting the fuel and oxidant, as well as the operational conditions of the delivery system for both. In the present work, numerical simulations were carried out using the commercial code FLUENT for analyzing some of the relevant operational conditions inside an aluminum reverb furnace employing liquid fuel and air as the oxidant. Different fuel droplets sizes as well as inlet droplet stream configurations were examined. These characteristics, associated with the burner geometry and the fuel dispersion and delivery system may affect the flame shape, and consequently the temperature and the heat flux distribution within the furnace. Among the results obtained in the simulations, it was shown the possible damages to the equipment, which may occur as a result of the combustion process, if the flame is too long or too intense and concentrated. (author)

  10. Application of modified version of SPPS-1 - HEXAB-2DB computer code package for operational analyses of fuel behaviour in WWER-440 reactors at Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kharalampieva, Ts; Stoyanova, I; Antonov, A; Simeonov, T [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Petkov, P [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The modified version of SPPS-1 code called SPPS-1-HEXAB-2DB was applied for the purposes of the operational analysis and power peaking factors and reactor core critical parameters predictions of WWER-440s. The results of the calculations performed by the use of SPPS-1-HEXAB-2DB code and the corresponding parameters obtained from experiments at Kozloduy NPP WWER-440s as well as the results of fuel rod power distribution are presented. The method of operation simulation of reactor core with 349 assemblies (Unit 4) and with 313 fuel assemblies and 36 dummy fuel assemblies (Unit 1) is outlined. The modified code calculates not only fuel burnup and Pm-149 and Sm-149 concentrations distributions but also the space distribution of I-135 and Xe-135 concentrations. In this way it makes possible to perform the reactor operation simulation during the immediate periods after the reactor start-up or shut-down and to predict the critical reactor core parameters during transients. The results obtained show that SPPS-1-HEXAB-2DB code describes adequately the reactor core status. The new SPPS-1 code algorithm for estimation of assembly-wise power peaking factors distribution in reactor core is also described. The new code provides an option for checking the correctness of reactor core symmetry. The experience from the use of the modified SPPS-1-HEXAB-2DB code system confirms the provision of improved availability of operational analysis, prediction of Kozloduy NPP WWER-440s safe operations and fuel behaviour estimation. 14 tabs., 4 figs., 5 refs.

  11. Operational experience at RCD and FCD laboratories during various ventilation conditions

    International Nuclear Information System (INIS)

    Murali, S.; Ashok Kumar, P.; Thanamani, M.; Rath, D.P.; Sapkal, J.A.; Raman, Anand

    2007-01-01

    Radiochemistry and Fuel Chemistry wing of Radiological Laboratory facility has various radio-chemical operations on isotopes of plutonium and trans-plutonium elements, carried out under containment and safe operational conditions. The ventilation provided to the facility is a Once - through system. The ventilation system is designed with separate headers for laboratory and glove box exhausts. There is scheduled periodic shut down of ventilation system for maintenance during non-occupancy hours/week ends. The buildup of natural α - emitters activity due to ventilation shut down, observed to be prevailing on stack air sample filter papers after the ventilation startup, is studied. The paper describes the operational experience gained over a period during ventilation shut down and suggests the course of remedial action for reducing the internal exposure due to build up of natural α - emitters and their progenies. (author)

  12. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  13. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  14. Virginia Power and Department of Energy spent fuel transportation experience

    International Nuclear Information System (INIS)

    Ruska, M.D.; Schoonen, D.H.

    1986-12-01

    Spent fuel assemblies for the Spent Fuel Storage Cask Testing Program conducted by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) were transported to the INEL. A total of 69 spent fuel assemblies (23 shipments) were shipped from Virginia Power's nuclear power plant at Surry, Virginia, to the INEL between July 1985 and June 1986 to fill and test three spent fuel storage casks. The shipments were made over the highway system in Transnuclear, Inc., TN-8L shipping casks on specially constructed trailers. The shipments were moved by diesel tractors owned and operated by Tri-State Motor Transit Company of Joplin, Missouri. The gross vehicle weight for each shipment was 112,000 lb, which was a major consideration when selecting routes for the shipments. Cooperative negotiations with officials for the 17 states involved obtained authorization to transport through their states. The shipping campaign was successfully completed through close communication and cooperation and careful planning and operation by all organizations involved

  15. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    Science.gov (United States)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  16. Areva solutions for management of defective fuel

    International Nuclear Information System (INIS)

    Morlaes, I.; Vo Van, V.

    2014-01-01

    Defective fuel management is a major challenge for nuclear operators when all fuel must be long-term managed. This paper describes AREVA solutions for managing defective fuel. Transport AREVA performs shipments of defective fuel in Europe and proposes casks that are licensed for that purpose in Europe and in the USA. The paper presents the transport experience and the new European licensing approach of defective fuel transport. Dry Interim Storage AREVA is implementing the defective fuel storage in the USA, compliant with the Safety Authority's requirements. In Europe, AREVA is developing a new, more long-term oriented storage solution for defective fuel, the best available technology regarding safety requirements. The paper describes these storage solutions. Treatment Various types of defective fuel coming from around the world have been treated in the AREVA La Hague plant. Specific treatment procedures were developed when needed. The paper presents operational elements related to this experience. (authors)

  17. Experiments simulation and design to set traffic lights operation rules

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Garcia, J.A.

    2016-07-01

    In this paper it is used the experimental design to minimize the travel time of motor vehicles, in one of the most important avenues of Celaya City in Guanajuato, Mexico, by means of optimal synchronization of existing traffic lights. In the optimization process three factors are considered: the traffic lights’ cycle times, the synchrony defined as stepped, parallel and actual, and speed limit, each one with 3 evaluation levels. The response variables to consider are: motor vehicles’ travel time, fuel consumption and greenhouse effect gas (CO2) emissions. The different experiments are performed using the simulation model developed in the PTV-VISSIM software, which represents the vehicle traffic system. The obtained results for the different proposed scenarios allow to find proper levels at which the vehicle traffic system must be operated in order to improve mobility, to reduce contamination rates and decrease the fuel consumption for the different motor vehicles that use the avenue. (Author)

  18. Experience with quality assurance in fuel design and manufacturing

    International Nuclear Information System (INIS)

    Holzer, R.; Nilson, F.

    1984-01-01

    The Quality Assurance/Quality Control activities for nuclear fuel design and manufacturing described here are coordinated under a common ''Quality Assurance System For Fuel Assemblies and Associated Core Components'' which regulates the QA-functions of the development, design and manufacturing of fuel assemblies independent of the organizational assignment of the contributing technical groups. Some essential characteristics of the system are shown, using examples from design control, procurement, manufacturing and qualification of special processes. The experience is very good, it allowed a flexible and well controlled implementation of design and manufacturing innovations and contributed to the overall good fuel behavior. (orig.)

  19. Model for Fuel-Sodium Interaction - Application to the JEF Experiments

    International Nuclear Information System (INIS)

    Breton, J.P.; Antonakas, D.

    1976-01-01

    A model of sodium-fuel interaction, referred to as TRACONABUEE, has been developed. The fuel particles are assumed to be introduces in the interacting zone within a finite mixing time, according to a given function (not necessarily linear). The equations for heat transfer inside fuel particles are those of Cho and Wright (transient conduction for phase A and quasi-steady state heat transfer for phase B). During phase B several options for heat transfer from fuel to sodium can be assumed (no transfer, transfer proportional to the volume fraction of liquid sodium, given duration of transfer, etc... ) Two versions are available: a spherical one (EPISCOPOS) and an axial one (TEXAS). For application to the JEF experiments a model of heat losses along the cold column had to be introduced into TEXAS. It was found that the phenomenon is essentially governed by the heat losses. The velocity of the cold sodium in the column presents marked maxima and minima. The agreement with experiment is satisfactory. In conclusion: Due to their simple well-defined geometry, the JEF experiments can be profitably interpreted. They are inadequate for the determination of the interacting sodium mass. On the other hand they allow to fit a simple, parametric, two-phase heat transfer model, suitable for this type of experiments. Finally they show the great importance of the heat losses when the mass of molten fuel is small. These- latter alone explain the phenomenon

  20. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  1. Regulatory challenges in using nuclear operating experience

    International Nuclear Information System (INIS)

    2006-01-01

    There can be no doubt that the systematic evaluation of operating experience by the operator and the regulator is essential for continued safe operation of nuclear power plants. Recent concerns have been voiced that the operating experience information and insights are not being used effectively to promote safety. If these concerns foreshadow a real trend in OECD countries toward complacency in reporting and analysing operating events and taking corrective actions, then past experience suggests that similar or even more serious events will recur. This report discusses how the regulator can take actions to assure that operators have effective programmes to collect and analyse operating experience and, just as important, for taking steps to follow up with actions to prevent the events and conditions from recurring. These regulatory actions include special inspections of an operator operating experience programme and discussion with senior plant managers to emphasize the importance of having an effective operating experience programme. In addition to overseeing the operator programmes, the regulator has the broader responsibility for assuring that industry-wide trends, both national and international are monitored. To meet these responsibilities, the regulatory body must have its own operating experience programme, and this report discusses the important attributes of such regulatory programmes. It is especially important for the regulator to have the capability for assessing the full scope of operating experience issues, including those that may not be included in an operator operating experience programme, such as new research results, international operating experience, and broad industry trend information. (author)

  2. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  3. Operating experience, measurements, and analysis of the LEU whole core demonstration at the FNR

    International Nuclear Information System (INIS)

    Weha, D.K.; Drumm, C.R.; King, J.S.; Martin, W.R.; Lee, J.C.

    1984-01-01

    The 2-MW Ford Nuclear Reactor at the University of Michigan is serving as the demonstration reactor for the MTR-type low enrichment (LEU) fuel for the Reduced Enrichment for Research and Test Reactor program. Operational experience gained through six months of LEU core operation and seven months of mixed HEU-LEU core operation is presented. Subcadmium flux measurements performed with rhodium self-powered neutron detectors and iron wire activations are compared with calculations. Measured reactivity parameters are compared for HEU and LEU cores. Finally, the benchmark calculations for several HEU, LEU, and mixed HEU-LEU FNR cores and the International Atomic Energy Agency (IAEA) benchmark problem are presented. (author)

  4. Shielding analysis of the LMR in-vessel fuel storage experiments

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1994-01-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory's Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest

  5. Experience in construction of a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    In June 1970, Japan Gasoline Co., Ltd (JGC)and Saint-Goblan Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. JGC was responsible for: procurement, inspection, and schedule control of equipment and materials other than those imported from Europe; for conclusion of contracts with various subcontractors relating to the building construction, piping, and similar work; and for supervision of field work. Field work began in June 1971 and was completed in about 40 months. This paper describes the experiences of JGC during the period of the entire operation, and on the basis of this experience recommends modifications to their approach to similar projects in the future

  6. Operation experience with the TRIGA reactor Wien 2004

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-01-01

    The TRIGA Mark-II reactor in Vienna is now in operation for more than 42 years. The average operation time is about 230 days per year with 90 % of this time at nominal power of 250 kW. The remaining 10 % operation time is used for students' training courses at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The utilization of this facility is excellent, the number of students participating in practical exercises has strongly increased, and also training courses for outside groups such as the IAEA or for the 2004 Eugene Wigner Course are using the reactor, because it is the only TRIGA reactor remaining in Austria. Therefore, there is no need for decommissioning and it is intended to operate it as long as possible into the next decade. Nevertheless, in early 2004 it was decided to prepare a report on a decommissioning procedure for a typical TRIGA Mark II reactor which lists the volumes, the activity and the weight of individual materials such as concrete, aluminium, stainless steel, graphite and others which will accumulate during this process (a summary of possible activated and contaminated materials and the activity of a single TRIGA fuel element as a function of fuel type and decay time in Bq is presented). The status of the reactor (instrumentation, fuel elements, cooling circuit, ventilation system, re-inspection and maintenance program, cost/benefit) is outlined. (nevyjel)

  7. Fuel performance, design and development

    International Nuclear Information System (INIS)

    Prasad, P.N.; Tripathi, Rahul Mani; Soni, Rakesh; Ravi, M.; Vijay Kumar, S.; Dwivedi, K.P.; Pandarinathan, P.R.; Neema, L.K.

    2006-01-01

    The normal fuel configurations for operating 220 MWe and 540 MWe PHWRs are natural uranium dioxide 19-element and 37- element fuel bundle types respectively. The fuel configuration for BWRs is 6 x 6 fuel. So far, about 330 thousand PHWR fuel bundles and 3500 number of BWR bundles have been irradiated in the 14 PHWRs and 2 BWRs. Improvements in fuel design, fabrication, quality control and operating practices are continuously carried out towards improving fuel utilization as well as reducing fuel failure rate. Efforts have been put to improve the fuel bundle utilization by increasing the fuel discharge burnup of the natural uranium bundles The overall fuel failure rate currently is less than 0.1 % . Presently the core discharge burnups in different reactors are around 7500 MWD/TeU. The paper gives the fuel performance experience over the years in the different power reactors and actions taken to improve fuel performance over the years. (author)

  8. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    Science.gov (United States)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  9. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1984-01-01

    During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE Boiling Water Reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of senior reactor operator (SRO) experience, operating crew augmentation with an STA and practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. Sixteen two-man crews of licensed operators were employed in a 2 x 2 factorial design. The SROs leading the crews were split into high and low experience groups on the basis of their years of experience as an SRO. One half of the high- and low-SRO experience groups were assisted by an STA. The crews responded to four simulated plant casualties. A five-variable set of content-referenced performance measures was derived from task analyses of the procedurally correct responses to the four casualties. System parameters and control manipulations were recorded by the computer controlling the simulator. Data on communications and procedure use were obtained from analysis of videotapes of the exercises. Questionnaires were used to collect subject biographical information and data on subjective workload during each simulated casualty. For four of the five performance measures, no significant differences were found between groups led by high (25 to 114 months) and low (1 to 17 months as an SRO) experience SROs. However, crews led by low experience SROs tended to have significantly shorter task performance times than crews led by high experience SROs. The presence of the STA had no significant effect on overall team performance in responding to the four simulated casualties. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator

  10. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  11. Validating the BISON fuel performance code to integral LWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gamble, K.A., E-mail: Kyle.Gamble@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Pastore, G., E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gardner, R.J., E-mail: Russell.Gardner@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Liu, W., E-mail: Wenfeng.Liu@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States); Mai, A., E-mail: Anh.Mai@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States)

    2016-05-15

    Highlights: • The BISON multidimensional fuel performance code is being validated to integral LWR experiments. • Code and solution verification are necessary prerequisites to validation. • Fuel centerline temperature comparisons through all phases of fuel life are very reasonable. • Accuracy in predicting fission gas release is consistent with state-of-the-art modeling and the involved uncertainties. • Rod diameter comparisons are not satisfactory and further investigation is underway. - Abstract: BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON's computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Results demonstrate that (1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, (2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and (3) comparison

  12. Intelligent Engine Systems: Alternate Fuels Evaluation

    Science.gov (United States)

    Ballal, Dilip

    2008-01-01

    The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.

  13. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  14. The cost of operating with failed fuel at Virginia power

    International Nuclear Information System (INIS)

    Ford, C.A.

    1988-01-01

    Virginia Power has completed a study of the costs incurred due to fuel failures in its pressurized water reactors. This study was prompted by histories of high primary coolant activity and subsequent fuel inspections at the North Anna and Surry power stations. The study included an evaluation of the total costs of fuel failures as well as an evaluation of the economics of postirradiation fuel inspections. The major costs of fuel failures included personnel radiation exposure, permanently discharged failed fuel, radwaste generation, increased labor requirements, containment entry delays due to airborne radioactivity, and ramp rate restrictions. Although fuel failures affect a utility in several other areas, the items evaluated in the study were thought to be the most significant of the costs. The study indicated that performing a postirradiation failed fuel examination can be economically justified at tramp-corrected 131 I levels of > 0.015 μCi/g. The savings to the utility can be on the order of several million dollars. Additionally, the cost penalty of performing a fuel inspection at lower iodine levels is generally in the range of $200,000. This economic penalty is expected to be outweighed by the intangible benefits of operating with a defect-free core

  15. Irradiated nuclear fuel transport from Japan to Europe

    International Nuclear Information System (INIS)

    Kavanagh, M.T.; Shimoyama, S.

    1976-01-01

    Irradiated nuclear fuel has been transported from Japan to Europe since 1969, although U.K. experience goes back almost two decades. Both magnox and oxide fuel have been transported, and the technical requirements associated with each type of fuel are outlined. The specialized ships used by British Nuclear Fuels Limited (BNFL) for this transport are described, as well as the ships being developed for future use in the Japan trade. The ship requirements are related to the regulatory position both in the United Kingdom and internationally, and the Japanese regulatory requirements are described. Finally, specific operational experience of a Japanese reactor operator is described

  16. Irradiation experience with HTGR fuels in the Peach Bottom Reactor

    International Nuclear Information System (INIS)

    Scheffel, W.J.; Scott, C.B.

    1974-01-01

    Fuel performance in the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) is reviewed, including (1) the driver elements in the second core and (2) the test elements designed to test fuel for larger HTGR plants. Core 2 of this reactor, which is operated by the Philadelphia Electric Company, performed reliably with an average nuclear steam supply availability of 85 percent since its startup in July 1970. Core 2 had accumulated a total of 897.5 equivalent full power days (EFPD), almost exactly its design life-time of 900 EFPD, when the plant was shut down permanently on October 31, 1974. Gaseous fission product release and the activity of the main circulating loop remained significantly below the limits allowed by the technical specifications and the levels observed during operation of Core 1. The low circulating activity and postirradiation examination of driver fuel elements have demonstrated the improved irradiation stability of the coated fuel particles in Core 2. Irradiation data obtained from these tests substantiate the performance predictions based on accelerated tests and complement the fuel design effort by providing irradiation data in the low neutron fluence region

  17. Experimental investigation on dual fuel operation of acetylene in a DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, T. [Department of Mechanical Engineering, Rajarajeswari Engineering College, Adayalampattu, Chennai, 600095 (India); Nagarajan, G. [Internal Combustion Engineering Division, College of Engineering, Anna University, Chennai, 600025 (India)

    2010-05-15

    Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties. Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NO{sub x} emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency. (author)

  18. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  19. The hidden practices and experiences of healthcare practitioners dealing with fuel poverty.

    Science.gov (United States)

    Mc Conalogue, D; Kierans, C; Moran, A

    2016-06-01

    Fuel poverty negatively impacts a population's health affecting life chances along the life course. Moreover, it represents a substantial inequality in the UK. Healthcare practitioners (HCPs) have a key role in identifying and supporting patients who are fuel poor. A qualitative inquiry with District Nurses and General Practitioners, to explore their understanding and experiences of dealing with patients living in fuel poverty. Participants recognize fuel poverty by observing material cues. They perceive their relationship with the patient as pivotal to recognizing the fuel poor. Practitioners' sense of responsibility for their patients' social concerns is determined by their knowledge about the link to health outcomes. The services that they sign-post to are motivated by their experience dealing with the service, or their patients' experiences of the service. Participants' reliance on temporary material cues resulted in few experiences of recognition of the fuel poor. HCPs' perceptions of patient pride and the lack of personal relationship between doctor and patient presented barriers to identifying fuel poor patients. A limitation of this study is the small sample size of nine participants. These came from two professional groups, which afforded more depth of exploration, but may limit applicability to other professionals. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs