WorldWideScience

Sample records for ftir spectroscopic studies

  1. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    Science.gov (United States)

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  2. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    Science.gov (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  3. Determination of drug content in semisolid formulations by non-invasive spectroscopic methods: FTIR - ATR, - PAS, - Raman and PDS

    International Nuclear Information System (INIS)

    Gotter, B; Hein, J; Neubert, R H H; Faubel, W; Heissler, St

    2010-01-01

    This study elucidates the potential use of photothermal deflection spectroscopy (PDS), FTIR photoacoustic (FTIR-PAS), FT Raman, and FTIR-attenuated total reflection (FTIR-ATR) spectroscopy as analytical tools for investigating the drug content in semisolid formulations. Regarding the analytical parameters, this study demonstrates the photothermal beam deflection to be definitely comparable to well established spectroscopic methods for this purpose. The correlation coefficients range from 0.990 to 0.999. Likewise, repeatability and limit of detection are comparable.

  4. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  5. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2016-05-01

    Full Text Available The aim of this study was attempted to investigate both the glycation kinetics and protein secondary conformational changes of human serum albumin (HSA after the reaction with ribose. The browning and fluorescence determinations as well as Fourier transform infrared (FTIR microspectroscopy with a curve-fitting technique were applied. Various concentrations of ribose were incubated over a 12-week period at 37 ± 0.5 oC under dark conditions. The results clearly shows that the glycation occurred in HSA-ribose reaction mixtures was markedly increased with the amount of ribose used and incubation time, leading to marked alterations of protein conformation of HSA after FTIR determination. In addition, the browning intensity of reaction solutions were colored from light to deep brown, as determined by optical observation. The increase in fluorescence intensity from HSA–ribose mixtures seemed to occur more quickly than browning, suggesting that the fluorescence products were produced earlier on in the process than compounds causing browning. Moreover, the predominant α-helical composition of HSA decreased with an increase in ribose concentration and incubation time, whereas total β-structure and random coil composition increased, as determined by curve-fitted FTIR microspectroscopy analysis. We also found that the peak intensity ratios at 1044 cm−1/1542 cm−1 markedly decreased prior to 4 weeks of incubation, then almost plateaued, implying that the consumption of ribose in the glycation reaction might have been accelerated over the first 4 weeks of incubation, and gradually decreased. This study first evidences that two unique IR peaks at 1710 cm−1 [carbonyl groups of irreversible products produced by the reaction and deposition of advanced glycation end products (AGEs] and 1621 cm−1 (aggregated HSA molecules were clearly observed from the curve-fitted FTIR spectra of HSA-ribose mixtures over the course of incubation time. This study

  6. Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-07-21

    The label-free, non-destructive chemical analysis offered by FTIR spectroscopic imaging is a very attractive and potentially powerful tool for studies of live biological cells. FTIR imaging of live cells is a challenging task, due to the fact that cells are cultured in an aqueous environment. While the synchrotron facility has proven to be a valuable tool for FTIR microspectroscopic studies of single live cells, we have demonstrated that high quality infrared spectra of single live cells using an ordinary Globar source can also be obtained by adding a pair of lenses to a common transmission liquid cell. The lenses, when placed on the transmission cell window, form pseudo hemispheres which removes the refraction of light and hence improve the imaging and spectral quality of the obtained data. This study demonstrates that infrared spectra of single live cells can be obtained without the focus shifting effect at different wavenumbers, caused by the chromatic aberration. Spectra of the single cells have confirmed that the measured spectral region remains in focus across the whole range, while spectra of the single cells measured without the lenses have shown some erroneous features as a result of the shift of focus. It has also been demonstrated that the addition of lenses can be applied to the imaging of cells in microfabricated devices. We have shown that it was not possible to obtain a focused image of an isolated cell in a droplet of DPBS in oil unless the lenses are applied. The use of the approach described herein allows for well focused images of single cells in DPBS droplets to be obtained.

  7. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    Science.gov (United States)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  8. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  9. The joined use of n.i. spectroscopic analyses - FTIR, Raman, visible reflectance spectrometry and EDXRF - to study drawings and illuminated manuscripts

    International Nuclear Information System (INIS)

    Bruni, S.; Guglielmi, V.; Caglio, S.; Poldi, G.

    2008-01-01

    Some art objects being small and very precious prevents conservators and conservation scientists from whatever kind of sampling, so that only completely non-invasive (n.i.) studies are permitted. Besides, also moving the object is sometimes forbidden: this happens for jewels as well as for manuscripts, illuminated codices, drawings and paintings. Some important physical n.i. analyses, such as PIXE and PIGE, therefore cannot be used in many cases. With these limitations, only imaging techniques in X, UV, Visible and IR bands, and a few spectroscopic methods that can be carried out with portable instruments can be applied, i.e. molecular spectroscopies like Fourier transform infrared (FTIR), Raman, UV visible and near IR reflectance spectrometry (UV-Vis-NIR RS) and atomic spectroscopy like energy dispersive X-ray fluorescence (EDXRF). The use of only one or two of these techniques is usually far from giving all the information required to achieve a full characterization of materials used by the artist or during restorations, and to understand some conservative problems of the object. On the contrary, a joined use of n.i. analyses can supply a larger set of data, allowing for cross checks. With this aim we show a fully integrated spectroscopic approach to polychrome objects, and, in particular, to drawings and illuminated manuscripts, using portable instruments, specifically μ-FTIR, μ-Raman, Vis-RS and EDXRF, where also the Raman signal does not suffer fluorescence caused by varnish coating and from binder. We propose the joined use of all these four physical analyses to characterize materials - support, pigments, dyes, binders, etc. - on a complex case: a painted and drawn parchment of the late 15th century, or the beginning of the 16th, partly attributed to Andrea Mantegna. The collected spectroscopic data have been compared to proper spectral databases, some of which specifically realized in our laboratories. Also, mixtures of pigments and their stratigraphical

  10. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  11. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles

    Science.gov (United States)

    Kamnev, Alexander A.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Tugarova, Anna V.

    2017-07-01

    Microbially driven reduction of selenium oxyanions to elementary selenium, often in the form of nanoparticles (NPs), is widespread in nature. A diversity of possible applications of such biogenic NPs, including those in nanobiotechnology, as well as the specificity of methodologies and mechanisms of their formation via ;green synthesis; are very attractive features justifying further studies of the processes of selenium oxyanion bioreduction and the resulting Se0 nanostructures. In this study, live biomass of the rhizobacterium Azospirillum brasilense Sp7 (harvested after the logarithmic growth phase and washed from culture medium components) was used to obtain extracellular Se NPs relatively homogeneous in size (with average diameters within 50-100 nm) in the process of selenite reduction. Both the control cultures of A. brasilense Sp7 and those incubated with SeO32- (producing Se NPs), as well as the resulting separated Se NPs were studied using Fourier transform infrared (FTIR) spectroscopy in the transmission mode (measured as dried layers on a ZnSe disc), in addition to transmission electron microscopy (TEM), to compare metabolic changes in cells and the bioorganic layers associated with the Se NPs. In the control culture (stored for 24 h in physiological saline), FTIR spectroscopic signs of poly-3-hydroxybutyrate (a 'reserve' biopolyester) were observed as a response to the lack of nutrients (trophic stress), whereas they were virtually absent in cells incubated for 24 h in physiological saline with 10 mM SeO32- (toxicity stress). FTIR spectra of Se NPs separated from bacterial cells showed bands typical of proteins, polysaccharides and lipids associated with the particles (in line with their TEM images showing a thin layer over the NPs), in addition to strong carboxylate bands, which evidently stabilise the NP structure and morphology.

  12. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer

    Science.gov (United States)

    Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.

    2017-09-01

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.

  13. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  14. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  15. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Ižák, Tibor; Vretenár, V.; Kozak, Halyna; Holovský, Jakub; Artemenko, Anna; Hulman, M.; Skákalová, V.; Lee, D. S.; Kromka, Alexander

    2016-01-01

    Roč. 111, Jan (2016), s. 54-61 ISSN 0008-6223 R&D Projects: GA ČR GC15-22102J; GA MŠk(CZ) 7AMB14SK037 Institutional support: RVO:68378271 Keywords : diamond * carbon nanotubes * spectroscopy * Raman * FTIR * XPS Subject RIV: JI - Composite Materials Impact factor: 6.337, year: 2016

  16. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling

    OpenAIRE

    Kamnev, Alexander A.

    2008-01-01

    Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This inform...

  17. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer.

    Science.gov (United States)

    Almeida, Michell O; Barros, Daiane A S; Araujo, Sheila C; Faria, Sergio H D M; Maltarollo, Vinicius G; Honorio, Kathia M

    2017-09-05

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O 15 (donor NBO) and BD* (π) N 1 -H 10 (acceptor NBO), being that the value of this interaction is 7.72kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  19. FT-IR, NMR spectroscopic and quantum mechanical investigations of two ferrocene derivatives

    Directory of Open Access Journals (Sweden)

    Ö. Alver

    2017-07-01

    Full Text Available New ferrocene derivatives as N-(3-piperidin-1-ylpropylferrocenamide (Fc-3ppa and N-(pyridine-3-ylmethylferrocenamide (Fc-3pica and structural investigations were carried out with 1H, 13C, DEPT 45 or 135, HETCOR, COSY NMR and FT-IR spectroscopic techniques. Characterization of Fc-3ppa (FeC19H26N2O and Fc-3pica (FeC17H16N2O was also supported by density functional theory (DFT used by B3LYP functional and 6-31G(d or 6-311++G(d,p basis sets. From the combination of all the results, it can be clearly seen that syntheses of Fc-3ppa and Fc-3pica have been successfully achieved. Theoretical values are successfully compared against experimental data and B3LYP method is able to provide satisfactory results for predicting NMR properties and vibrational frequencies of the synthesized ferrocene based systems.

  20. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  1. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  2. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  3. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  4. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  5. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  6. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  7. A detailed spectroscopic study of an Italian fresco

    International Nuclear Information System (INIS)

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-01-01

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied

  8. Comparative FT-Raman, FT-IR and colour shifts spectroscopic evaluation of gamma irradiated experimental models of oil paintings

    International Nuclear Information System (INIS)

    Manca, M.M.; Virgolici, M.; Cutrubinis, M.; Moise, I.V.; Ponta, C.C.; Negut, C.D.; Stanculescu, I.R.; Bucharest University

    2011-01-01

    Complete text of publication follows. The present study follows the changes of gamma irradiated historic pigments and experimental models of oil paintings with non-destructive and non-contact spectroscopic analytical techniques which are the only ones accepted by the conservators/restorers community. Molecular structure characterization was performed by FT-IR / Raman spectroscopy using a Bruker Vertex 70 class equipped with two mobile probes: a MIR fibre module for MIR probes (with LN2 cooled detector) and a Raman RAM II module (LN2 Ge detector) with a RAMPROBE fibre. Colour was measured by a portable reflectance spectrophotometer (Miniscan XE Plus, HunterLab) in diffuse/8 deg geometry with a beam diameter of 4 mm and specular component included. Correlations between colour shifts and changes in molecular structure induced by gamma irradiation were further investigated.

  9. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    Science.gov (United States)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  10. Matrix isolation and low temperature solid state FTIR spectroscopic study of alpha-furil

    OpenAIRE

    Lopes, Susy; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-01-01

    Alpha-furil [C(4)H(3)O-C(=O)-C(=O)-C(4)H(3)O] has been isolated in argon and xenon matrices and studied by FTIR spectroscopy, supported by DFT(B3LYP)/6-311++G(d,p) calculations. The obtained spectra were fully assigned and revealed the presence in the matrices of three different conformers, all of them exhibiting skewed conformations around the intercarbonyl bond with the two C(4)H(3)O-C(=O) fragments nearly planar. The three conformers differ in the orientation of the furan rings relative to...

  11. Enhancing forensic science with spectroscopic imaging

    Science.gov (United States)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  12. The function of prehistoric lithic tools: a combined study of use-wear analysis and FTIR microspectroscopy.

    Science.gov (United States)

    Nunziante Cesaro, Stella; Lemorini, Cristina

    2012-02-01

    The application of combined use-wear analysis and FTIR micro spectroscopy for the investigation of the flint and obsidian tools from the archaeological sites of Masseria Candelaro (Foggia, Italy) and Sant'Anna di Oria (Brindisi, Italy) aiming to clarify their functional use is described. The tools excavated in the former site showed in a very high percentage spectroscopically detectable residues on their working edges. The identification of micro deposits is based on comparison with a great number of replicas studied in the same experimental conditions. FTIR data confirmed in almost all cases the use-wear analysis suggestions and added details about the material processed and about the working procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  14. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  15. Study of consumer fireworks post-blast residues by ATR-FTIR.

    Science.gov (United States)

    Martín-Alberca, Carlos; Zapata, Félix; Carrascosa, Héctor; Ortega-Ojeda, Fernando E; García-Ruiz, Carmen

    2016-03-01

    Specific analytical procedures are requested for the forensic analysis of pre- and post-blast consumer firework samples, which present significant challenges. Up to date, vibrational spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) have not been tested for the analysis of post-blast residues in spite of their interesting strengths for the forensic field. Therefore, this work proposes a simple and fast procedure for the sampling and analysis of consumer firework post-blast residues by a portable FTIR instrument with an Attenuated Total Reflection (ATR) accessory. In addition, the post-blast residues spectra of several consumer fireworks were studied in order to achieve the identification of their original chemical compositions. Hence, this work analysed 22 standard reagents usually employed to make consumer fireworks, or because they are related to their combustion products. Then, 5 different consumer fireworks were exploded, and their residues were sampled with dry cotton swabs and directly analysed by ATR-FTIR. In addition, their pre-blast fuses and charges were also analysed in order to stablish a proper comparison. As a result, the identification of the original chemical compositions of the post-blast samples was obtained. Some of the compounds found were potassium chlorate, barium nitrate, potassium nitrate, potassium perchlorate or charcoal. An additional study involving chemometric tools found that the results might greatly depend on the swab head type used for the sampling, and its sampling efficiency. The proposed procedure could be used as a complementary technique for the analysis of consumer fireworks post-blast residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  17. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  18. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  19. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  20. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  1. FTIR and dielectric studies of molecular interaction between alkyl methacrylates and primary alcohols

    International Nuclear Information System (INIS)

    Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.

    2007-01-01

    The molecular interaction between alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) and primary alcohols (1-propanol, 1-butanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) has been studied in carbon tetrachloride by FTIR spectroscopic and dielectric methods. The results show that the most likely association between alcohol and ester is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of ester, and the alkyl chain length of both the alcohols and esters plays an important role in the determination of the strength of hydrogen bond (O-H:O=C) formed

  2. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  4. FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile

    Science.gov (United States)

    Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; El-Mansy, M. A. M.; Atef, S. M.

    2013-03-01

    In the present work, a computational study for the optimized molecular structural parameters, thermo-chemical parameters, total dipole moment, HOMO-LUMO energy gap and a combined experimental and computational study for FT-IR spectra for 2-(2-furanylmethylene) propanedinitrile have been investigated using B3LYP utilizing 6-31G and 6-311G basis set. Our calculated results showed that the investigated compound possesses a dipole moment of 7.5 D and HOMO-LUMO energy gap of 3.92 eV using B3LYP/6-311G which indicates that our investigated compound is highly applicable for photovoltaic solar cell applications.

  5. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  6. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  7. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  8. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds

    Science.gov (United States)

    Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao

    2018-06-01

    Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.

  9. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  10. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    Science.gov (United States)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  11. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline

    Science.gov (United States)

    Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.

    2018-05-01

    The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.

  12. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    Science.gov (United States)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  13. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  14. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  15. Multi-spectroscopic studies on the interaction of human serum albumin with astilbin: Binding characteristics and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Li, Shuang; Peng, Xialian; Yu, Qing [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Bian, Hedong, E-mail: gxnuchem312@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Huang, Fuping [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Liang, Hong, E-mail: lianghongby@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China)

    2013-04-15

    Five spectroscopic techniques were used to investigate the interaction of astilbin (ASN) with human serum albumin (HSA). UV–vis absorption measurements prove that ASN–HSA complex can be formed. The analysis of fluorescence spectra reveal that in the presence of ASN, quenching mechanism of HSA is considered as static quenching. The quenching rate constant k{sub q}, K{sub SV} and the binding constant K were estimated. According to the van't Hoff equation, the thermodynamic parameters enthalpy change (ΔΗ) and entropy change (ΔS) were calculated to be −12.94 kJ mol{sup −1} and 35.92 J mol{sup −1} K{sup −1}, respectively. These indicate that the hydrophobic interaction is the major forces between ASN and HSA, but the hydrogen bond interaction cannot be excluded. The changes in the secondary structure of HSA which was induced by ASN were determined by circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. -- Graphical abstract: In this paper, the interaction of HSA with ASN was systematically studied under simulated physiological conditions by using UV–vis absorption, CD, FT-IR, fluorescence and Raman spectroscopic approaches. The quenching constant k{sub q}, K{sub SV} and the binding constant K were estimated. The changes in the secondary structure of HSA were studied by Circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The UV–visible absorption spectra of HSA in the absence and presence of different concentration of ASN (1) and fluorescence spectra of HSA in the absence and the presence of ASN (2). Highlights: ► Interaction of ASN and HSA has been studied by five spectroscopic techniques. ► Hydrophobic interaction is the major forces between ASN and HSA. ► Binding of ASN induced the changes in the secondary structure of HSA.

  16. Solid-State FTIR Spectroscopic Study of Two Binary Mixtures: Cefepime-Metronidazole and Cefoperazone-Sulbactam

    Directory of Open Access Journals (Sweden)

    Hassan Refat H. Ali

    2017-01-01

    Full Text Available The structural information of the pharmaceuticals and insights on the modes of molecular interactions are very important aspects in drug development. In this work, two cephalosporins and antimicrobial combinations, cefepime-metronidazole and cefoperazone-sulbactam, were studied in the solid state using FTIR spectroscopy for the first time. Quantitation of the studied drugs and their binary mixtures was performed by integrating the peak areas of the characteristic well-resolved bands: υ (C=O band at 1773 cm−1 for cefepime and ring torsion band at 826 cm−1 for metronidazole and υ (C=O band at 1715 cm−1 for cefoperazone and ring torsion band at 1124 cm−1 for sulbactam. The results of this work were compared with the relevant spectrophotometric reported methods. This study provides data that can be used for the preparative process monitoring of the studied drugs in various dosage forms.

  17. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  18. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    Science.gov (United States)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  19. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  20. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses.

    Science.gov (United States)

    Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman

    2017-08-15

    Sibutramine may be illicitly included in herbal slimming foods and supplements marketed as "100% natural" to enhance weight loss. Considering public health and legal regulations, there is an urgent need for effective, rapid and reliable techniques to detect sibutramine in dietetic herbal foods, teas and dietary supplements. This research comprehensively explored, for the first time, detection of sibutramine in green tea, green coffee and mixed herbal tea using ATR-FTIR spectroscopic technique combined with chemometrics. Hierarchical cluster analysis and PCA principle component analysis techniques were employed in spectral range (2746-2656cm -1 ) for classification and discrimination through Euclidian distance and Ward's algorithm. Unadulterated and adulterated samples were classified and discriminated with respect to their sibutramine contents with perfect accuracy without any false prediction. The results suggest that existence of the active substance could be successfully determined at the levels in the range of 0.375-12mg in totally 1.75g of green tea, green coffee and mixed herbal tea by using FTIR-ATR technique combined with chemometrics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions

    Science.gov (United States)

    Bratu, I.; Astilean, S.; Ionesc, Corina; Indrea, E.; Huvenne, J. P.; Legrand, P.

    1998-01-01

    The association of DCF-Na (the salt of the 2-[(2,6-dichlorophenyl)amino]-phenyl-acetic acid) with β-CD (cyclodextrin) in some therapeutic formulas can contribute to the optimisation of the physico-chemical and pharmaceutical properties of the parent drug. The understanding of the interaction between DCF with β-CD represents the objective of this study. FT-IR spectroscopy is one of the methods which clarify the nature of these interactions in complexes of such type. Therefore the changes in FT-IR spectra of binary dispersed systems DCF/ β-CD in physical mixture and coprecipitate from methanol (molar ratios: 1/1, 1/2, 2/3, 3/4, 7/4) were analysed. The analysis of the broadening of the X-ray powder diffraction line has been applied to investigate the average effective crystallite size, the mean square of the microstrain caused by distortions within β-CD crystallite and the fault probability in the binary dispersed DCF/ β-CD coprecipitate system.

  2. FTIR Study of Comustion Species in Several Regions of a Candle Flame

    Science.gov (United States)

    White, Allen R.

    2013-06-01

    The complex chemical structure of the fuel in a candle flame, parafin, is broken down into smaller hydrocarbons in the dark region just above the candle wick during combustion. This creates fuel-rich, fuel-lean, hydrocarbon reaction, and combustion product regions in the flame during combustion that are spectroscopically rich, particularly in the infrared. IR emissions were measured for each reaction region via collection optics focused into an FTIR and used to identify IR active species present in that region and, when possible, temperature of the sampling region. The results of the measurements are useful for combustion reaction modeling as well as for future validation of mass spectroscopy sampling systems.

  3. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  4. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    Science.gov (United States)

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  5. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  6. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  7. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  8. Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses

    Science.gov (United States)

    Selvaraju, K.; Marimuthu, K.

    2012-04-01

    Er3+ doped boro-tellurite glasses with the chemical composition (69-x)B2O3-xTeO2-15MgO-15K2O-1Er2O3 (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er3+ ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters (βbar and δ) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters Ωλ (λ=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio (βR) and peak stimulated emission cross-section (σPE) for the excited state transitions 2H9/2→4I15/2 and 2H11/2 and 4S3/2→4I15/2 of the Er3+ ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (Eopt) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er3+ doped boro-tellurite glasses in the present study. The optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar results.

  9. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory.

    Science.gov (United States)

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-15

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  11. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  12. FT-IR X-ray diffraction and porosimetry studies of archaeologic artifacts recently excavated from Rajakkamangalam in Tamilnadu

    International Nuclear Information System (INIS)

    Babu Suresh; Velraj, Gothandapani

    2011-01-01

    In the present study, fragmented pottery sample were collected from the recently excavated archaeologic site named Rajakkamangalam, India. The samples were collected at different depths. The samples were subjected to FT-IR, X-ray diffraction and also porosimetry study was done, The spectroscopic method Fourier Transform Infrared Spectroscopy (FT-IR) has been employed to find the mineralogical composition of the potteries. And the complementary technique to find the clay minerals present using XRD. The major primary minerals present in the samples are Kaolinite and the secondary mineral present is quartz and the accessory minerals present in the sample are hematite and magnetite. In addition to the used mineral the orthoclase and orthopyroxene are present in the sample of interest. The firing temperature of the samples at the time of manufacturing is also estimated from apparent porosity of the samples. The percentage of the potteries lies in the range of porosity is 17-42 percentages. The results obtained from Porosimetry techniques on pottery shreds provide information of the firing temperature might have been fired below 1000 deg C at the time of manufacturing the potteries. (author)

  13. In-situ ATR-FTIR for characterization of thin biorelated polymer films

    International Nuclear Information System (INIS)

    Müller, M.; Torger, B.; Bittrich, E.; Kaul, E.; Ionov, L.; Uhlmann, P.; Stamm, M.

    2014-01-01

    We present and review in-situ-attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data from thin biorelated polymer films useful for the modification and functionalization of polymer and inorganic materials and discuss their applications related to life sciences. A special ATR mirror attachment operated by the single-beam-sample-reference (SBSR) concept and housing a homebuilt thermostatable flow cell was used, which allows for appropriate background compensation and signal to noise ratio. ATR-FTIR data on the reactive deposition of dopamine on inorganic model surfaces are shown. Information on the structure and deposition pathway for such bioinspired melanin-like films is provided. ATR-FTIR data on thermosensitive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) is then presented. The thermotropic hydration and hydrogen bonding behavior of PNIPAAM brush films is described. Finally, ATR-FTIR data on biorelated polyelectrolyte multilayers (PEM) are given together with details on PEM growth and detection. Applications of these latter films for biopassivation/activation and local drug delivery are addressed

  14. Combined FT-IR Spectroscopic and DFT Theoretical Study on Carbon Dioxide Adsorption on the Zeolite H-FER

    Czech Academy of Sciences Publication Activity Database

    Pulido, A.; Delgado, M. R.; Bludský, Ota; Rubeš, Miroslav; Nachtigall, Petr; Areán, C. O.

    2009-01-01

    Roč. 2, č. 11 (2009), s. 1187-1195 ISSN 1754-5692 R&D Projects: GA ČR GA203/09/0143; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : DFT * FTIR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.500, year: 2009

  15. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  16. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine

    Science.gov (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.

    2017-10-01

    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  17. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations

    Science.gov (United States)

    Ewing, Andrew V.; Kazarian, Sergei G.

    2018-05-01

    Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.

  18. FTIR and Mössbauer spectroscopic study of sodium–aluminum–iron phosphate glassy materials for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Remizov, M.B.; Belanova, E.A.; Kozlov, P.V. [FSUE PA Mayak, Central Plant Laboratory, Ozersk, Chelyabinsk Reg. (Russian Federation); Glazkova, Ya.S.; Sobolev, A.V.; Presniakov, I.A. [Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Kalmykov, S.N. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation); Myasoedov, B.F. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation)

    2015-11-15

    Complex sodium-aluminum-iron phosphate glassy materials with various Al{sub 2}O{sub 3} to Fe{sub 2}O{sub 3} ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al{sub 2}O{sub 3} content and not containing Fe{sub 2}O{sub 3} were predominantly amorphous but subjected to devitrification under annealing. Addition of B{sub 2}O{sub 3} and partial Fe{sub 2}O{sub 3} substitution for Al{sub 2}O{sub 3} in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe{sup 3+} ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe{sup 3+}O{sub 6} units and crystalline phases as major Fe{sup 3+} and minor Fe{sup 2+} ions in a magnetically ordered state and participating in a “fast” electronic exchange.

  19. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    Science.gov (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  2. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    Science.gov (United States)

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  3. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    International Nuclear Information System (INIS)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  4. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan, E-mail: nchandra40@hotmail.com

    2015-05-15

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  5. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  6. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    International Nuclear Information System (INIS)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N.

    2014-01-01

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10 3 , 3.8×10 3 and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry

  7. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  8. Structural and spectroscopic studies on Er{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2012-04-01

    Er{sup 3+} doped boro-tellurite glasses with the chemical composition (69-x)B{sub 2}O{sub 3}-xTeO{sub 2}-15MgO-15K{sub 2}O-1Er{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er{sup 3+} ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters ({beta}{sup Macron} and {delta}) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio ({beta}{sub R}) and peak stimulated emission cross-section ({sigma}{sub P}{sup E}) for the excited state transitions {sup 2}H{sub 9/2}{yields}{sup 4}I{sub 15/2} and {sup 2}H{sub 11/2} and {sup 4}S3{sub /2}{yields}{sup 4}I{sub 15/2} of the Er{sup 3+} ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (E{sub opt}) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er{sup 3+} doped boro-tellurite glasses in the present study. The

  9. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis

    Science.gov (United States)

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-01

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.

  10. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  11. Distinction of leukemia patients' and healthy persons' serum using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Liu, Xingcun; Li, Weizu; Wang, Yuchan; Chen, Xianliang; Wang, Xin

    2013-01-01

    In this paper, FTIR spectroscopy was applied to compare the serum from leukemia patients with the serum from healthy persons. IR spectra of leukemia patients' serum were similar with IR spectra of healthy persons' serum, and they were all made up of proteins, lipids and nucleic acids, etc. In order to identify leukemia patients' serum and healthy persons' serum, the H1075/H1542, H1045/H1467, H2959/H2931 ratios were measured. The H2959/H2931 ratio had the highest significant difference among these ratios and might be a useful factor for identifying leukemia patients' serum and healthy persons' serum. Furthermore, from curve fitting, the RNA/DNA (A1115/A1028) ratios were observed to be lower in leukemia patients' serum than those in healthy persons' serum. The results indicated FTIR spectroscopic study of serum might be a useful tool in the field of leukemia research and diagnosis.

  12. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Science.gov (United States)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  13. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  14. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  15. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.

    Science.gov (United States)

    Abo Dena, Ahmed S; Abdel Gaber, Sara A

    2017-06-15

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies

    Science.gov (United States)

    Abo Dena, Ahmed S.; Abdel Gaber, Sara A.

    2017-06-01

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.

  17. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    Science.gov (United States)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  18. Spectroscopic studies on the interaction of mimosine with BSA and DNA

    Science.gov (United States)

    Baltazar, C. J.; Mun, R.; Tajmir-Riahi, H. A.; Bariyanga, J.

    2018-06-01

    Mimosine has shown antitumor activity towards cancer cells. It has also been found to inhibit deoxyribonucleic acid (DNA) but the interaction is not fully understood. Here we report the results of investigation of its interactions with bovine serum albumin (BSA) and DNA in aqueous solution (pH 7.4) using FTIR and UV spectroscopic methods. Mimosine was found to disrupt the conformation of BSA by reducing its α-helix component and promoting a partial unfolding of the protein. In addition, the results indicated that mimosine may bind to DNA by electrostatic attractions via phosphate groups and grooves. The overall binding constant of DNA -mimosine complex was 5 × 10 3 M-1.

  19. The spectroscopic study of building composites containing natural sorbents.

    Science.gov (United States)

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. FTIR

    International Nuclear Information System (INIS)

    Gierczak, C.A.; Andino, J.M.; Butler, J.W.; Heiser, G.A.; Jesion, G.; Korniski, T.J.

    1991-01-01

    FTIR spectroscopy has been shown to be a valuable tool in the analysis of complex gas phase mixtures, such as dilute vehicle exhaust. Regulated and non-regulated vehicle emissions have been routinely sampled and analyzed using prototype instrumentation developed in this laboratory, and in several other laboratories over the last decade. More recently, commercial versions of these FTIR analyzers have become available through several manufacturers. This paper reviews the data acquisition and processing techniques utilized by the FTIR analyzer developed in this laboratory. The statistical detection limits for 22 of the components analyzed by the system are presented. In addition, the linearity of the carbon monoxide (CO) analysis is demonstrated over several orders of magnitude. Experiments designed to study the effects of environmental parameters on the accuracy and the sensitivity of the system are also described

  1. SPECTROSCOPIC ANALYSIS OF FIVE PHYLOGENETICALLY DISTANT FUNGI (DIVISION: ASCOMYCETE FROM VELLAR ESTUARY, SOUTHEAST COAST OF INDIA – A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Jayachandran Subburaj

    2013-04-01

    Full Text Available Fungal taxonomy is dynamically driven towards controversial discipline that consequently requires changes in nomenclature. Scarcity of microbiological expertise particularly for marine fungi is another major setback for these taxonomical differences. Here, five different species pharmacologically important marine fungi under Division Ascomycete were studied for their spectral variation. This work verified the practical applicability of FT-IR microspectroscopy technique for early and rapid identification of these species based on the spectral data showed striking difference with their major biomolecules such as lipids, proteins and nucleic acids produced by them. Spectra of all the species showed striking differences while individual peaks of each spectrum are parallel to each other in their respective spectral regions. Aspergillus oryzae have intense peaks in the lipid and nucleic acid spectral region and moderate bands in the amide spectrum. Phoma herbarum and Trichoderma piluliferum showed intense peaks in the protein spectral region but moderate peaks in the lipid and nucleic acid regions. Hypocrea lixii and Meyerozyma guilliermandii have less intense peaks in all the five spectral regions. This unique spectral representation is concordant with the cluster analysis dendrogram by minimum variance statistical method where low spectroscopic distance was found between H. lixii and M. guilliermondii whereas a higher spectroscopic distance was found between P. herbarum and T. piluliferum. FTIR spectroscopy delivers a combined advantage for efficient fungal classification as well as simultaneous visualization of chemical composition of samples as evident from this study.

  2. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    Science.gov (United States)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  3. FTIR and Vis-FUV real time spectroscopic ellipsometry studies of polymer surface modifications during ion beam bombardment

    Science.gov (United States)

    Laskarakis, A.; Gravalidis, C.; Logothetidis, S.

    2004-02-01

    The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.

  4. FTIR and Vis-FUV real time spectroscopic ellipsometry studies of polymer surface modifications during ion beam bombardment

    International Nuclear Information System (INIS)

    Laskarakis, A.; Gravalidis, C.; Logothetidis, S.

    2004-01-01

    The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the C-O, C-C and C-C groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME

  5. Fourier Transform Infrared (FTIR Spectroscopy with Chemometric Techniques for the Classification of Ballpoint Pen Inks

    Directory of Open Access Journals (Sweden)

    Muhammad Naeim Mohamad Asri

    2015-12-01

    Full Text Available FTIR spectroscopic techniques have been shown to possess good abilities to analyse ballpoint pen inks. These in-situ techniques involve directing light onto ballpoint ink samples to generate an FTIR spectrum, providing “molecular fingerprints” of the ink samples thus allowing comparison by direct visual comparison. In this study, ink from blue (n=15 and red (n=15 ballpoint pens of five different brands: Kilometrico®, G-Soft®, Stabilo®, Pilot® and Faber Castell® was analysed using the FTIR technique with the objective of establishing a distinctive differentiation according to the brand. The resulting spectra were first compared and grouped manually. Due to the similarities in terms of colour and shade of the inks, distinctive differentiation could not be achieved by means of direct visual comparison. However, when the same spectral data was analysed by Principal Component Analysis (PCA software, distinctive grouping of the ballpoint pen inks was achieved. Our results demonstrate that PCA can be used objectively to investigate ballpoint pen inks of similar colour and more importantly of different brands.

  6. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  7. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.

    Science.gov (United States)

    Planes, G A; Rodríguez, J L; Miras, M C; García, G; Pastor, E; Barbero, C A

    2010-09-21

    Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

  8. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    Science.gov (United States)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  9. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  10. Spectroscopic and molecular modeling studies of N-(4-(3-methyl-3-phenylcyclobutyl-3-phenylthiazole-2(3H-ylideneaniline by using experimental and density functional methods

    Directory of Open Access Journals (Sweden)

    Fatih Şen

    2017-05-01

    Full Text Available In the present study, a combined experimental and computational study on molecular structure and spectroscopic characterization on the title compound has been reported. The crystal was synthesized and its molecular structure brought to light by X-ray single crystal structure determination. The spectroscopic properties of the compound were examined by FT-IR and NMR (1H and 13C techniques. FT-IR spectra of the target compound in solid state were observed in the region 4000–400 cm−1. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The molecular geometries were those obtained from the X-ray structure determination optimized using the density functional theory (DFT/B3LYP method with the 6-31G(d, p and 6-31G+(d, p basis set in ground state. From the optimized geometry of the molecule, geometric parameters (bond lengths, bond angles and torsion angles, vibrational assignments and chemical shifts of the title compound have been calculated theoretically and compared with those of experimental data. Besides, molecular electrostatic potential (MEP, frontier molecular orbitals (FMOs, Mulliken population analysis, Thermodynamic properties and non-linear optical (NLO properties of the title molecule were investigated by theoretical calculations.

  11. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    Science.gov (United States)

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Preliminary studies on the observation of oxygen-18 exchange in coal by Fourier Transform Infrared spectroscopy, investigations in the use of FTIR for coal ultimate analysis, and a fast pneumatic transfer system for 0-18 determination by neutron activation analysis

    International Nuclear Information System (INIS)

    DeKeyser, C.F. Jr.

    1984-01-01

    Use of isotope exchange kinetics for functional group determination in coal is investigated. Net exchange kinetics determined by time dependent Neutron Activation Analysis measurements (NAA) would be related to individual functional group exchange kinetics determined by Fourier Transform Infrared (FTIR) spectroscopy measurements. The work described herein can be grouped into three categories: 1) work relating to the FTIR spectroscopy of coal, 2) work relating to oxygen exchange in coal, and 3) work relating to measurements of O-18 by NAA. Methods are discussed for preparing IR observable samples of coal and ash, obtaining FTIR spectra of these samples, and reducing the spectral data to numerical form. Also included in this category is an investigation into the use of IR spectroscopic methods for the ultimate analysis of coals. An initial attempt at the observation of oxygen exchange in coal is described which includes two exchange schemes and the FTIR spectroscopic observation of their end products. A facile exchange between O-18 water and O-16 in coal was attempted with and without catalysts. Also, the design and construction of a fast pneumatic transfer system for the determination of O-18 is described

  13. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    International Nuclear Information System (INIS)

    Pessanha, S.; Manso, M.; Carvalho, M.L.

    2012-01-01

    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation–restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: ► The techniques used for studying illuminated manuscripts are described and compared. ► For in situ, non-destructive analysis the most suitable technique is EDXRF. ► For quantitative analysis TXRF is more appropriate. ► Raman spectroscopy is mostly used for pigments identification. ► FTIR was used for the characterization of binders and parchment.

  14. Compositional characterization of carbon electrode material: A study using simultaneous TG-DTA-FTIR

    International Nuclear Information System (INIS)

    Raje, Naina; Aacherekar, Darshana A.; Reddy, A.V.R.

    2009-01-01

    Present work describes the application of thermal methods, especially the evolved gas analysis (EGA) for the compositional characterization of carbon electrode material with respect to its organic, amorphous and graphitic carbon content. Trace levels of organic carbon present in the amorphous carbon samples were determined qualitatively by using FTIR absorption spectroscopy. Amorphous and graphitic carbon content in synthetic mixture samples were determined quantitatively using simultaneous TG-DTA-FTIR measurements. FTIR system was calibrated using the measured absorption signal of the evolved carbon dioxide due to the decomposition of cadmium carbonate. Inter-comparison studies using TG-FTIR measurements show that simultaneous FTIR spectroscopy is an effective complementary quantitative measurement technique for thermogravimetric analysis involving the complex decomposition reaction processes.

  15. Diagnostic prediction of renal failure from blood serum analysis by FTIR spectrometry and chemometrics

    Science.gov (United States)

    Khanmohammadi, Mohammdreza; Ghasemi, Keyvan; Garmarudi, Amir Bagheri; Ramin, Mehdi

    2015-02-01

    A new diagnostic approach based on Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectrometry and classification algorithm has been introduced which provides a rapid, reliable, and easy way to perform blood test for the diagnosis of renal failure. Blood serum samples from 35 renal failure patients and 40 healthy persons were analyzed by ATR-FTIR spectrometry. The resulting data was processed by Quadratic Discriminant Analysis (QDA) and QDA combined with simple filtered method. Spectroscopic studies were performed in 900-2000 cm-1 spectral region with 3.85 cm-1 data space. Results showed 93.33% and 100% of accuracy for QDA and filter-QDA models, respectively. In the first step, 30 samples were applied to construct the model. In order to modify the capability of QDA in prediction of test samples, filter-based feature selection methods were applied. It was found that the filtered spectra coupled with QDA could correctly predict the test samples in most of the cases.

  16. Synthesis of polyimides from α,αʹ-bis(3-aminophenoxy)-p-xylene: Spectroscopic, single crystal XRD and thermal studies

    Science.gov (United States)

    Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal

    2018-05-01

    The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.

  17. HPTLC Hyphenated with FTIR: Principles, Instrumentation and Qualitative Analysis and Quantitation

    Science.gov (United States)

    Cimpoiu, Claudia

    In recent years, much effort has been devoted to the coupling of high-performance thin-layer chromatography (HPTLC) with spectrometric methods because of the robustness and simplicity of HPTLC and the need for detection techniques that provide identification and determination of sample constituents. IR is one of the spectroscopic methods that have been coupled with HPTLC. IR spectroscopy has a high potential for the elucidation of molecular structures, and the characteristic absorption bands can be used for compound-specific detection. HPTLC-FTIR coupled method has been widely used in the modern laboratories for the qualitative and quantitative analysis. The potential of this method is demonstrated by its application in different fields of analysis such as drug analysis, forensic analysis, food analysis, environmental analysis, biological analysis, etc. The hyphenated HPTLC-FTIR technique will be developed in the future with the aim of taking full advantage of this method.

  18. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  19. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  20. Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process

    International Nuclear Information System (INIS)

    Drmosh, Q.A.; Gondal, M.A.; Yamani, Z.H.; Saleh, T.A.

    2010-01-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2 O 2 . The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2 O 2 , and H 2 O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1 . FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1 .

  1. Spectroscopic studies of silver boro tellurite glasses

    Science.gov (United States)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  2. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization of silicon-oxide interfaces and organic monolayers by IR-UV ellipsometry and FTIR spectroscopy

    Science.gov (United States)

    Hess, P.; Patzner, P.; Osipov, A. V.; Hu, Z. G.; Lingenfelser, D.; Prunici, P.; Schmohl, A.

    2006-08-01

    VUV-laser-induced oxidation of Si(111)-(1×1):H, Si(100):H, and a-Si:H at 157 nm (F II laser) in pure O II and pure H IIO atmospheres was studied between 30°C and 250°C. The oxidation process was monitored in real time by spectroscopic ellipsometry (NIR-UV) and FTIR spectroscopy. The ellipsometric measurements could be simulated with a three-layer model, providing detailed information on the variation of the suboxide interface with the nature of the silicon substrate surface. Besides the silicon-dioxide and suboxide layer, a dense, disordered, roughly monolayer thick silicon layer was included, as found previously by molecular dynamics calculations. The deviations from the classical Deal-Grove mechanism and the self-limited growth of the ultrathin dioxide layers (TMS) groups and n-alkylthiol monolayers on gold-coated silicon. The C-H stretching vibrations of the methylene and methyl groups could be identified by FTIR spectroscopy and IR ellipsometry.

  4. Application of fourier-transform infrared (ft-ir) spectroscopy for determination of total phenolics of freeze dried lemon juices

    International Nuclear Information System (INIS)

    Sherazi, S.T.H.; Bhutto, A.A.; Mehesar, S.A.

    2017-01-01

    A cost effective and environmentally safe analytical method for rapid assessment of total phenolic content (TPC) in freeze dried lemon juice samples was developed using transmission Fourier-transform infrared spectroscopy (FT-IR) in conjunction with chemometric techniques. Two types of calibrations i.e. simple Beer's law and partial least square (PLS) were applied to investigate most accurate calibration model based on region from1420 to 1330 cm-1. The better analytical performance was obtained by PLS technique coefficient of determination (R2), root mean square error of calibration (RMSEC) with the value of 0.999 and 0.00864, respectively. The results of TPC in freeze dried lemon juice samples obtained by transmission FT-IR were compared with TPC observed by Folin-Ciocalteu (FC) assay and found to be comparable. Outcomes of the present study indicate that transmission FT-IR spectroscopic approach could be used as an alternative approach in place of Folin-Ciocalteu (FC) assay which is expensive and time-consuming conventional chemical methods for determination of the total phenolic content of lemon fruits. (author)

  5. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  6. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    Science.gov (United States)

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  7. Spectroscopic studies of silver boro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ramesh, E-mail: apparao.bojja@gmail.com; Kumari, K. Rajani, E-mail: apparao.bojja@gmail.com; Rao, B. Appa, E-mail: apparao.bojja@gmail.com; Bhikshamaiah, G., E-mail: apparao.bojja@gmail.com [Department of Physics, Osmania University, Hyderabad-500007 (India)

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  8. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  9. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma Rae [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  10. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  11. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  12. Spectroscopic studies of the quality of WCO (Waste Cooking Oil fatty acid methyl esters

    Directory of Open Access Journals (Sweden)

    Matwijczuk Arkadiusz

    2018-01-01

    Full Text Available Different kinds of biodiesel fuels become more and more attractive form of fuel due to their unique characteristics such as: biodegradability, replenishability, and what is more a very low level of toxicity in terms of using them as a fuel. The test on the quality of diesel fuel is becoming a very important issue mainly due to the fact that its high quality may play an important role in the process of commercialization and admitting it on the market. The most popular techniques among the wellknown are: molecular spectroscopy and molecular chromatography (especially the spectroscopy of the electron absorption and primarily the infrared spectroscopy (FTIR.The issue presents a part of the results obtained with the use of spectroscopy of the electron absorption and in majority infrared spectroscopy FTIR selected for testing samples of the acid fats WCO (Waste Cooking Oil types. The samples were obtained using laboratory methods from sunflower oil and additionally from waste animal fats delivered from slaughterhouses. Acid methyl esters were selected as references to present the samples. In order to facilitate the spectroscopic analysis, free glycerol, methanol, esters and methyl linolenic acid were measured

  13. Spectroscopic studies of the transplutonium elements

    International Nuclear Information System (INIS)

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables

  14. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  15. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  16. UV–Vis and ATR–FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma

    Science.gov (United States)

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641

  17. Structural, Spectroscopic (FT-IR, Raman and NMR, Non-linear Optical (NLO, HOMO-LUMO and Theoretical (DFT/CAM-B3LYP Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule

    Directory of Open Access Journals (Sweden)

    Nuri ÖZTÜRK

    2018-02-01

    Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.

  18. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  19. A novel FT-IR spectroscopic method based on lipid characteristics for qualitative and quantitative analysis of animal-derived feedstuff adulterated with ruminant ingredients.

    Science.gov (United States)

    Gao, Fei; Zhou, Simiao; Han, Lujia; Yang, Zengling; Liu, Xian

    2017-12-15

    The objective of this study was to explore the ability of Fourier transform infrared (FT-IR) spectroscopy to authenticate adulterated animal-derived feedstuff. A total of 18 raw meat and bone meals (MBMs), including 9 non-ruminant MBMs and 9 ruminant MBMs, were mixed to obtain 81 binary mixtures with specific proportions (1-35%). Lipid spectral characteristics were analyzed by FT-IR spectroscopy combined with chemometrics. Changes in FT-IR spectra were observed as adulterant concentration was varied. The results illustrate ruminant adulteration can be successfully distinguished based on lipid characteristics. PLS model was established to quantify ruminant adulteration, which was shown to be valid (R 2 P >0.90). Furthermore, the ratios of CC/CO and CC/CH(CH 2 ), as well as the number of CH(CH 2 ) in the fatty acids of adulterated lipids, were calculated, which showed that differences in the trans fatty acid content and the degree of unsaturation were the main contributors to determination of adulteration based on FT-IR spectroscopy. Copyright © 2017. Published by Elsevier Ltd.

  20. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spectroscopic investigation of degradation of rapseed oil methyl esters

    International Nuclear Information System (INIS)

    Kampars, V.

    2003-01-01

    Investigation of rapseed oil methyl esters by US VIS and FTIR spectroscopy during the heating at 80 deg C were carried out. The degradation begins immediately after beginning of experiment. The main process at first stage is destroying of carotenoids and oxidation of polyunsaturated fatty acids by forming conjugated polyenes. Between the formation of conjugated triens and destroying of carotenoids exist definite interconnection, but there isn't evidence for the protective activity of carotenoids. As follows from FTIR spectroscopy the increase of carbonyl compounds concentration begins immediately after the start of experiment and continues all the time. Despite to the complex character the peak at 220 nm is only one spectroscopic characteristic with a sharp alteration point and may be used for the fast and simple detection of storage stability of bio diesels. (authors)

  2. Vibrational spectroscopic (FT-IR, FT-Raman) and quantum mechanical study of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f] [1,2,4]triazolo[4,3-a][1,4] diazepine

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob

    2018-04-01

    The spectroscopic properties of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine were investigated in the present study using FT-IR and FT-Raman techniques. The results obtained were compared with quantum mechanical methods, as it serves as an important tool in interpreting and predicting vibrational spectra. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and Raman scattering were calculated using density functional theory B3LYP method with 6-311++g (d,p) basis set. All the experimental results were in line with the theoretical data. The molecular electrostatic potential (MEP) and HOMO LUMO energies of the title compound were accounted. The results indicated that the title compound has a lower softness value (0.27) and high electrophilicity index (4.98) hence describing its biological activity. Further, natural bond orbital was also analyzed as part of the work. Fukui functions were calculated in order to explain the chemical selectivity or the reactivity site in 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine. The thermodynamic properties of the title compound were closely examined at different temperatures. It revealed the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. The paper further explains that the title compound can act as good antidepressant through molecular docking studies.

  3. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  4. Assessment of nonenzymatic glycation in protein by FTIR spectroscopy

    Science.gov (United States)

    Otero de Joshi, Virginia; Joshi, Narahari V.; Gil, Herminia; Velasquez, William; Contreras, Silvia; Marquez, Glevis

    1999-04-01

    Detection of nonenzymatic glycated proteins is a very significant feature in diabetes, aging and related diseases, therefore we have carried out an FTIR spectroscopic study for glycated and native proteins such as (gamma) -globulin, human serum albumin. For this purpose, commercially available proteins were glycated by a usual procedure and their FTIR spectra were recorded together with that of the native ones. In order to follow the changes in time, (gamma) -globulin was glycated during 1, 2, 3, 5 and 8 weeks and their spectra were recorded. Direct verification was obtained by examining a model unit where the -NH2 group was attached to glucose. The spectrum shows a strong peak at 3500 cm-1 confirming the observed variation in time dependent spectra. The general features of the spectra are very similar and there was no additional structure or change in the peaks. This is understandable as not all the lysine residues are glycated, only a small fraction. Glucose is attached to the (epsilon) -amino group of lysine to form Amadori products, and therefore, the vibrational modes corresponding to the (epsilon) -NH2 unit of lysine are expected to be altered. This region exactly lies in the Amide I region of protein structure. Careful investigation of this part, indeed, shows a complex structure originated from alternations of -NH2 group. Thus, the present investigation indicates that an optical approach could be a rapid and effective method to identify the nonenzymatic glycation process.

  5. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    Science.gov (United States)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  6. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Fourier transform infrared spectroscopic study of gamma irradiated SiO2 nanoparticles

    Science.gov (United States)

    Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan; Huseynova, Efsane

    2018-03-01

    In the present work, nano SiO2 particles are investigated before and after gamma irradiation (25, 50, 75, 100 and 200 kGy) using Fourier transform infrared (FTIR) spectroscopy method for the wavenumber between 400-4000 cm-1. It is found that as a result of spectroscopic analysis, five new peaks have appeared after gamma radiation. Two of new obtained peaks (which are located at 687 cm-1 and 2357 cm-1 of wavenumber) were formed as a result of gamma radiation interaction with Si-O bonds. Another three new peaks (peaks appropriate to 941, 2052 and 2357 cm-1 values of wavenumber) appear as a result of interaction of water with nano SiO2 particles after gamma irradiation. It has been defined as asymmetrical bending vibration, symmetrical bending vibration, symmetrical stretching vibration and asymmetrical stretching vibration of Si-O bonds appropriate to peaks.

  8. Spectroscopic study; Estudio espectroscopico del PAA con iones de Eu{sup 3+} como material luminescente

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.; Rodriguez, R. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Mexico D.F. (Mexico); Arroyo, R. [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, A.P. 55-534, 09340 Mexico D.F. (Mexico)

    1999-07-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu{sup 3+}). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of {sup 1} H, {sup 13} C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at {lambda} = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  9. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2003-12-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C 2h symmetry trans conformation (OC-CO dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the compound in vacuum. However, in the low temperature amorphous state, obtained by fast deposition of the vapour of the compound onto a suitable cold (9 K) substrate, as well as in the liquid and gaseous phases, spectroscopic features are observed that can only be explained by assuming that conformations without an inversion centre ( C 2 symmetry) do also contribute to the spectra. These results are in agreement with the experimental evidence that diacetyl has a permanent dipole moment (ca.1 Debye) in the vapour phase at room temperature and are here explained taking into consideration the influence of the low frequency large amplitude torsional vibration around the central C-C bond on the molecular properties.

  10. FTIR-spectroscopic measurements of beryls of various sources and the geological mineralogical and gemmological characterization of diamonds of the Espinhago-range (Minas Gerais, Brazil)

    International Nuclear Information System (INIS)

    Banko, A. G.

    1997-09-01

    In this work international material of beryl was analyzed by FTIR-spectroscopy, electron microprobe, analytical scanning microscopy, moisture evolution analyzer and fluorine sensitive electrode. The FTIR-spectroscopic measurements and the determination of analytical water content reveal a logarithmic correlation between the beryl water content and the intensity of the H 2 O-combination band at 5275 cm -1 , using unpolarized IR-light. In addition, the intensities of the 3990 - 3970 cm -1 ,-, 3234 cm -1 and 3345 cm -1 -bands, measured with polarized IR-light parallel to the c-axis, are linearly correlated to the content of the alkali metals. Probably these bands correspond to fundamental (1st overtone of H 2 O-II/3234 cm -1 - and 3345 cm -1 ) and combination (alkaliO-H...OH 2 -II/ 3990 - 3970 cm -1 ) modes of bending vibrations. Beryl was deuterated at various temperature. No absorption were detected in the region at around 2390 cm -1 , 2470 cm -1 and 2940 cm -1 , which would prove an assignment related to the present of hydrogen. If alkali-hydroxide grouping in beryl-channel-positions is indeuterable, the model of fundamental and combination modes seems to be valid. The band at 3990 - 3970 cm -1 can also be assigned to the combination mode of alkali-oxygen (alkali (6),(12) -O-bonds) vibrations and the normal modes of the H 2 O- II -molecule. The three integral absorption coefficients - α 5267 (H 2 O-II)t α 5275 (H 2 O-I) and α 2358 (CO 2 ) - were used to subdivide the beryls into groups. The Espinhago-Diamond-Province reflects an interesting geologic history from Precambrian placer- to recent alluvial deposits. Mineralogical and gemmological features, in combination with geological aspects reflect the many reworking processes which affected Espinhago diamonds in time and space: the characteristics of diamond populations in their specific geologic environment represent the natural selection, which eliminated stones of low quality during geologic history. (author)

  11. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610

    Science.gov (United States)

    Tugarova, Anna V.; Scheludko, Andrei V.; Dyatlova, Yulia A.; Filip'echeva, Yulia A.; Kamnev, Alexander A.

    2017-07-01

    Biofilms are spatially and metabolically structured communities of microorganisms, representing a mode of their existence which is ubiquitous in nature, with cells localised within an extracellular biopolymeric matrix, attached to each other, at an interface. For plant-growth-promoting rhizobacteria (PGPR), the formation of biofilms is of special importance due to their primary localisation at the surface of plant root systems. In this work, FTIR spectroscopy was used, for the first time for bacteria of the genus Azospirillum, to comparatively study 6-day-mature biofilms formed on the surface of ZnSe discs by the rhizobacterium Azospirillum brasilense Sp245 and its mutant A. brasilense Sp245.1610. The mutant strain, having an Omegon Km insertion in the gene of lipid metabolism fabG1 on the plasmid AZOBR_p1, as compared to the wild-type strain Sp245 (see http://dx.doi.org/10.1134/S1022795413110112)

  12. Molecular structure of human aortic valve by μSR- FTIR microscopy

    Science.gov (United States)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very

  13. Effect of Molecular Weight on the Thermal and Spectroscopic Properties of Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    Khafagy, R.M.; Abd El-Kader, K.M.; Badr, Y.A.

    2009-01-01

    Thin films of Poly(vinyl alcohol) (PVA) with molecular weights 5000, 17000,72000 and 125000 g/mol were prepared by casting technique.Samples were thermally and spectroscopically investigated using TGA, DSC, FTIR and FT-Raman spectroscopy, in order to show how the thermal stability and structure of PVA might be correlated with its molecular weight. Thermal analysis showed that samples degrade in two steps mechanism. The mechanism observed for degradation in an inert atmosphere was in accordance with the accepted mechanism of elimination followed by pyrolisation. PVA 5000MW and PVA 17000Mw showed almost similar thermal behavior due to their expected similar structure. PVA 72000Mw showed lower thermal stability since it is characterized with the presence of the unstable C-O-C ether linkages, which lead to the fast melting of this sample. PVA 125000Mw showed the highest thermal stability because crosslinking of the main chains takes place due to introducing additional PVA units, which substitute each over oxygen atom. ΔH values obtained from DSC showed good accordance with TGA and Drtg analysis. Moreover, FTIR and FT-Raman results agreed well with thermal analysis, and confirmed our supposed structural changes which might take place as the molecular weight of the sample changes: since the water uptake, presence of ether linkages, and double bonds formulation due to crosslinking, were confirmed with FTIR and FT-Raman spectral analysis. The crystallinity percentage of the samples was calculated from Raman spectra and results confirmed our spectroscopic explanations. The thermal and spectroscopic behavior of the samples was explained as a result of the competitive action of at least three factors due to increasing the molecular weight: (i) diminution of the existing physical network due to changes in hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties due to the specific chemical structure after crosslinking

  14. Spectroscopic study on variations in illite surface properties after acid-base titration.

    Science.gov (United States)

    Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao

    2003-07-01

    FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.

  15. Spectroscopic studies on (Ba,Ca)(Ti,Zr)O3 ferroelectric ceramics with high piezoelectric coefficients

    International Nuclear Information System (INIS)

    Archana Kumar; Sreenivas, K.

    2013-01-01

    In recent year non lead-based multi component ceramics consisting Ba(Ti 0.8 Zr 0.2 )O 3- (Ba 0.7 Ca 0.3 )TiO 3 have been found to exhibit high piezoelectric coefficients comparable to those of PZT, and there is a lot interest to understand nature of phase transition in these novel compositions. In the present study 0.5Ba(Ti 0.8 Zr 0.2 )O 3- 0.5(Ba 0.7 Ca 0.3 )TiO 3 ceramic composition calcinated and sintered at different temperatures has been investigated. The ceramics are prepared from the raw powders and reacted by a solid state reaction method. Spectroscopic methods including DTA/TGA, FTIR and Raman spectroscopy been used to understand the changes occurring in the chemical and structural properties during processing. The nature of polymorphic phase transition has been studied through the temperature dependent Raman spectroscopy. The de-poling characteristics with temperature have been studied to assess their usefulness for high temperature transducer applications, and their ferroelectric properties have been studied. This new composition exhibits high piezoelectric (d 33 ), and the transition temperature is low around 120℃. (author)

  16. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  17. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches

    Science.gov (United States)

    Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.

    2018-02-01

    Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.

  18. Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite.

    Science.gov (United States)

    Rana, Kiran; Boyd, Stephen A; Teppen, Brian J; Li, Hui; Liu, Cun; Johnston, Cliff T

    2009-04-28

    The interaction of dibenzo-p-dioxin (DD), from aqueous suspension, with smectite was investigated using in situ vibrational spectroscopy (FTIR and Raman), structural and batch sorption techniques. Batch sorption isotherms were integrated with in situ attenuated total reflectance (ATR)-FTIR and Raman spectroscopy and X-ray diffraction. Sorption isotherms revealed that the affinity of DD for smectite in aqueous suspension was strongly influenced both by the type of smectite and by the nature of the exchangeable cation. Cs-saponite showed a much higher affinity over Rb-, K- and Na-exchange saponites. In addition, DD sorption was found to depend on clay type with DD showing a high affinity for the tetrahedrally substituted trioctahedral saponite over SWy-2 and Upton montmorillonites. A structural model is introduced to account for the influence of clay type. Raman and FTIR data provided complementary molecular-level insight into the sorption mechanisms. In the case of Cs-saponite, the selection rules of DD based on D(2h) symmetry were broken indicating a site-specific interaction between DD and intercalated Cs(+) ions in the interlayer of the clay. Polarized in situ ATR-FTIR spectra revealed that the molecular plane of sorbed DD was tilted with respect to the clay surface which was consistent with a d-spacing of 1.49 nm. Finally, cation-induced changes in both the skeletal ring vibrations and the asymmetric C-O-C stretching vibrations provided evidence for site specific interactions between the DD and exchangeable cations in the clay interlayer. Together, the combined macroscopic and spectroscopic data show a surprising link between a hydrophilic material and a planar hydrophobic aromatic hydrocarbon.

  19. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit

    Energy Technology Data Exchange (ETDEWEB)

    Khraisha, V.H.; Irqsousi, N.A. [University of Jordan, Amman (Jordan). Dept. of Chemical Engineering; Shabib, I.M. [Applied Science Univ., Amman (Jordan). Dept. of Chemistry

    2003-01-01

    In this investigation, spectroscopic (FT-IR, UV-Vis, {sup 1}H NMR) and chromatographic (GC) techniques were used to analyze two Jordanian shale oils, Sultani and El-Lajjun. The oils were extracted at different pyrolysis temperatures (400-500{sup o}C) using a fluidized bed reactor. The spectroscopic and chromatographic analyses show that the variation of pyrolysis temperature has no significant effect on the composition of the produced oil. The {sup 1}H NMR results indicate that the protons of methyl and methelyene represent the bulk of the hydrogen ({approx}90%) in most shale oil samples. GC analysis reveals that the oil samples contain n-alkanes with a predominant proportion of n-C{sub 25}. (Author)

  20. Subtask 1.11 - Spectroscopic field screening of hazardous waste and toxic spills. Final report

    International Nuclear Information System (INIS)

    Grisanti, A.A.

    1997-10-01

    Techniques for the field characterization of soil contamination due to spillage of hazardous waste or toxic chemicals are time-consuming and expensive. Thus more economical, less time-intensive methods are needed to facilitate rapid field screening of contaminated sites. The overall objective of this project is to study the feasibility of using an evanescent field absorbance sensor Fourier transform infrared spectroscopic sensor coupled with cone penetrometry as a field screening method. The specific objectives of this project are as follows: design an accessory for use with FT-IR that interfaces the spectrometer to a cone penetrometer; characterize the response of the FT-IR accessory to selected hydrocarbons in a laboratory-simulated field environment; and determine the ability of the FT-IR-CPT instrument to measure hydrocarbon contamination in soil by direct comparison with a reference method (e.g., Soxhlet extraction followed by gas chromatography) to quantify hydrocarbons from the same soil

  1. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  2. Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints

    Science.gov (United States)

    Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal

    2015-08-01

    The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.

  3. Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures

    Science.gov (United States)

    Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gözde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, Fatma; Armaković, Stevan; Armaković, Sanja J.; Yildiz, Ilkay; Van Alsenoy, C.

    2017-08-01

    N-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex.

  4. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases

    Science.gov (United States)

    Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2017-01-01

    Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.

  5. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    Science.gov (United States)

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  6. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  7. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies.

    Science.gov (United States)

    Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza

    2018-05-03

    The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base free radicals. Copyright © 2018. Published by Elsevier B.V.

  8. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Science.gov (United States)

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  9. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  10. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    Science.gov (United States)

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  11. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  12. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    Science.gov (United States)

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  13. DFT, spectroscopic studies, NBO, NLO and Fukui functional analysis of 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide

    Science.gov (United States)

    Zacharias, Adway Ouseph; Varghese, Anitha; Akshaya, K. B.; Savitha, M. S.; George, Louis

    2018-04-01

    A novel triazole derivative 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide was synthesized and subjected to density functional theory (DFT) studies employing B3LYP/6-31+G(d,p) basis set. Characterization was done by FT-IR, Raman, mass, 1H NMR and 13C NMR spectroscopic analyses. The stability of the molecule was evaluated from NBO studies. Delocalization of electron charge density and hyper-conjugative interactions were accountable for the stability of the molecule. The dipole moment (μ), mean polarizabilty (△α) and first order hyperpolarizability (β) of the molecule were calculated. Molecular electrostatic potential studies, HOMO-LUMO and thermodynamic properties were also determined. HOMO and LUMO energies were experimentally determined by Cyclic Voltammetry.

  14. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  15. The Use of FTIR and Micro-FTIR Spectroscopy: An Example of Application to Cultural Heritage

    International Nuclear Information System (INIS)

    La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Barone, G.; Mazzoleni, P.; Pezzino, A.

    2011-01-01

    Micro-FTIR and FTIR spectroscopy is useful for the study of degradation forms of cultural heritage. In particular it permits to identify the degradation phases and to establish the structural relationship between them and the substratum. In this paper, we report the results obtained on marble from a Roman sarcophagus, located in the medieval cloister of St. Cosimato Convent (Rome), and on oolitic limestone from the facade of St. Giuseppe Church in Syracuse (Sicily). The main components found in the samples of both monuments are: gypsum, calcium oxalate, and organic matter due to probably conservation treatments. In particular, the qualitative distribution maps of degradation products, obtained by means of micro-FTIR operating in ATR mode, revealed that the degradation process is present deep inside the stones also if it is not visible macroscopically. This process represents the main cause of crumbling of the substrate. The results of this research highlight the benefits of the μ-FTIR analysis providing useful insights on the polishing and consolidation processes of stone materials

  16. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  17. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  18. Mossbauer spectroscopic studies in ferroboron

    Science.gov (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  19. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  20. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  1. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  2. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.

    Science.gov (United States)

    Katayama, Kota; Furutani, Yuji; Kandori, Hideki

    2010-07-15

    In bovine rhodopsin, 11-cis-retinal forms a Schiff base linkage with Lys296. The Schiff base is not reactive to hydroxylamine in the dark, which is consistent with the well-protected retinal binding site. In contrast, under illumination it easily forms all-trans retinal oxime, resulting in the loss of color. This suggests that activation of rhodopsin creates a specific reaction channel for hydroxylamine or loosens the chromophore binding pocket. In the present study, to extract structural information on the Schiff base vicinity and to understand the changes upon activation of rhodopsin, we compared light-induced FTIR difference spectra of bovine rhodopsin in the presence and absence of hydroxylamine under physiological pH (approximately 7). Although the previous FTIR study did not observe the complex formation between rhodopsin and G-protein transducin in hydrated films, the present study clearly shows that hydrated films can be used for studies of the interaction between rhodopsin and hydroxylamine. Hydroxylamine does not react with the Schiff base of Meta-I intermediate trapped at 240 K, possibly because of decreased conformational motions under the frozen environment, while FTIR spectroscopy showed that hydroxylamine affects the hydrogen bonds of the Schiff base and water molecules in Meta-I. In contrast, formation of the retinal oxime was clearly observed at 280 K, the characteristic temperature of Meta-II accumulation in the absence of hydroxylamine, and time-dependent formation of retinal oxime was observed from Meta-II at 265 K as well. The obtained difference FTIR spectra of retinal oxime and opsin are different from that of Meta-II. It is likely that the antiparallel beta-sheet constituting a part of the retinal binding pocket at the extracellular surface is structurally disrupted in the presence of hydroxylamine, which allows the hydrolysis of the Schiff base into retinal oxime.

  3. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Science.gov (United States)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  4. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    Science.gov (United States)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  5. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    Science.gov (United States)

    Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.

    2018-03-01

    Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.

  6. Structural investigations on some cadmium-borotellurate glasses using ultrasonic, FT-IR and X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: m.gaafar@mu.edu.sa [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Ultrasonic Laboratory, National Institute for Standards, Tersa Str., P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Shaarany, I. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia); Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Alharbi, T. [Physics Department, College of Sciences, Majmaah University (Saudi Arabia)

    2014-12-15

    Highlights: • 50B{sub 2}O{sub 3}–(50 – x)TeO{sub 2}–xCdO glass system has been prepared by melt quenching technique. • Both sound velocities decrease with increase in x. • Studies on the structure of these glasses, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}. - Abstract: Glasses in the system 50B{sub 2}O{sub 3}–(50 − x)TeO{sub 2}–xCdO with different CdO contents (0, 10, 20, 30, 40 and 50 mol%), have been prepared by melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of CdO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increase and the molar volume decrease while both sound velocities decrease with increase in x. Elastic properties, FT-IR and X-ray diffraction studies on the network structure of these glass structures, have revealed that Cd{sup 2+} ions are incorporated in the form of CdO{sub 6}, decreasing the molar volume and compensate for the decrease in the average coordination number of tellurium atoms which was the reason for the increase in elastic moduli.

  7. Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques

    International Nuclear Information System (INIS)

    Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.

    2009-01-01

    Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.

  8. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  9. Study of jojoba oil aging by FTIR.

    Science.gov (United States)

    Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J

    2009-05-29

    As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.

  10. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  11. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    Science.gov (United States)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  12. Spectroscopic, thermal and biological studies of coordination

    Indian Academy of Sciences (India)

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  13. FTIR Drug-Polymer Interactions Studies of Perindopril Erbumine

    International Nuclear Information System (INIS)

    Modni, A.; Ahmad, S.; Din, I.; Hussain, Z.

    2014-01-01

    The present study was carried out to prepare different combinations of Perindopril Erbumine with different polymers like Hydroxy propyl methyl cellulose, Hydroxy propyl methyl cellulose K4M, Hydroxy propyl methyl cellulose K15M, Xanthan gum and Ethyl cellulose, thereby to determine any possible interactions between Perindopril erbumine and polymers. The analytical technique Fourier Transform Infrared (FTIR) spectroscopy was used to take spectra of individual drug, polymers and combination of drug with polymers. The results were analyzed to find out any interactions of Perindopril erbumine and polymers. From this study it was concluded that there were no any significant changes in characteristic peaks of drug after combinations with polymers which indicated no interaction between Perindopril erbumine and polymers. (author)

  14. A FTIR study water in membrane of nitrocellulose prepared by phase inversion

    International Nuclear Information System (INIS)

    Benosmane, N.; Boutemeur, B.; Hamdi, M.

    2004-01-01

    Full text.Cellulose derivates were the first biopolymers used to produce synthesis membranes for technical applications, in this study the state of water in asymmetric membrane of nitrocellulose, prepared by the phase inversion process, was investigated using infrared spectroscopy (FTIR), after membrane preparation by the wet inversion process in acetone, the spectre FTIR of wet asymmetric membrane of nitrocellulose after immersion in water (after one week) is compared to the spectre of dried asymmetric membrane of nitrocellulose, the difference in spectre of dried and wet membrane indicate a weakly hydrogen-bonded to the polymer hydroxyl groups between water and hydroxyl groups in surface of membrane, the results demonstrate the amount of water species present in the surface of asymmetric membrane and heterogeneous of surface

  15. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum.

    Science.gov (United States)

    Ahmad, Sohail; AbdEl-Salam, Naser M; Ullah, Riaz

    2016-01-01

    The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25-225 μg/mL). Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.

  16. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  17. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    Science.gov (United States)

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  18. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  19. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  20. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  1. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    Science.gov (United States)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  2. Structural, spectroscopic (FT-IR, NMR, UV-visible), nonlinear optical (NLO), cytotoxic and molecular docking studies of 4-nitro-isonitrosoacetophenone (ninapH) by DFT method

    Science.gov (United States)

    Kucuk, Ilhan; Kaya, Yunus; Kaya, A. Asli

    2017-07-01

    (4-Nitro-phenyl)-oxo-acetaldehyde oxime (ninapH) is a type of oxime, which has a oxime and α-carbonyl groups. This molecule has been synthesized from literature procedure. The structural properties and conformational behaviors were examined using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, the most stable conformer was determined, and then this molecule was optimized with the same basis set. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The first order hyperpolarizability and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the ninapH have been calculated at different temperatures, 100-1000 K. In addition, the molecular docking studies have been performed with DNA and protein structures (downloaded from Protein Data Bank).

  3. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  4. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    Science.gov (United States)

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    Science.gov (United States)

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity.

    Science.gov (United States)

    Soobhany, Nuhaa; Gunasee, Sanjana; Rago, Yogeshwari Pooja; Joyram, Hashita; Raghoo, Pravesh; Mohee, Romeela; Garg, Vinod Kumar

    2017-07-01

    This is the first-ever study of its kind for an extensive assessment and comparison of maturity indexes between compost and vermicompost that have been derived from Municipal Solid Waste (MSW). The spectroscopic (Fourier transform infrared spectroscopy: FT-IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and structural characterization (scanning electron microscope: SEM) were recorded. FT-IR spectra showed an increase in conversion of polysaccharides species and aliphatic methylene groups in vermicompost compared to compost as depicted from the variation of the intensity of the peaks. TG curves of final vermicompost showed a much lower mass loss when compared to compost, indicating higher stability in feedstock. SEM micrographs of the vermicompost reflected strong fragmentation of material than composts which revealed the extent of intra-structural degradation of MSW. These findings elucidate on a clear comparison between composts and vermicomposts in terms of maturity indexes for soil enhancement and in agriculture as organic fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR insights, electronic profiling and DFT computations on ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene] amino}oxy(4-nitrophenylmethanone, an imidazole-bearing anti-Candida agent

    Directory of Open Access Journals (Sweden)

    Al-Wahaibi Lamya H.

    2018-02-01

    Full Text Available The anti-Candida agent, ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amnio}oxy(4-nitropheny methanone (IPAONM, was subjected to comprehensive spectroscopic (FT-IR, FT-Raman, UV–Vis 1H and 13C NMR characterization as well as Hartree Fock and density functional theory computation studies. The selected optimized geometric bond lengths and bond angles of the IPAONM molecule were compared with the experimental values. The calculated wavenumbers have been scaled and compared with the experimental spectra. Mulliken charges and natural bond orbital analysis of the title molecule were calculated and interpreted. The energy and oscillator strengths of the IPAONM molecule were calculated by time-dependent density functional theory (TD-DFT. In addition, frontier molecular orbitals and molecular electrostatic potential diagram of the title compound were computed and analyzed. A study on the electronic properties, such as HOMO, HOMO-1, LUMO and LUMO+1 energies was carried out using TD-DFT approach. The 1H and 13C NMR chemical shift values of the title compound were calculated by the gauge independent atomic orbital method and compared with the experimental results.

  8. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  9. A novel library-independent approach based on high-throughput cultivation in Bioscreen and fingerprinting by FTIR spectroscopy for microbial source tracking in food industry.

    Science.gov (United States)

    Shapaval, V; Møretrø, T; Wold Åsli, A; Suso, H P; Schmitt, J; Lillehaug, D; Kohler, A

    2017-05-01

    Microbiological source tracking (MST) for food industry is a rapid growing area of research and technology development. In this paper, a new library-independent approach for MST is presented. It is based on a high-throughput liquid microcultivation and FTIR spectroscopy. In this approach, FTIR spectra obtained from micro-organisms isolated along the production line and a product are compared to each other. We tested and evaluated the new source tracking approach by simulating a source tracking situation. In this simulation study, a selection of 20 spoilage mould strains from a total of six genera (Alternaria, Aspergillus, Mucor, Paecilomyces, Peyronellaea and Phoma) was used. The simulation of the source tracking situation showed that 80-100% of the sources could be correctly identified with respect to genus/species level. When performing source tracking simulations, the FTIR identification diverged for Phoma glomerata strain in the reference collection. When reidentifying the strain by sequencing, it turned out that the strain was a Peyronellaea arachidicola. The obtained results demonstrated that the proposed approach is a versatile tool for identifying sources of microbial contamination. Thus, it has a high potential for routine control in the food industry due to low costs and analysis time. The source tracking of fungal contamination in the food industry is an important aspect of food safety. Currently, all available methods are time consuming and require the use of a reference library that may limit the accuracy of the identification. In this study, we report for the first time, a library-independent FTIR spectroscopic approach for MST of fungal contamination along the food production line. It combines high-throughput microcultivation and FTIR spectroscopy and is specific on the genus and species level. Therefore, such an approach possesses great importance for food safety control in food industry. © 2016 The Society for Applied Microbiology.

  10. Preliminary study of corrosion mechanisms of actinides alloys: calibration of FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Magnien, Veronique; Cadignan, Marx; Faivret, Olivier; Rosa, Gaelle

    2008-01-01

    In situ analyzes of gaseous atmospheres could be performed by FT-IR spectroscopy in order to study the corrosion reactions of actinides. Nevertheless experimental conditions and the nature of studied species have a strong effect on IR absorption laws. Thus a prior calibration of our set-up is required to obtain an accurate estimation of gas concentration. For this purpose, the behavior of several air pure gases has been investigated according to their concentration from IR spectra. Reproducible results revealed subsequent increases of the most significant peak areas with gas pressure and small deviations from Beer Lambert's law. This preliminary work allowed to determine precise absorption laws for each studied pure gas in our in situ experimental conditions. Besides our FT-IR set-up was well suitable to quantitative analysis of gaseous atmosphere during corrosion reactions. Finally the effect of foreign gas will be investigated through more complex air mixtures to obtain a complete calibration network. (authors)

  11. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    Science.gov (United States)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  12. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    International Nuclear Information System (INIS)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares

    2017-01-01

    Beryl, Be_3Al_2(SiO_3)_6, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm"-"1 may be related to the position of Na"+ ion in the crystal lattice of beryl. (author)

  13. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  14. Biological Applications Of Fourier Transform Infrared (FTIR) Or Bloody FTIR

    Science.gov (United States)

    Jakobsen, R. J.; Winters, S.; Gendreau, R. M.

    1981-10-01

    An ex vivo FT-IR/ATR experiment for studying blood protein adsorption at the molecular level is described. This experiment involves the use of live dogs pumping the blood through a arterial-veinal shunt to the ATR cell and back into the animal. The results from these live dog experiments are compared to results obtained using donated whole blood. These experiments demonstrate that FT-IR can be used to study aqueous, physiological, flowing solutions in real time with the sensitivity necessary to detect minor changes.

  15. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    Science.gov (United States)

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  16. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    Science.gov (United States)

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-01-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (μ) and the first-order hyperpolarizability (β) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  18. Localization and Coordination of Mg2+ Cations in Ferrierite: Combined FTIR Spectroscopic and Computation Investigation of CO Adsorption Complexes

    Czech Academy of Sciences Publication Activity Database

    Bulánek, R.; Voleská, I.; Ivanova, E.; Hadjiivanov, K.; Nachtigall, Petr

    2009-01-01

    Roč. 113, č. 25 (2009), s. 11066-11076 ISSN 1932-7447 R&D Projects: GA ČR GA203/06/0324; GA ČR GA203/09/0143; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : FTIR * DFT * Mg- FER Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.224, year: 2009

  19. Time-resolved FTIR emission studies of laser photofragmentation and radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.R. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    Recent studies have focused specifically on collision processes, such as single collision energy transfer, reaction dynamics, and radical reactions. The authors employ novel FTIR techniques in the study of single collision energy transfer processes using translationally fast H atom, as well as radical-radical reactions, e.g. CH{sub 3} + O, CF{sub 3} + H(D), and Cl + C{sub 2}H{sub 5}. The fast atoms permit unique high energy regions of certain transition states of combustion species to be probed for the first time.

  20. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    Directory of Open Access Journals (Sweden)

    Sohail Ahmad

    2016-01-01

    Full Text Available The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm. Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25–225 μg/mL. Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.

  1. Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine

    Directory of Open Access Journals (Sweden)

    Arunkumar T. Buddanavar

    2017-06-01

    Full Text Available The quenching interaction of atomoxetine (ATX with bovine serum albumin (BSA was studied in vitro under optimal physiological condition (pH=7.4 by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ∆H° and ∆S° indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by Försters theory. UV-absorption, Fourier transform infrared spectroscopy (FT-IR, circular dichroism (CD, synchronous spectra and three-dimensional (3D fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.

  2. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares, E-mail: alkmia@yahoo.com.br, E-mail: fredufmg@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-15

    Beryl, Be{sub 3}Al{sub 2}(SiO{sub 3}){sub 6}, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm{sup -1} may be related to the position of Na{sup +} ion in the crystal lattice of beryl. (author)

  3. TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Anker; Dam-Johansen, Kim; Wójtowicz, M.A.

    1998-01-01

    of products into char, tar and gas. In this work, a combination of thermogravimetry and evolved gas analysis by Fourier transform infrared analysis (TG-FTIR) has been applied to study the influence of potassium chloride (KCl) on wheat straw pyrolysis. Raw straw, washed straw and washed straw impregnated...

  4. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    Energy Technology Data Exchange (ETDEWEB)

    Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia); Faiz, A., E-mail: faizahmad@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  5. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  6. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment.

    Science.gov (United States)

    Kaur, Jasmeet; Katopo, Lita; Hung, Andrew; Ashton, John; Kasapis, Stefan

    2018-06-30

    The molecular nature of interactions between β-casein and p-coumaric acid was studied following exposure of their solutions to ultra-high temperature (UHT at 145 °C). Interactions were characterised by employing multi-spectroscopic methods, molecular docking and quantum mechanics calculations. FTIR demonstrates that the ligand lies in the vicinity of the protein, hence inverting the absorbance spectrum of the complex. This outcome changes the conformational characteristics of the protein leading to a flexible and open structure that accommodates the phenolic microconstituent. Results are supported by UV-vis, CD and fluorescence quenching showing considerable shifts in spectra with complexation. Molecular docking indicates that there is at least a hydrogen bond between p-coumaric acid and the peptide backbone of isoleucine (Ile27). Quantum mechanics calculations further argue that changes in experimental observations are also due to a covalent interaction in the protein-phenolic adduct, which according to the best predicted binding pose involves the side chain of lysine 47. Copyright © 2018. Published by Elsevier Ltd.

  7. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland

    Science.gov (United States)

    Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman

    2016-01-01

    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment. PMID:26977600

  8. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland.

    Directory of Open Access Journals (Sweden)

    Dawid Surmik

    Full Text Available Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment.

  9. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug.

    Science.gov (United States)

    Balázs, Boglárka; Sipos, Péter; Danciu, Corina; Avram, Stefana; Soica, Codruta; Dehelean, Cristina; Varju, Gábor; Erős, Gábor; Budai-Szűcs, Mária; Berkó, Szilvia; Csányi, Erzsébet

    2016-01-01

    The aim of the present work was the optimization of the transdermal delivery of a lyotropic liquid crystal genistein-based formulation (LLC-GEN). LLC was chosen as medium in view of the poor solubility of GEN in water. Membrane diffusion and penetration studies were carried out with a Franz diffusion cell, through a synthetic membrane in vitro, a chick chorioallantoic membrane ex ovo, and ex vivo excised human epidermis. Thereafter, LLC-GEN was combined with electroporation (EP) to enhance the transdermal drug delivery. The synergistic effect of EP was verified by in vivo ATR-FTIR and ex vivo Raman spectroscopy on hairless mouse skin.

  10. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    Science.gov (United States)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  11. LaPO4:Eu fluorescent nanorods, synthesis, characterization and spectroscopic studies on interaction with human serum albumin

    Science.gov (United States)

    Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun

    2018-06-01

    Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.

  12. Spectroscopic studies on surface reactions between minerals and reagents in flotation systems

    International Nuclear Information System (INIS)

    Giesekke, E.W.

    1981-01-01

    A study of the adsorbed species at the interface between the minerals and the aqueous solution is reported in the hope that it will contribute to a better understanding of selective mineral flotation by various reagents. The results of infrared spectroscopic studies are cited from the author's investigation on the fluorite-sodium oleate and fluorite-linoleate systems. Electron-spectroscopic techniques, e.g., electron spectroscopy for chemical analysis (ESCA) have also been useful in the identification of adsorbed species on mineral surfaces. Some experimental data from the literature are discussed. These studies have the disadvantage that they are not in situ investigations of the interface between the mineral and the aqueous solution. The potential use of other spectroscopic techniques are discussed, photo-acoustic, Raman, and electron-spin-resonance spectroscopy being considered as possible alternatives. It is suggested that the relatively small surface areas of minerals used in flotation (i.e. smaller than 2m 2 .g- 1 ) impose severe restrictions on the use of such techniques

  13. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  14. [FTIR study on the normal and cancerous stomach tissues].

    Science.gov (United States)

    Tong, Y; Lin, Y

    2001-06-01

    Tissues of cancerous and corresponding normal stomach were studied by FTIR technique. The results showed that there are obvious differences between FTIR spectra of them in spectral parameters such as frequency, intensity and band shape etc. The changes involving the phosphate symmetric stretching nu s, PO2- and asymmetric stretching nu as, PO2- modes, the CH3 and CH2 groups stretching (nu s, CH2, nu as, CH3) and bending (delta CH2) modes and the C-O stretching nu C-O mode were discussed. In addition, the changes of structure of hydrogen-bonding of nucleic acid and cell proteins and the packing and the conformational structure of the membrance lipids were analysed further. The average wavenumber of band of nu s, PO2- shifted from 1,080.92 cm-1 to 1,085.93 cm-1 and that of nu as, PO2- shifted from 1,239.64 cm-1 to 1,238.73 cm-1 which indicated that the degree of hydrogen-bonding formed by oxygen atom of the phosphodiester groups of nucleic acids was increased. The average wavenumber of band of delta CH2 of membrance lipids shifted from 1,455.23 cm-1 to 1,457.37 cm-1 that suggested that the conformational structure of the methylene chains of membrance lipids is more disordered than in normal tissues. The shift of band of nu C-O of cell proteins from 1,166.08 cm-1 to 1,166.58 cm-1 indicated that the hydrogen-bond of cell proteins become weaker.

  15. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques

    Science.gov (United States)

    Rosi, F.; Miliani, C.; Clementi, C.; Kahrim, K.; Presciutti, F.; Vagnini, M.; Manuali, V.; Daveri, A.; Cartechini, L.; Brunetti, B. G.; Sgamellotti, A.

    2010-09-01

    A non-invasive study has been carried out on 18 paintings by Alberto Burri (1915-1995), one of Italy’s most important contemporary painters. The study aims to demonstrate the appropriate and suitable use of portable non-invasive instrumentation for the characterization of materials and techniques found in works dating from 1948 to 1975 belonging to the Albizzini Collection. Sampling of any kind has been forbidden, in order to maintain the integrity of the paintings. Furthermore, the material heterogeneity of each single artwork could potentially result in a poorly representative sampling campaign. Therefore, a non-invasive and in situ analytical approach has been deemed mandatory, notwithstanding the complexity of modern materials and challenging data interpretation. It is the non-invasive nature of the study that has allowed for the acquisition of vast spectral data (a total of about 650 spectra including XRF, mid and near FTIR, micro-Raman and UV-vis absorption and emission spectroscopies). In order to better handle and to extrapolate the most meaningful information from these data, a statistical multivariate analysis, namely principal component analysis (PCA), has been applied to the spectral results. In particular, the possibility of combining elemental and molecular information has been explored by uniting XRF and infrared spectra in one PCA dataset. The combination of complementary spectroscopic techniques has allowed for the characterization of both inorganic and organic pigments, extenders, fillers, and binders employed by Alberto Burri.

  16. High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.

    Science.gov (United States)

    Bhargava, Rohit; Fernandez, Daniel C; Hewitt, Stephen M; Levin, Ira W

    2006-07-01

    Vibrational spectroscopy allows a visualization of tissue constituents based on intrinsic chemical composition and provides a potential route to obtaining diagnostic markers of diseases. Characterizations utilizing infrared vibrational spectroscopy, in particular, are conventionally low throughput in data acquisition, generally lacking in spatial resolution with the resulting data requiring intensive numerical computations to extract information. These factors impair the ability of infrared spectroscopic measurements to represent accurately the spatial heterogeneity in tissue, to incorporate robustly the diversity introduced by patient cohorts or preparative artifacts and to validate developed protocols in large population studies. In this manuscript, we demonstrate a combination of Fourier transform infrared (FTIR) spectroscopic imaging, tissue microarrays (TMAs) and fast numerical analysis as a paradigm for the rapid analysis, development and validation of high throughput spectroscopic characterization protocols. We provide an extended description of the data treatment algorithm and a discussion of various factors that may influence decision-making using this approach. Finally, a number of prostate tissue biopsies, arranged in an array modality, are employed to examine the efficacy of this approach in histologic recognition of epithelial cell polarization in patients displaying a variety of normal, malignant and hyperplastic conditions. An index of epithelial cell polarization, derived from a combined spectral and morphological analysis, is determined to be a potentially useful diagnostic marker.

  17. THE FTIR STUDIES OF PHOTO-OXIDATIVE DEGRADATION OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    WEN Zaiqing; HU Xingzhou; SHEN Deyan

    1988-01-01

    The photo-oxidative degradation process of polypropylene film containing iron ions was investigated via FTIR and absorbance substraction technique. It is shown that the iron ions play an important role in the decomposition of hydroperoxide and the increase of the degradation rate of polypropylene film. Theamorphous region of PP film undergoes degradation prior to the crystalline one.

  18. FTIR Laboratory in Support of the PV Program

    International Nuclear Information System (INIS)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report

  19. Spectroscopic studies of Eu(III) Keggin's and Dawson's polyoxotungstates substituted by acetato and oxalato ligands

    International Nuclear Information System (INIS)

    But, Slawomir; Lis, Stefan

    2008-01-01

    Eu(III) Keggin's and Dawson's type of polyoxometalates (POM) complexes were synthesized and spectroscopically characterized. This work presents results obtained for chosen hybrids of acetato K 12 [{Eu(SiMo x W 11-x O 39 )(H 2 O)} 2 (CH 3 COO) 2 ].nH 2 O, K 16 [{Eu(CH 3 COO)(H 2 O) 2 (P 2 W 17 O 61 )} 2 ].nH 2 O and oxalato (NH 4 ) 29 K 5 [{Eu(P 2 W 17 O 61 )} 4 (C 2 O 4 ) 3 (H 2 O) 4 ].nH 2 O, where x = 0, 1. The solid state compositions of the hybrids were characterized by using elemental and ICP-AES analysis, derivatography and FTIR spectroscopy. Luminescence characteristics (intensity, quantum yields, luminescence lifetimes and excitation spectra in the range of the 5 D 0 7 F 0 transition) of the synthesized Eu(III) acetato and oxalato complexes were determined in the solid phase and in solution, and they were compared to their parent Eu(III):POM complexes of 1:1 stoichiometry (ML)

  20. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    Science.gov (United States)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  1. Characterization of writing materials of books of great historical-artistic value by FT-IR and micro-raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Vito Librando

    2014-12-01

    Full Text Available This work describes the application of Fourier-Transform Infrared and Raman spectroscopic techniques for the characterization of cellulose paper samples and inks used on ancient writing materials. These samples from books of high historical and artistic interest were provided by the Public Library of Syracuse.The ancient paper showed a characteristic pattern of carbonyl groups, whose vibration modes were observed in FTIR spectra. The spectra of ancient paper samples were compared to each other and to modern paper in order to highlight differences in conservation state between new and old papers. The paper aging process is related to the presence of acid substances and oxidative agents that result in cellulose hydrolysis leading to the shortening of its chain along with changes in the amount of the crystalline form. This hydrolysis causes changes in hydrogen bonds and consequently change the CCH, COH, OCH and HCH bending vibrations mode. In this work, the FTIR and Raman spectra of inks used on ancient paper and parchment samples were also discussed.

  2. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  3. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data.

    Science.gov (United States)

    Georgouli, Konstantia; Martinez Del Rincon, Jesus; Koidis, Anastasios

    2017-02-15

    The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  5. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  6. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  7. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    Science.gov (United States)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  8. Cadmium (II) macrocyclic Schiff-base complexes containing piperazine moiety: Synthesis, spectroscopic, X-ray structure, theoretical and antibacterial studies

    Science.gov (United States)

    Keypour, Hassan; Mahmoudabadi, Masoumeh; Shooshtari, Amir; Bayat, Mehdi; Mohsenzadeh, Fariba; Gable, Robert William

    2018-03-01

    The new Cd(II) macrocyclic Schiff-base complexes were prepared via the metal templated [1 + 1] cyclocondensation of 2,2'-(piperazine-1,4-diylbis (methylene))dianiline (A) and 2,6-pyridinedicarbaldehyde or 2,6-diacetylpyridine. The products were characterized by elemental analysis, mass spectrometry and spectroscopic methods such as: FT-IR, 1H and 13C-NMR, the crystal structure of [CdL1(ClO4)2](CH3CN) (1) complex was also obtained by single-crystal X-ray crystallography. The complexes were tested for in vitro antibacterial properties against some bacteria. The complexes had antibacterial properties and in some cases were active even more than standards. The geometries of the [CdLn (ClO4)2], (n = 1,2) complexes have been optimized at the BP86/def2-SVP level of theory. Also the nature of Cd←Ln (n = 1, 2) bonds in [CdLn (ClO4)2], (n = 1,2) complexes are studied with the help of NBO and Energy decomposition analysis (EDA). Results showed that the nature of metal-ligand bond in the complexes is slightly more electrostatic with a contribution of about 52% in total interaction energy.

  9. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    Science.gov (United States)

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  10. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  11. Change Spectroscopic, thermal and mechanical studies of PU/PVC blends

    Energy Technology Data Exchange (ETDEWEB)

    Hezma, A.M. [Spectroscopy Department, Physics Division, National Research Center, Giza (Egypt); Elashmawi, I.S. [Spectroscopy Department, Physics Division, National Research Center, Giza (Egypt); Physic Department, Faculty of Science, Taibah University, Al-Ula (Saudi Arabia); Rajeh, A., E-mail: a.rajeh88@yahoo.com [Physic Department, Faculty of Science, Amran University, Sa' dah (Yemen); Physics Department, Faculty of science, Mansoura University, Mansoura (Egypt); Kamal, Mustafa [Physics Department, Faculty of science, Mansoura University, Mansoura (Egypt)

    2016-08-15

    Blends of polyurethane (PU) and polyvinyl chloride (PVC) with different concentrations were prepared by casting method. The effects of PU on PVC blends was examined by Fourier transform-infrared (FTIR), Ultra-violet visible studies (UV/VIS.), X-ray diffraction (XRD), Thermogravimetric (TGA), Differential scanning calorimetry (DSC), and mechanical properties (stress–strain curve). The interaction between PU and PVC was examined by FT-IR through the absorbance of the N–H groups and was correlated to mechanical/thermal properties. Ultra-violet visible said that optical energy gap decrease with increasing concentration of PU. Differential scanning calorimetry results was observed a single glass transition temperature (T{sub g}) for blends this confirming existence miscibility within the blends. The causes for best thermal stability of some blends may be described by measurements of interactions between C=O groups of PU and the α-hydrogen of PVC or a dipole–dipole –C=O..Cl–C– interactions. Significant alterations in FTIR, X-ray and DSC examination shows an interactions between blends had good miscibility. X-ray shows some alterations in the intensity with additional PU. PU change the mechanical behavior of PVC through of the blends. When polyurethane content increase causes polyvinyl chloride tensile strength decreases and elongation at break increase.

  12. Spectroscopic studies on colloid-borne uranium

    International Nuclear Information System (INIS)

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  13. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  14. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  15. Study of micro-phase separation of two polystyrene-based copolymer mixture using the combination of PALS and FT-IR

    International Nuclear Information System (INIS)

    Jiang, Z.Y.; Jiang, X.Q.; Yang, Y.X.; Huang, Y.J.; Huang, H.B.; Hsia, Y.F.

    2005-01-01

    Positron annihilation lifetime (PAL) spectroscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) have been applied to study the micro-phase separation in the blends of poly(styrene-co-methylmethacrylate) (SMMA) copolymer and poly(styrene-co-maleic anhydride) (SMA) copolymer. The DSC results indicate that the SMA/SMMA blends are miscible and weak intermolecular interactions exist between SMA and SMMA. The strength of intermolecular interactions to some degree exhibits somewhat non-monotonic variation with increasing of SMA component in the blends. The results of PAL measurement present the blend containing 20 wt% SMA is phase-separated in molecular level, which is interpreted by the results of FT-IR analysis. It was concluded that it is helpful to study the miscibility of polymer blends in molecular level by means of PAL method, accompanied with the requisite measurement of DSC and FT-IR

  16. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India--spectroscopical approach.

    Science.gov (United States)

    Ramasamy, V; Paramasivam, K; Suresh, G; Jose, M T

    2014-01-03

    Using Gamma ray and Fourier Transform Infrared (FTIR) spectroscopic techniques, level of natural radioactivity ((238)U, (232)Th and (40)K) and mineralogical characterization of Vaigai River sediments have been analyzed with the view of evaluating the radiation risk and its relation to available minerals. Different radiological parameters are calculated to know the entire radiological characterization. The average of activity concentrations and all radiological parameters are lower than the recommended safety limit. However, some sites are having higher radioactivity values than the safety limit. From the FTIR spectroscopic technique, the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, gibbsite, calcite, montmorillonite and organic carbon are identified and they are characterized. The extinction co-efficient values are calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index is calculated to know the crystalline nature of quartz and the result indicates that the presence of ordered crystalline quartz in the present sediment. The role of minerals in the level of radioactivity is assessed by multivariate statistical analysis (Pearson's correlation and Cluster analysis). The statistical analysis confirms that the clay mineral kaolinite is the major factor than other major minerals to induce the important radioactivity variables such as absorbed dose rate and concentrations of (232)Th and (238)U. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis; Avaliacao in vitro dos efeitos da radiacao ionizante em tecido osseo bovino por espectroscoia ATR-FTIR e analise dinamica-mecanica

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo Noronha

    2013-07-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/{sub v1,v3}, PO{sub 4}{sup 3-} and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  18. Synthesis of a new ONNO donor tetradentate schiff base ligand and binuclear Cu(II) complex: Quantum chemical, spectroscopic and photoluminescence investigations

    International Nuclear Information System (INIS)

    Sarıoğlu, Ahmet Oral; Ceylan, Ümit; Yalçın, Şerife Pınar; Sönmez, Mehmet; Ceyhan, Gökhan; Aygün, Muhittin

    2016-01-01

    The Schiff base compound 3,3′-(1,4-phenylimino)-bis-[1,3-bis-(4-methoxyphenyl) propan-1-one)], formulated as C 40 H 36 N 2 O 6, and its Cu(II) complex were synthesized and characterized by analytical analysis, various spectral techniques such as FT-IR, NMR, UV–vis, magnetic measurements and molar conductivity. Thermo gravimetric analysis (TGA and DTA) carried out to obtain information about its thermal stability. The molecular structure and spectroscopic properties of the ligand were obtained with FT-IR, 1 H and 13 C NMR, UV–vis investigations as experimentally and compared with theoretical results obtained from DFT/B3LYP/6-311++G(d,p) basis set. In addition to molecular calculations of the title compound, molecular electrostatic potential (MEP), dipole moments, atomic charges, HOMO–LUMO, NLO and NBO analysis were computed. The calculated results show that the optimized geometry can well reproduce the crystal structure parameters, and the theoretical vibrational frequencies, 1 H and 13 C NMR chemical shifts show good agreement with experimental values. Photoluminescence properties of the ligand and its Cu(II) complex were examined. - Highlights: • FT-IR and 1 H– 13 C NMR spectra were recorded and compared with the theoretical results. • The photoluminescence properties were studied. • NLO, NBO analysis of the molecule were studied. • HOMO and LUMO energies, MEP distribution of the molecule were calculated.

  19. Sem-edx and ftir studies of chlorinated rubber coating

    International Nuclear Information System (INIS)

    Bano, H.; Khan, M.I.

    2013-01-01

    Summary: Anticorrosive performance of chlorinated rubber coating has been investigated by visual examination, Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy. After surface preparation, commercially available coating system based on chlorinated rubber (primer)/chlorinated rubber (topcoat) formulation was applied on mild steel test panels (10cm x 15cm sizes). Prepared coated panels were exposed at marine, industrial and urban test sites located in Karachi, Pakistan according to ISO 8565 norm. Accelerated testing was performed by using a salt spray chamber (ASTM B117 norm). Accelerated weathering methods are the methods in which the factors responsible for the degradation of coatings are artificially intensified in order to achieve the rapid degradation of coatings. Visual examination of blistering and rusting as well as SEM micrographs indicated a more severe degradation of the coating surface characteristics at natural exposure testing sites (particularly at marine test site) than for accelerated (salt spray) testing. EDX determination of the Oxygen/Carbon (O/C) ratios also indicated increased degradation at natural test sites compared to the accelerated (salt spray) testing. Photooxidation of the binder results in the formation of carbonyl compounds as revealed by FTIR spectroscopy which also indicated dehydrochlorination. (author)

  20. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    Science.gov (United States)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  2. Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: An efficient terahertz emitter

    Science.gov (United States)

    Manivannan, M.; Martin Britto Dhas, S. A.; Jose, M.

    2016-12-01

    Bulk terahertz emitting single crystal of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) was synthesized by condensation method and grown by slow solvent evaporation technique from methanol. The structure and cell parameters of the grown crystals were derived from single crystal and powder X-ray diffraction analyses and the optical properties of the crystal were analyzed by UV-Vis Spectrophotometer. The presence of functional groups was identified by FTIR and FT-Raman spectroscopic studies. We demonstrated that in DAST crystal, the thermal transport properties such as thermal conductivity, thermal diffusivity and thermal effusivity are better than several well recognized standard materials using photoacoustic spectrophotometer. The dielectric measurement was made as a function of frequency (1 Hz-35 MHz) at different temperatures (30-200 °C). The dielectric constant and dielectric loss were found to be strongly dependent on temperature and frequency of the applied electric field. The semicircle in the cole-cole plot showed the presence of dielectric relaxation in the crystal with its diameter representing the resistance of the crystal. The resistivity and ac conductivity were calculated from the measured dielectric data.

  3. [FTIR study on the finger nail with carcinoma of nasopharynx].

    Science.gov (United States)

    Dong, Qin; Liu, Gang; Liu, Tian-hui

    2004-12-01

    Finger nails from twenty normal people and three with carcinoma of nasopharynx were studied by Fourier Transform Infrared (FTIR) technique. The results showed that there are obvious differences between FTIR spectra of them in spectral parameters such as frequency, intensity and band shape etc. The most striking differences in the spectra were observed in the change of amide II, the disappearance of delta(s) (CH3) peak, and at 874.0 cm(-1) whether appeared an absorption peak. The changes involving the phosphate symmetric stretching nu(s, PO2-) and asynmmetric stretching nu(as, PO2-) modes, the CH3 and CH2 groups stretching (v(s, CH2), nu(as, CH3)) bending (delta (CH3)) modes and the C-O stretching nu (C-O) mode were discussed. In addition, the changes of structure of hydrogen-bonding of nucleic acid and cell proteins and the packing and the conformational structure of the membrane lipids were analysed. The average wave number of band of nu(s) (PO2-) shifted from 1080.0 to 1077.6 cm(-1) and that of nu(as) (PO2-) shifted from 1239.4 to 1238.4 cm(-1), which indicated that the degree of hydrogen-bonding formed by oxygen atom of the phosphodiester groups of nucleic acids was weakened. The average wave number of band of delta (CH2) of membrane lipids shifted from 1453.1 to 1453.7 cm(-1), and its peak intensity was slightly enhanced, which suggested that the conformational structure of the methylene chains of membrane lipids is more disordered than in normal nail.

  4. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1980-01-01

    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  5. The use of gum Arabic as "Green" stabilizer of poly(aniline) nanocomposites: a comprehensive study of spectroscopic, morphological and electrochemical properties.

    Science.gov (United States)

    Quintanilha, Ronaldo C; Orth, Elisa S; Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C; Vidotti, Marcio

    2014-11-15

    Herein we show the synthesis and characterization of water dispersible composites formed by poly(aniline) and the natural polymer gum Arabic (GA), used as stabilizer. The materials were synthesized via a rapid and straightforward method and were fully characterized by different techniques such as UV-Vis, Raman, FTIR, TEM, SEM and cyclic voltammetry. TEM and SEM images revealed that the proportion of stabilizer highly influences the growth mechanism of the nanostructures. It was found spherical particles, elongated structures and large agglomerates at the lower, intermediate and at the higher GA amount, respectively. Accordingly to fluorescence spectra, different hydrophobic structures are formed depending on the GA amount in aqueous solutions, possibly acting as hosting sites for the PANI growth. In order to further study the PANI polymerization in the presence of GA, kinetics experiments were performed and showed that nucleation is the limiting step for the composite growth and a model is proposed. Spectroscopic experiments showed that the presence of GA affects the PANI conformation, avoiding the formation of phenazine structures which highly impairs the electroactivity of PANI. The material integrity is achieved by strong hydrogen bond interactions between PANI and GA as evidenced by the study of specific NH bands in FTIR and Raman analyses. The intensity of the hydrogen bonds decreased upon higher amounts of GA, probably due to steric impediment around the NH sites. Cyclic voltammograms showed a good electroactivity behavior of the modified electrodes presenting distinguishable diffusional processes through the adsorbed composites. By this way, we have thoroughly investigated the formation and properties of new conducting polymer composite materials. Taken into account the low toxicity of GA and the excellent dispersity in water, the materials can successfully be applied in bioelectrochemical applications or as green corrosion inhibitors. Copyright © 2014

  6. Gas phase spectroscopic study of unstable molecules using FTIR technique

    International Nuclear Information System (INIS)

    Allaf, A.W.; Alibrahim, M.; Kassem, M.

    1998-01-01

    A new route has been developed, leading to the production of phosphorus (III) oxycyanide, OPCN and phosphorus (III) oxycyanate, OPOCN by an on-line process using phosphoryl chloride, POCL 3 as a starting material passed over heated silver at 870 Centigrade and then reacted with AgCN and KOCN heated at 270 Centigrade and 590 Centigrade to produce OPCN and OPOCN respectively. The gas phase fourier transform infrared spectra reported for the first time show the two characterized bonds of OPCN and OPOCN at 2165 cm -1 and 2130 cm -1 , assigned to the C≡N stretching fundamentals of OPCN and OPOCN respectively. (Author)

  7. Quantification of pure refined olive oil adulterant in extra virgin olive oil using diamond cell atr-ftir spectroscopy

    International Nuclear Information System (INIS)

    Kandhro, A.A.; Saleem, R.; Laghari, A.H.; Sultana, R.

    2014-01-01

    The present study depicts spectroscopic method development to deliver a rapid, simple and reproducible quantification of pure refined olive oil (PROO) adulterant in extra virgin olive oil (EVOO) using partial least square (PLS) regression (statistical parameter). Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) was choice in the developed method. Blended standards of PROO and EVOO were obtained by their weight by weight percentage and the values were used to construct calibration curves for quantification. The optimum regression values (i.e. >0.99) were achieved using the combined frequencies of 3105-2761, 1838-1687, and 1482-440 cm-1 with regression coefficients (R2) 0.99718 and achieved residual mean square error of calibration (RMSEC) 1.40% w/w. To determine the suitability of developed method principal component spectra (PCS) diagnostic was also used. The results of the present study prove that the developed methods reported in preceding studies can be good option for more rapid and accurate determination of PROO adulteration in EVOO. (author)

  8. The effects of esterified solvents on the diffusion of a model compound across human skin: an ATR-FTIR spectroscopic study.

    Science.gov (United States)

    McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J

    2013-04-15

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Task 1.11 - Spectroscopic field screening of hazardous waste and toxic spills. Semi-annual report, January 1 - June 30, 1995

    International Nuclear Information System (INIS)

    Gristanti, A.A.

    1995-01-01

    Techniques for the field characterization of soil contamination due to spillage of hazardous waste or toxic chemicals are time-consuming and expensive. Thus, more economical, less time-intensive methods are needed to facilitate rapid field screening of contaminated sites. In situ detection of toxic chemicals in soil offers both time and cost advantages for field screening with additional application to real-time site monitoring. Fourier-transform infrared (FT-IR) spectroscopy coupled with evanescent mode fiber-optic sensors has been demonstrated as a means to remotely detect and classify petroleum products in water using mid-infrared (MIR) optical fibers. This work demonstrated that a fiber-optic evanescent field absorbance sensor (EFAS) could be used to classify petroleum contamination into categories such as crude oil, kerosene, No. 2 fuel and residual distillates using the MIR spectral range. The overall objective of this project is to study the feasibility of using an EFAS FT-IR spectroscopic sensor coupled with cone penetrometry as a field screening method. The Fourier transform infrared cone penetrometry method (FT-IR-CPT) will be developed by building on the work cited above. The specific objectives of this project are: design an accessory for use with FT-IR that interfaces the spectrometer to a cone penetrometer; characterize the response of the FT-IR accessory to selected hydrocarbons in a laboratory-simulated field environment; and determine the ability of the FT-IR-CPT instrument to measure hydrocarbon contamination in soil by direct comparison with a reference method to quantify hydrocarbons from the same soil

  10. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  11. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  12. Use of polar and nonpolar fractions as additional information sources for studying thermoxidized virgin olive oils by FTIR

    Directory of Open Access Journals (Sweden)

    Tena, N.

    2014-09-01

    Full Text Available Fourier transform infrared (FTIR spectroscopy has been proposed to study the degradation of virgin olive oils (VOO in samples undergoing thermoxidation. The polar and nonpolar fractions of oxidized oils have been analyzed by FTIR to provide further information on the minor spectral changes taking place during thermoxidation. This information assists in the interpretation of the spectra of the samples. For this purpose polar and nonpolar fractions of 47 VOO samples thermoxidized (190 °C in a fryer were analyzed by FTIR. The time-course change of the band area assigned to single cis double bonds was explained by their correlation with the decrease in oleic acid (adjusted-R2=0.93. The bands assigned to the hydroxyl groups and the first overtone of ester groups was better studied in the spectra collected for the polar and nonpolar fractions, respectively. The bands assigned to peroxide, epoxy, tertiary alcohols and fatty acids were clearly observed in the spectra of the polar fraction while they are not noticeable in the spectra of the oils.La espectroscopía de infrarrojos por transformada de Fourier (FTIR se ha propuesto para estudiar la degradación de los aceites de oliva vírgenes (AOV sujetas a termoxidación. Las fracciones polares y no polares de aceites oxidados se analizaron mediante FTIR para obtener más información sobre los cambios espectrales menores que tienen lugar durante la termoxidación. Esa información ayuda en la interpretación de los espectros de las muestras puras. Con este objetivo, fracciones polares y no polares de 47 AOV termoxidados (190 °C en una freidora se analizaron mediante FTIR. La banda asignada a dobles enlaces cis se explica por su correlación con la disminución de ácido oleico (R2-ajustado=0,93. Las bandas asignadas a los grupos hidroxilos y del primer sobretono de los grupos éster se estudió mejor en los espectros recogidos para la fracción polar y no polar, respectivamente. Grupos asignados a per

  13. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2004-01-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and...

  14. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  15. Thermal, structural and spectroscopic investigations on Eu{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Seshagiri, T.K.; Godbole, S.V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Fundamental O-H, (BO{sub 3}){sup -} vibrations and B-O-B linkages in borate network explored. Black-Right-Pointing-Pointer The covalent nature of the Eu{sup 3+} ions with surrounding ligands have been confirmed. Black-Right-Pointing-Pointer B3TMK glass is found to be the best optical candidate for laser working at 612 nm. - Abstract: Eu{sup 3+} doped boro-tellurite glasses with the chemical composition (69 - x)B{sub 2}O{sub 3}-xTeO{sub 2}-15Mg{sub 2}O-15K{sub 2}O-1Eu{sub 2}O{sub 3} (where x = 0, 10, 20, 30 and 40 wt%) have been synthesized and its thermal, structural and spectroscopic behavior were studied and reported. The thermal behavior of the Eu{sup 3+} doped boro-tellurite glasses were explored through DTA thermograms. The presence of varying tellurium dioxide results in structural and spectroscopic changes around Eu{sup 3+} ions and are explored through XRD, FTIR, UV-vis, Luminescence and lifetime measurements. The XRD pattern confirms the amorphous nature and the FTIR spectra reveal the formation of the local structural units BO{sub 3} and BO{sub 4} in the prepared glasses. The bonding parameters (-bar {beta} and {delta}) have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt (JO) parameters were determined from the absorption and luminescence spectra and the results are presented. The variation in the JO intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) and the hypersensitive band positions with the change in chemical composition have been discussed in detail. The JO parameters have been used to derive important radiative properties like transition probabilities (A), branching ratios ({beta}{sub R}) and peak stimulated emission cross section ({sigma}E/P) for the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1, 2, 3 and 4) transitions of the Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have

  16. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas

    Science.gov (United States)

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-01

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (˜18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm-1 and an increase in bands in the region 1730-1680 cm-1 due to carbonyl stretching. We found a broad band around 1635 cm-1 likely due to Cdbnd O stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm-1 was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork (“Racconta storie”, 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.

  17. Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family

    Science.gov (United States)

    Arrue, Lily; Rey, Marina; Rubilar-Hernandez, Carlos; Correa, Sebastian; Molins, Elies; Norambuena, Lorena; Zarate, Ximena; Schott, Eduardo

    2017-11-01

    Nitrogen compounds are widely investigated due to their pharmacological properties such as antihypertensive, antinociceptive, antibacterial, antifungal, analgesic, anticancer and inhibition activities and lately even as pesticide. In this context, we present the synthesis of new compounds: (E)-6-(3,4-dimethoxyphenyl)-3-(3-(3,4-dimethoxyphenyl)acryloyl)-1-(4-R-phenyl)- 5,6-dihydropyridazin-4(1H)-one (with R = sbnd H(1), -Cl(2), -Br(3), sbnd I(4) and sbnd COOH(5)) that was carried out by reaction of (1E, 6E)-1,7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione with a substituted phenylamine with general formula p-R-C6H4sbnd NH2 (R = sbnd H (1), sbnd Cl (2), -Br(3), sbnd I(4) and sbnd COOH(5)). This is the first synthesis report of a pyridazinone using as precursors a curcuminoid derivative and a diazonium salt formed in situ. All compounds were characterized by EA, FT-IR, UV-Vis, Emission,1H- and13C-NMR spectroscopy and the crystalline and molecular structure of 4 was solved by X-rays diffraction method. DFT and TD-DFT quantum chemical calculations were also employed to characterize the compounds and provide a rational explanation to the spectroscopic properties. To assess the biological activity of the systems, we focused on pesticide tests on compound 2, which showed an inhibitory effect in plant growth of Agrostis tenuis Higland.

  18. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    Science.gov (United States)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  19. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    International Nuclear Information System (INIS)

    Mishra, Vijay Kumar; Bhattacharjee, Birendra Nath; Parkash, Om; Kumar, Devendra; Rai, Shyam Bahadur

    2014-01-01

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO 3 ) 2 ⋅4H 2 O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO 3 ) 2 ⋅6H 2 O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH 2 PO 4 ⋅2H 2 O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized structurally using X-ray diffraction and

  20. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vijay Kumar [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Bhattacharjee, Birendra Nath; Parkash, Om [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kumar, Devendra, E-mail: devendra.cer@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rai, Shyam Bahadur, E-mail: sbrai49@yahoo.co.in [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-11-25

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}⋅4H{sub 2}O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO{sub 3}){sub 2}⋅6H{sub 2}O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH{sub 2}PO{sub 4}⋅2H{sub 2}O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized

  1. [Spectroscopic methods applied to component determination and species identification for coffee].

    Science.gov (United States)

    Chen, Hua-zhou; Xu, Li-li; Qin, Qiang

    2014-06-01

    Spectroscopic analysis was applied to the determination of the nutrient quality of ground, instant and chicory coffees. By using inductively coupled plasma atomic emission spectrometry (ICP-ES), nine mineral elements were determined in solid coffee samples. Caffeine was determined by ultraviolet (UV) spectrometry and organic matter was investigated by Fourier transform infrared (FTIR) spectroscopy. Oxidation-reduction titration was utilized for measuring the oxalate. The differences between ground coffee and instant coffee was identified on the basis of the contents of caffeine, oxalate and mineral elements. Experimental evidence showed that, caffeine in instant coffee was 2-3 times higher than in ground coffee. Oxalate in instant coffee was significantly higher in ground coffee. Mineral elements of Mg, P and Zn in ground coffee is lower than in instant coffee, while Cu is several times higher. The mineral content in chicory coffee is overall lower than the instant coffee. In addition, we determined the content of Ti for different types of coffees, and simultaneously detected the elements of Cu, Ti and Zn in chicory coffee. As a fast detection technique, FTIR spectroscopy has the potential of detecting the differences between ground coffee and instant coffee, and is able to verify the presence of caffeine and oxalate.

  2. A spectroscopic study of uranium and molybdenum complexation within the pore channels of hybrid mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, Alexandre [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France); CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Dumas, Thomas [CEA, DEN, DTDC, SPDE, Laboratoire d' Interaction Ligands Actinides, Bagnols-sur-Ceze (France); Solari, Pier L. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Cuer, Frederic [CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Grandjean, Agnes [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France)

    2017-01-18

    To enable the reduction of the environmental impact of nuclear energy generation, in this paper, we link the molecular and macroscopic behaviour of a functionalized material (TR rate at SBA15) used to extract uranium from sulfuric media. Two organic 3-[N,N-di(2-ethylhexyl)carbamoyl]-3-[ethoxy(hydroxy)phosphoryl]propanoic acid (TR) molecules grafted onto the solid are involved in the extraction process and form a 2:1 TR-U complex. FTIR and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses show that the TR-U bond is realized through a phosphonate group in a monodentate fashion below pH 3, in agreement with the macroscopic observations. The first coordination sphere of the uranyl ion is completed by two monodentate sulfate ions and one water molecule. Above pH 3, the TR contribution decreases, and other inner-sphere complexes appear, which is consistent with the increased extraction observed on the macroscopic scale. Molybdenum, a competitor element, reduces the uranium extraction capacity but not its speciation, whereas polyoxomolybdates form inside the pores from the molybdenum in solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    Science.gov (United States)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model

    Science.gov (United States)

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.

    2017-04-01

    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  5. Rare-earth metal compounds with a novel ligand 2-methoxycinnamylidenepyruvate: A thermal and spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C.T., E-mail: claudiocarvalho@ufgd.edu.br [Federal University of Grande Dourados, UFGD, 79.804-970 Dourados, MS (Brazil); Oliveira, G.F. [Federal University of Grande Dourados, UFGD, 79.804-970 Dourados, MS (Brazil); Fernandes, J. [Federal University of Grande Dourados, UFGD, 79.804-970 Dourados, MS (Brazil); Federal University of Mato Grosso, UFMT, 78.060-900 Cuiabá, MT (Brazil); Federal University of Goiás, UFG, 74.690-900, Goiânia, GO (Brazil); Institute of Chemistry, UNESP, 14.801-970 Araraquara, SP (Brazil); Siqueira, A.B. [Federal University of Mato Grosso, UFMT, 78.060-900 Cuiabá, MT (Brazil); Ionashiro, E.Y. [Federal University of Goiás, UFG, 74.690-900, Goiânia, GO (Brazil); Ionashiro, M. [Institute of Chemistry, UNESP, 14.801-970 Araraquara, SP (Brazil)

    2016-08-10

    Highlights: • 2-Methoxycinnamylidenepyruvate as a novel ligand for the synthesis of complexes. • Complexes with well-defined structural arrangements. • Thermal decomposition dependent on the nature of the metal ion. • Study by TG/FT-IR and TG/MS of the gaseous products released. • Potential technological application. - Abstract: Compounds of 2-methoxycinnamylidenepyruvate with trivalent lanthanide ions (Tb, Ho, Er, Tm, Yb and Lu) were obtained in solid state and studied mainly in terms of their thermal and spectroscopic properties. The analyses of the characterization were performed by thermogravimetric system coupled to a mass and infrared spectrometer (TG–DTA/MS and TG–DTA/FT-IR), X-ray powder diffractometry, differential scanning calorimetry (DSC), infrared (FT-IR), preliminary study of fluorescence as well as classical technique of titration with EDTA. From these results, it was possible to establish the stoichiometry, thermal behavior, hydration water content, and the gaseous products released in the thermal decomposition steps, and suggest the type of metal-ligand coordination.

  6. Ultra-compact MEMS FTIR spectrometer

    Science.gov (United States)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  7. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    Science.gov (United States)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  8. The Use of FTIR and Micro-FTIR Spectroscopy: An Example of Application to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Mauro Francesco La Russa

    2009-01-01

    The main components found in the samples of both monuments are: gypsum, calcium oxalate, and organic matter due to probably conservation treatments. In particular, the qualitative distribution maps of degradation products, obtained by means of micro-FTIR operating in ATR mode, revealed that the degradation process is present deep inside the stones also if it is not visible macroscopically. This process represents the main cause of crumbling of the substrate. The results of this research highlight the benefits of the -FTIR analysis providing useful insights on the polishing and consolidation processes of stone materials.

  9. Characteristic Study of Some Different Kinds of Coal Particles Combustion with Online TG-MS-FTIR

    Science.gov (United States)

    Pan, Guanfu

    2018-01-01

    Four kinds of pulverized coal samples from China and Indonesia were studied by thermogravimetry coupled with mass spectrometry and fourier transform infrared spectroscopy (TG-MS-FTIR). The thermal behaviors and gaseous emissions of these coals were analyzed in this work. The results indicate that the relative lower values of H/C ratios, which normally represent the degree of aromatization and ring condensation in coal samples, could lead to the relative more intense thermal reaction. The time-evolved profiles of some typical gas products (i.e., CO, SO2, CH4, NO, NO2, NH3 and etc.) were provided by TG-MS-FTIR, and their variations are different. For all the samples, the releases of SO2 and COS can be found at lower temperature than those of NO and CO. As the temperature increases, the possible conversion of NO2 and NH3 to NO is deduced in this work.

  10. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    Science.gov (United States)

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  11. Study of the deuterated albumin by FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Stoenescu, Daniela; Sahini, V.E.

    2000-01-01

    The albumin is a protein from the soluble or corpuscular protein class, which exists in cells, in dissolved state or in form of a hydrated gel. Proteins are essential constituents beside water, inorganic salts, lipids, carbon hydrates, vitamins, enzymes. The albumin is also a protein soluble in water and in diluted electrolyte solutions (acids, bases and salts). The investigation of the vibration isotopic effect has a great importance both for the diatomic molecules and for the polyatomic molecules. This paper is the first from a series of works which are intended to study the physico-chemical properties of the deuterated albumin and of the albumin solutions in heavy water by an isotopic exchange method. To put in evidence H-D exchange, the FT-IR spectroscopy is used when the deuterated albumin has different layer thickness. It is also of interest to elucidate the isotopic exchange between the hydrogen and oxygen atoms in bovine serum albumin macromolecules. (authors)

  12. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    Science.gov (United States)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  13. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  14. Molecular structure, vibrational spectroscopic studies and natural

    Indian Academy of Sciences (India)

    The entropy of the title compound was also performed at HF using the hybrid functional BLYP and B3LYP with 6-31 G(d,p) as basis set levels of theory. Natural bond orbital (NBO) analysis of the title molecule is also carried out. The theoretical spectrogram for FTIR spectra of the title molecule has been constructed.

  15. Fourier-transform infrared spectroscopic studies of dithia ...

    Indian Academy of Sciences (India)

    Unknown

    limited region 1000–1150 cm–1.10 Therefore, in the present paper we report and analyse Fourier-trans- form infrared (FT-IR) spectra of S2TPP and its chemically prepared cation. 2. Experimental. Dithia tetraphenyl porphyrine was received from. Professor A L Verma as a gift and used without fur- ther purification. However ...

  16. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  17. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    Directory of Open Access Journals (Sweden)

    E. Garrone

    2002-07-01

    Full Text Available Abstract: When adsorbed (at a low temperature on alkali-metal-exchanged zeolites, CO forms both M(CO+ and M(OC+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO+ than for M(OC+ carbonyls, although the corresponding difference decreases substantially when going from Li+ to Cs+. By means of variable-temperature FTIR spectroscopy, this energy difference was determined for several alkali-metal cations, and the existence of a thermal equilibrium between M(CO+ and M(OC+ species was established. The current state of research in this field is reviewed here, with a view to gain more insight into the thermal isomerization process.

  18. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  19. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  20. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    Science.gov (United States)

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Interaction of Zn(II) with hematite nanoparticles and microparticles: Part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system.

    Science.gov (United States)

    Ha, Juyoung; Trainor, Thomas P; Farges, François; Brown, Gordon E

    2009-05-19

    Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]totternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

  2. Spectroscopic and E-tongue evaluation of medicinal plants: A taste of how rasa can be studied.

    Science.gov (United States)

    Jayasundar, Rama; Ghatak, Somenath

    The use of medicinal plants in Ayurveda is based on rasa, generally taken to represent taste as a sensory perception. This chemosensory parameter plays an important role in Ayurvedic pharmacology. The aim is to explore the use of structuro-functional information deduced from analytical techniques for the rasa-based classification of medicinal plants in Ayurveda. Methods of differential sensing and spectroscopic metabolomics have been used in select medicinal plants from three different taste categories (sweet, pungent and multiple taste): Tribulus terrestris, Vitis vinifera and Glycyrrhiza glabra from sweet category; Piper longum, Cuminum cyminum and Capsicum annum from pungent group; Emblica officinalis with five tastes. While Electronic tongue was used for evaluation of the sensorial property of taste, the chemical properties were studied with Nuclear Magnetic Resonance (NMR), Fourier Transform InfraRed (FTIR) and Laser Induced Breakdown Spectroscopy (LIBS). In terms of taste and phytochemical profiles, all samples were unique but with similarities within each group. While the sensor response in E-tongue showed similarities within the sweet and pungent categories, NMR spectra in the aromatic region showed close similarities between the plants in the sweet category. The sensory, phytochemical and phytoelemental profiles of E. officinalis (with five rasa) in particular, were unique. A combination of sensorial and chemical descriptors is a promising approach for a comprehensive evaluation and fingerprinting of the Ayurvedic pharmacological parameter rasa. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  3. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-hsien Hsieh

    2018-05-01

    Full Text Available Three thermal analytical techniques such as differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA using five heating rates, and DSC-Fourier Transform Infrared (DSC-FTIR microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame (APM hemihydrate in the solid state. The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate, in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines (DKP formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa (FWO model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy. Keywords: Aspartame (APM hemihydrate, DSC/TGA, DSC-FTIR, Dehydration, Activation energy, DKP formation

  4. Synthesis, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study and anti-tubercular activity of condensed oxadiazole and pyrazine derivatives

    Science.gov (United States)

    El-Azab, Adel S.; Mary, Y. Sheena; Abdel-Aziz, Alaa A. M.; Miniyar, Pankaj B.; Armaković, Stevan; Armaković, Sanja J.

    2018-03-01

    The Fourier transform infrared spectra of the compounds 2-(5-phenyl-1,3,4-oxadiazol-2-yl)pyrazine (PHOXPY), 2-(5-styryl-1,3,4-oxadiazol-2-yl)pyrazine (STOXPY) and 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)pyrazine (FUOXPY) have been recorded and the wavenumbers are computed at the density functional theory level. The assignments of all the fundamental bands of each molecule are made using potential energy distribution. The computed values of dipole moment, polarizability and hyperpolarizability values indicate that the title molecules exhibit NLO properties. The HOMO and LUMO energies demonstrate the chemical stability of the molecules and NBO analysis is made to study the stability of molecules arising from hyper conjugative interactions and charge delocalization. Detailed computational analysis and spectroscopic characterization has been performed for three newly synthesized oxadiazole derivatives. Obtained computational and experimental results have been mutually compared in order to understand the influence of structural parts specific for each derivative. From the MIC determination, MTb H37Rv was found to be sensitive to compounds, PHOXPY, STOXPY and FUOXPY. The results obtained from anti-TB activity are more promising as the compounds were found to be more potent than reference standards, streptomycin and pyrazinamide. Efforts were made in order to predict both global and local reactive properties of the title oxadiazole derivatives, including their sensitivity towards autoxidation mechanism and influence of water. The results obtained from anti-TB activity are more promising for the title compounds. Interaction with representative protein Pterindeaminase inhibitor asricin A was also investigated using the molecular docking procedure. The docked ligands form stable complexes with the receptor ricin A and the docking results suggest that these compounds can be developed as new anti-cancer drugs.

  5. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  6. Air Contamination Quantification by FTIR with Gas Cell

    Science.gov (United States)

    Freischlag, Jason

    2017-01-01

    Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.

  7. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  8. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    Science.gov (United States)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  9. Studies on electrochemical hydrodebromination mechanism of 2,5-dibromobenzoic acid on Ag electrode by in situ FTIR spectroscopy

    International Nuclear Information System (INIS)

    Li Meichao; Bao Dandan; Ma Chunan

    2011-01-01

    Research highlights: → Silver is a good catalyst for the hydrodebromination of 2,5-dibromobenzoic acid. → 3-Bromobenzoic acid as main intermediate product. → The finally product is benzoic acid. → In situ FTIR is useful to study the electrochemical hydrodebromination mechanism. - Abstract: Cyclic voltammetry and in situ FTIR were employed to study the electrochemical hydrodebromination (EHB) mechanism of 2,5-dibromobenzoic acid (2,5-DBBA) in NaOH solution. Compared with titanium and graphite electrodes, silver electrode exhibited a high electrocatalytic activity for the hydrodebromination reaction of 2,5-DBBA. On the basis of in situ FTIR data, EHB reaction of 2,5-DBBA on Ag cathode might be represented as a sequence of electron additions and bromine expulsions. Firstly, from potential at approximately -1100 mV, 2,5-DBBA received an electron to form 2,5-DBBA radical anion, which lost a bromine ion in the 2-position to form 3-bromobenzoic acid (3-BBA) free radical. Then the free radical received a proton to give 3-BBA. Finally, 3-BBA further took off another bromine ion to produce benzoic acid free radical and the end product benzoic acid was obtained by receiving another electron and a proton with the potential shifting to more negative values.

  10. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy

    Science.gov (United States)

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-01

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.

  11. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  12. Triple helical polynucleotidic structures: an FTIR study of the C+ .G. Ctriplet.

    Science.gov (United States)

    Akhebat, A; Dagneaux, C; Liquier, J; Taillandier, E

    1992-12-01

    Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.

  13. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  14. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  15. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  16. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model.

    Science.gov (United States)

    Depciuch, J; Parlinska-Wojtan, M

    2018-01-30

    Depression becomes nowadays a high mortality civilization disease with one of the potential causes being impaired smell. In this study Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of bulbectomized rats (OB_NaCl), which is a common animal depression model. The efficiency of amitriptyline (AMI) treatment was also evaluated. The obtained results show a significant decrease in the phospholipid and protein fractions (as well as changes in their secondary structures) in blood serum of bulbectomized rats. AMI treatment in bulbectomized rats increased protein level and did not affect the level of phospholipids. Structural information from phospholipids and proteins was obtained from UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of bulbectomized rats was normalized after amitriptyline therapy, while the damaged structure of phospholipids remained unaffected. These findings strongly suggest that impaired smell could be one of the causes of depression and may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  18. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  19. Interaction of procyanidin B-3 with membrane lipids Fluorescence, DSC and FTIR studies

    Czech Academy of Sciences Publication Activity Database

    Cyboran-Mikolajczyk, S.; Zylka, R.; Jurkiewicz, Piotr; Pruchnik, H.; Oszmianski, J.; Hof, M.; Kleszczynska, H.

    2017-01-01

    Roč. 1859, č. 8 (2017), s. 1362-1371 ISSN 0005-2736 Institutional support: RVO:61388955 Keywords : FTIR * Fluidity * Hydration * dmpc Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.498, year: 2016

  20. In situ FTIR assessment of desiccation-tolerant tissues

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    2003-01-01

    This essay shows how Fourier transform infrared (FTIR) microspectroscopy can be applied to study thermodynamic parameters and conformation of endogenous biomolecules in desiccation-tolerant biological tissues. Desiccation tolerance is the remarkable ability of some organisms to survive complete

  1. The Scope Of Fourier Transform Infrared (FTIR)

    Science.gov (United States)

    Hirschfeld, T.

    1981-10-01

    Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.

  2. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: Vigabatrin

    Science.gov (United States)

    Edwin, Bismi; Joe, I. Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.

  3. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding.

    Science.gov (United States)

    Aigner, Z; Berkesi, O; Farkas, G; Szabó-Révész, P

    2012-01-05

    The steps of formation of an inclusion complex produced by the co-grinding of gemfibrozil and dimethyl-β-cyclodextrin were investigated by differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD) and Fourier transform infrared (FTIR) spectroscopy with curve-fitting analysis. The endothermic peak at 59.25°C reflecting the melting of gemfibrozil progressively disappeared from the DSC curves of the products on increase of the duration of co-grinding. The crystallinity of the samples too gradually decreased, and after 35min of co-grinding the product was totally amorphous. Up to this co-grinding time, XRPD and FTIR investigations indicated a linear correlation between the cyclodextrin complexation and the co-grinding time. After co-grinding for 30min, the ratio of complex formation did not increase. These studies demonstrated that co-grinding is a suitable method for the complexation of gemfibrozil with dimethyl-β-cyclodextrin. XRPD analysis revealed the amorphous state of the gemfibrozil-dimethyl-β-cyclodextrin product. FTIR spectroscopy with curve-fitting analysis may be useful as a semiquantitative analytical method for discriminating the molecular and amorphous states of gemfibrozil. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. FTIR- Microspectroscopy as diagnostic method for cancer cells

    International Nuclear Information System (INIS)

    Vitaly Erukhimovitch, Vitaly; Mukmenev, Igor; Huleihel, Mahmoud

    2010-01-01

    In the present study we have compared the spectral behavior of malignant cells with normal un transformed cells using microscopic Fourier-Transform Infrared (FTIR-M) spectroscopy in order to evaluate the potential of this technique for early detection of cancer cells. Cells were transformed by infection with murine sarcoma virus (MuSV) and examined at various times post infection (p. i) by FTIR M. Our results showed significant and consistent differences between the normal cells and malignant cells. A considerable decrease in carbohydrates and phosphates levels was seen in malignant cells compared to the normal cells. In addition, the peak attributed to the PO2- symmetric stretching mode at 1082 cm-1 in normal cells was shifted significantly to 1087 cm-1 in malignant cells. These spectral changes in addition to others were seen already about 24 h p.i., while no morphological changes were observed at this time by optical microscope. These results in addition to further differences in the shapes of various bands may indicate for promising potential of FTIR microscopy technique for detection of malignant cells at early stages of malignant transformation.(Author)

  5. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  6. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  7. Spectroscopic and Spectrometric Methods Used for the Screening of Certain Herbal Food Supplements Suspected of Adulteration.

    Science.gov (United States)

    Mateescu, Cristina; Popescu, Anca Mihaela; Radu, Gabriel Lucian; Onisei, Tatiana; Raducanu, Adina Elena

    2017-06-01

    Purpose: This study was carried out in order to find a reliable method for the fast detection of adulterated herbal food supplements with sexual enhancement claims. As some herbal products are advertised as "all natural", their "efficiency" is often increased by addition of active pharmaceutical ingredients such as PDE-5 inhibitors, which can be a real health threat for the consumer. Methodes: Adulterants, potentially present in 50 herbal food supplements with sexual improvement claims, were detected using 2 spectroscopic methods - Raman and Fourier Transform Infrared - known for reliability, reproductibility, and an easy sample preparation. GC-MS technique was used to confirm the potential adulterants spectra. Results: About 22% (11 out of 50 samples) of herbal food supplements with sexual enhancement claims analyzed by spectroscopic and spectrometric methods proved to be "enriched" with active pharmaceutical compounds such as: sildenafil and two of its analogues, tadalafil and phenolphthalein. The occurence of phenolphthalein could be the reason for the non-relevant results obtained by FTIR method in some samples. 91% of the adulterated herbal food supplements were originating from China. Conclusion: The results of this screening highlighted the necessity for an accurate analysis of all alleged herbal aphrodisiacs on the Romanian market. This is a first such a screening analysis carried out on herbal food supplements with sexual enhancement claims.

  8. Clays as green catalysts in the cholesterol esterification: spectroscopic characterization and polymorphs identification by thermal analysis methods. An interdisciplinary laboratorial proposal for the undergraduate level

    International Nuclear Information System (INIS)

    Maria, Teresa M R.; Nunes, Rui M. D.; Pereira, Mariette M.; Eusebio, M. Ermelinda S.

    2009-01-01

    A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic ( 1 H RMN, 13 C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases. (author)

  9. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    Science.gov (United States)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  10. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  11. FTIR imaging in diffusion studies: CO2 and H2O in a synthetic sector-zoned beryl

    Directory of Open Access Journals (Sweden)

    Giancarlo eDella Ventura

    2015-06-01

    Full Text Available In this work we investigate the strongly inhomogeneous distribution of CO2 and H2O in a synthetic beryl having a peculiar hourglass zoning of Cr due to the crystal growth. The sample was treated at 800°C, 500 MPa, in a CO2-rich atmosphere. High-resolution FESEM images revealed that the hourglass boundary is not correlated to physical discontinuities, at least at the scale of tens of nanometers. Polarized FPA-FTIR imaging, on the other side, revealed that the chemical zoning acts as a fast pathway for carbon dioxide diffusion, a feature never observed so far in minerals. The hourglass zone boundary may be thus considered as a structural defect possibly due to the mismatch induced by the different growth rates of each sector. High-resolution synchrotron-light FTIR imaging, in addition, also allows enhancement of CO2 diffusion along the hourglass boundary to be distinguished from diffusion along fractures in the grain. Therefore, FTIR imaging provides evidence that different diffusion mechanisms may locally combine, suggesting that the distribution of the target molecules needs to be be carefully characterized in experimental studies. This piece of information is mandatory when the study is aimed at extracting diffusion coefficients from analytical profiles. Combination of TOF-SIMS and FPA data shows a significant depletion of type II H2O along the hourglass boundary, indicating that water diffusion could be controlled by the distribution of alkali cations within channels, coupled to a plug effect of CO2.

  12. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    Science.gov (United States)

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    Science.gov (United States)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  14. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    International Nuclear Information System (INIS)

    Machado, F.B.C.

    1985-01-01

    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  15. Matrix-isolation FT-IR spectra and theoretical study of dimethyl sulfate

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Simões, Pedro N. N. L.; Fausto, Rui

    2005-05-01

    The preferred conformations of dimethyl sulfate and their vibrational spectra were studied by matrix-isolation FT-IR spectroscopy and theoretical methods (DFT and MP2, with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Conformer GG (of C 2 symmetry and exhibiting O sbnd S sbnd O sbnd C dihedral angles of 74.3°) was found to be the most stable conformer in both the gaseous phase and isolated in argon. Upon annealing of the matrix, the less stable observed conformer (GT; with C 1 symmetry) quickly converts to the GG conformer, with the resulting species being embedded in a matrix-cage which corresponds to the most stable matrix-site for GG form. The highest energy TT conformer, which was assumed to be the most stable conformer in previous studies, is predicted by the calculations to have a relative energy of ca. 10 kJ mol -1 and was not observed in the spectra of the matrix-isolated compound.

  16. Stability studies and degradation analysis of plastic solar cell materials by FTIR spectroscopy

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.J.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Results of controlled degradation experiments performed with the individual components and with the actual mixture used in plastic solar cells are shown. A testing procedure for the stability and for degradation effects under illumination in controlled atmosphere using FTIR-ATR spectroscopy is

  17. Analysis of human gallstones by FTIR

    International Nuclear Information System (INIS)

    Channa, Naseem A.; Khand, Fateh D.

    2008-01-01

    The present study was aimed at determining the composition of gallstones removed from patients in Southern Sindh, Pakistan. 109 gallstone samples surgically removed from as many patients (98 females and 11 males; age range 20 to 80 years) admitted for treatment in Liaquat University hospital, Jamshsoro during 2000 to 2003, were analyzed for composition by Fourier Transform Infrared (FTIR) spectroscopy. 74 (67.9%) of the 109 gallstone samples were found to be pure cholesterol stones, 5 (4.6%) pure calcium carbonate stones, 13 (11.9%) cholesterol + calcium carbonate, 10 (9.2%) cholesterol + bilirubin and 07 (6.4%) calcium bilirubinate stones. In mixed composition gallstones cholesterol was concentrated more at periphery than in the center of stone. Cholesterol either singly (67.9%) or in combination with either calcium carbonate (11.9%) or bilirubin (9.2%) was the most predominant component of gallstones. Analysis of gallstones based on FTIR suggests that cholesterol either singly or in combination with either calcium carbonate or bilirubin is the most predominant component of gallstones from Southern Sindh, Pakistan. (author)

  18. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  19. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2017-01-01

    Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  20. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  1. Fourier transform infrared (FTIR) spectroscopy for identification of ...

    African Journals Online (AJOL)

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Two cultures were grown in a chemically-defined media under photoautotrophic culture conditions isolated from eutrophic ...

  2. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    Science.gov (United States)

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    Science.gov (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  4. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers.

    Science.gov (United States)

    Guiliano, Michel; Asia, Laurence; Onoratini, Gérard; Mille, Gilbert

    2007-08-01

    Diamond crystal ATR FTIR spectroscopy is a rapid technique with virtually no sample preparation which requires small sample amounts and showed potential in the study of ambers. FTIR spectra of ambers present discriminating patterns and can be used to distinguish amber from immature resins as copal, to determine local or Baltic origin of archaeological ambers and to detect most of the falsifications encountered in the amber commercialisation.

  6. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  7. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  8. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Interactions between β-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    International Nuclear Information System (INIS)

    Nafisi, Shohreh; Panahyab, Ataollah; Bagheri Sadeghi, Golshan

    2012-01-01

    β-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of β-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV–Vis spectroscopic methods were used to analyze the binding modes of β-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that β-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the –NH groups, with overall binding constants of K harmine–BSA =2.04×10 4 M −1 , K tryptoline–BSA =1.2×10 4 M −1 , K harmaline–BSA =5.04×10 3 M −1 , K harmane–BSA =1.41×10 3 M −1 and K harmalol–BSA =1.01×10 3 M −1 , assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of α-helix from 64% (free protein) to 59% (BSA–harmane), 56% (BSA–harmaline and BSA–harmine), 55% (BSA–tryptoline), 54% (BSA–harmalol) and β-sheet from 15% (free protein) to 6–8% upon β-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: ► We model the binding of β-carboline alkaloids to BSA by using the spectroscopic methods. ► We investigate the effects of drug complexation on BSA stability and conformation. ► A partial protein destabilization occurred at high alkaloids concentration. ► Alkaloids bind BSA via hydrophobic interactions and H-bonding with the ---NH groups. ► BSA can be considered as a good carrier for transportation of β-carboline alkaloids.

  10. Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems

    Science.gov (United States)

    Johnson, A.; Kubo, M. D.; Cardace, D.

    2016-12-01

    Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand

  11. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy.

    Science.gov (United States)

    Depciuch, J; Sowa-Kućma, M; Nowak, G; Szewczyk, B; Doboszewska, U; Parlinska-Wojtan, M

    2017-05-01

    Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows

  12. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    Science.gov (United States)

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  13. Quantitative analysis of anti-inflammatory drugs using FTIR-ATR spectrometry

    Science.gov (United States)

    Hassib, Sonia T.; Hassan, Ghaneya S.; El-Zaher, Asmaa A.; Fouad, Marwa A.; Taha, Enas A.

    2017-11-01

    Four simple, accurate, sensitive and economic Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopic (ATR-FTIR) methods have been developed for the quantitative estimation of some non-steroidal anti-inflammatory drugs. The first method involves the determination of Etodolac by direct measurement of the absorbance at 1716 cm- 1. In the second method, the second derivative of the IR spectra of Tolfenamic acid and its reported degradation product (2-chlorobenzoic acid) was used and the amplitudes were measured at 1084.27 cm- 1 and 1056.02 cm- 1 for Tolfenamic acid and 2-chlorobenzoic acid, respectively. The third method used the first derivative of the IR spectra of Bumadizone and its reported degradation product, N,N-diphenylhydrazine and the amplitudes were measured at 2874.98 cm- 1 and 2160.32 cm- 1 for Bumadizone and N,N-diphenylhydrazine, respectively. The fourth method depends on measuring the amplitude of Diacerein at 1059.18 cm- 1 and of rhein, its reported degradation product, at 1079.32 cm- 1 in their first derivative spectra. The four methods were successfully applied on the pharmaceutical formulations by extracting the active constituent in chloroform and the extract was directly measured in liquid phase mode using a specific cell. Moreover, validation of these methods was carried out following International Conference of Harmonisation (ICH) guidelines.

  14. Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.

    Science.gov (United States)

    Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

    2012-08-21

    Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical

  15. Ftir study of gamma irradiation LDPE film in air

    International Nuclear Information System (INIS)

    Moura, Esperidiana A.B.; Silva, Andre L.A.; Gouvea, Paulo H.D.; Silva, Leonardo G. Andrade e; Gouvea, Douglas; Castro, Ricardo H.R.; Wiebeck, Helio; Kawano, Yoshio

    2003-01-01

    The use of the ionizing radiation for application in plastic packaging, to improve some of properties and for radiation sterilization, has been gaining popularity in the packaging industry. As a consequence of the irradiation, plastic packaging materials can undergo some chemical and physical alterations in their basic function, mainly concerning the protection characteristics. Since changes in physical properties of irradiated packaging films reflect radiation-induced chemical changes in molecular structure, in this work, an investigation was performed by Ftir analysis of LDPE film before and after radiation. Film samples were irradiated with doses between 0 Gy and 100 kGy, at room temperature and in the presence of air. The results showed alterations in the molecular structure, according to the absorbed radiation dose. (author)

  16. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  17. ANN-based calibration model of FTIR used in transformer online monitoring

    Science.gov (United States)

    Li, Honglei; Liu, Xian-yong; Zhou, Fangjie; Tan, Kexiong

    2005-02-01

    Recently, chromatography column and gas sensor have been used in online monitoring device of dissolved gases in transformer oil. But some disadvantages still exist in these devices: consumption of carrier gas, requirement of calibration, etc. Since FTIR has high accuracy, consume no carrier gas and require no calibration, the researcher studied the application of FTIR in such monitoring device. Experiments of "Flow gas method" were designed, and spectrum of mixture composed of different gases was collected with A BOMEM MB104 FTIR Spectrometer. A key question in the application of FTIR is that: the absorbance spectrum of 3 fault key gases, including C2H4, CH4 and C2H6, are overlapped seriously at 2700~3400cm-1. Because Absorbance Law is no longer appropriate, a nonlinear calibration model based on BP ANN was setup to in the quantitative analysis. The height absorbance of C2H4, CH4 and C2H6 were adopted as quantitative feature, and all the data were normalized before training the ANN. Computing results show that the calibration model can effectively eliminate the cross disturbance to measurement.

  18. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  19. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides

    International Nuclear Information System (INIS)

    Sawicka, Marlena; Storoniak, Piotr; Skurski, Piotr; Blazejowski, Jerzy; Rak, Janusz

    2006-01-01

    The thermal decomposition of quaternary methylammonium halides was studied using thermogravimetry coupled to FTIR (TG-FTIR) and differential scanning calorimetry (DSC) as well as the DFT, MP2 and G2 quantum chemical methods. There is almost perfect agreement between the experimental IR spectra and those predicted at the B3LYP/6-311G(d,p) level: this has demonstrated for the first time that an equimolar mixture of trimethylamine and a methyl halide is produced as a result of decomposition. The experimental enthalpies of dissociation are 153.4, 171.2, and 186.7 kJ/mol for chloride, bromide and iodide, respectively, values that correlate well with the calculated enthalpies of dissociation based on crystal lattice energies and quantum chemical thermodynamic barriers. The experimental activation barriers estimated from the least-squares fit of the F1 kinetic model (first-order process) to thermogravimetric traces - 283, 244 and 204 kJ/mol for chloride, bromide and iodide, respectively - agree very well with theoretically calculated values. The theoretical approach assumed in this work has been shown capable of predicting the relevant characteristics of the thermal decomposition of solids with experimental accuracy

  20. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  1. Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR

    Science.gov (United States)

    Pan, Guanfu

    2018-01-01

    The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.

  2. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  3. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  4. The infrared stage Linkam FTIR 600 for microthermometric studies in dark and opaque minerals associated to uranium mineralization

    International Nuclear Information System (INIS)

    Lima, Tatiana Aparecida Fernandes de; Rios, Francisco Javier; Fuzikawa, Kazuo; Oliveira, Lucilia A. Ramos de; Oliveira, Elizabeth Kerpe; Neves, Jose Marques Correia; Prates, Sonia Pinto

    2009-01-01

    Fluid composition studies, throughout fluid inclusions (FI), contribute to improve the understanding of mineral deposits. FI correspond to small portions of fluids trapped in minerals by many processes that preserve relevant information related to fluid composition which forms ore deposits. Microscopy and microthermometry techniques applied to fluid inclusions studies of opaque and/or dark minerals use infrared light (IR). A specific stage heating/cooling that allows working in the near infrared (NIR). Thus, the infrared stage model FTIR600 Linkam coupled the IR OLYMPUS BX51, with the automatic controllers LNP 94/2 and TMS 94, and software Linksys 32 - Linkam installed in computer was implemented and tested. An infrared QUICAM fast 1394 QIMAGING TM camera with the program QCAPTURE SUITE was acquisition for images capture and adapted the new system. This infrared stage Linkam FTIR600 reach temperatures between -196 deg C to +600 deg C, with the differential of working in the NIR; it is all automated, obtaining computerized data, graphics in real time of analysis and storage the data. It also controls the speed of the experiment (up to 130 deg C/min); it runs consecutively heating and cooling with a small N 2 (l) consuming; besides greater results repeatability, obtaining accurate and precise temperatures. Actually the Linkam stage FTIR600 is operating in the Metallogenesis and Fluid Inclusions Laboratory (LIFM) at CDTN/CNEN. Uranium ore and/or others mineralization studies which shows dark or opaque mineral have been developed. The uranium mineralization in the Lagoa Real Uraniferous Province, Bahia, Brazil, shows several rock-forming minerals together with the dark and opaque minerals (garnet, magnetite, pyroxene) emphasized in the present work. (author)

  5. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  6. Probing of possible olanzapine binding site on human serum albumin: Combination of spectroscopic methods and molecular dynamics simulation

    International Nuclear Information System (INIS)

    Shahlaei, Mohsen; Rahimi, Behnoosh; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA)-drug binding affinity is one of the major factors that determine the pharmacokinetics, halftime and bioavailability of drugs in various tissues. In the present study, the interaction of olanzapine (OLZ), a thienobenzodiazepine drug, administered for the treatment of schizophrenia and bipolar disorder, with HSA has been studied using spectroscopic methods such as ultraviolet absorbance, fluorescence and FTIR combined with computational procedures. Analyzing of the Stern–Volmer quenching data showed only one primary binding site on HSA with a binding constant of 4.12×10 4 M −1 at 298 K. Thermodynamic analyses showed enthalpy change (ΔH°) and entropy change (ΔS°) were 28.03±3.42 kJ mol −1 and −25.52±11.52 J mol −1 K −1 , respectively. Molecular docking results suggested the hydrophobic residues such as Val 216 , Leu 327 , Ala 350 and polar residues such as Glu 354 play an important role in the drug binding. Decrement in α-helix content of the protein upon OLZ binding was also confirmed by evidences provided by molecular dynamics simulation as well as FTIR spectroscopy. - Highlights: • Leu 327 , Ala 350 as well as hydrophilic residues of HSA play an important role in the binding reaction. • The drug has only one primary binding site on HSA with a binding constant of 4.12×10 4 M −1 at 298 K. • The drug binds near to site I

  7. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    Science.gov (United States)

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P Raman ν 1 PO 4 /Amide I: P Raman ν 1 PO 4 /Proline + Hydroxyproline: P Raman ν 1 PO 4 /Phenylalanine: P Raman ν 1 PO 4 /δ CH 2 : P Raman and IR mineral:matrix ratio values were strongly correlated ( P Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  8. Spectroscopic studies of hydrogen atom and molecule collisions: Performance report

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1986-01-01

    This research is concerned with spectroscopic measurements of collisions in atomic and molecular hydrogen in order to clarify the basic physical processes that take place during radiative collisions and to provide experimental values for systems where the theoretical analysis is tractable. To this end, we proposed to measure from the cores to the far wings the profiles of the spectral lines of atomic hydrogen broadened by molecular hydrogen and noble gases, and to study energy transfer in the atom and molecule

  9. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  10. Is it possible to find presence of lactose in pharmaceuticals? - Preliminary studies by ATR-FTIR spectroscopy and chemometrics

    Science.gov (United States)

    Banas, A.; Banas, K.; Kalaiselvi, S. M. P.; Pawlicki, B.; Kwiatek, W. M.; Breese, M. B. H.

    2017-01-01

    Lactose and saccharose have the same molecular formula; however, the arrangement of their atoms is different. A major difference between lactose and saccharose with regard to digestion and processing is that it is not uncommon for individuals to be lactose intolerant (around two thirds of the population has a limited ability to digest lactose after infancy), but it is rather unlikely to be saccharose intolerant. The pharmaceutical industry uses lactose and saccharose as inactive ingredients of drugs to help form tablets because of their excellent compressibility properties. Some patients with severe lactose intolerance may experience symptoms of many allergic reactions after taking medicine that contains this substance. People who are specifically "allergic" to lactose (not just lactose intolerant) should not use tablets containing this ingredient. Fourier Transform Infrared (FTIR) spectroscopy has a unique chemical fingerprinting capability and plays a significant important role in the identification and characterization of analyzed samples and hence has been widely used in pharmaceutical science. However, a typical FTIR spectrum collected from tablets contains a myriad of valuable information hidden in a family of tiny peaks. Powerful multivariate spectral data processing can transform FTIR spectroscopy into an ideal tool for high volume, rapid screening and characterization of even minor tablet components. In this paper a method for distinction between FTIR spectra collected for tablets with or without lactose is presented. The results seem to indicate that the success of identifying one component in FTIR spectra collected for pharmaceutical composition (that is tablet) is largely dependent on the choice of the chemometric technique applied.

  11. FTIR analysis of flue gases - combined in-situ and dry extractive gas sampling; Kombination av in-situ och kallextraktiv roekgasmaetning med FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Soederbom, J [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    1996-10-01

    Fourier Transform Infra Red (FTIR) spectroscopy is a promising and versatile technique for gas analysis which lately has moved from the laboratory to industrial applications such as emission monitoring of combustion plants. This has been made possible by recent developments of spectrometers and software. The single most important advantage of the FTIR is its capability to simultaneously analyse virtually all gas species of interest in flue gas applications. The project has studied the feasibility of using the technique as a multi-component emission monitoring system. A specific aim was to evaluate different implementations of the technique to flue gas analysis: in-situ, hot/dry and cold extraction or combinations of these. The goal was to demonstrate a system in which gas components that normally require hot extraction (NH{sub 3}, HCl, H{sub 2}O) could instead be measured in-situ. In this way potential sampling artefacts e.g. for ammonia monitoring, can be avoided. The remaining gas components are measured using cold extraction and thereby minimizing interference from water. The latter advantage can be crucial for the accuracy of e.g. NO{sub x} measurements. Prior to the project start in-situ monitoring using FTIR was, a to a large extent, an untried method. The fact that broad band IR radiation can not be guided through optical fibres, presented a major technical obstacle. An `in-situ probe` was developed to serve the purpose. The probe is equipped with a gold plated mirror at the end and is mounted on the support structure of the FTIR-spectrometer. The arrangement proved to be a robust solution without being unnecessary complex or cumbersome to use. 10 refs, 45 figs, 10 tabs

  12. Surface spectroscopic characterization of a model methane-activation catalyst

    International Nuclear Information System (INIS)

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  13. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  14. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  15. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Tursun, Mahir; Rhyman, Lydia; Kaya, Mehmet Fatih; Atar, Necip; Alver, Özgür; Şenyel, Mustafa

    2015-06-05

    4-Mercaptophenylboronic acid (4-mpba, C6H7BO2S) was investigated experimentally by vibrational spectroscopy. The molecular structure and spectroscopic parameters were studied by computational methods. The molecular dimer was investigated for intermolecular hydrogen bonding. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. The present work provides a simple physical picture of the OH stretch vibrational spectra of 4-mpba and analogues of the compound studied. When the different computational methods are compared, there is a strong evidence of the better performance of the BLYP functional than the popular B3LYP functional to describe hydrogen bonding in the dimer. The findings of this research work should be useful to experimentalists in their quests for functionalised 4-mpba derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  17. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  18. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    Science.gov (United States)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  19. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    Science.gov (United States)

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 1.3±0.3; 3) wet gas window--1.3±0.3 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  1. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    Science.gov (United States)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  2. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  3. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  4. Virgin and recycled engine oil differentiation: a spectroscopic study.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied.

  5. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    Science.gov (United States)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  6. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  7. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  8. Isolation and spectroscopic studies of curcumin from Philippine Curcuma longa L

    International Nuclear Information System (INIS)

    Torres, Rosalinda C.; Bonifacio, Teresita S.; Herrera, Celia L.; Lanto, Eduardo A.

    1998-01-01

    Curcumin, the yellow coloring matter was isolated from the rhizomes of Philippine Curcuma longa L. (turmeric) by Soxhlet extraction with toluene followed by concentration and slow crystallization. The isolated curcumin was then subjected to chromatographic and spectroscopic studies with the Merck curcumin standard. The infra red and UV-vis spectra of both compounds were found to be almost identical indicating a high purity of the isolate. The % yield obtained was 2-3%. (Author)

  9. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  10. Study of the gamma radiation effect on lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.; Al Aji, Z.

    1999-02-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  11. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening

    Science.gov (United States)

    Rymsza, Taciana; Ribeiro, Eliane Aline; de Carvalho, Luis Felipe das Chagas e. Silva; Bhattacharjee, Tanmoy; de Azevedo Canevari, Renata

    2018-05-01

    The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection.

  12. FTIR spectroscopy in medical mycology: applications to the differentiation and typing of Candida.

    Science.gov (United States)

    Toubas, Dominique; Essendoubi, Mohammed; Adt, Isabelle; Pinon, Jean-Michel; Manfait, Michel; Sockalingum, Ganesh D

    2007-03-01

    The incidence of fungal infections, in particular candidiasis and aspergillosis, has considerably increased during the last three decades. This is mainly due to advances in medical treatments and technologies. In high risk patients (e.g. in haematology or intensive care), the prognosis of invasive candidiasis is relatively poor. Therefore, a rapid and correct identification of the infectious agent is important for an efficient and prompt therapy. Most clinical laboratories rely on conventional identification methods that are based on morphological, physiological and nutritional characteristics. However, these have their limitations because they are time-consuming and not always very accurate. Moreover, molecular methods may be required to determine the genetic relationship between the infectious strains, for instance in Candida outbreaks. In addition, the latter methods require time, expensive consumables and highly trained staff to be performed adequately. In this study, we have applied the FTIR spectroscopic approach to different situations encountered in routine mycological diagnosis. We show the potentials of this phenotypic approach, used in parallel with routine identification methods, for the differentiation of 3 frequently encountered Candida species (C. albicans, C. glabrata and C. krusei) by using both suspensions and microcolonies. This approach, developed for an early discrimination, may help in the initial choice of antifungal treatment. Furthermore, we demonstrate the feasibility of the method for intraspecies comparison (typing) of 3 Candida species (C. albicans, C. glabrata and C. parapsilosis), particularly when an outbreak is suspected.

  13. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  14. Chromatographic and spectroscopic identification and recognition of ammoniacal cochineal dyes and pigments

    Science.gov (United States)

    Chieli, A.; Sanyova, J.; Doherty, B.; Brunetti, B. G.; Miliani, C.

    2016-06-01

    In this work a combined chromatographic and spectroscopic approach is used to provide a diagnostic assessment of semi-synthetic ammoniacal cochineal through the syntheses of its dyes and lakes according to art historical recipes. Commercially introduced in the late XIX century as a dye and pigment, it was used to obtain a brilliant purplish/violet nuance which provided a more stable option over carminic acid although its evidenced use in manufacts and artworks of heritage importance have been scarcely documented. Through HPLC-DAD, it has been possible to identify 4-aminocarminic acid as the main component of ammoniacal cochineal highlighting a chemical formula analogous to acid stable carmine, a recent patented food dye. FTIR clearly distinguishes the amine group in the ammoniacal cochineal dye preparation and TLC-SERS allows for an adequate separation and spectral differentiation in its main components to be evidenced. Colloidal SERS has permitted spectral markers useful in discerning ammoniacal cochineal over carminic acid to be highlighted and discussed. Finally, the methods experimented in this study for the identification of ammoniacal cochineal have been validated on analyzing a sample of dyed wool.

  15. Simultaneous FTIR/UV-Vis study of reactions over metallo-zeolites. Approach to quantitative in situ studies

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Jíša, Kamil; Jirglová, Hana; Bernauer, B.

    2007-01-01

    Roč. 126, 1-2 (2007), s. 73-80 ISSN 0920-5861 R&D Projects: GA AV ČR 1ET400400413; GA ČR GA104/06/1254; GA ČR GA203/05/2309 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallo-zeolites * FTIR/UV-Vis * adsorption * modeling * in-situ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.764, year: 2007

  16. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  17. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  18. FTIR study of carbon monoxide adsorption on ion-exchanged X, Y and mordenite type zeolites

    Directory of Open Access Journals (Sweden)

    R. HERCIGONJA

    2003-05-01

    Full Text Available In this work Fourier transform infrared (FTIR study has been applied to study the adsorption of carbon monoxide on transition metal (Mn+, Co2+, Ni2+ ion-exchanged zeolites type Y, X and mordenites. The adsorption of CO at room temperature produces overlapping IR absorption bands in the 2120–2200 cm-1 region. The frequency of the band around 2200 cm-1 is found to be dependent not only on the charge-balancing transition metal cation, but also on the framework composition. The frequencies of the band near 1600 cm-1 was found to be dependent on the Si/Al ratio of the investigated zeolites.

  19. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    Science.gov (United States)

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Peltre, Clément; Jensen, Lars Stoumann

    2016-01-01

    In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperatu...

  1. Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

    Science.gov (United States)

    Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying

    2015-02-01

    One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process

  2. Spectroscopic studies with the use of deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Broda, R

    2006-01-01

    Gamma spectroscopic studies exploiting deep-inelastic heavy-ion reactions in thick target experiments are reviewed. The description of physical motivation, history of early experiments, analysis of the N/Z equilibration process as well as the outline of the experimental method and data analysis are followed by the presentation of main results obtained in various regions of the nuclide chart. Brief comments on thin target spectroscopy experiments involving fragment detection and future outlook are summarized. (topical review)

  3. MICROSCOPY, MICRO-CHEMISTRY AND FTIR AS ANALYTICAL TOOLS FOR IDENTIFYING TRANSPARENT FINISHES CASE STUDIES FROM ASTRA MUSEUM – SIBIU

    Directory of Open Access Journals (Sweden)

    Maria Cristina TIMAR

    2015-12-01

    Full Text Available Conservation of cultural heritage relies on scientific investigation of artefacts, a key point being identification of the original materials. In this context, besides wood species identification, investigation of finishing layers is of ultimate importance for old furniture and any other wooden objects with historic, documentary or artistic value. The present paper refers to a series of micro-destructive investigation methods applied for identification of finishing materials, namely: simple in situ and laboratory physical tests, optical microscopy, micro-chemistry and FTIR – ATR analysis. Small samples of finishing layers were taken from four furniture objects belonging to CNM ASTRA Sibiu and were analysed according to the usual procedures of the laboratories from Sibiu and Brasov. The results showed that physical tests and microscopy are useful to get basic information on the samples’ morphology and possible classes of coating materials, while micro-chemistry revealed by some successive tests more specific information on the type of finishing materials. FTIR - ATR is a rapid method of identifying the coating materials based on available reference samples or spectra. However, this is not always straightforward and preliminary physical tests of solubility are useful to select the adequate references, while micro-chemistry tests could complete the FTIR result, especially for those components of the finishing layer present in very small amounts (less than 5%, bellow the FTIR sensitivity. Corroboration of microscopy, physical and micro-chemistry tests with FTIR can provide more reliable results in terms of finishes identification and also valuable information for restoration.

  4. Acidic and Catalytic Properties of Mo-MCM-22 in Methane Aromatization: An FTIR Study

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Tvarůžková, Zdenka; Wichterlová, Blanka; Fíla, V.; Špatenka, Š.

    2003-01-01

    Roč. 253, - (2003), s. 271-282 ISSN 0926-860X R&D Projects: GA ČR GA104/99/0432 Institutional research plan: CEZ:AV0Z4040901 Keywords : methane aromatization * FTIR technique * MCM-22 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  5. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    Science.gov (United States)

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  6. Classification of java tea ( Orthosiphon aristatus ) quality using FTIR spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Heryanto, R; Pradono, D I; Darusman, L K; Marlina, E

    2017-01-01

    Java tea ( Orthosiphon aristatus ) is a plant that widely used as a medicinal herb in Indonesia. Its quality is varying depends on various factors, such as cultivating area, climate and harvesting time. This study aimed to investigate the effectiveness of FTIR spectroscopy coupled with chemometrics for discriminating the quality of java tea from different cultivating area. FTIR spectra of ethanolic extracts were collected from five different regions of origin of java tea. Prior to chemometrics evaluation, spectra were pre-processed by using baselining, normalization and derivatization. Principal Components Analysis (PCA) was used to reduce the spectra to two PCs, which explained 73% of the total variance. Score plot of two PCs showed groupings of the samples according to their regions of origin. Furthermore, Partial Least Squares-Discriminant Analysis (PLSDA) was applied to the pre-processed data. The approach produced an external validation success rate of 100%. This study shows that FTIR analysis and chemometrics has discriminatory power to classify java tea based on its quality related to the region of origin. (paper)

  7. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Šeděnková, Ivana; Tobolková, E.; Stejskal, Jaroslav

    2004-01-01

    Roč. 86, č. 1 (2004), s. 179-185 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313; GA ČR GA202/02/0698 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline * conducting polymer * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.685, year: 2004

  8. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Šeděnková, Ivana; Stejskal, Jaroslav

    2005-01-01

    Roč. 154, 1-3 (2005), s. 1-4 ISSN 0379-6779. [International Conference on Science and Technology of Synthetic Metals. Wollongong, 28.06.2004-02.07.2004] R&D Projects: GA AV ČR(CZ) IAA4050313; GA ČR(CZ) GA202/02/0698 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.320, year: 2005

  9. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  10. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  11. Ground-based FTIR retrievals of SF6 on Reunion Island

    Directory of Open Access Journals (Sweden)

    M. Zhou

    2018-02-01

    Full Text Available SF6 total columns were successfully retrieved from FTIR (Fourier transform infrared measurements (Saint Denis and Maïdo on Reunion Island (21° S, 55° E between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget were presented. The FTIR SF6 retrieval has independent information in only one individual layer, covering the whole of the troposphere and the lower stratosphere. The trend in SF6 was analysed based on the FTIR-retrieved dry-air column-averaged mole fractions (XSF6 on Reunion Island, the in situ measurements at America Samoa (SMO and the collocated satellite measurements (Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS in the southern tropics. The SF6 annual growth rate from FTIR retrievals is 0.265 ± 0.013 pptv year−1 for 2004–2016, which is slightly weaker than that from the SMO in situ measurements (0.285 ± 0.002 pptv year−1 for the same time period. The SF6 trend in the troposphere from MIPAS and ACE-FTS observations is also close to the ones from the FTIR retrievals and the SMO in situ measurements.

  12. Ground-based FTIR retrievals of SF6 on Reunion Island

    Science.gov (United States)

    Zhou, Minqiang; Langerock, Bavo; Vigouroux, Corinne; Wang, Pucai; Hermans, Christian; Stiller, Gabriele; Walker, Kaley A.; Dutton, Geoff; Mahieu, Emmanuel; De Mazière, Martine

    2018-02-01

    SF6 total columns were successfully retrieved from FTIR (Fourier transform infrared) measurements (Saint Denis and Maïdo) on Reunion Island (21° S, 55° E) between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget were presented. The FTIR SF6 retrieval has independent information in only one individual layer, covering the whole of the troposphere and the lower stratosphere. The trend in SF6 was analysed based on the FTIR-retrieved dry-air column-averaged mole fractions (XSF6) on Reunion Island, the in situ measurements at America Samoa (SMO) and the collocated satellite measurements (Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS) in the southern tropics. The SF6 annual growth rate from FTIR retrievals is 0.265 ± 0.013 pptv year-1 for 2004-2016, which is slightly weaker than that from the SMO in situ measurements (0.285 ± 0.002 pptv year-1) for the same time period. The SF6 trend in the troposphere from MIPAS and ACE-FTS observations is also close to the ones from the FTIR retrievals and the SMO in situ measurements.

  13. Influence of Gd2O3 on thermal and spectroscopic properties of aluminosilicate glasses

    Science.gov (United States)

    Kasprzyk, Marta; Środa, Marcin

    2018-06-01

    A series of aluminosilicate glasses 25SiO2·(20-x)Al2O3·40Na2O·15BaO-xGd2O3 with 0 ≤ x ≤ 10 were prepared in order to analyze the influence of gadolinium on thermal and spectroscopic properties of these materials. Increasing of thermal parameters (Tg, Tx, Δcp, ΔT) values with higher Gd2O3 content was determined using DSC method. Crystalline phases, formed during heat treatment, were identified with XRD - NaAlSiO4 and BaSiO3 in glass with 0% mol. Gd2O3 and Gd9.33(SiO4)6O2, NaAlSiO4 and BaAl2Si2O6 in glass with 10% mol. Gd2O3. Spectroscopic analysis - FTIR and Raman - revealed Gd2O3 influence on glass structure in the same way like Al2O3, but some differences appear due to the differ bond strength and ionic radius between Gd and Al. Raman spectra confirmed higher network polymerization (enriched with Q2 units). Optical band gap energy (Eopt) and Urbach energy (ΔE) were calculated from the Tauc plot. Mechanical tests demonstrated lower microhardness with increasing content of Gd2O3 content, as a result of higher concentration of atoms with larger radius.

  14. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2013-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.

  15. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  16. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    International Nuclear Information System (INIS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-01-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ( 1 Σ) and hydrideisocyanidezinc HZnNC ( 1 Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn] + composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn + ( 2 Σ) and HCNZn + ( 2 Σ)

  17. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen, E-mail: cbb@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  18. Probing of possible olanzapine binding site on human serum albumin: Combination of spectroscopic methods and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shahlaei, Mohsen, E-mail: mohsenshahlaei@yahoo.com [Nano drug delivery research Center, Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rahimi, Behnoosh [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Student research committee, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Sadrjavadi, Komail [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-02-15

    Human serum albumin (HSA)-drug binding affinity is one of the major factors that determine the pharmacokinetics, halftime and bioavailability of drugs in various tissues. In the present study, the interaction of olanzapine (OLZ), a thienobenzodiazepine drug, administered for the treatment of schizophrenia and bipolar disorder, with HSA has been studied using spectroscopic methods such as ultraviolet absorbance, fluorescence and FTIR combined with computational procedures. Analyzing of the Stern–Volmer quenching data showed only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. Thermodynamic analyses showed enthalpy change (ΔH°) and entropy change (ΔS°) were 28.03±3.42 kJ mol{sup −1} and −25.52±11.52 J mol{sup −1} K{sup −1}, respectively. Molecular docking results suggested the hydrophobic residues such as Val{sub 216}, Leu{sub 327}, Ala{sub 350} and polar residues such as Glu{sub 354} play an important role in the drug binding. Decrement in α-helix content of the protein upon OLZ binding was also confirmed by evidences provided by molecular dynamics simulation as well as FTIR spectroscopy. - Highlights: • Leu{sub 327}, Ala{sub 350} as well as hydrophilic residues of HSA play an important role in the binding reaction. • The drug has only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. • The drug binds near to site I.

  19. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co2+, Cu2+ and Zn2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  20. Colchiceine Complexes with Lithium, Sodium and Potassium Salts − Spectroscopic Studies

    Directory of Open Access Journals (Sweden)

    Joanna Kurek

    2016-09-01

    Full Text Available Colchiceine complexes with Li+, Na+ and K+ cations have been synthesized and studied by 1H and 13C NMR, FT-IR, FAB MS and UV-Vis. It has been shown that colchiceine forms stable complexes especially with lithium cation and the most stable structures of the complexes are those in which the acetamide groups are involved in the coordination process. The structures of the colchiceine complexes with Li+, Na+ and K+ cations are discussed in details. This work is licensed under a Creative Commons Attribution 4.0 International License.

  1. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  2. Preparation and spectroscopic studies of PbS/nanoMCM-41 nanocomposite

    Directory of Open Access Journals (Sweden)

    A. Pourahmad

    2014-11-01

    Full Text Available The present work describes the preparation and characterization of nanosized PbS particles inside the mesopore channels of nanoMCM-41 silicate molecular sieves. The encapsulation of the lead sulfide was carried out at room temperature by ion-exchange method. Diffuse reflectance ultraviolet–visible spectroscopic studies showed a significant shift in the absorption band for the entrapped metal sulfide as compared to corresponding bulk sulfide. Thus, confirming the quantum confinement of the incorporated nanoparticles in nanoMCM-41.

  3. Application of spectroscopic techniques for the study of paper documents: A survey

    International Nuclear Information System (INIS)

    Manso, M.; Carvalho, M.L.

    2009-01-01

    For many centuries paper was the main material for recording cultural achievements all over the world. Paper is mostly made from cellulose with small amounts of organic and inorganic additives, which allow its identification and characterization and may also contribute to its degradation. Prior to 1850, paper was made entirely from rags, using hemp, flax and cotton fibres. After this period, due to the enormous increase in demand, wood pulp began to be commonly used as raw material, resulting in rapid degradation of paper. Spectroscopic techniques represent one of the most powerful tools to investigate the constituents of paper documents in order to establish its identification and its state of degradation. This review describes the application of selected spectroscopic techniques used for paper characterization and conservation. The spectroscopic techniques that have been used and will be reviewed include: Fourier-Transform Infrared spectroscopy, Raman spectroscopy, Nuclear Magnetic Resonance spectroscopy, X-Ray spectroscopy, Laser-based Spectroscopy, Inductively Coupled Mass Spectroscopy, Laser ablation, Atomic Absorption Spectroscopy and X-Ray Photoelectron Spectroscopy.

  4. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods

    Science.gov (United States)

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.

  5. Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates.

    Science.gov (United States)

    Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W

    2014-11-11

    The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  7. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  8. FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: Application to mineral and melt devolatilization

    Science.gov (United States)

    Della Ventura, Giancarlo; Bellatreccia, Fabio; Cesare, Bernardo; Harley, Simon; Piccinini, Massimo

    2009-12-01

    This paper reports the microchemical and microspectroscopic FTIR study of cordierite from a partially melted graphite-bearing granulitic enclave within the dacitic lava dome of El Hoyazo (SE Spain). Optically transparent single-crystals, hand picked from the rock, were oriented using X-ray diffraction and studied by Fourier-transform infrared (FTIR). Single-crystal FTIR spectroscopy shows that the examined cordierite is CO 2-rich and almost H 2O-free. Two weak and sharp peaks are observed at 3708 and 3595 cm - 1 , respectively, which are strongly polarised for E // a. These peaks are assigned to combination modes of CO 2. Very weak bands due to H 2O molecules oriented with the H…H vector // c (type I water) are occasionally observed in certain zones of the grains, associated with absorptions due to hydrated inclusions of alteration products. The very intense bands observed in the 2600-2000 cm - 1 region are assigned to CO 2 molecules oriented // a; the spectra also show the presence of 13C and 18O, and weak amounts of CO in the sample. Microspectrometric mapping shows that the distribution of C is relatively homogeneous, whereas that of H 2O is complicated by a very broad absorption extending from 3700 to 3100 cm - 1 . High-resolution FTIR imaging, done using a focal-plane array of detectors, shows that this broad absorption is associated with microfractures. SIMS analyses give an average concentration of H 2O = 0.033 ± 0.007 wt.% and CO 2 = 0.21 ± 0.07 wt.%. On the basis of these data, molar absorption coefficients can be calibrated for CO 2: ɛiCO2 (integrated) = 11,000 ± 4000 l/(mol cm - 2 ) and ɛlCO2 (linear) = 800 ± 250 l/(mol cm - 1 ). Due to the extremely low amount of H 2O and its inhomogeneous distribution, calibration of absorption ɛH2O coefficients is unreliable. The very low H 2O contents in the El Hoyazo cordierite indicate continued mineral-melt volatile exchange during decompression from ˜ 5 kbar to significantly shallower levels.

  9. Interactions between {beta}-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, Shohreh, E-mail: drshnafisi@gmail.com [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Panahyab, Ataollah [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Bagheri Sadeghi, Golshan [Department of Biology, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2012-09-15

    {beta}-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of {beta}-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze the binding modes of {beta}-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that {beta}-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the -NH groups, with overall binding constants of K{sub harmine-BSA}=2.04 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub tryptoline-BSA}=1.2 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub harmaline-BSA}=5.04 Multiplication-Sign 10{sup 3} M{sup -1}, K{sub harmane-BSA}=1.41 Multiplication-Sign 10{sup 3} M{sup -1} and K{sub harmalol-BSA}=1.01 Multiplication-Sign 10{sup 3} M{sup -1}, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of {alpha}-helix from 64% (free protein) to 59% (BSA-harmane), 56% (BSA-harmaline and BSA-harmine), 55% (BSA-tryptoline), 54% (BSA-harmalol) and {beta}-sheet from 15% (free protein) to 6-8% upon {beta}-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: Black-Right-Pointing-Pointer We model the binding of {beta}-carboline alkaloids to BSA by using the spectroscopic methods. Black-Right-Pointing-Pointer We investigate the effects of drug complexation on BSA stability and conformation. Black-Right-Pointing-Pointer A partial protein destabilization occurred at high alkaloids concentration. Black

  10. Synthesis, molecular structure, spectroscopic properties and stability of (Z)-N-methyl-C-2,4,6-trimethylphenylnitrone

    Science.gov (United States)

    Lasri, Jamal; Ismail, Ali I.; Haukka, Matti; Soliman, Saied M.

    2015-02-01

    New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π∗ transition band at 285.1 nm (fosc = 0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

  11. Synthesis, spectroscopic characterization and structural investigations of a new charge transfer complex of 2,6-diaminopyridine with 3,5-dinitrobenzoic acid: DNA binding and antimicrobial studies

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq; Kumar, Sarvendra

    2013-03-01

    A new charge transfer (CT) complex [(DAPH)+(DNB)-] consisting of 2,6-diaminopyridine (DAP) as donor and 3,5-dinitrobenzoic acid (DNB-H) as acceptor, was synthesized and characterized by FTIR, 1H and 13C NMR, ESI mass spectroscopic and X-ray crystallographic techniques. The hydrogen bonding (N+-H⋯O-) plays an important role to consolidate the cation and anion together. CT complex shows a considerable interaction with Calf thymus DNA. The CT complex was also tested for its antibacterial activity against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and two Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa strains by using Tetracycline as standard, and antifungal property against Aspergillus niger, Candida albicans, and Penicillium sp. by using Nystatin as standard. The results were compared with standard drugs and significant conclusions were obtained. A polymeric net work through H-bonding interactions between neighboring moieties was observed. This has been attributed to the formation of 1:1 type CT complex.

  12. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. FTIR Imaging of Brain Tissue Reveals Crystalline Creatine Deposits Are an ex Vivo Marker of Localized Ischemia during Murine Cerebral Malaria: General Implications for Disease Neurochemistry

    Science.gov (United States)

    2012-01-01

    Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer’s (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that

  14. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study

    International Nuclear Information System (INIS)

    Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G.

    2008-01-01

    Nanoparticles of MgFe 2 O 4 are synthesized using sol-gel autocombustion method. Structural studies are carried out using X-ray diffraction (XRD). The XRD pattern of MgFe 2 O 4 provides information about single-phase formation of spinel structure with cubic symmetry. The grain size and lattice constant are obtained using XRD data. The cation distribution is also proposed theoretically. The change in site preference of cations in nano-MgFe 2 O 4 is compared with its bulk counterpart. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is conformed using Fourier transform infrared spectroscopy (FTIR), which also lends support for the cation distribution proposed using XRD data. The effect of nanoregime on parameters such as bond length, vibration frequency and force constant are discussed with the help of FTIR data. The M-H loop of MgFe 2 O 4 has been traced using the Vibrating Sample Magnetometer (VSM) and magnetic parameters such as saturation magnetization (M S ), coercivity (H C ) and retentivity (M R ) are obtained from VSM data

  15. Study of the gamma radiation effect on the lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.

    1999-01-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  16. Conformational study of sarcosine as probed by matrix-isolation FT-IR spectroscopy and molecular orbital calculations

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    Sarcosine (N-methylglycine) has been studied by matrix-isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d, p) and 6-31++G(d, p) basis set, respectively. Eleven different conformers were located in the potential energy surface (PES) of sarcosine, with the ASC conformer being the ground conformational state. This form is analogous to the glycine most stable conformer and is characterized by a NH...O= intramole...

  17. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  19. FT-IR, NMR SPECTROSCOPIC and QUANTUM MECHANICAL ...

    African Journals Online (AJOL)

    frequencies, potential energy distribution (PED) data, 1H and 13C NMR chemical shifts of Fc- .... Due to electronegative oxygen atom, C11 appears at the highest frequency field region. The most intense singlet appearing at 69.73 ppm arises.

  20. Fourier transform infrared studies in solid egg white lysozyme

    International Nuclear Information System (INIS)

    Rivzi, T.Z.

    1994-12-01

    Fourier Transform Infrared (FTIR) Spectroscopy is the most recent addition to the arsenal of bioanalytical techniques capable of providing information about the secondary structure of proteins in a variety of environments. FTIR spectra have been obtained in solid egg white lysozyme. The spectra display the usual amide I, II and III bands. Secondary structural information obtained from the spectra after applying resolution enhancement techniques to the amide I band has been found consistent with the x-ray crystallographic data of the protein and also to the spectroscopic data of the protein in aqueous solution. (author). 17 refs, 6 figs, 2 tabs

  1. FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular-ionic crystal

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.

    2013-02-01

    The experimental and theoretical vibrational spectra of melaminium nitrate were studied. The Raman and infrared (FT-IR) spectra of the melaminium nitrate and its deuterated analogue were recorded in the solid phase. Molecular geometry and vibrational frequency values of melaminium nitrate in the electronic ground state were calculated using the density functional method (B3LYP) with the 6-31++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. The NBO analysis reveals that the N-H···O and N-H···N intermolecular interactions significantly influence crystal packing in this molecule.

  2. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  3. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    Science.gov (United States)

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Spectroscopic, Homo-Lumo and NLO studies of tetra fluoro phthalate doped Coumarin crystals using DFT method

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2017-08-01

    In the present examination, a methodical study has been done on the development of unadulterated and Coumarin doped Tetrafluoro Phthalate precious stones. Powder X-beam diffraction studies were done and the cross section parameters were computed by minimum square technique in pure and doped crystals. FT-IR, UV-Vis, Thermal, Micro-hardness and Dielectric studies were additionally done for the pure and doped crystals. The tentatively watched FT-IR and FT-Raman groups were allotted to various ordinary methods of the atom. The steadiness and charge delocalization of the particle were likewise concentrations were done by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the particle. Atomic electrostatic potential has been broken down the electronic properties such as excitation energies, oscillator quality, wavelengths and HOMO-LUMO energies were acquired by time-subordinate DFT (TD-DFT) approach. The SHG of pure and doped TFP stones were examined through Nd:YAG Q-exchanged laser.

  5. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    Science.gov (United States)

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    Science.gov (United States)

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  7. Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in Tritons

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.

    2012-01-01

    Highlights: ► Thermophysical studies of new formulations of [BMIM][PF 6 ]+TX(45,100) have been made. ► Strong intermolecular interactions between [BMIM][PF 6 ] and TX (45, 100) is observed. ► Magnitude of interactions increases with the addition of oxyethylene groups in TX. ► With rise in temperature, intermolecular interactions increases. ► Spectroscopic studies show that interactions are via aromatic rings of RTIL and TX. - Abstract: The thermophysical properties viz. density ρ, speed of sound u, and specific conductivity κ of pure room temperature ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and its binary formulations with Triton X-45 and Triton X-100 have been studied over the entire composition range at different temperatures (293.15 to 323.15) K. Excess molar volume V E , deviation in isentropic compressibility ΔK S , partial molar excess volume V i E , deviation in partial molar isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ have also been estimated and analysed. Spectroscopic properties (IR, 1 H and 13 C NMR) of these mixtures have been investigated in order to understand the structural and interactional behaviour of formulations studied. The magnitude of interactions between the two components increases with addition of number of oxyethylene groups in Tritons and with rise in temperature. Spectroscopic measurements indicate that interactions are mainly taking place through the five member ring of room temperature ionic liquid and six member ring of Tritons.

  8. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  9. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  10. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  11. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  12. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    Science.gov (United States)

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  14. Spectroscopic analysis of PMMA/PVC blends containing CoCl2

    Directory of Open Access Journals (Sweden)

    N.S. Alghunaim

    2015-01-01

    Full Text Available Composites of polymethyl methacrylate (PMMA and polyvinyl chloride (PVC polymer blend containing different concentrations (⩽10 wt. of cobalt chloride (CoCl2 were prepared by casting techniques. The changes of the structural, spectroscopic, optical and thermal parameters of the samples are studied using different tools. FT-IR spectroscopy confirmed the complexation between the blends and Co+2-ions. The decrease or increase of IR band intensity with some shifts of other bands suggests an interaction and compatibility between PMMA/PVC blends with CoCl2 take place. The Ultra violet and visible (UV/Vis spectra indicated that the presence of band gap energy depends on increasing of CoCl2 contents. The absorption intensity of the samples doped with CoCl2 becomes faint lower than the pure blend. The values of energy gap for direct and indirect transition decreases with the increase of CoCl2 due to the presence of charge transfer between PMMA/PVC and CoCl2. The thermogravimetric analysis (TGA curves for all the samples have the same behavior and more steps of decomposition were observed. The reduction of mass loss for samples containing CoCl2 compared to the pure blend was observed and it was attributed to crosslink formation between the blend and CoCl2.

  15. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  17. Analysis of European honeybee (Apis mellifera) wings using ATR-FTIR and Raman spectroscopy: A pilot study

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Lapčák, L.; Havelcová, Martina; Borecká, Lenka; Novotná, M.; Novotná, M.; Javůrková, I.; Langrová, I.; Hájková, Š.; Brožová, A.; Titěra, D.

    2017-01-01

    Roč. 48, č. 1 (2017), s. 22-29 ISSN 1211-3174 Institutional support: RVO:67985891 Keywords : honeybee wings * ATR-FTIR * Raman spectroscopy * protein * lipid * chitin Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  18. Electrochemical and spectroscopic studies of tungstencarbonyl complexes containing nitrogen and phosphorous ligands

    Directory of Open Access Journals (Sweden)

    Haddad Paula S.

    2000-01-01

    Full Text Available The present work deals with the synthesis, spectroscopic investigation and electrochemical behaviour of the compounds [W(CO4(bipy] (1, [W(CO3(bipy(dppm] (2 and [W(CO3(bipy(dppf] (3, bipy = 2,2'-bipyridine; dppm = bis(diphenylphosphinomethane; dppf = 1,1'-bis(diphenylphosphinoferrocene. The IR and 31P{¹H} NMR spectroscopic data have shown an octahedral coordination geometry for the tungsten atom with the diphosphines acting as monodentate ligands. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry and controlled potential coulometry. Cyclic voltammograms have indicated that the compounds containing diphosphines ligands are more stable towards oxidation than compound (1.

  19. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Science.gov (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  20. Self-Aggregation in Pyrrole:  Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, Rui

    2004-01-01

    Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of dilut...

  1. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  2. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  3. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    Science.gov (United States)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  4. FTIR study of decomposition of carbon dioxide in dc corona discharges

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Mason, N J

    2008-01-01

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO 2 has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO 2 decomposition is found to be dependent on the voltage, U, with a maximum CO 2 decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO 2 decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  5. FTIR study of decomposition of carbon dioxide in dc corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48, Bratislava (Slovakia); Mason, N J [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2008-11-21

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO{sub 2} has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO{sub 2} decomposition is found to be dependent on the voltage, U, with a maximum CO{sub 2} decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO{sub 2} decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  6. Spectroscopic study of honey from Apis mellifera from different regions in Mexico

    Science.gov (United States)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.

    2017-05-01

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  7. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  8. In situ detection of cancerous kidney tissue by means of fiber ATR-FTIR spectroscopy

    Science.gov (United States)

    Sablinskas, Valdas; Velicka, Martynas; Pucetaite, Milda; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Sakharova, Tatiana; Bibikova, Olga; Steiner, Gerald

    2018-02-01

    The crucial goal of kidney-sparing surgical resection of a malignant tumor is complete removal of the cancerous tissue. The exact border between the cancerous and normal tissues is not always possible to identify by naked eye, therefore, a supplementary intraoperative diagnosis is needed. Unfortunately, intraoperative pathology methods used nowadays are time consuming and of inadequate quality rendering not definitive diagnosis. It has recently been shown that ATR-FTIR spectroscopy can be used for fast discrimination between cancerous and normal kidney tissues by analyzing the collected spectra of the tissue touch imprint smears. Most prominent differences are obtained in the wavenumber region from 950 cm-1 to 1250 cm-1, where the spectral bands due to the molecular vibrations of glycogen arise in the spectra of cancerous tissue smears. Such method of detection of cancerous tissue is limited by requirement to transfer the suspected tissue from the body to the FTIR instrument and stamp it on an ATR crystal of the spectrometer. We propose a spectroscopic tool which exploits the same principle of detection of cancerous cells as mentioned above, but does not require the tissue to be transferred from the body to the spectrometer. The portable spectrometer used in this design is equipped with fiber ATR probe and a sensitive liquid nitrogen cooled MCT detector. The design of the fiber probe allows the ATR tip to be changed easily in order to use only new sterilized tips for each measurement point of the tissue. It also enables sampling multiple areas of the suspected tissue with high lateral resolution which, in turn, increases accuracy with which the marginal regions between normal and cancerous tissues can be identified. Due to the loss of optical signal in the fiber probe the spectra have lower signal-to-noise ratio than in the case of standard ATR sampling setup. However, software for the spectral analysis used with the fiber probe design is still able to distinguish

  9. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  10. The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO-LUMO analysis of dansyl chloride

    Science.gov (United States)

    Karabacak, M.; Cinar, M.; Kurt, M.; Poiyamozhi, A.; Sundaraganesan, N.

    2014-01-01

    The solid phase FT-IR and FT-Raman spectra of dansyl chloride (DC) have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra have been interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory (B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra have also been predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule.

  11. FTIR Calibration Methods and Issues

    Science.gov (United States)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  12. Application of Fourier Transform Infrared Spectra (FTIR) Fingerprint in the Quality Control of Mineral Chinese Medicine Limonitum.

    Science.gov (United States)

    Liu, Sheng-jin; Yang, Huan; Wu, De-kang; Xu, Chun-xiang; Lin, Rui-chao; Tian, Jin-gai; Fang, Fang

    2015-04-01

    In the present paper, the fingerprint of Limonitum (a mineral Chinese medicine) by FTIR was established, and the spectrograms among crude samples, processed one and the adulterant sample were compared. Eighteen batches of Limonitum samples from different production areas were analyzed and the angle cosine value of transmittance (%) of common peaks was calculated to get the similarity of the FTIR fingerprints. The result showed that the similarities and the coefficients of the samples were all more than 0.90. The processed samples revealed significant differences compared with the crude one. This study analyzed the composition characteristics of Limonitum in FTIR fingerprint, and it was simple and fast to distinguish the crude, processed and the counterfeit samples. The FTIR fingerprints provide a new method for evaluating the quality of Limonitum.

  13. A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy

    Science.gov (United States)

    1990-06-01

    necessary and identify by block number) FELD GROUP SUB-GROUP i >Chamber, controlled environment; long-path cell ; 07 04 FT-IR; Hydrazine decay...modification doubles the useable path length of the original multipass cell described by White (Reference 8). The pattern of images formed on the nesting...system is shown in Figure 13. 24 z C C02, Ibm, El4 944 C3 ta) caC E-4- 252 14 $4 41) 41) 0. 0 04 04 4 41) ~0 to 0.0 V-4 (A q14 0~ 1% 4-r4 $4 0 u P416 4 4

  14. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  15. Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2007-01-01

    Full Text Available Within the framework of the Network for Detection of Atmospheric Composition Change (NDACC, regular ground-based Fourier transform infrared (FTIR measurements of many species are performed at several locations. Inversion schemes provide vertical profile information and characterization of the retrieved products which are therefore relevant for contributing to the validation of MIPAS profiles in the stratosphere and upper troposphere. We have focused on the species HNO3 and N2O at 5 NDACC-sites distributed in both hemispheres, i.e., Jungfraujoch (46.5° N and Kiruna (68° N for the northern hemisphere, and Wollongong (34° S, Lauder (45° S and Arrival Heights (78° S for the southern hemisphere. These ground-based data have been compared with MIPAS offline profiles (v4.61 for the year 2003, collocated within 1000 km around the stations, in the lower to middle stratosphere. To get around the spatial collocation problem, comparisons have also been made between the same ground-based FTIR data and the corresponding profiles resulting from the stratospheric 4D-VAR data assimilation system BASCOE constrained by MIPAS data. This paper discusses the results of the comparisons and the usefullness of using BASCOE profiles as proxies for MIPAS data. It shows good agreement between MIPAS and FTIR N2O partial columns: the biases are below 5% for all the stations and the standard deviations are below 7% for the three mid-latitude stations, and below 10% for the high latitude ones. The comparisons with BASCOE partial columns give standard deviations below 4% for the mid-latitude stations to less than 8% for the high latitude ones. After making some corrections to take into account the known bias due to the use of different spectroscopic parameters, the comparisons of HNO3 partial columns show biases below 3% and standard deviations below 15% for all the stations except Arrival Heights (bias of 5%, standard deviation of 21%. The results for this species, which

  16. FTIR spectroscopy as an alternative tool for high gamma dose dosimetry using P(VDF-TrFE) fluorinated copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S.; Liz, Otavio S., E-mail: asm@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline homopolymer and some of its fluorinated copolymer has demonstrated to have sensitiveness to high doses of ionizing radiation. We have recently proposed a semicrystalline fluorinated PVDF copolymer, the poly(vinylidene-trifluorethylene) [P(VDF-TrFE], as a candidate for measuring larger dose ranges. In fact, in these copolymers the optical absorption peak at 274 nm has been used to measure gamma doses ranging from 1.0 to 100.0 kGy and the melting latent heat, collected by differential scanning calorimetry (DSC), have been used to measure gamma doses from 1.0 to 1,000.0 kGy. In this paper, the infrared stretching vibration of radio-induced in-chain unsaturations (CH=CF) in P(VDF-TrFE) copolymers has been considered as an alternative tool for high dose dosimetric purposes. FTIR spectroscopic data revealed two optical absorption bands at 1754 cm{sup -1} and 1854 cm{sup -1} whose intensities are unambiguously related to gamma delivered doses ranging from 100.0 kGy to 1,000.0 kGy. Fading was evaluated one month after irradiation. The results indicate that the sample dose evaluation should be performed in the first two hours after being exposed to the radiation beam. The radio-induced formation of unsaturations was also investigated by ultraviolet and visible spectroscopy, which has confirmed the gradual increase of conjugated C=C bonds with the absorbed dose. Our results indicate that quantitative analysis of FTIR absorption bands is a useful tool to perform a product end-point dosimetry in radiation processing facilities that use high gamma dose irradiation. (author)

  17. Spectroscopic and transport studies of Cu 2 ion doped in (40–x ...

    Indian Academy of Sciences (India)

    The preparation of (40 – )Li2O–LiF–60Bi2O3 glassy system and spectroscopic and transport studies of this system are reported. IR results show that this glass consists of [BiO3] units and indicate formation of Bi–F bonds with the addition of LiF. From the ESR spectra of Cu2+ ion, the effective values are found to vary ...

  18. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  19. Applications of FT-IR spectrophotometry in cancer diagnostics.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  20. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Chai, M.F.

    2007-01-01

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes

  1. Precision electron-gamma spectroscopic studies in 111Cd

    International Nuclear Information System (INIS)

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  2. Spectroscopic studies of 2-thenoyltrifluoro acetonate of uranyl salts doped with europium

    International Nuclear Information System (INIS)

    Nakagawa, F.T.; Luiz, J.E.M. de Sa; Felinto, M.C.F.C.; Brito, H.F.; Teotonio, E.E.S.

    2006-01-01

    Uranyl compounds present a great potential as luminescence materials. Some examples of applications are: in laser technology, cathode ray tube, X-rays diagnostic. In this work it was studied the synthesis, characterization and spectroscopic properties study of uranyl 2-thenoyl trifluoroacetonate and uranyl 2- thenoyl trifluoroacetonate doped with europium. The compounds were synthesized and characterized by infrared absorption spectroscopy, thermal analysis, scanning electronic microscopy, and electronic spectroscopy of emission and excitation. The Eu 3+ ion acted as an effective luminescent probe, however the process of energy transfer from UO 2 2+ to Eu 3+ ion has not been efficient. (author)

  3. Application of FTIR spectroscopy to the characterization of archeological wood.

    Science.gov (United States)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations.

    Science.gov (United States)

    Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw

    2017-04-30

    The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.

  5. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  6. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  7. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  8. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2016-05-01

    Full Text Available Turmeric powder (Curcuma longa L. is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman and Fourier Transform-Infra Red (FT-IR spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w. FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively.

  9. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  10. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Advanced sampling techniques for hand-held FT-IR instrumentation

    Science.gov (United States)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  12. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. FT-Raman and FT-IR studies of 1:2.5 piroxicam: β-cyclodextrin inclusion compound

    Science.gov (United States)

    Bertoluzza, A.; Rossi, M.; Taddei, P.; Redenti, E.; Zanol, M.; Ventura, P.

    1999-05-01

    The FT-Raman and FT-IR spectra of amorphous 1:2.5 piroxicam (P): β-cyclodextrin (βCD) inclusion compound (PβCD) are presented and discussed in comparison with the spectra of the three main modifications of piroxicam (α,β and monohydrate). In the 1700-1200 cm -1 FT-Raman spectrum of 1:2.5 PβCD inclusion compound the bands of βCD are weak and covered by those stronger of piroxicam, differently from the FT-IR spectrum where the bands of βCD are stronger, so covering a large part of the spectrum. Typical FT-Raman marker bands are assigned for the characterization of the three modifications of piroxicam. The FT-Raman spectrum of 1:2.5 PβCD inclusion compound predominantly shows the bands at about 1465 and 1400 cm -1 of the monohydrate, indicating that piroxicam assumes the zwitterionic structure stabilized by interaction with βCD via electrostatic and hydrogen bonds. The dipolar character of 1:2.5 PβCD inclusion compound improves the solubility and the dissolution rate of piroxicam and thus its rate of absorption.

  14. Spectroscopic study on the stability of morin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bark, Ki Min [Dept. of Chemical Education and Research Institute of Life Science, Gyeongsang National University, Chinju (Korea, Republic of); Im, Seo Eun; Seo, Jung Ja; Park, Ok Hyun; Park, Hyoung Ryun [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of); Park, Chul Ho [Dept. of Cosmetic Science, Nambu University, Gwangju (Korea, Republic of)

    2015-02-15

    Morin (3,2,4,5,7-pentahydroxyflavone) is a flavonol conjugated to a resorcinol moiety at the C-2 position, different from many other flavonoids. The UV–vis spectrum of morin in neat water reveals two major absorption bands with maxima at 265 and 387 nm. The substance is stable in acidic solution and neat water. However, its absorption maximum at 387 nm continuously shifts to longer wavelengths and new peaks appeared at wavelengths of 312 nm with increasing pH of the solution. The shape of the absorption spectrum of morin depends on the storage time at a given pH, indicating the occurrence of other successive chemical reactions. The fluorescence spectroscopic results also prove that new conjugated double bonds are formed in the deaerated basic solution at the initial state and decompose with time. This behavior indicates that morin is very unstable, and therefore its decomposition occurs by a sequence of multistep reactions in basic solution. Probable reaction pathways for the reaction are suggested based on the spectroscopic results.

  15. In situ ATR FTIR studies of SO4 adsorption on goethite in the presence of copper ions.

    Science.gov (United States)

    Beattie, D A; Chapelet, J K; Gräfe, M; Skinner, W M; Smith, E

    2008-12-15

    Despite the existence of many single ion sorption studies on iron and aluminum oxides, fewer studies have been reported that describe cosorption reactions. In this work, we present an in situ ATR FTIR study of synergistic adsorption of sulfate (SO4) and copper (Cu) on goethite, which is representative of the minerals and ions present in mine wastes, acid sulfate soils, and other industrial and agricultural settings. Sulfate adsorption was studied as a function of varying pH, and as a function of increasing concentration in the absence and presence of Cu. The presence of Cu ions in solution had a complex effect on the ability of SO4 ions to be retained on the goethite surface with increasing pH, with complete desorption occurring near pH 7 and 9 in the absence and presence of Cu, respectively. In addition, Cu ions altered the balance of inner vs outer sphere adsorbed SO4. The solid phase partitioning of SO4 at pH 3 and pH 5 was elevated by the presence of Cu; in both cases Cu increased the affinity of SO4 for the goethite surface. Complementary ex situ sorption edge studies of Cu on goethite in the absence and presence of SO4 revealed that the Cu adsorption edge shifted to lower pH (6.3 --> 5.6) in the presence of SO4, consistent with a decrease of the electrostatic repulsion between the goethite surface and adsorbing Cu. Based on the ATR FTIR and bulk sorption data we surmise that the cosorption products of SO4 and Cu at the goethite-water interface were not in the nature of ternary complexes under the conditions studied here. This information is critical for the evaluation of the onset of surface precipitates of copper-hydroxy sulfates as a function of pH and solution concentration.

  16. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    International Nuclear Information System (INIS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Antonyuk, Lyudmila P.; Tarantilis, Petros A.; Kulikov, Leonid A.; Perfiliev, Yurii D.; Polissiou, Moschos G.; Gardiner, Philip H.E.

    2006-01-01

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57 Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour

  17. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation)]. E-mail: aakamnev@ibppm.sgu.ru; Tugarova, Anna V. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Antonyuk, Lyudmila P. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Tarantilis, Petros A. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Kulikov, Leonid A. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Perfiliev, Yurii D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Polissiou, Moschos G. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Gardiner, Philip H.E. [Division of Chemistry, School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2006-07-28

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with {sup 57}Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.

  18. Raman Spectroscopic Studies of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Choi, Mi Kyeung; Mnh, Nguyen Van; Bae, J. S.; Jo, William; Yang, In Sang; Ko, Rock Kil; Ha, Hong Soo; Park, Chan

    2005-01-01

    We present results of Raman spectroscopic studies of superconducting YBa 2 Cu 3 O 7 (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  19. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  20. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.