WorldWideScience

Sample records for ft raman spectroscopy

  1. Lignin analysis by FT-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, U.P.; Obst, J.R.; Cannon, A.B. [USDA Forest Products Lab., Madison, WI (United States)

    1996-10-01

    Traditional methods of lignin analysis, such as Klason (acid insoluble) lignin determinations, give satisfactory results, are widely accepted, and often are considered as standard analyses. However, the Klason lignin method is laborious and time consuming; it also requires a fairly large-amount of isolated analyte. FT-Raman spectroscopy offers an opportunity to simplify and speed up lignin analyses. FT-Raman data for a number of hardwoods (angiosperms) and softwoods (gymnosperms) are compared with data obtained using other analytical methods, including Klason lignin (with corrections for acid soluble lignin), acetyl bromide, and FT-IR determinations. In addition, 10 different specimens of Nothofagus dombeyii (chosen because of the widely varying syringyl:guaiacyl monomer compositions of their lignins) were also analyzed. Lignin monomer compositions were determined by thioacidolysis of by nitrobenzene oxidation.

  2. FT-Raman spectroscopy study of human breast tissue

    Science.gov (United States)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  3. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  4. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  5. Breast cancer diagnosis using FT-RAMAN spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Martin, Airton A.; Criollo, Carlos J. T.; Ramalho, Leandra N. Z.

    2005-04-01

    In this study FT-RAMAN spectra of breast tissue from 35 patients were obtained and separated into nine groups for histopathologic analysis, which are as follows: normal breast tissue, fibrocystic condition, in situ ductal carcinoma, in situ ductal carcinoma with necrosis, infiltrate ductal carcinoma, infiltrate inflammatory ductal carcinoma, infiltrate medullar ductal carcinoma, infiltrate colloid ductal carcinoma, and infiltrate lobular carcinoma. Using spectrum averages taken from each group a qualitative analysis was performed to compare these molecular compositions to those known to be present in abnormal concentrations in pathological situations, e.g. the development of desmoplastic lesions with a stroma of dense collagen in tumoral breast tissues which substitute adipose stroma of non-diseased breast tissue. The band identified as amino acids, offered basis for observation in the existence of alterations in the proteins, thus proving Raman Spectroscopic capacity in identification of primary structures of proteins; secondary protein structure was also identified through the peptic links, Amide I and Amide III, which have also been identified by various authors. Alterations were also identified in the peaks and bandwidths of nucleic acids demonstrating the utilization of Raman Spectroscopy in the analysis of the cells nucleus manifestations. All studies involving Raman Spectroscopy and breast cancer have shown excellent result reliability and therefore a basis for the technical theory.

  6. Study of normal colorectal tissue by FT-Raman spectroscopy.

    Science.gov (United States)

    Andrade, P O; Bitar, R A; Yassoyama, K; Martinho, H; Santo, A M E; Bruno, P M; Martin, A A

    2007-03-01

    FT-Raman spectroscopy was employed to study normal human colorectal tissues in vitro with the aim of evaluating the spectral differences of the complex colon mucous in order to establish a characteristic Raman spectrum. The samples were collected from 39 patients, providing 144 spectra for the statistical analysis. The results enable one to establish three well-defined spectroscopic groups of non-altered colorectal tissues that were consistently checked by statistical (clustering) and biological (histopathology) analyses: group 1 is represented by samples with the presence of epithelial layer, connective tissue papillae, and smooth muscle tissue; group 2 comprises tissues with epithelial layer and connective tissue papillae; group 3 presented mostly fatty and slack conjunctive tissue. The study reveals the existence of an intrinsic spectral variability for each patient that must be considered when sampling tissues fragments to build a spectral database. This is the first step for future studies and applications of Raman spectroscopy to optical biopsy and diagnosis of colorectal cancer.

  7. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  8. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2016-05-01

    Full Text Available Turmeric powder (Curcuma longa L. is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman and Fourier Transform-Infra Red (FT-IR spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w. FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively.

  9. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Science.gov (United States)

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  10. Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph

    2008-01-01

    A method based on FT-Raman spectroscopy is proposed for determining in situ concentrations of ethylenic residues in softwood lignin. Raman contributions at 1133 and 1654 cm-1, representing coniferaldehyde and coniferyl alcohol structures, respectively, were used in quantifying these units in spruce wood with subsequent conversion to concentrations in lignin. For...

  11. Diagnosis of atherosclerosis in human carotid artery by FT-Raman spectroscopy: Principal Components Analysis algorithm

    Science.gov (United States)

    Nogueira, Grazielle V.; Silveira, Landulfo, Jr.; Martin, Airton A.; Zangaro, Renato A.; Pacheco, Marcos T.; Chavantes, Maria C.; Zampieri, Marcelo; Pasqualucci, Carlos A. G.

    2004-07-01

    FT- Raman Spectroscopy (FT-Raman) could allow identification and evaluation of human atherosclerotic lesions. A Raman spectrum can provide biochemical information of arteries which can help identifying the disease status and evolution. In this study, it is shown the results of FT-Raman for identification of human carotid arteries in vitro. Fragments of human carotid arteries were analyzed using a FT-Raman spectrometer with a Nd:YAG laser at 1064nm operating at an excitation power of 300mW. Spectra were obtained with 250 scans and spectral resolution of 4 cm-1. Each collection time was approximately 8 min. A total of 75 carotid fragments were spectroscopically scanned and FT-Raman results were compared with histopathology. Principal Components Analysis (PCA) was used to model an algorithm for tissue classification into three categories: normal, atherosclerotic plaque without calcification and atherosclerotic plaque with calcification. Non-atherosclerotic (normal) artery, atherosclerotic plaque and calcified plaque exhibit different spectral signatures related to biochemicals presented in each tissue type, such as, bands of collagen and elastin (proteins), cholesterol and its esters and calcium hydroxyapatite and carbonate apatite respectively. Results show that there is 96% match between classifications based on PCA algorithm and histopathology. The diagnostic applied over all 75 samples had sensitivity and specificity of about 89% and 100%, respectively, for atherosclerotic plaque and 100% and 98% for calcified plaque.

  12. FT Raman spectroscopy in the study of human teeth under medications demineralization

    Science.gov (United States)

    de Sant'Anna, G. R.; Nascimento, E. B.; Higa, A. G.; Santos, E. A. P.; Espirito Santo, A. M.; Martín, A. A.

    2015-06-01

    The in situ study evaluated antihistamine (DA) and bronchodilator(DB) drugs actions on dental enamel using FT Raman spectroscopy. Analysis of pH drugs were permorfed, DA 1.48 and DB 2.90. Enamel (n=24) were analysed by FT - Raman and randomly distributed in control group (CG) and experimental groups (GEA and GEB), specimens fixed in palatine appliances. In CG, dripped 20% sucrose (8Xday/3 min)/7 days. In GEA, 20% sucrose (8Xday/3 min) + drug (4Xday/3 min). In GEB, 20% sucrose (8Xday/3 min) B + drug (4Xday/3 min). FT- Raman analysis was performed again. Data analyzed by Student t test and ANOVA Differences in peak intensity of carbonate (CO3) /phosphate (PO4) (pdrugs, reduction in the amount of carbonate, organic and inorganic components were observed, denoting possible demineralization.

  13. Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

    Science.gov (United States)

    Kim, Kyung Sook; Lee, Jinwoo; Jung, Min-Hyung; Choi, Young Joon; Park, Hun-Kuk

    2011-12-01

    The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

  14. High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer

    DEFF Research Database (Denmark)

    Garcia-Flores, A. F.; Raniero, L.; Canevari, R. A.;

    2011-01-01

    The identification of normal and cancer breast tissue of rats was investigated using high-frequency (HF) FT-Raman spectroscopy with a near-infrared excitation source on in vivo and ex vivo measurements. Significant differences in the Raman intensities of prominent Raman bands of lipids and protei...

  15. FT-RAMAN SPECTROSCOPY FOR MONITORING THE POLYMERIZATION OF ACRYLIC ACID IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen

    1999-01-01

    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  16. FT-Raman spectroscopy of the Candelaria and Pyxine lichen species: A new molecular structural study

    Science.gov (United States)

    Fernandes, Rafaella F.; Ferreira, Gilson R.; Spielmann, Adriano A.; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.

    2015-12-01

    In this work the chemistry of the lichens Candelaria fibrosa and Pyxine coccifera have been investigated for the first time using FT-Raman spectroscopy with the help of quantum mechanical DFT calculations to support spectral band assignments. The non-destructive spectral vibrational analysis provided evidence for the presence of pulvinic acid derivatives and conjugated polyenes, which probably belong to a carotenoid with characteristic signatures at ca. 1003, 1158 and 1525 cm-1 assigned respectively to δ(C-CH3), ν(C-C) and ν(Cdbnd C) modes. The identification of features arising from chiodectonic acid in the Pyxine species and calycin and pulvinic dilactone pigments in C. fibrosa were assisted by the quantum mechanical DFT calculations. Raman spectroscopy can provide important spectroscopic data for the identification of the biomarker spectral signatures nondestructively for these lichen pigments without the need for chemical extraction processes.

  17. Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Fernández Pierna, JA.

    2011-01-01

    Full Text Available Honey is a complex and challenging product to analyze due mainly to its composition consisting on various botanical sources. The discrimination of the origin of honey is of prime importance in order to reinforce the consumer trust in this typical food product. But this is not an easy task as usually no single chemical or physical parameter is sufficient. The aim of our paper is to investigate whether FT-Raman spectroscopy as spectroscopic fingerprint technique combined with some chemometric tools can be used as a rapid and reliable method for the discrimination of honey according to their source. In addition to that, different chemometric models are constructed in order to discriminate between Corsican honeys and honey coming from other regions in France, Italy, Austria, Germany and Ireland based on their FT-Raman spectra. These regions show a large variation in their plants. The developed models include the use of exploratory techniques as the Fisher criterion for wavenumber selection and supervised methods as Partial Least Squares-Discriminant Analysis (PLS-DA or Support Vector Machines (SVM. All these models showed a correct classification ratio between 85% and 90% of average showing that Raman spectroscopy combined to chemometric treatments is a promising way for rapid and non-expensive discrimination of honey according to their origin.

  18. Human and Bovine Dentin Composition and Its Hybridization Mechanism Assessed by FT-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    L. E. S. Soares

    2013-01-01

    Full Text Available FT-Raman spectroscopy was used to study the human and bovine dentin and their interactions with adhesive systems. Ten human (H molars and ten bovine (B teeth were prepared exposing the dentin and then each specimen was divided into two parts. The resulted forty dentin segments were treated either with the total-etch one bottle adhesive (Prime & Bond 2.1, PB or with the single-step self-etching adhesive (Xeno III, X and divided into four groups: HPB (control, HX, BPB, and BX. Each group was analyzed by FT-Raman spectroscopy before and after the adhesive treatment. Six regions of the Raman spectrum were analyzed and the integrated areas of organic and inorganic peaks were calculated. Bovine untreated specimens showed higher peak area of PO4 3−ν2  content than in human specimens. Human untreated specimens had higher peak areas of PO4 3−ν4 and CO3 2−ν1  contents than in bovine specimens. The peak areas of amide III, CH2, and amide I contents were higher in human than in bovine specimens (before treatments. Treated dentin showed no significant statistical differences between the adhesives for both inorganic and organic contents considering the same substrate. However, the differences found between human and bovine specimens after adhesives application show a reduced accuracy of these substrates as a substitute to the human specimens.

  19. Human and Bovine Dentin Composition and Its Hybridization Mechanism Assessed by FT-Raman Spectroscopy

    OpenAIRE

    L. E. S. Soares; A. D. F. Campos; Martin, A. A.

    2013-01-01

    FT-Raman spectroscopy was used to study the human and bovine dentin and their interactions with adhesive systems. Ten human (H) molars and ten bovine (B) teeth were prepared exposing the dentin and then each specimen was divided into two parts. The resulted forty dentin segments were treated either with the total-etch one bottle adhesive (Prime & Bond 2.1, PB) or with the single-step self-etching adhesive (Xeno III, X) and divided into four groups: HPB (control), HX, BPB, and BX. Each group w...

  20. Assessment of the discrimination of animal fat by FT-Raman spectroscopy

    Science.gov (United States)

    Abbas, O.; Fernández Pierna, J. A.; Codony, R.; von Holst, C.; Baeten, V.

    2009-04-01

    In recent years, there has been an increased attention towards the composition of feeding fats. In the aftermath of the BSE crisis all animal by-products utilised in animal nutrition have been subjected to close scrutiny. Regulation requires that the material belongs to the category of animal by-products fit for human consumption. This implies the use of reliable techniques in order to insure the safety of products. The feasibility of using rapid and non-destructive methods, to control the composition of feedstuffs on animal fats has been studied. Fourier Transform Raman spectroscopy has been chosen for its advantage to give detailed structural information. Data were treated using chemometric methods as PCA and PLS-DA which have permitted to separate well the different classes of animal fats. The same methodology was applied on fats from various types of feedstock and production technology processes. PLS-DA model for the discrimination of animal fats from the other categories presents a sensitivity and a specificity of 0.958 and 0.914, respectively. These results encourage the use of FT-Raman spectroscopy to discriminate animal fats.

  1. CHARACTERIZATION OF REFINED HEMP FIBERS USING NIR FT RAMAN MICRO SPECTROSCOPY AND ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Siva Kumar Kovur

    2008-11-01

    Full Text Available The research was focused on the separation of single hemp (Cannabis sativa L. fibre cells with low fineness from mechanically extracted fibre bundles of high fineness. The fiber bundles were treated with enzymes, namely panzym, pectinase, hemicellulase, and cellulase, along with a combination of panzym and ultrasonic treatments. Changes in the fiber structure were followed at molecular and microscopic levels by means of NIR FT Raman spectroscopy and Environmental Scanning Electron Microscopy (ESEM. Buffer-panzym treatments of hemp fibers had a prominent effect in loosening of the fiber cells. The best of refining was achieved when the fiber bundles were treated with buffer-panzym solution in combination with ultrasonic treatment.

  2. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR

    Science.gov (United States)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Felix, Valter S.; Ferreira, Douglas S.; Pimenta, André R.; Pereira, Ronaldo V.; Pereira, Marcelo O.; Lopes, Ricardo T.

    2016-02-01

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2] were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures.

  3. Lipid Characterization of White, Dark, and Milk Chocolates by FT-Raman Spectroscopy and Capillary Zone Electrophoresis.

    Science.gov (United States)

    de Oliveira, Leandra Natália; de Jesus Coelho Castro, Renata; de Oliveira, Marcone Augusto Leal; de Oliveira, Luiz Fernando C

    2015-01-01

    There are few studies about different types of chocolate and their chemical characterization by Fourier transform (FT)-Raman spectroscopy and capillary zone electrophoresis (CZE). The aim of this study was to evaluate the lipid profile of different types of Brazilian chocolate through characterization by FT-Raman spectroscopy and identification and quantification of major fatty acids (FAs) by CZE to confirm FT-Raman spectrometry results. It was found that the main spectroscopic profile difference of the chocolate samples analyzed was related to the presence of saturated or unsaturated FAs. Well defined bands at approximately 1660, 1267, and 1274 cm(-1) corresponding to vibrational modes of unsaturated FAs (UnFAs) were found only in the spectra of samples with cocoa butter in their composition according to label specifications, mainly in dark chocolate samples. The FA identification and quantification by CZE found the presence of stearic (18:0) and palmitic (16:0) acids as the major saturated FAs in all chocolate samples. Dark chocolate samples showed the highest levels of oleic (cis-9 18:1) and linoleic (cis, cis -9,12 18:2) UnFAs monitored and the lowest levels of 14:0 in their chemical composition. Samples coded as 02 (with not only cocoa butter in their composition according to label) had the highest levels of 14:0 (FA not present in cocoa butter composition) corresponding to label information and inferring the presence of other fat sources, called cocoa butter substitutes, mainly for milk and white chocolate samples. This study suggests FT-Raman spectroscopy is a powerful technique that can be used to chemically characterize the chocolate lipid fraction, and CZE is a tool able to confirm Raman spectroscopy results and identify and quantify the major FAs in chocolate samples.

  4. Cellulose I crystallinity determination using FT-Raman spectroscopy : univariate and multivariate methods

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2010-01-01

    Two new methods based on FT–Raman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...

  5. Mild acid hydrolysis of fucoidan: characterization by electrophoresis and FT-Raman spectroscopy.

    Science.gov (United States)

    Pielesz, A; Biniaś, W; Paluch, J

    2011-09-27

    Along with proteins, lipids, water and minerals, polysaccharides are the main chemical compounds of which macroalgae are built. Among the chemical compounds now widely examined is fucoidan (fucan, fucosan, sulfate fucan or sulfated fucan), a fucose-containing sulfated polysaccharide. Fucoidans isolated from different species have been extensively studied because of their varied biological properties, including anticoagulant and antitumor effects. Methodology based on mild acid hydrolysis can be used as an efficient tool to study the relationship between molecular weight of the sulfated polysaccharides and their biological activities. Anticancer activity of fucoidans can be significantly enhanced by lowering their molecular weight only when they are depolymerized under mild conditions. In this study, fucoidan was identified during extraction with H(2)SO(4) and HCl; its presence was confirmed by FT-Raman spectroscopy in aqueous solution. In particular, shifts at 840cm(-1) were analysed, which are due to the presence of sulfate at the axial C-4 position, as were the shifts at about 811-809cm(-1), for which the sulfated fucoidan is responsible. Shifts of electrophoretic bands of fucoidan resulting from mild acid hydrolysis in H(2)SO(4) and HCl were also analysed. The analytical procedure was developed using apparatus for cellulose acetate membrane electrophoresis and this was supplemented by semi-quantitative analysis.

  6. Quality control of Harpagophytum procumbens and its related phytopharmaceutical products by means of NIR-FT-Raman spectroscopy.

    Science.gov (United States)

    Baranska, M; Schulz, H; Siuda, R; Strehle, M A; Rösch, P; Popp, J; Joubert, E; Manley, M

    2005-01-01

    NIR-FT-Raman spectroscopy was used for identification and quantification of harpagoside in secondary roots of Harpagophytum procumbens as well as in related phytopharmaceutical products, e.g., ethanolic extracts and tablets. Applied Raman mappings reveal the spatial distribution of this valuable iridoid glycoside within the different samples. The same technique can be used for quality control purposes beginning from the plant to its final products. Based on the obtained spectral data and reference HPLC values of harpagoside, a reliable multivariate calibration model was developed.

  7. Application of FT-Raman spectroscopy for in situ detection of microorganisms on the surface of textiles.

    Science.gov (United States)

    Rygula, Anna; Jekiel, Katarzyna; Szostak-Kot, Jadwiga; Wrobel, Tomasz P; Baranska, Malgorzata

    2011-11-01

    In this work we present the usefulness of FT-Raman spectroscopy for microbiological analysis of textiles. This technique was used for non-destructive identification of Escherichia coli bacteria on cotton and polyester fabrics. It was possible to discriminate between infected and non-infected materials. Moreover, this technique allowed detection of detergent traces as well as investigation of the influence of microorganisms on different textiles. Raman analysis supported by chemometrics (cluster analysis and principal component analysis) was shown to be a method for identification of textiles with inoculum of microorganisms in a short time. The results can be potentially used in the fabric industry and related areas.

  8. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  9. Chapter 1.1 Crystallinity of Nanocellulose Materials by Near-IR FT-Raman Spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2013-01-01

    Considering that crystallinity is one of the important properties that influence the end use of cellulose nanomaterials, it is important that the former be measured accurately. Recently, a new method based on near-IR FTRaman spectroscopy was proposed to determine cellulose I crystallinity. It was reported that in the Raman spectrum of cellulose materials, the...

  10. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy.

    Science.gov (United States)

    Ridgley, Devin M; Claunch, Elizabeth C; Barone, Justin R

    2013-12-01

    Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.

  11. Hydration of human nails investigated by NIR-FT-Raman spectroscopy.

    Science.gov (United States)

    Wessel, S; Gniadecka, M; Jemec, G B; Wulf, H C

    1999-08-17

    The human nail, although it is usually stable against outer influences, becomes soft and flexible after soaking in water. Frequent washing increases brittleness of nails. Hydration of nails is thought to be the most important factor influencing the physical properties of nails and possibly acts through changes in keratin structure. Here NIR-FT-Raman has been used to examine molecular structural changes of intact moisten nails. Raman spectra were obtained both in vitro from nail samples and in vivo before and after soaking in water. The water uptake of normal nail samples during the first 15 min was reflected in the increasing intensity ratio of the nu(OH)/nu(CH(2)) bands. A saturating effect appeared soon after 10 min which is explained by a defined water holding capacity. R(nu) representation of the low frequency range of the Raman spectra showed that mainly bound water is found both in dry and in wet nails. This implies water-protein interaction. Protein backbone vibration at 932 cm(-1) indicating alpha-helical proteins increased in intensity in the wet nails. The nu(S-S) which is sensitive to changes in conformation of proteins showed a 4% higher intensity. Additional protein-water interactions could lead to a slight change of the dihedral angle of the C-S-S-C bonds and to geometric changes in coiling behavior of the alpha-helical protein. Suggesting a separation between matrix proteins and fiber proteins giving them a greater freedom of flexibility. The in vivo spectra detected from the distal part of the nail resembled spectra in vitro. Raman spectra of the proximal part of the nail showed that it was fully saturated with water. The proximal part of the nail did not show changes in water content and protein structure during nail moisturizing in the Raman spectra. Our results suggest that the softening of the nail following hydration may be due to changed matrix protein molecular structure induced by water.

  12. In Site Analysis of a High Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    Science.gov (United States)

    Cooper, John; Aust, Jeffrey F.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high temperature (330 C) polymerization reaction was successfully monitored in real time using a modulated fiber-optic FT-Raman spectrometer. A phenylethynyl terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  13. Rotating samples in FT-RAMAN spectrometers

    Science.gov (United States)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  14. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  15. Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared FT-Raman spectroscopy

    Science.gov (United States)

    Auer, Martin E.; Griesser, Ulrich J.; Sawatzki, Juergen

    2003-12-01

    Near infrared FT-Raman spectroscopy was applied for the determination of polymorphic forms in a number of commercial drug products containing the polymorphic drug compounds sorbitol, mannitol, famotidine, acemetacin, carbamazepine, meprobamate and phenylbutazone. The crystal forms present in the drug products were identified based on the position, intensity and shape of characteristic bands. Quantitative analysis of a mixture of two crystal forms of mannitol in a drug product was carried out using a partial least-squares method. In drug products containing meprobamate, sorbitol, and carbamazepine, the thermodynamically stable form was found exclusively, whereas metastable polymorphs were found in solid dosage forms of acemetacin, phenylbutazone, famotidine and mannitol. A mixture of two polymorphic forms of mannitol in Lipobay tablets was determined to consist of 30.8±3.8% of the metastable modification I. The simple sample preparation, the occurrence of sharp bands in the spectra as well as the high reproducibility and accuracy qualifies FT-Raman spectroscopy for the identification and quantification of crystal forms in drug products. The method is perfectly suited to meet the regulatory requirements of monitoring crystal forms during processing and storage and often succeeds in detecting the present crystal form in drug products even when the used excipients are not known.

  16. Analysis of Phthalate Ester Content in PVC Plastics by means of FT-Raman Spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    , medical devices and toys may harm the e.g. reproductive organs of exposed infants. PVC is readily distinguished from other common polymers (e.g. polyethylene, polypropylene, polystyrene) by the use of Raman spectroscopy. By far the most commonly used phthalate plasticizer in PVC is di(2-ethylhexyl......Polyvinyl chloride, PVC or [CH2-CHCl]n , is a common polymer used extensively for a wide range of industrial and household products. To achieve the proper material characteristics (e.g. softness, ductility), plasticizers such as phthalates are usually added to the otherwise hard and brittle PVC...

  17. FT-Raman spectroscopy study of organic matrix degradation in nanofilled resin composite.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Nahórny, Sídnei; Martin, Airton Abrahão

    2013-04-01

    This in vitro study evaluated the effect of light curing unit (LCU) type, mouthwashes, and soft drink on chemical degradation of a nanofilled resin composite. Samples (80) were divided into eight groups: halogen LCU, HS--saliva (control); HPT--Pepsi Twist®; HLC--Listerine®; HCP--Colgate Plax®; LED LCU, LS--saliva (control); LPT--Pepsi Twist®; LLC--Listerine®; LCP--Colgate Plax®. The degree of conversion analysis and the measure of the peak area at 2,930 cm-1 (organic matrix) of resin composite were done by Fourier-transform Raman spectroscopy (baseline, after 7 and 14 days). The data were subjected to multifactor analysis of variance (ANOVA) at a 95% confidence followed by Tukey's HSD post-hoc test. The DC ranged from 58.0% (Halogen) to 59.3% (LED) without significance. Differences in the peak area between LCUs were found after 7 days of storage in S and PT. A marked increase in the peak intensity of HLC and LLC groups was found. The soft-start light-activation may influence the chemical degradation of organic matrix in resin composite. Ethanol contained in Listerine® Cool Mint mouthwash had the most significant degradation effect. Raman spectroscopy is shown to be a useful tool to investigate resin composite degradation.

  18. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Artur Zdunek

    2011-05-01

    Full Text Available Raman and Fourier Transform Infrared (FT-IR spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN% varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX has the most similar structure to those observed in natural primary cell walls.

  19. Classification of the degenerative grade of lesions of supraspinatus rotator cuff tendons by FT-Raman spectroscopy

    Science.gov (United States)

    Palma Fogazza, Bianca; da Silva Carvalho, Carolina; Godoy Penteado, Sergio; Meneses, Cláudio S.; Abrahão Martin, Airton; da Silva Martinho, Herculano

    2007-02-01

    FT-Raman spectroscopy was employed to access the biochemical alterations occurring on the degenerative process of the rotator cuff supraspinatus tendons. The spectral characteristic variations in the 351 spectra of samples of 39 patients were identified with the help of Principal Components Analysis. The main variations occurred in the 840-911; 1022- 1218; 1257; 1270; 1300; 1452; 1663; and 1751 cm -1 regions corresponding to the vibrational bands of proline, hydroxiproline, lipids, nucleic acids, carbohydrates, collagen, and elastin. These alterations are compatible with the pathology alterations reported on the literature. Scattering plots of PC 4 vs PC 2 and PC 3 vs PC 2 contrasted with histopathological analysis has enabled the spectral classification of the data into normal and degenerated groups of tendons. By depicting empiric lines the estimated sensibility and specificity were 39,6 % and 97,8 %, respectively for PC 4 vs PC 2 and 36,0 % and 100 %, respectively for PC 3 vs PC 2. These results indicate that Raman spectroscopy can be used to probe the general tendon quality and could be applied as co adjuvant element in the usual arthroscopy surgery apparatus to guide the procedure and possibly infer about the probability of rerupture.

  20. Ion Association in Hydrothermal Sodium Sulfate Solutions Studied by Modulated FT-IR-Raman Spectroscopy and Molecular Dynamics.

    Science.gov (United States)

    Reimer, Joachim; Steele-MacInnis, Matthew; Wambach, Jörg M; Vogel, Frédéric

    2015-07-30

    Saline aqueous solutions at elevated pressures and temperatures play an important role in processes such as supercritical water oxidation (SCWO) and supercritical water gasification (SCWG), as well as in natural geochemical processes in Earth and planetary interiors. Some solutions exhibit a negative temperature coefficient of solubility at high temperatures, thereby leading to salt precipitation with increasing temperature. Using modulated FT-IR Raman spectroscopy and classical molecular dynamics simulations (MD), we studied the solute speciation in solutions of 10 wt % Na2SO4, at conditions close to the saturation limit. Our experiments reveal that ion pairing and cluster formation are favored as solid saturation is approached, and ionic clusters form prior to the precipitation of solid sulfate. The proportion of such clusters increases as the phase boundary is approached either by decreasing pressure or by increasing temperature in the vicinity of the three-phase (vapor-liquid-solid) curve.

  1. Acid-base properties, FT-IR, FT-Raman spectroscopy and computational study of 1-(pyrid-4-yl)piperazine.

    Science.gov (United States)

    Mary, Y Sheena; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, Christian; Procházková, Markéta; Sevčík, Richard; Pazdera, Pavel

    2014-01-01

    We report the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 1-(pyrid-4-yl)piperazine (PyPi). Single crystals of PyPi suitable for X-ray structural analysis were obtained. The acid-base properties are also reported. PyPi supported on a weak acid cation-exchanger in the single protonated form and this system can be used efficiently as the solid supported analogue of 4-N,N-dimethyl-aminopyridine. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule and with the molecular electrostatic potential map was applied for the reactivity assessment of PyPi molecule toward proton, electrophiles and nucleopholes as well. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of PyPi is 17.46 times that of urea.

  2. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    Science.gov (United States)

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette

    2014-06-15

    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance.

  3. Acid-base properties, FT-IR, FT-Raman spectroscopy and computational study of 1-(pyrid-4-yl)piperazine

    Science.gov (United States)

    Mary, Y. Sheena; Panicker, C. Yohannan; Varghese, Hema Tresa; Van Alsenoy, Christian; Procházková, Markéta; Ševčík, Richard; Pazdera, Pavel

    2014-03-01

    We report the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 1-(pyrid-4-yl)piperazine (PyPi). Single crystals of PyPi suitable for X-ray structural analysis were obtained. The acid-base properties are also reported. PyPi supported on a weak acid cation-exchanger in the single protonated form and this system can be used efficiently as the solid supported analogue of 4-N,N-dimethyl-aminopyridine. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule and with the molecular electrostatic potential map was applied for the reactivity assessment of PyPi molecule toward proton, electrophiles and nucleopholes as well. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of PyPi is 17.46 times that of urea.

  4. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates.

    Science.gov (United States)

    Oujja, M; Vázquez-Calvo, C; Sanz, M; Álvarez de Buergo, M; Fort, R; Castillejo, M

    2012-02-01

    This article reports on a compositional investigation of stone patinas: thin colored layers applied for protective and/or aesthetic purposes on architectural or sculptural substrates of cultural heritage. The analysis and classification of patinas provide important information of historic and artistic interest, as their composition reflects local practices, the availabilities of different materials, and the development of technological knowledge during specific historical periods. Model patinas fabricated according to traditional procedures and applied onto limestone, and a historic patina sample from the main façade of the San Blas Monastery in Lerma (a village in the province of Burgos, Spain), were analyzed by laser-induced fluorescence and Fourier transform Raman spectroscopy. The results obtained demonstrate the ability of these two analytical techniques to identify the key components of each formulation and those of the reaction products which result from the chemical and mineralogical transformations that occur during aging, as well as to provide information that can aid the classification of different types of patinas.

  5. An investigation of FT-Raman spectroscopy for quantification of additives to milk

    Science.gov (United States)

    Cheng, Yuche; Qin, Jianwei; Lim, Jongguk; Chan, Diane E.; Kim, Moon S.; Chao, Kuanglin

    2012-05-01

    In this research, four chemicals, urea, ammonium sulfate, dicyandiamide, and melamine, were mixed into liquid nonfat milk at concentrations starting from 0.1% to a maximum concentration determined for each chemical according to its maximum solubility, and two Raman spectrometers-a commercial Nicolet Raman system and an in-house Raman Chemical Imaging (RCI) system-were used to acquire Raman shift spectra for these mixture samples. These chemicals are potential adulterants that could be used to artificially elevate protein measurements of milk products evaluated by the Kjeldahl method. Baseline subtraction was employed to eliminate milk intensity, and the normalized Raman intensity was calculated from the specific Raman shift from the spectrum of solid chemical. Linear relationships were found to exist between the normalized Raman intensity and chemical concentrations. The linear regression coefficients (R2) ranged from 0.9111 to 0.998. Although slightly higher R2 values were calculated for regressions using spectral intensities measured by the Nicolet system compared to those using measurements from the RCI system, the results from the two systems were similar and comparable. A very low concentration of melamine (400 ppm) in milk was also found to be detectable by both systems. Raman sensitivity of Nicolet Raman system was estimated from normalized Raman intensity and slope of regression line in this study. Chemicals (0.2%) were dissolved in milk and detected the normalized Raman intensity. Melamine was found to have the highest Raman sensitivity, with the highest values for normalized Raman intensity (0.09) and regression line slope (57.04).

  6. In Situ Analysis of a High-Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    Science.gov (United States)

    Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  7. Comparative study between 1-Propyl-3-methylimidazolium bromide and trimethylene bis-methylimidazolium bromide ionic liquids by FTIR/ATR and FT-RAMAN spectroscopies

    Science.gov (United States)

    Kadari, Mohamed; Belarbi, El Habib; Moumene, Taqiyeddine; Bresson, Serge; Haddad, Boumediene; Abbas, Ouissam; Khelifa, Brahim

    2017-09-01

    In this study, we synthesized two ionic liquids based on imidazolium: one is a monocationic and the other is a dicationic. They are respectively 1-Propyl-3-methylimidazolium bromide ([PrMIM+][Br-]) and trimethylene bis-methylimidazolium bromide ([M(CH2)3IM2+][2Br-]). The structures of these two ionic liquids which are composed of ions with atoms of the same nature were first identified by 1H,13C NMR, and then compared in a study by FT-RAMAN and FTIR/ATR spectroscopies. FT-RAMAN spectras of the dicationic ionic liquid are richer in modes in the different spectral regions. Hence this richness seems to be a consequence of the passage from one to two rings in the imidazolium cation. In particular, the vibrational modes in the spectral ranges 700-600 cm-1, 1700-1500 cm-1 and 3200-2700 cm-1 by FTIR/ATR seem to be sensitive to the change from mono to dicationic than in FT-RAMAN. The spectral range in which the intermolecular interactions are present (200-50 cm-1) is a marker of differentiation between the mono and the dicationic. The spectral ranges on 1700-1200 cm-1 and 3200-2700 cm-1 also show signs of upheaval between our two samples. We can also notice that there are much more active modes in FT-RAMAN spectroscopy than in FTIR/ATR spectroscopy.

  8. Analysis of Phthalate Ester Content in PVC Plastics by means of FT-Raman Spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    ) phthalate, DEHP (also referred to as dioctyl phthalate - DOP) and many products containing this phthalate are in common use. We measured the Raman spectra of 21 different phthalate esters and found six common Raman bands, present for all. These bands are accordingly assigned to the dicarbonyl ortho......-phenyl group, and as the relative intensities of the six bands vary only slightly from one phthalate ester to the next one we have obtained an identifiable, characteristic fingerprint of the phthalate ester group as a whole. By use of the set of six bands, which are common to all the measured Raman spectra, we...

  9. Differential diagnosis in primary and metastatic cutaneous melanoma by FT-Raman spectroscopy Diagnóstico diferencial no melanoma primário e metastático por espectroscopia FT-Raman

    Directory of Open Access Journals (Sweden)

    Andrea Fernandes de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To qualify the FT-Raman spectral data of primary and metastatic cutaneous melanoma in order to obtain a differential diagnosis. METHODS: Ten normal human skin samples without any clinical or histopathological alterations, ten cutaneous melanoma fragments, and nine lymph node metastasis samples were used; 105, 140 and 126 spectra were obtained respectively. Each sample was divided into 2 or 3 fragments of approximately 2 mm³ and positioned in the Raman spectrometer sample holder in order to obtain the spectra; a monochrome laser light Nd:YAG at 1064 nm was used to excite the inelastic effect. RESULTS: To differentiate the three histopathological groups according to their characteristics extracted from the spectra, data discriminative analysis was undertaken. Phenylalanine, DNA, and Amide-I spectral variables stood out in the differentiation of the three groups. The percentages of correctly classified groups based on Phenylalanine, DNA, and Amide-I spectral features was 93.1%. CONCLUSION: FT-Raman spectroscopy is capable of differentiating melanoma from its metastasis, as well as from normal skin.OBJETIVO: Qualificar os dados espectrais FT-Raman do melanoma cutâneo primário e metastático e assim realizar o diagnóstico diferencial. MÉTODOS: Foram utilizadas amostras de 10 fragmentos de pele sem alterações clínicas ou histopatológicas, 10 de melanomas cutâneos e 9 de metástases linfonodais; 105, 140 and 126 espectros foram obtidos respectivamente. Cada amostra foi dividida em 2 ou 3 frações de 2 mm³ e posicionada no porta amostras do espectrômetro Raman para obtenção dos espectros, por meio da excitação do espalhamento inelástico pelo laser de Nd:YAG em 1064 nm incididos na amostra. RESULTADOS: Para diferenciar os três grupos formados de acordo com as características fornecidas pelos espectros, realizamos a análise discriminante dos dados. As variáveis espectrais Fenilalanina, DNA e Amida-I se destacaram na

  10. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations.

  11. FT-IR, FT-Raman, UV-Visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol

    Science.gov (United States)

    Chain, Fernando E.; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A.

    2015-03-01

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G∗ basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated 1H NMR and 13C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations.

  12. Estimation of S/G ratio in woods using 1064 nm FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Dharshana Padmakshan; Sarah Liu; Steven D. Karlen; Cliff Foster; John Ralph

    2015-01-01

    Two simple methods based on the 370 cm-1 Raman band intensity were developed for estimation of syringyl-to-guaiacyl (S/G) ratio in woods. The methods, in principle, are representative of the whole cell wall lignin and not just the portion of lignin that gets cleaved to release monomers, for example, during certain S/G chemical analyses. As such,...

  13. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels.

    Science.gov (United States)

    Muhamadali, Howbeer; Chisanga, Malama; Subaihi, Abdu; Goodacre, Royston

    2015-04-21

    There is no doubt that the contribution of microbially mediated bioprocesses toward maintenance of life on earth is vital. However, understanding these microbes in situ is currently a bottleneck, as most methods require culturing these microorganisms to suitable biomass levels so that their phenotype can be measured. The development of new culture-independent strategies such as stable isotope probing (SIP) coupled with molecular biology has been a breakthrough toward linking gene to function, while circumventing in vitro culturing. In this study, for the first time we have combined Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, as metabolic fingerprinting approaches, with SIP to demonstrate the quantitative labeling and differentiation of Escherichia coli cells. E. coli cells were grown in minimal medium with fixed final concentrations of carbon and nitrogen supply, but with different ratios and combinations of (13)C/(12)C glucose and (15)N/(14)N ammonium chloride, as the sole carbon and nitrogen sources, respectively. The cells were collected at stationary phase and examined by Raman and FT-IR spectroscopies. The multivariate analysis investigation of FT-IR and Raman data illustrated unique clustering patterns resulting from specific spectral shifts upon the incorporation of different isotopes, which were directly correlated with the ratio of the isotopically labeled content of the medium. Multivariate analysis results of single-cell Raman spectra followed the same trend, exhibiting a separation between E. coli cells labeled with different isotopes and multiple isotope levels of C and N.

  14. Evaluation of Salmon Adhesion on PET-Metal Interface by ATR, FT-IR, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2015-01-01

    Full Text Available The material employed in this study is an ecoefficient, environmentally friendly, chromium (VI-free (noncarcinogenic metal polymer. The originality of the research lies in the study of the effect of new production procedures of salmon on metal packaging with multilayer polyethylene terephthalate (PET polymer coatings. Our hypothesis states that the adhesion of postmortem salmon muscles to the PET polymer coating produces surface and structural changes that affect the functionality and limit the useful life of metal containers, compromising therefore their recycling capacity as ecomaterials. This work is focused on studying the effects of the biochemical changes of postmortem salmon on the PET coating and how muscle degradation favors adhesion to the container. The experimental design considered a series of laboratory tests of containers simulating the conditions of canned salmon, chemical and physical tests of food-contact canning to evaluate the adhesion, and characterization of changes in the multilayer PET polymer by electron microscopy, ATR, FT-IR, and Raman spectroscopy analyses. The analyses determined the effect of heat treatment of containers on the loss of freshness of canned fish and the increased adhesion to the container wall, and the limited capability of the urea treatment to remove salmon muscle from the container for recycling purposes.

  15. FT-Raman spectroscopy for the differentiation between cutaneous melanoma and pigmented nevus Espectroscopia FT-Raman na diferenciação entre melanoma cutâneo e nevo pigmentado

    Directory of Open Access Journals (Sweden)

    Sidney Bandeira Cartaxo

    2010-08-01

    Full Text Available Cutaneous melanoma is the most aggressive type of skin cancer and Ft-Raman spectroscopy has been studied as a potential method that could be a real alternative for early diagnosis of neoplasms. PURPOSE: To qualify the spectral FT-Raman data, in order to differentiate cutaneous melanoma and pigmented nevus. METHODS: For this study, 10 samples of cutaneous melanoma, 9 samples of pigmented nevi, and 10 samples of normal skin were obtained by incisional biopsies performed during plastic surgeries ex vivo, immediately after removing the surgical sample. RESULTS: The FT-Raman spectra of each group presented a high correlation between the elements of the same group, thus favoring the elaboration of spectral averages. When analyzing the spectral standard of each group, the normal skin standard did not show a significant variation between the spectra; the standard of the pigmented nevi group showed significant variation, and the cutaneous melanoma group also showed variation. Through univariate analysis, specific bands were detected for each vibrational mode identified. The discriminatory analysis of the data showed a 75.3% efficiency of the differentiation between the three groups studied. CONCLUSION: The vibrational modes Polysaccharides, Tyrosine and Amide-I differentiated the melanoma from the pigmented nevus.O melanoma cutâneo é o câncer de pele mais agressivo, e a espectroscopia FT-Raman tem sido estudada como um método em potencial que pode ser uma verdadeira alternativa no diagnóstico precoce de neoplasias. OBJETIVO: Qualificar os dados espectrais FT-Raman de modo a diferenciar melanoma cutâneo de nevo pigmentado. MÉTODOS: Foram utilizadas 10 amostras de melanoma cutâneo, obtidas por meio de biopsias incisionais realizadas "ex-vivo"; nove amostras de nevo pigmentado e 10 amostras de pele normal foram coletadas durante cirurgias plásticas. RESULTADOS: Os espectros FT-Raman de cada grupo diagnóstico apresentaram alta correlação entre os

  16. Spectral analysis of bacanora (agave-derived liquor) by using FT-Raman spectroscopy

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan

    2016-04-01

    The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm-1 to 3500 cm-1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.

  17. Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods

    Science.gov (United States)

    Umesh P. Agarwal; Richard R. Reiner; Sally A. Ralph

    2013-01-01

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment...

  18. An investigation of the effect of silicone oil on polymer intraocular lenses by means of PALS, FT-IR and Raman spectroscopies

    Science.gov (United States)

    Chamerski, Kordian; Lesniak, Magdalena; Sitarz, Maciej; Stopa, Marcin; Filipecki, Jacek

    2016-10-01

    The effect of the polydimethylsiloxane (PDMS) based silicone oil, that is widely used in vitreoretinal surgery, on internal structures of the polymer intraocular lenses was investigated. The effect of PDMS was studied on the polymethyl methacrylate (PMMA) rigid lenses and poly(2-hydroxyethyl methacrylate) (PHEMA) flexible lenses. The research was carried out by means of the positron lifetime spectroscopy (PALS) as well as the infrared spectroscopy (FT-IR) and the Raman spectroscopy (RS). The studies involving the use of PALS and FT-IR methods have revealed that the PHEMA based lenses absorbed, whereas the PMMA lenses did not absorb, silicone oil. The results obtained with the use of the RS method were inconclusive, probably due to the too low intensity of the characteristic PDMS bands. The evidence from this study was discussed in terms of physics and related to the clinical use of both silicone oil and intraocular lenses.

  19. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.

    Science.gov (United States)

    Agarwal, Umesh P; Reiner, Richard R; Ralph, Sally A

    2013-01-09

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment or both. Additionally, when the roles of lignin and hemicellulose in the Raman crystallinity assessment were investigated, it was found that syringyl lignin containing lignocelluloses generated somewhat higher crystallinity, whereas the presence of hemicellulose reduced the crystallinity. Overall, when autofluorescence was minimized and corrections made for hemicellulose and syringyl lignin contributions, the univariate Raman method performed well and estimated cellulose crystallinity accurately. Moreover, when the Raman and Segal-WAXS methods were compared, we observed that in the absence of significant fluorescence, the Raman method was influenced mostly by hemicellulose and syringyl lignin, whereas the Segal-WAXS was affected by various types of lignin and hemicellulose. It was concluded that the near-IR FT-Raman method with corrections for influences of syringyl lignin and hemicellulose can be used to correctly estimate cellulose crystallinity.

  20. Spectroscopy (FT-IR, FT-Raman), hydrogen bonding, electrostatic potential and HOMO-LUMO analysis of tioxolone based on DFT calculations

    Science.gov (United States)

    Tao, Yaping; Li, Xiaofeng; Han, Ligang; Zhang, Weiying; Liu, Zhaojun

    2016-10-01

    Tioxolone possess antipsoriatic and antibacterial properties. Therefore, it has been used in treating various skin and scalp disorders for many years. Spectroscopic analysis of tioxolone was presented by using density functional theory (DFT) calculations and experiments (FT-IR, FT-Raman and UV-Vis). Molecular geometry and vibrational wavenumbers of tioxolone were investigated by using B3LYP method with aug-cc-pVTZ basis set. A complete vibrational spectra was made to analyze the potential energy distributions (PED). In addition, analysis of frontier molecular orbitals, electrostatic potential (ESP) and thermodynamic properties (heat capacity, entropy, enthalpy and Gibbs free energy) was presented with the same basis-set. Furthermore, the nature of molecular association through hydrogen bonding were discussed using atoms in molecules (AIM) and reduced density gradient (RDG) methods.

  1. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation.

  2. Raman and FT-IR studies of ocular tissues

    Science.gov (United States)

    Ozaki, Yukihiro; Mizuno, Aritake

    1991-05-01

    Two examples of Raman and FT-IR studies of the ocular tissues are reviewed in this paper. The first example treats Raman studies on cataract development cataract-related lens hydration and structural changes in the lens proteins monitored in situ by Raman spectroscopy are described. The second example is concerned with FT-IR studies on the ocular tissues contain ing collagen nondestructive identification of Type I and IV collagen in the tissues and their structural differences elucidated by infrared spectroscopy are discussed. 1 .

  3. Monomer conversion of composite dental resins photoactivated by a halogen lamp and a LED: a FT-Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Luís Eduardo Silva Soares

    2005-03-01

    Full Text Available Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s, had their top (T and bottom (B surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC ranged from 45.0% (B to 52.0% (T and from 49.0% (B to 55.0% (T for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.

  4. Characterization of 1,5-dimethoxynaphthalene by vibrational spectroscopy (FT-IR and FT-Raman) and density functional theory calculations.

    Science.gov (United States)

    Kandasamy, M; Velraj, G; Kalaichelvan, S; Mariappan, G

    2015-01-05

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and natural bond orbital (NBO) analysis of 1,5-dimethoxynaphthalene. The optimized molecular structure, atomic charges, vibrational frequencies and natural bond orbital analysis of 1,5-dimethoxynaphthalene have been studied by performing DFT/B3LYP/6-31G(d,p) level of theory. The FTIR, FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of the most fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO analysis. Natural Population Analysis (NPA) was used for charge determination in the title molecule. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  5. Vibrational spectroscopy (FT-IR and FT-Raman) investigation, and hybrid computational (HF and DFT) analysis on the structure of 2,3-naphthalenediol.

    Science.gov (United States)

    Shoba, D; Periandy, S; Karabacak, M; Ramalingam, S

    2011-12-01

    The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.

  6. Coherent Raman spectroscopy

    CERN Document Server

    Eesley, G L

    1981-01-01

    Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter

  7. Molecular structure (monomeric and dimeric) and hydrogen bonds in 5-benzyl 2-thiohydantoin studied by FT-IR and FT-Raman spectroscopy and DFT calculations.

    Science.gov (United States)

    Deval, Vipin; Kumar, Amit; Gupta, Vineet; Sharma, Anamika; Gupta, Archana; Tandon, Poonam; Kunimoto, Ko-Ki

    2014-11-11

    In the present work the structural and spectral characteristics of 5-benzyl-2-thiohydantoin (5-BTH) have been studied by methods of infrared, Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) employing B3LYP with complete relaxation in the potential energy surface using 6-311G++(d,p) basis set. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-vis spectrum of the compound was recorded in methanol solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using PCM and 6-311++G(d,p) basis set. In addition, the thermodynamic properties of the compound were calculated at different temperatures and corresponding relations between the properties and temperature were also studied.

  8. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy.

    Science.gov (United States)

    Baranska, M; Schütze, W; Schulz, H

    2006-12-15

    Tomatoes and various products derived from thermally processed tomatoes are major sources of lycopene, but apart from this micronutrient, other carotenoids such as beta-carotene also are present in the fruit. They occur in tomato fruits and various tomato products in amounts of 2.62-629.00 (lycopene) and 0.23-2.83 mg/100 g (beta-carotene). Standard methods for determining the carotenoid content require the extraction of the analyte as well as other cleanup steps. In this work, FT-Raman, ATR-IR, and NIR spectroscopy are applied in order to establish new, fast, and nondestructive calibration methods for quantification of lycopene and beta-carotene content in tomato fruits and related products. The best prediction quality was achieved using a model based on IR spectroscopy (R2 = 0.98 and 0.97, SECV = 33.20 and 0.16 for lycopene and beta-carotene, respectively). In spite of the fact that Raman spectra of tomato products show characteristic key bands of the investigated carotenoids, this method gives slightly lower reliability (R2 = 0.91 and 0.89, SECV = 74.34 and 0.34 for lycopene and beta-carotene, respectively). NIR spectroscopy, which has been used for quantification purposes in the agricultural sector for several decades, in this study shows the worse prediction quality (R2 = 0.85 and 0.80, SECV = 91.19 and 0.41 for lycopene and beta-carotene, respectively).

  9. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    FT-IR and Raman spectroscopy are complementary techniques for the study of molecular vibrations and structure. The combination with a microscope results in an analytical method that allows spatially resolved investigation of the chemical composition of heterogeneous foods and food ingredients....... The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...... to different heterogeneous food systems. FT-IR and Raman microspectroscopy were applied to a number of different problems related to food analysis: (1) in situ determination of starch and pectin in the potato cell, (2) in situ determination of the distribution of amygdalin in bitter almonds, (3...

  10. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation

    DEFF Research Database (Denmark)

    Philipsen, P A; Knudsen, L; Gniadecka, M

    2013-01-01

    There is a general need for methods to obtain fast in vivo diagnosis of skin tumours. Raman spectroscopy measures molecular structure and may thus have potential as a tool for skin tumour diagnosis. The purpose of this study was to investigate how skin pigmentation influenced the Raman spectra an...

  11. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.

    Science.gov (United States)

    Rys, Magdalena; Juhász, Csilla; Surówka, Ewa; Janeczko, Anna; Saja, Diana; Tóbiás, István; Skoczowski, Andrzej; Barna, Balázs; Gullner, Gábor

    2014-10-01

    Leaves of a pepper cultivar harboring the L(3) resistance gene were inoculated with Obuda pepper virus (ObPV), which led to the appearance of hypersensitive necrotic lesions approx. 72 h post-inoculation (hpi) (incompatible interaction), or with Pepper mild mottle virus (PMMoV) that caused no visible symptoms on the inoculated leaves (compatible interaction). ObPV inoculation of leaves resulted in ion leakage already 18 hpi, up-regulation of a pepper carotenoid cleavage dioxygenase (CCD) gene from 24 hpi, heat emission and declining chlorophyll a content from 48 hpi, and partial desiccation from 72 hpi. After the appearance of necrotic lesions a strong inhibition of photochemical energy conversion was observed, which led to photochemically inactive leaf areas 96 hpi. However, leaf tissues adjacent to these inactive areas showed elevated ΦPSII and Fv/Fm values proving the advantage of chlorophyll a imaging technique. PMMoV inoculation also led to a significant rise of ion leakage and heat emission, to the up-regulation of the pepper CCD gene as well as to decreased PSII efficiency, but these responses were much weaker than in the case of ObPV inoculation. Chlorophyll b and total carotenoid contents as measured by spectrophotometric methods were not significantly influenced by any virus inoculations when these pigment contents were calculated on leaf surface basis. On the other hand, near-infrared FT-Raman spectroscopy showed an increase of carotenoid content in ObPV-inoculated leaves suggesting that the two techniques detect different sets of compounds.

  12. Raman spectroscopy in astrobiology.

    Science.gov (United States)

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  13. NIR FT-Raman microspectroscopy of fluid inclusions: Comparisons with VIS Raman and FT-IR microspectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Pironon, J.; Dubessy, J. (CREGU and GDR CNRS-CREGU, Vandoeuvre-les-Nancy (France)); Sawatzki, J. (BRUKER Analytische Messtechnik Gmbh, Karlsruhe (Germany))

    1991-12-01

    The first Raman spectra of hydrocarbon inclusions using Fourier transform (FT) Raman microspectroscopy were obtained with a 1,064 nm laser excitation in the near-infrared range (NIR FT-Raman). Some inclusions reveal the typical CH vibrational bands of organic compounds, but most of the inclusions that are fluorescent during visible Raman microspectroscopy (514 nm excitation) are still fluorescent in the NIR range. These Raman spectra are presented and compared to the conventional visible (VIS) Raman and FT-IR spectra. For spectra obtained on the same nonfluorescent inclusion, the signal/background ratio is lower in NIR FT-Raman than in VIS Raman. This ratio should be improved by application of more sensitive detectors. The increase of the power density (laser power/impact laser area) could be a future improvement in the limit of thermal background excitation and pyrolysis of the oils trapped in inclusions.

  14. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    Science.gov (United States)

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these.

  15. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach.

    Science.gov (United States)

    Paczkowska, Magdalena; Lewandowska, Kornelia; Bednarski, Waldemar; Mizera, Mikołaj; Podborska, Agnieszka; Krause, Anna; Cielecka-Piontek, Judyta

    2015-04-05

    Vibrational (FT-IR, Raman) and electronic (UV, EPR) spectral measurements were performed for an analysis of rutin (quercetin-3-O-rutinoside) obtained from Rutaofficinalis. The identification of rutin was done with the use of FT-IR and Raman spectra. Those experimental spectra were determined with the support of theoretical calculations based on a DFT method with the B3LYP hybrid functional and 6-31G(d,p) basis set. The application of UV and EPR spectra was found to be a suitable analytical approach to the evaluation of changes in rutin exposed to certain physicochemical factors. Differences in absorbance observed in direct UV spectra were used to monitor changes in the concentration of rutin in degraded samples. Spectra of electron paramagnetic resonance allowed studying the process of free-radical quenching in rutin following its exposure to light. The molecular electrostatic potential (MEP) and frontier molecular orbitals (LUMO-HOMO) were also determined in order to predict structural changes and reactive sites in rutin.

  16. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach

    Science.gov (United States)

    Paczkowska, Magdalena; Lewandowska, Kornelia; Bednarski, Waldemar; Mizera, Mikołaj; Podborska, Agnieszka; Krause, Anna; Cielecka-Piontek, Judyta

    2015-04-01

    Vibrational (FT-IR, Raman) and electronic (UV, EPR) spectral measurements were performed for an analysis of rutin (quercetin-3-O-rutinoside) obtained from Rutaofficinalis. The identification of rutin was done with the use of FT-IR and Raman spectra. Those experimental spectra were determined with the support of theoretical calculations based on a DFT method with the B3LYP hybrid functional and 6-31G(d,p) basis set. The application of UV and EPR spectra was found to be a suitable analytical approach to the evaluation of changes in rutin exposed to certain physicochemical factors. Differences in absorbance observed in direct UV spectra were used to monitor changes in the concentration of rutin in degraded samples. Spectra of electron paramagnetic resonance allowed studying the process of free-radical quenching in rutin following its exposure to light. The molecular electrostatic potential (MEP) and frontier molecular orbitals (LUMO-HOMO) were also determined in order to predict structural changes and reactive sites in rutin.

  17. Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid using ab initio HF and DFT method.

    Science.gov (United States)

    Prabakaran, A; Muthu, S

    2012-12-01

    The FT-IR and FT-Raman spectra of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid (2ADMA) were recorded in the region 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The geometrical structure, harmonic vibrational frequency, infrared intensity, Raman activities and bonding features of this compound was carried out by ab initio HF and DFT methods with 6-31G (d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The electric dipole moment (μ) and the first-order hyperpolarizability (β(0)) values have been the computed quantum mechanically. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The charge delocalizations of these molecules have been analyzed using NBO analysis. The solvent effects have been calculated using TD-DFT in combination with the polarized continuum model (PCM), and the results are in good agreement with experimental measurements. The other molecular properties like Mulliken population analysis, electrostatic potential (ESP) and thermodynamic properties of the title compound at the different temperatures have been calculated. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound which shows good agreement with observed spectra.

  18. Has your ancient stamp been regummed with synthetic glue? A FT-NIR and FT-Raman study.

    Science.gov (United States)

    Simonetti, Remo; Oliveri, Paolo; Henry, Adrien; Duponchel, Ludovic; Lanteri, Silvia

    2016-01-01

    The potential of FT-NIR and FT-Raman spectroscopies to characterise the gum applied on the backside of ancient stamps was investigated for the first time. This represents a very critical issue for the collectors' market, since gum conditions heavily influence stamp quotations, and fraudulent application of synthetic gum onto damaged stamp backsides to increase their desirability is a well-documented practice. Spectral data were processed by exploratory pattern recognition tools. In particular, application of principal component analysis (PCA) revealed that both of the spectroscopic techniques provide information useful to characterise stamp gum. Examination of PCA loadings and their chemical interpretation confirmed the robustness of the outcomes. Fusion of FT-NIR and FT-Raman spectral data was performed, following both a low-level and a mid-level procedure. The results were critically compared with those obtained separately for the two spectroscopic techniques.

  19. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam

    2017-07-01

    Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm(-1) was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm(-1) with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R(2)) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of an inverted NIR-FT-Raman microscope for biomedical applications

    Science.gov (United States)

    Dippel, B.; Tatsch, E.; Schrader, B.

    1997-06-01

    NIR-FT-Raman spectroscopy is the most suitable tool for investigation of biological samples, because the fluorescence of organic substances is reduced to a minimum. To examine the applicability of NIR excited FT-Raman spectroscopy to the study of cell cultures and tissues, measurements were made with an inverted Raman microscope, a modified Zeiss Axiovert 135. This system allows the collection of Raman spectra both by Koehler laser illumination and the confocal principle: • Koehler laser illumination avoids overheating and denaturation of the sample because the exciting laser beam illuminates the sample as an unfocused collimated beam. An integrative collection over the whole image of the microscope objective is necessary to increase the Raman light flux. • The confocal arrangement allows high spatial resolution which is reached by selective collection of the Raman scattering of details of the sample. A larger spatial resolution leads to a decreased light flux of the Raman scattering, this is compensated by a focused laser beam. We have used NIR-FT-Raman spectroscopy to investigate the spectra of normal breast tissues, potentially useful in the diagnosis of cancer.

  1. Practical Raman spectroscopy an introduction

    CERN Document Server

    Vandenabeele, Peter

    2013-01-01

    This text offers an open-learning approach to Raman spectroscopy providing detail on instrumentation, applications and discussions questions throughout the book. It provides a valuable guide to assist with teaching Raman spectroscopy which is gaining attention in (analytical) chemistry, and as a consequence, teaching programs have followed. Today, education in Raman spectroscopy is often limited to theoretical aspects (e.g. selection rules), but practical aspects are usually disregarded. With these course notes, the author hopes to fill this gap and include information about Raman instrumentat

  2. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.;

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  3. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  4. Raman Spectroscopy for Clinical Oncology

    Directory of Open Access Journals (Sweden)

    Michael B. Fenn

    2011-01-01

    Full Text Available Cancer is one of the leading causes of death throughout the world. Advancements in early and improved diagnosis could help prevent a significant number of these deaths. Raman spectroscopy is a vibrational spectroscopic technique which has received considerable attention recently with regards to applications in clinical oncology. Raman spectroscopy has the potential not only to improve diagnosis of cancer but also to advance the treatment of cancer. A number of studies have investigated Raman spectroscopy for its potential to improve diagnosis and treatment of a wide variety of cancers. In this paper the most recent advances in dispersive Raman spectroscopy, which have demonstrated promising leads to real world application for clinical oncology are reviewed. The application of Raman spectroscopy to breast, brain, skin, cervical, gastrointestinal, oral, and lung cancers is reviewed as well as a special focus on the data analysis techniques, which have been employed in the studies.

  5. Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of 5-methyl-N-[4-(trifluoromethyl) phenyl]-isoxazole-4-carboxamide using density functional method.

    Science.gov (United States)

    Shahidha, R; Muthu, S; Elamurugu Porchelvi, E; Govindarajan, M

    2014-11-11

    Vibrational spectral analysis of 5-methyl-N-[4-(trifluoromethyl) phenyl]-isoxazole-4-carboxamide is (5MN4TPI4C) molecule was carried out using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry, harmonic vibrational wavenumbers, various bonding features have been computed using density functional B3LYP method with 6-311G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFFM). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The non-linear optical (NLO) behavior of 5MN4TPI4C has been studied by determination of the electric dipole moment (μ) and hyperpolarizability (β) by using B3LYP/6-311G(d,p) method. The molecular orbital compositions and their contributions to the chemical bonding are studied by Total density of energy states (TDOS), sum of α and β electron (αβDOS) density of states. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are calculated.

  6. FT-IR, FT-Raman spectroscopic study of carotenoids from saffron ( Crocus sativus L.) and some derivatives

    Science.gov (United States)

    Tarantilis, Petros A.; Beljebbar, Abdelilah; Manfait, Michel; Polissiou, Moschos

    1998-04-01

    The carotenoids of saffron, crocins (CRCs), were extracted and their derivatives, dimethylcrocetin (DMCRT) and crocetin (CRT) were prepared from the extract by alkaline hydrolysis in methanol (DMCRT) and by alkaline hydrolysis in water followed by acidification (CRT), respectively. FT-IR, FT-Raman spectroscopies were used to study these compounds. The FT-IR spectra of CRCs, DMCRT and CRT have characteristic absorbance bands between 1706 and 1664 cm -1 ( νCO) and in the region between 1243 and 1228 cm -1 ( νC-O). Two main Raman lines were observed near 1540 and 1166 cm -1 which are respectively assigned to ( νCC) and ( νC-C) stretching modes.

  7. Blood analysis by Raman spectroscopy

    Science.gov (United States)

    Enejder, Annika M. K.; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S.; Horowitz, Gary L.

    2002-11-01

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r2 values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  8. [Study on the interaction of DNA and norfloxacin by FT-Raman].

    Science.gov (United States)

    Ren, Yi-Hua; Zhou, Guang-Ming; Wu, Jie; Yu, Dan-Ni

    2009-11-01

    FT-Raman and surface enhanced Raman spectra (SERS) of norfloxacin and norfloxacin capsule on the silver colloidal substrate were recorded, and the vibrational and enhanced peaks were assigned; interactions of norfloxacin and DNA were researched. The experimental results proved that the characteristic vibrations of capsule's content and NFX standard, which is v(C-F), vs(O-C-O), v(C=C), did not change, while the changes in molecular skeleton's vibrations were substantial. Additives do not affect the Raman spectroscopy of norfloxacin substantively. An analytical method for detecting norfloxacin medcine can be established by FT-Raman. Without any ions, the interaction is mainly caused by the inserting-action mode between the ring of norfloxacin and the double helix structure of DNA, and norfloxacin could interact with DNA directly, providing reliable evidence for antibacterial mechanism of quinoxalone antibiotics.

  9. Raman Spectroscopy at High Pressures

    Directory of Open Access Journals (Sweden)

    Alexander F. Goncharov

    2012-01-01

    Full Text Available Raman spectroscopy is one of the most informative probes for studies of material properties under extreme conditions of high pressure. The Raman techniques have become more versatile over the last decades as a new generation of optical filters and multichannel detectors become available. Here, recent progress in the Raman techniques for high-pressure research and its applications in numerous scientific disciplines including physics and chemistry of materials under extremes, earth and planetary science, new materials synthesis, and high-pressure metrology will be discussed.

  10. Raman spectroscopy for analysis of thorium compounds

    Science.gov (United States)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-01

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including e.g. ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  11. Raman Spectroscopy for Analysis of Thorium Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-12

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  12. Raman spectroscopy for nanomaterials characterization

    CERN Document Server

    2012-01-01

    First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.

  13. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  14. Characterization of writing materials of books of great historical-artistic value by FT-IR and micro-raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Vito Librando

    2014-12-01

    Full Text Available This work describes the application of Fourier-Transform Infrared and Raman spectroscopic techniques for the characterization of cellulose paper samples and inks used on ancient writing materials. These samples from books of high historical and artistic interest were provided by the Public Library of Syracuse.The ancient paper showed a characteristic pattern of carbonyl groups, whose vibration modes were observed in FTIR spectra. The spectra of ancient paper samples were compared to each other and to modern paper in order to highlight differences in conservation state between new and old papers. The paper aging process is related to the presence of acid substances and oxidative agents that result in cellulose hydrolysis leading to the shortening of its chain along with changes in the amount of the crystalline form. This hydrolysis causes changes in hydrogen bonds and consequently change the CCH, COH, OCH and HCH bending vibrations mode. In this work, the FTIR and Raman spectra of inks used on ancient paper and parchment samples were also discussed.

  15. Transmission fourier transform Raman spectroscopy of pharmaceutical tablet cores.

    Science.gov (United States)

    Pelletier, Michael J; Larkin, Peter; Santangelo, Matthew

    2012-04-01

    Transmission Fourier transform (FT) Raman spectroscopy of pharmaceutical tablet cores is demonstrated using traditional, unmodified commercial instrumentation. The benefits of improved precision over backscattering Raman spectroscopy due to increased sample volume are demonstrated. Self-absorption effects on analyte band ratios and sample probe volume are apparent, however. A survey of near-infrared (NIR) absorption spectra in the FT-Raman spectral range (approximately 0 to 3500 wavenumber shift from 1064 nm, or 1064 to 1700 nm) of molecules with a wide range of NIR-active functional groups shows that although absorption at the laser wavelength (1064 nm) is relatively small, some regions of the Raman spectrum coincide with NIR absorbances of 0.5 per cm or greater. Fortunately, the pharmaceutically important regions of the Raman shift spectrum from 0 to 600 cm(-1) and from 1400 to 1900 cm(-1) exhibit low self-absorption for most organic materials. A statistical analysis of transmission FT-Raman noise in spectra collected from different regions of a pharmaceutical tablet provides insight into both spectral distortion and reduced sampling volume caused by self-absorption.

  16. FT-Raman, FT-IR spectroscopic and DFT studies of hexaphenoxycyclotriphosphazene

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Padie, C.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-07-01

    The FTIR and FT Raman measurements of zero Gc0‧ -H and first Gc1‧ -H generations of phosphorus dendrimer built from cyclotriphosphazene core with phenoxy and deuterophenoxy terminal groups have been performed. In order to evaluate how much the frequencies, shift when changing the electronics of the system the FTIR and FT Raman spectra of phosphorus‒containing dendron with five terminal oxybenzaldehyde and one ester function Gci‧ have been also studied. Structural optimization and normal mode analysis were obtained for Gc0‧ -H and Gc0‧ -D by the density functional theory (DFT). It is discovered that dendrimer molecule exists in a stable conformation with six phenoxy terminal groups spaced above and below the flat cyclotriphosphazene core. Optimized geometric bond length and angles obtained by DFT show good agreement with a previously-published X-ray study. The phenoxy terminal groups are characterized by the well-defined line at 993 cm-1 in the experimental Raman spectrum of Gc0‧ -H and by line at 960 cm-1 in the Raman spectrum of Gc0‧ -D. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimers. The frequencies and relative intensity of the bands at 1589, 1487 cm-1 in the IR spectra show marked difference in dependence of the substituents on the aromatic ring.

  17. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    Science.gov (United States)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  18. 傅里叶变换拉曼光谱法鉴别八角茴香及其伪品%Identification of Chinese Star Anise and Its False Samples by FT-Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘蓬勃; 朱世玮; 孙素琴

    2001-01-01

    目的:鉴别八角茴香及其伪品.方法:傅里叶拉曼光谱法(FT-Raman).结果:八角茴香及其伪品在拉曼光谱中均有各自的特征峰,极易将它们区别开.结论:该方法快速准确,操作简单,不需分离,可直接测定.

  19. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  20. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  1. FT-Raman and FT-Infrared investigations of archaeological artefacts from Foeni Neolithic site (Banat, Romania

    Directory of Open Access Journals (Sweden)

    Simona Cîntă Pînzaru

    2008-08-01

    Full Text Available An impressive collection of chert artefacts from the Foeni Neolithic archaeological site (Timiş County, Banat region, Romania is hosted by the Banat Museum in Timişoara. A representative set of seven specimens was non-destructively investigated using FT-Raman and ATR-FT-IR spectroscopy. The research was carried out for checking if these readily-available, non-destructive, fast, and cheap methods, which do not require preliminary sample preparation could provide significant information for characterizing the mineral composition of chert artefacts. Based on vibrational data, it was confirmed that the raw material was represented by microcrystalline quartz and moganite, with local concentrations of accessory minerals (calcite, dolomite, and clay minerals. In spite of their wide macroscopic heterogeneity (colour, transparency, based on single point FT-Raman measurements the chert artefacts could not be assigned to distinctive groups of raw silica materials, in order to provide specific arguments for provenance studies. However, the presence of specific accessory minerals (dolomite, illite pointed to distinctive genetic conditions in the case of one lithic material. Sets of measurements (mapping are required for statistically characterizing each artefact specimen. IR data were less significant, due to the rough surface texture of the specimens in contact with the ZnSe crystal of the ATR-FT-IR module. However, illite was identified based solely on its contribution to the IR spectrum. This pioneering study on chert artefacts from Romania based on optical spectroscopic methods shows that there are good premises for a systematic investigation of highly-valuable museum collections, in particular in terms of chert geology.

  2. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  3. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy.

    Science.gov (United States)

    Kessner, Doreen; Brezesinski, Gerald; Funari, Sergio S; Dobner, Bodo; Neubert, Reinhard H H

    2010-01-01

    The stratum corneum (SC), the outermost layer of the mammalian skin, is the main skin barrier. Ceramides (CERs) as the major constituent of the SC lipid matrix are of particular interest. At the moment, 11 classes of CERs are identified, but the effect of each single ceramide species is still not known. Therefore in this article, the thermotropic behaviour of the long chain omega-acylceramides CER[EOS] and CER[EOP] was studied using X-ray powder diffraction and FT-Raman spectroscopy. It was found that the omega-acylceramides CER[EOS] and CER[EOP] do not show a pronounced polymorphism which is observed for shorter chain ceramides as a significant feature. The phase behaviour of both ceramides is strongly influenced by the extremely long acyl-chain residue. The latter has a much stronger influence compared with the structure of the polar head group, which is discussed as extremely important for the appearance of a rich polymorphism. Despite the strong influence of the long chain, the additional OH-group of the phyto-sphingosine type CER[EOP] influences the lamellar repeat distance and the chain packing. The less polar sphingosine type CER[EOS] is stronger influenced by the long acyl-chain residue. Hydration is necessary for the formation of an extended hydrogen-bonding network between the polar head groups leading to the appearance of a long-periodicity phase (LPP). In contrast, the more polar CER[EOP] forms the LPP with densely packed alkyl chains already in the dry state.

  4. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  5. Raman Spectroscopy and Related Techniques in Biomedicine

    Directory of Open Access Journals (Sweden)

    Alistair Elfick

    2010-03-01

    Full Text Available In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (biochemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS microscopy and stimulated Raman loss (SRL microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes and in vitro (in optical microscopes.

  6. Raman spectroscopy and its urological applications

    Directory of Open Access Journals (Sweden)

    Vishwanath S Hanchanale

    2008-01-01

    Conclusion: Raman spectroscopy is an exciting tool for real-time diagnosis and in vivo evaluation of living tissue. The potential applications of Raman spectroscopy may herald a new future in the management of various malignant, premalignant, and other benign conditions in urology.

  7. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...... esters are given. It is demonstrated that the presence of phthalate esters in PVC products is readily detectable by FT-Raman spectroscopy. By use of proper ref. samples quant. detn. of the phthalate ester content becomes possible as well....

  8. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...... esters are given. It is demonstrated that the presence of phthalate esters in PVC products is readily detectable by FT-Raman spectroscopy. By use of proper ref. samples quant. detn. of the phthalate ester content becomes possible as well....

  9. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  10. Raman spectroscopy: the gateway into tomorrow's virology

    Directory of Open Access Journals (Sweden)

    Dyson Ossie F

    2006-06-01

    Full Text Available Abstract In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  11. Raman spectroscopy: the gateway into tomorrow's virology.

    Science.gov (United States)

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-06-28

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  12. FT-Raman and FT-IR studies of 1:2.5 piroxicam: β-cyclodextrin inclusion compound

    Science.gov (United States)

    Bertoluzza, A.; Rossi, M.; Taddei, P.; Redenti, E.; Zanol, M.; Ventura, P.

    1999-05-01

    The FT-Raman and FT-IR spectra of amorphous 1:2.5 piroxicam (P): β-cyclodextrin (βCD) inclusion compound (PβCD) are presented and discussed in comparison with the spectra of the three main modifications of piroxicam (α,β and monohydrate). In the 1700-1200 cm -1 FT-Raman spectrum of 1:2.5 PβCD inclusion compound the bands of βCD are weak and covered by those stronger of piroxicam, differently from the FT-IR spectrum where the bands of βCD are stronger, so covering a large part of the spectrum. Typical FT-Raman marker bands are assigned for the characterization of the three modifications of piroxicam. The FT-Raman spectrum of 1:2.5 PβCD inclusion compound predominantly shows the bands at about 1465 and 1400 cm -1 of the monohydrate, indicating that piroxicam assumes the zwitterionic structure stabilized by interaction with βCD via electrostatic and hydrogen bonds. The dipolar character of 1:2.5 PβCD inclusion compound improves the solubility and the dissolution rate of piroxicam and thus its rate of absorption.

  13. Vibrational spectroscopic (FT-IR, FT-Raman) studies, Hirshfeld surfaces analysis, and quantum chemical calculations of m-acetotoluidide and m-thioacetotoluidide

    Science.gov (United States)

    Śmiszek-Lindert, Wioleta Edyta; Chełmecka, Elżbieta; Góralczyk, Stefan; Kaczmarek, Marian

    2017-01-01

    Theoretical calculations of the m-acetotoluidide and m-thioacetotoluidide isolated molecules were performed by using density functional theory (DFT) method at B3LYP/6-311++G (d,p) and B3LYP/6-311++G (3df,2pd) basis set levels. The Hirshfeld surfaces analysis and FT-IR and FT-Raman spectroscopy studies have been reported. The geometrical parameters of the title amide and thioamide are in a good agreement with the XRD experiment. The vibrational frequencies were calculated and scaled, and subsequently values have been compared with the experimental Infrared and Raman spectra. The observed and calculated frequencies are found to be in good agreement. The analysis of the Hirshfeld surface has been well correlated to the spectroscopic studies. Additionally, the highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO) and the energy gap between EHOMO and ELUMO (ΔEHOMO-LUMO) have been calculated.

  14. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry

    Science.gov (United States)

    Özgenç, Özlem; Durmaz, Sefa; Boyaci, Ismail Hakki; Eksi-Kocak, Haslet

    2017-01-01

    In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose.

  15. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  16. FT-Raman and QM/MM study of the interaction between histamine and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Chica, A.J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Soriano, A. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Tunon, I. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Sanchez-Jimenez, F.M. [Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Silla, E. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Ramirez, F.J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain)], E-mail: ramirez@uma.es

    2006-05-31

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions.

  17. FT-Raman and QM/MM study of the interaction between histamine and DNA

    Science.gov (United States)

    Ruiz-Chica, A. J.; Soriano, A.; Tuñón, I.; Sánchez-Jiménez, F. M.; Silla, E.; Ramírez, F. J.

    2006-05-01

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions.

  18. Theoretical (DFT) and experimental (FT-IR, FT-Raman, FT-NMR) investigations on 7-Acetoxy-4-(bromomethyl)coumarin

    Science.gov (United States)

    Erdogdu, Y.; Saglam, S.; Dereli, Ö.

    2015-09-01

    An analysis of the results of the structural and spectroscopic studies of 7-Acetoxy-4-(bromomethyl) coumarin (7A4BMC) molecule were performed by FT-IR, FT-Raman, FT-NMR and quantum chemical calculations. The FT-IR and FT-Raman spectra of 7A4BMC were recorded in the 400-4000 and 50-3500 cm-1 region, respectively. The molecular conformations of 7A4BMC were computed at the B3LYP/6-311++G(d,p) level of theory. Molecular structure and spectral calculations were calculated by means of B3LYP with 6-311++G(d,p), cc-pVDZ and cc-pVTZ basis sets. The whole vibrational characteristics of the 7A4BMC molecule are given.

  19. Emerging Dental Applications of Raman Spectroscopy

    Science.gov (United States)

    Choo-Smith, Lin-P'ing; Hewko, Mark; Sowa, Michael G.

    Until recently, the application of Raman spectroscopy to investigate dental tissues has primarily focused on using microspectroscopy to characterize dentin and enamel structures as well as to understand the adhesive interface of various resin and bonding agents used in restorative procedures. With the advent of improved laser, imaging/mapping and fibre optic technologies, the applications have expanded to investigate various biomedical problems ranging from oral cancer, bacterial identification and early dental caries detection. The overall aim of these applications is to develop Raman spectroscopy into a tool for use in the dental clinic. This chapter presents the recent dental applications of Raman spectroscopy as well as discusses the potential, strengths and limitations of the technology in comparison with alternative techniques. In addition, a discussion and rationale about combining Raman spectroscopy with other optical techniques will be included.

  20. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  1. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  2. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  3. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  4. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  5. Mobile Raman spectroscopy in astrobiology research.

    Science.gov (United States)

    Vandenabeele, Peter; Jehlička, Jan

    2014-12-13

    Raman spectroscopy has proved to be a very useful technique in astrobiology research. Especially, working with mobile instrumentation during fieldwork can provide useful experiences in this field. In this work, we provide an overview of some important aspects of this research and, apart from defining different types of mobile Raman spectrometers, we highlight different reasons for this research. These include gathering experience and testing of mobile instruments, the selection of target molecules and to develop optimal data processing techniques for the identification of the spectra. We also identify the analytical techniques that it would be most appropriate to combine with Raman spectroscopy to maximize the obtained information and the synergy that exists with Raman spectroscopy research in other research areas, such as archaeometry and forensics.

  6. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  8. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2009-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... systems in the future. A few examples will be discussed. Contents 12.1 Introduction...........307 12.2 Brief introduction to Raman spectroscopy ..............309 12.2.1 Basics .....................309 12.2.2 Experimental, fluorescence and fouriertransform- Raman spectroscopy instrumentation ...... 311 12.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...

  9. FT-IR, Raman and thermoluminescence investigation of P 2O 5-BaO-Li 2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar Gabor, A.; Cozar, O.; Daraban, L.; Ardelean, I.

    2011-05-01

    The 0.5P 2O 5· xBaO·(0.5- x) Li 2O glass system (0 ⩽ x ⩽ 0.5 mol%) is investigated by FT-IR, Raman and thermoluminescence as a possible dosimetic material. FT-IR and Raman spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption band from IR spectra is attributed to the symmetric stretching vibrations of P = O double bonds. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ˜700 cm -1 is assigned to symmetric stretching vibrations of P-O-P groups and that from ˜1158 cm -1 is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO 2) in phosphate tetrahedron. Finally FT-IR and Raman spectroscopies revealed a local network structure mainly based on Q 2 and Q 3 tetrahedrons connected by P-O-P linkages. Luminescence investigations show that by adding modifier oxides to phosphate glass dose dependent TL signals result upon irradiation. Thus P 2O 5-BaO-Li 2O glass system is a possible candidate material for dosimetry in the high dose range (>10 Gy).

  10. Non-destructive NIR-FT-raman analyses in practice. Part II. Analyses of 'jumping' crystals, photosensitive crystals and gems.

    Science.gov (United States)

    Andreev, G N; Schrader, B; Boese, R; Rademacher, P; von Cranach, L

    2001-12-01

    Using an improved sampling arrangement we observed the FT Raman spectra of the different phases of a 'jumping crystal', an inositol derivative. The phase transition produced--as consequences of large changes of the unit cell constants--changes in frequency and intensity mainly of CH deformation vibrations. Photochemical reactions, usually produced with light quanta in the visible range, are not activated with the quanta from the Nd:YAG laser at 1064 nm. The Raman spectra of the 'dark' form of a dinitrobenzyl pyridine and afterwards the 'light' form, the product of its illumination in the visible range, were recorded. We could not observe changes of most bands, especially not of the NO2-vibrations; however, a new strong band appeared at 1253 cm(-1), which may be due to the expected NH-photo-isomer. Genuine gemstones and fakes can be unambiguously identified by FT Raman spectroscopy. This is especially useful for the stones whose physical properties are quite similar to those of diamonds--moissanite and zirconia. The quality of diamonds can be estimated from relative band intensities; however, this is not in complete agreement with the internationally accepted visual qualification. Synthetic diamonds produced by CVD (chemical vapor deposition) show remarkable differences from natural ones in their FT-Raman spectra.

  11. Raman spectroscopy of single quantum well wires

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We used the micro-Raman spectroscopy to investigate the V-grooved quantum well wires (QWWs), and first observed and assigned the Raman spectra of single QWW. They were the disorder induced modes at 223 and 243 cm-1, confined LO mode of GaAs QWW at 267 cm1, and higher order peaks of disorder induced modes at 488 and 707 cm-1.

  12. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

  13. Raman spectroscopy under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  14. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    Science.gov (United States)

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  15. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Science.gov (United States)

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  16. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  17. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.

    Science.gov (United States)

    Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo

    2015-01-01

    Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine.

  18. Visualizing Cell State Transition Using Raman Spectroscopy

    Science.gov (United States)

    Ichimura, Taro; Chiu, Liang-da; Fujita, Katsumasa; Kawata, Satoshi; Watanabe, Tomonobu M.; Yanagida, Toshio; Fujita, Hideaki

    2014-01-01

    System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states. PMID:24409302

  19. Monitoring of the molecular structure of lubricant oil using a FT-Raman spectrometer prototype

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Javahiraly, Nicolas; Meyrueis, Patrick

    2014-05-01

    The determination of the physical state of the lubricant materials in complex mechanical systems is highly critical from different points of view: operative, economical, environmental, etc. Furthermore, there are several parameters that a lubricant oil must meet for a proper performance inside a machine. The monitoring of these lubricants can represent a serious issue depending on the analytical approach applied. The molecular change of aging lubricant oils have been analyzed using an all-standard-components and self-designed FT-Raman spectrometer. This analytical tool allows the direct and clean study of the vibrational changes in the molecular structure of the oils without having direct contact with the samples and without extracting the sample from the machine in operation. The FT-Raman spectrometer prototype used in the analysis of the oil samples consist of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling has been accomplished by using a conventional 62.5/125μm multi-mode fiber coupler. The FT-Raman arrangement has been able to extract high resolution and frequency precise Raman spectra, comparable to those obtained with commercial FT-Raman systems, from the lubricant oil samples analyzed. The spectral information has helped to determine certain molecular changes in the initial phases of wearing of the oil samples. The proposed instrument prototype has no additional complex hardware components or costly software modules. The mechanical and thermal irregularities influencing the FT-Raman spectrometer have been removed mathematically by accurately evaluating the optical path difference of the Michelson interferometer. This has been achieved by producing an additional interference pattern signal with a λ= 632.8 nm helium-neon laser, which differs from the conventional zero-crossing sampling (also known as Connes advantage) commonly used by FT-devices. It enables the FT-Raman system to

  20. Raman spectroscopy of selected carbonaceous samples

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinska, Barbara [University of Science and Technology-AGH, Faculty of Geology, Geophysics and Environmental Protection, Krakow (Poland); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon, (INCAR-CSIC), Oviedo (Spain); Paluszkiewicz, Czeslawa [University of Science and Technology-AGH, Faculty of Materials Science and Technology, Krakow (Poland); Rodriques, Sandra [Universidade do Porto, Faculdade de Ciencias, Dept. de Geologia (Portugal)

    2010-12-01

    This paper presents the results of Raman spectra measured on carbonaceous materials ranging from greenschist facies to granulite-facies graphite (Anchimetamorphism and Epimetamorphism zones). Raman spectroscopy has come to be regarded as a more appropriate tool than X-ray diffraction for study of highly ordered carbon materials, including chondritic matter, soot, polycyclic aromatic hydrocarbons and evolved coal samples. This work demonstrates the usefulness of the Raman spectroscopy analysis in determining internal crystallographic structure (disordered lattice, heterogeneity). Moreover, this methodology permits the detection of differences within the meta-anthracite rank, semi-graphite and graphite stages for the samples included in this study. In the first order Raman spectra, the bands located near to c.a. 1350 cm{sup -1} (defects and disorder mode A{sub 1g}) and 1580 cm{sup -1} (in plane E{sub 2g} zone - centre mode) contribute to the characterization and determination of the degree of structural evolution and graphitization of the carbonaceous samples. The data from Raman spectroscopy were compared with parameters obtained by means of structural, chemical and optical microscopic analysis carried out on the same carbonaceous samples. The results revealed some positive and significant relationships, although the use of reflectance as a parameter for following the increase in structural order in natural graphitized samples was subject to limitations. (author)

  1. FT-IR and micro-Raman spectroscopic study of decorated potteries from VI and VII century BC, excavated in ancient Ainos Turkey

    Science.gov (United States)

    Akyuz, S.; Akyuz, T.; Basaran, S.; Bolcal, C.; Gulec, A.

    2007-05-01

    Ancient decorated pottery fragments belong to sixth and seventh century BC, excavated in the archaeological district of Enez - Turkey (Ancient Ainos) were analysed using micro-Raman and FT-IR spectroscopy. The experimental results allowed us to identify the peculiar components of the ceramic body and the main pigments of the decoration. The presence of albite and anatase suggests low firing temperatures.

  2. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    , with particular focus on obtaining high quality of the final measurements. This naturally involves themes such as spectral resolution, sensitivity, elimination of background noise, and so on. Compared to Raman spectra excited with visible light, the DUV excited Raman spectra tend to have a markedly lower spectral...... resolution. The spectral resolution is an important factor to consider when using the DUV excited Raman spectroscopy. In line with this insight is the fact that we found a way to improve the knowledge on the spectral resolution of the DUV excited spectrum. A new method was invented during the project...... (absorption, condensation) are described. We have found a way to solve the problems, and our solution, using a special designed gas gap cell to obtain measurements of extraordinary high quality, are presented. The DUV Raman spectra of gasoline were excited by three different wavelengths, 257.3, 244.0 and 229...

  3. Raman spectroscopy of proteins and nucleoproteins.

    Science.gov (United States)

    Nemecek, Daniel; Stepanek, Josef; Thomas, George J

    2013-01-01

    A protein Raman spectrum comprises discrete bands representing vibrational modes of the peptide backbone and its side chains. The spectral positions, intensities, and polarizations of the Raman bands are sensitive to protein secondary, tertiary, and quaternary structures and to side-chain orientations and local environments. In favorable cases, the Raman spectrum serves as an empirical signature of protein three-dimensional structure, intramolecular dynamics, and intermolecular interactions. Quantitative analysis of Raman spectral series can be further boosted by advanced statistical approaches of factor analysis that allow fitting of specific theoretical models while reducing the amount of analyzed data. Here, the strengths of Raman spectroscopy are illustrated by considering recent applications from the authors' work that address (1) subunit folding and recognition in assembly of the icosahedral bacteriophages, (2) orientations of subunit main chains and side chains in native filamentous viruses, (3) roles of cysteine hydrogen bonding in the folding, assembly, and function of virus structural proteins, and (4) structural determinants of protein/DNA recognition in gene regulatory complexes. Conventional Raman and polarized Raman techniques are surveyed.

  4. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin.

    Science.gov (United States)

    Rodrigues Júnior, Paulo Henrique; de Sá Oliveira, Kamila; de Almeida, Carlos Eduardo Rocha; De Oliveira, Luiz Fernando Cappa; Stephani, Rodrigo; Pinto, Michele da Silva; de Carvalho, Antônio Fernandes; Perrone, Ítalo Tuler

    2016-04-01

    FT-Raman spectroscopy has been explored as a quick screening method to evaluate the presence of lactose and identify milk powder samples adulterated with maltodextrin (2.5-50% w/w). Raman measurements can easily differentiate samples of milk powder, without the need for sample preparation, while traditional quality control methods, including high performance liquid chromatography, are cumbersome and slow. FT-Raman spectra were obtained from samples of whole lactose and low-lactose milk powder, both without and with addition of maltodextrin. Differences were observed between the spectra involved in identifying samples with low lactose content, as well as adulterated samples. Exploratory data analysis using Raman spectroscopy and multivariate analysis was also developed to classify samples with PCA and PLS-DA. The PLS-DA models obtained allowed to correctly classify all samples. These results demonstrate the utility of FT-Raman spectroscopy in combination with chemometrics to infer about the quality of milk powder.

  5. Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences

    Science.gov (United States)

    Kuptsov, Albert N.

    2000-02-01

    First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.

  6. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  7. Raman spectroscopy as a tool for investigating lipid protein interactions

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Helix Nielsen, Claus

    2009-01-01

    Raman spectroscopy is a very well-established technique for noninvasive probing of chemical compounds. The fad that Raman scattering is an inherently weak effect has prompted many new developments in sample signal enhancement and techniques (such as surface-enhancement Raman spectroscopy [SERS]) ...... to study using noninvasive vibrational spectroscopy....

  8. Raman spectroscopy as a tool for reagent free estimation

    CERN Document Server

    Kumar, S

    2014-01-01

    We present results of Raman spectroscopic studies of urine to determine the suitability of near-infrared Raman spectroscopy for quantitative estimation of urinary urea. The Raman spectra were acquired from the urine samples with an inbuilt Raman spectroscopy setup that employs a 785-nm diode laser as the Raman excitation source. A multivariate algorithm based on partial least square (PLS) regression was developed to predict the concentration of urea depending on the measured sets of Raman spectra and the reference urea concentration. The computed results shows that Raman spectroscopy in amalgamation with PLS-based multivariate chemometric algorithm can detect urea in urine samples with an accuracy of >90 %.

  9. FT-IR and Raman spectra and vibrational investigation of bis (4-acetylanilinium) hexachlorostannate using DFT (B3LYP) calculation

    Science.gov (United States)

    Tarchouna, S.; Chaabane, I.; Rahaiem, A. Ben

    2016-09-01

    4-acetylanilinium was used as a ligand for the synthesis of the organic/inorganic compound bis (4-acetylanilinium) hexachlorostannate. Vibrational study in the solid state was performed by FT-Raman of the free 4-acetylanilinium ligand C8H9ON+ and by FT-IR and FT-Raman spectroscopies of the [C8H10NO]2 SnCl6 compound. The comparative analysis of the Raman spectra of the title compound with that of the free ligand was discussed. The structure of the [C8H10NO]2SnCl6 was optimized by density functional theory (DFT) using B3LYP method and shows that the calculated values obtained by B3LYP/LanL2DZ basis are in a better agreement with the experimental data reported by Song et al. (2011) [1] than those obtained by B3LYP/LanL2MB basis. The vibrational frequencies are calculated using density functional theory (DFT) with the B3LYP/LanL2DZ basis, and scaled by various factors. Root mean square (RMS) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal.

  10. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  11. Raman spectroscopy of 'Bisphenol A'

    Science.gov (United States)

    Ullah, Ramzan; Zheng, Yuxiang

    2016-03-01

    Raman spectra (95 - 3000 cm-1) of 'Bisphenol A' are presented. Absorption peaks have been assigned by Density Functional Theory (DFT) with B3LYP 6 - 311 ++ G (3df, 3pd) and wB97XD 6 - 311 ++ G (3df, 3pd). B3LYP 6 - 311 ++ G (3df, 3pd) gives frequencies which are nearer to experimental frequencies than wB97XD 6 - 311 ++ G (3df, 3pd) which involves empirical dispersion. Scale factor for wB97XD 6 - 311 ++ G (3df, 3pd) is found out to be 0.95008 by least squares fit.

  12. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy.

    Science.gov (United States)

    Lohumi, Santosh; Lee, Sangdae; Lee, Wang-Hee; Kim, Moon S; Mo, Changyeun; Bae, Hanhong; Cho, Byoung-Kwan

    2014-09-24

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1-35 wt % starch) were collected and preprocessed to generate calibration and prediction sets. A multivariate calibration model of partial least-squares regression (PLSR) was executed on the pretreated spectra to predict the presence of starch. The PLSR model predicted adulteration with an R(p)2 of 0.98 and a standard error of prediction (SEP) of 1.18% for the FT-NIR data and an R(p)2 of 0.90 and SEP of 3.12% for the FT-IR data. Thus, the FT-NIR data were of greater predictive value than the FT-IR data. Principal component analysis on the preprocessed data identified the onion powder in terms of added starch. The first three principal component loadings and β coefficients of the PLSR model revealed starch-related absorption. These methods can be applied to rapidly detect adulteration in other spices.

  13. Vibrational (FT-IR, Raman) and DFT analysis on the structure of labile drugs. The case of crystalline tebipenem and its ester

    Science.gov (United States)

    Paczkowska, Magdalena; Mizera, Mikołaj; Dzitko, Jakub; Lewandowska, Kornelia; Zalewski, Przemysław; Cielecka-Piontek, Judyta

    2017-04-01

    A tebipenem is active form of the first, oral carbapenem antibiotic - tebipenem pivoxyl. The optimized conformations of tebipenem pivoxyl and tebipenem were determinated by quantum-chemical calculations performed with the use of B3LYP functional and 6-31G(d,p) as a basis set. For the most stable conformations of tebipenem and its ester were established theoretical Raman and FT-IR spectra. The theoretical approach in significant part was support for identification of experimental Raman (400-4000 cm-1) and FT-IR (100-4000 cm-1) of tebipenem and tebipenem pivoxil. The geometric structure of molecules, HOMO and LUMO orbitals and molecular electrostatic potential were also determined. The benefits of applying FT-IR and Raman scattering spectroscopy for characterization of tebipenem and its ester consisted in demonstrating differences in their spectral properties.

  14. The effect of aqueous solution in Raman spectroscopy

    Science.gov (United States)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  15. Drug stability analysis by Raman spectroscopy.

    Science.gov (United States)

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-12-22

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety.

  16. Drug Stability Analysis by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chetan Shende

    2014-12-01

    Full Text Available Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety.

  17. Characterization of Kevlar Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  18. Analysis of lipsticks using Raman spectroscopy.

    Science.gov (United States)

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Applications of Raman Spectroscopy to Inorganic Chemistry

    Institute of Scientific and Technical Information of China (English)

    RobinJHClarkFRS

    1995-01-01

    The renaissance in Raman spectroscopy some 25-30 years ago had particular and immediate impact on Inorganic Chemistry,viz in areas such as the study of deeply coloued compounds,structural changes on change of state,equilibria,vapour phase band contour analysis,Raman band intensities and the nature of the chemical bond,metal-metal bonding,species in melts,identification of species in solution and of radicals by time-resolved techniques,in bioinorganic chemistry,and of linear-chain semiconductors.More recently,much attention has been directed at the quantitative level at the evaluation of geometric changes in molecules on excitation by resonance Raman spectroscopy.At the qualitative level Raman microscopy is now recognised to be the most effective technique for the identification of pigments-particularly the inorganic ones-on medieval manuscripts and especially of the components(down to grain sizes of -1 um)of pigment mixtures,It is thus a very important technique at the Arts/Science borderling in conservation science.

  20. Raman spectroscopy system with hollow fiber probes

    Science.gov (United States)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  1. Molecular structure, vibrational analysis (FT-IR, FT-Raman), NMR, UV, NBO and HOMO-LUMO analysis of N,N-Diphenyl Formamide based on DFT calculations.

    Science.gov (United States)

    Mathammal, R; Monisha, N R; Yasaswini, S; Krishnakumar, V

    2015-03-15

    In this work, the vibrational spectral analysis is carried out by using Raman and infrared spectroscopy in the range 4000-400 cm(-1) and 4000-50 cm(-1) respectively for N,N-Diphenyl Formamide (DPF) molecule. The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments, nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-VIS) spectra of the title molecule are evaluated using density functional theory (DFT) with standard B3LYP/6-31G(d,p) basis set. The harmonic vibrational frequencies are calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The stability of the molecule arising from hyper conjugative interactions and the charge delocalization has been analyzed using natural bond (NBO) analysis. The possible electronic transitions are determined by HOMO-LUMO orbital shapes and their energies. Thermodynamic properties (heat capacity, entropy and enthalpy) and the first hyperpolarizability of the title compound are calculated. The Mulliken charges and electric dipole moment of the molecule are computed using DFT calculations. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shift of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Rani, T; Mythili, C V; Mohan, S

    2012-03-01

    The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectral measurements and complete assignments of the observed spectra of 2-amino-4-methylbenzothiazole (2A4MBT) have been proposed. Ab initio and DFT calculations have been performed and the structural parameters of the compound were determined from the optimised geometry with 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO, LUMO and band gap energies were measured by time-dependent DFT (TD-DFT) approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman activities chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. The influences of methyl and amino groups on the skeletal modes and on the proton chemical shifts have been investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. FT-IR, FT-Raman, SERS and computational study of 5-ethylsulphonyl-2-(o-chlorobenzyl)benzoxazole.

    Science.gov (United States)

    Mary, Y Sheena; Raju, K; Yildiz, Ilkay; Temiz-Arpaci, Ozlem; Nogueira, Helena I S; Granadeiro, Carlos M; Van Alsenoy, Christian

    2012-10-01

    FT-IR, FT-Raman and surface-enhanced Raman scattering spectra of 5-ethylsulphonyl-2-(o-chlorobenzyl)benzoxazole were recorded and analyzed. The vibrational wavenumbers were examined theoretically using the Gaussian09 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution calculations. The presence of CH(2), SO(2) and CH(3) modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface which affects the orientation and metal molecule interaction. The synthesis, NMR spectra and antibacterial properties are reported. The title compound shows more inhibitory effect against Pseudomonas aeruginosa than ampicillin and found to be more potent against Klebsiella pneumoniae and drug-resistant Bacillus subtilis than the other microorganisms. A computation of the first hyperpolarizability indicates that the compound may be a good candidate as a NLO material. The RMS errors of the observed Raman and IR bands are found to be 30.93, 29.77 for HF and 9.57, 6.75 for DFT methods, respectively.

  4. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    KEY WORDS: 2,2-Bis(aminoethoxy)propane, IR spectra, Raman spectra, ... were first optimized by B3LYP with 6-311G++(d,p) basis set in the gas phase. .... Molecular electronic polarizability of symmetric vibrational form of NH2 changes more ...

  5. The Impact of Array Detectors on Raman Spectroscopy

    Science.gov (United States)

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  6. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis

    Science.gov (United States)

    Sharma, Amit; Sharma, Shruti; Zarrow, Anna; Schwartz, Robert A; Lambert, W Clark

    2016-01-01

    Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management. PMID:26955087

  7. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  8. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  9. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  10. Spectroscopic (FT-IR, FT-Raman, UV-Visible) and quantum chemical studies of 4-Chloro-3-iodobenzophenone

    Science.gov (United States)

    Venkata Prasad, K.; Muthu, S.; Santhamma, C.

    2017-01-01

    The vibrational analysis of the substituted Benzophenone molecule 4-Chloro-3-iodobenzophenone (4, 3-ClIBP) is carried out using both FT-IR and FT-Raman spectra and also quantum chemical calculations of the scaled frequencies using the DFT method B3LYP/LanL2DZ basis set. The natural bond orbital analysis of this molecule has been carried out to describe the various intramolecular interactions responsible for the stabilization of the molecule. The HOMO, LUMO energy gap have been computed with the TD-DFT theory and the differences are compared with UV-absorption spectra. The statistical thermodynamic functions are calculated for the range of 100-1000 k. The Fukui functions are evaluated to describe the activity of the sites.

  11. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  12. Spectroscopic (FT-IR, FT-Raman, UV) and microbiological studies of di-substituted benzoates of alkali metals

    Science.gov (United States)

    Kalinowska, M.; Świsłocka, R.; Borawska, M.; Piekut, J.; Lewandowski, W.

    2008-06-01

    The FT-IR, FT-Raman and UV spectra of 3,5-dihydroxybenzoic and 3,5-dichlorobenzoic acids as well as lithium, sodium, potassium, rubidium, caesium 3,5-dihydroxy- and 3,5-dichlorobenzoates were recorded, assigned and compared. The theoretical geometries, Mulliken atomic charges, IR wavenumbers were obtained in B3LYP/6-311++G** level. On the basis of the gathered experimental and theoretical data the effect of metals and substituents on the electronic system of studied compounds were investigated. Moreover, the antimicrobiological activity of studied compounds against two species of bacteria: Bacillus subtilis, Staphylococus aureus and one species of yeast: Candida albicans were studied after 24 and 48 h of incubation. The attempt was made, to find out whether there is any correlation between the first principal component and the degree of growth inhibition exhibited by studied compounds in relation to selected microorganisms.

  13. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression

    Science.gov (United States)

    Oleszko, Adam; Hartwich, Jadwiga; Wójtowicz, Anna; Gąsior-Głogowska, Marlena; Huras, Hubert; Komorowska, Małgorzata

    2017-08-01

    Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7 mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.

  14. Applications of Raman Spectroscopy to Virology and Microbial Analysis

    Science.gov (United States)

    Harz, Michaela; Stöckel, Stephan; Ciobotă, Valerian; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    This chapter reports from the utilization of Raman spectroscopic techniques like Raman microscopy, Raman optical activity (ROA), UV-resonance Raman (UVRR)-spectroscopy, surface enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS) for the investigation of viruses and microorganisms, especially bacteria and yeasts for medical and pharmaceutical applications. The application of these Raman techniques allows for the analysis of chemical components of cells and subcellular regions, as well as the monitoring of chemical differences occurring as a result of the growth of microorganisms. In addition, the interaction of microorganisms with active pharmaceutical agents can be investigated. In combination with chemometric methods Raman spectroscopy can also be applied to identify microorganisms both in micro colonies and even on single cells.

  15. FT-IR and Micro-Raman spectroscopic studies of archaeological potteries recently excavated in Poompuhar, Tamilnadu, India

    Science.gov (United States)

    Kiruba, S.; Ganesan, S.

    2015-06-01

    Ancient ceramics are the abundant artifacts that give the knowledge of the past societies. Therefore it is of great importance to acquire knowledge about the chemical composition of the clay in archaeological artifacts. The spectroscopic techniques represent one of the most powerful tools to investigate the structure of all the materials and chemical composition of the cultural object like potteries. An attempt has been made in the present work to estimate the firing temperature of the archaeological pottery shreds excavated from the archaeological site Poompuhar in the state of Tamilnadu in India. The firing temperature of the archaeological pottery shreds were estimated by recording the corresponding FT-IR spectra in the range 4000-450 cm-1 and Micro Raman spectra in the range 1800-400 cm-1. The clay mineral present in the pottery samples are identified through FT-IR method and was confirmed with Micro Raman spectroscopy as both are complement to each other. The major primary mineral present in the samples is Kaolinite and the secondary mineral present is quartz and the accessory minerals present in the samples are hematite, magnetite and feldspar. The results of Raman spectra showed that the potters of this site used a mixture of clays as raw materials. The firing temperature for some of the samples did not exceed 800 °C which suggests the use of open fire.

  16. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    N K Rai; A Y Lakshmanna; V V Namboodiri; S Umapathy

    2012-01-01

    When a light beam passes through any medium, the effects of interaction of light with the material depend on the field intensity. At low light intensities the response of materials remain linear to the amplitude of the applied electromagnetic field. But for sufficiently high intensities, the optical properties of materials are no longer linear to the amplitude of applied electromagnetic field. In such cases, the interaction of light waves with matter can result in the generation of new frequencies due to nonlinear processes such as higher harmonic generation and mixing of incident fields. One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular system. Ultrafast Raman loss spectroscopy (URLS) is analogous to SRS but is more sensitive than SRS. In this paper, we present the theoretical basis of SRS (URLS) techniques which have been developed in our laboratory.

  17. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials

    OpenAIRE

    Ying-Sing Li; Church, Jeffrey S.

    2014-01-01

    Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With t...

  18. Diagnosing breast cancer by using Raman spectroscopy

    Science.gov (United States)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  19. Confocal Raman spectroscopy of whole hairs.

    Science.gov (United States)

    Pudney, Paul D A; Bonnist, Eleanor Y M; Mutch, Kevin J; Nicholls, Rachel; Rieley, Hugh; Stanfield, Samuel

    2013-12-01

    This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research.

  20. Analytical discrimination between sources of ginseng using Raman spectroscopy.

    Science.gov (United States)

    Edwards, H G M; Munshi, T; Page, K

    2007-12-01

    Ginseng is a widely used medicinal product that grows mainly in Korea, China and America. American ginseng is classified as an endangered species, and so the import and export of this type of ginseng is illegal in certain countries. Due to this restriction it is becoming increasingly important to be able to distinguish between different types of ginseng. FT-Raman spectroscopy has the ability to discriminate between ginseng specimens according to the country of origin and the effects of processing on the ginseng material. The ginsenoside content of ginseng differs in both conformation and concentration depending on the source of the ginseng, which means that ginseng grown in different countries should express unique spectral features. The presence or absence of these features, therefore, could indicate the geographical origin of the sample. Several spectral features were identified for a range of ginsengs, such as a peak at 980 cm(-1) that was only found in Chinese ginseng, and the different wavenumber positions of characteristic ginseng bands near 1600 cm(-1). This indicates that Raman spectroscopy can be used to pinpoint the origin of an unknown ginseng sample and that it would provide a rapid nondestructive analytical technique for formally discriminating between restricted and permitted imports.

  1. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.

    Science.gov (United States)

    Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa

    2016-03-01

    In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods.

  2. Laser tweezers Raman spectroscopy of single cells

    Science.gov (United States)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  3. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Barrotte Albino

    2011-06-01

    Full Text Available The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN and FT-Raman spectroscopy (FTIR of one nanofilled (Filtek Supreme-3M-ESPE [FS] and one microhybrid composite (Charisma-Heraeus-Kulzer [CH], each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH and a light-emitting diode (LED. Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05. Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05. The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.

  4. Exploring many body interactions with Raman spectroscopy

    Science.gov (United States)

    Tian, Yao

    Many-body interactions are cornerstones of contemporary solid state physics research. Especially, phonon related interactions such as phonon-phonon coupling, spin-phonon coupling and electron-phonon coupling constantly present new challenges. To study phonon related many-body interactions, temperature dependent Raman spectroscopy is employed. Firstly, a new design and construction of a Raman microscope aimed at high collection eciency, positional and thermal stability is discussed. The application of the home-built Raman microscope is shown in the context of two types of novel materials; Cr2Ge2Te6 (spin-phonon coupling) and Bi2Te3-xSex (phonon-phonon coupling). Cr2Ge2Te6 is one of the rare class of ferromagnetic semiconductors and recent thermal transport studies suggest the spin and lattice are strongly coupled in its cousin compound Cr2Si2Te6. In this work, the spin-phonon coupling in Cr2Ge2Te6 has been revealed in multiple ways: we observed a split of two phonon modes due to the breaking of time reversal symmetry; the anomalous hardening of an additional three modes; and a dramatic enhancement of the phonon lifetimes. It is well-known that the phonon-phonon interaction plays a signicant role in determining the thermal transport properties of thermoelectrics. A comprehensive study of the phonon dynamics of Bi2Te3-xSex has been performed. We found that the unusual temperature dependence of dierent phonon modes originates from both cubic and quartic anharmonicity. These results are consistent with the resonance bonding mechanism, suggesting that the resonance bonding may be a common feature for conventional thermoelectrics. In the Raman spectra of Bi2Te2Se, the origin of the extra Raman feature has been debated for decades. Through a temperature dependent Raman study, we were able to prove the feature is generated by a Te-Se antisite induced local mode. The anomalous linewidth of the local mode as well as the anharmonic behavior were explained through a statistical

  5. Raman spectroscopy as a tool for investigating lipid protein interactions

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Helix Nielsen, Claus

    2009-01-01

    Raman spectroscopy is a very well-established technique for noninvasive probing of chemical compounds. The fad that Raman scattering is an inherently weak effect has prompted many new developments in sample signal enhancement and techniques (such as surface-enhancement Raman spectroscopy [SERS......]) as well as improved technical equipment for signal capture (such as improved sensitivity of charge-coupled devices [CCDs]). Combined, these technological advances have brought Raman spectroscopy into a new era in which hitherto inaccessible or hardly accessible research areas now are becoming possible...... to study using noninvasive vibrational spectroscopy....

  6. Characterization of Thalidomide using Raman Spectroscopy

    Science.gov (United States)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  7. Characterization of amino acids using Raman spectroscopy

    Science.gov (United States)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  8. Raman Spectroscopy Of Glass-Crystalline Transformations

    Science.gov (United States)

    Haro, E.; Balkanski, M.

    1988-01-01

    Glass-crystalline transition is induced by laser irradiation on a GeSe bulk glass sample. The structural changes are detected by Raman spectroscopy. The speed of the crystallization process depends on the laser irradiation intensity. We have studied this crystallization process for three different powers of irradiation. It is found that the speed of crystallization increases with power. Stokes and anti-Stokes spectra were recorded during the transformation. From this data temperature was inferred at different stages of crystallization. The significance of this temperature is discussed.

  9. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  10. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer.

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-05-15

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed.

  11. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Cerys A Jenkins; Paul D Lewis; Peter R Dunstan; Dean A Harris

    2016-01-01

    Colorectal cancer(CRC) is the fourth most commoncancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer.Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting.Raman spectroscopy and surface enhanced Raman spectroscopy(SERS) are forms of vibrational spectroscopy that offer a nondestructive method to gain molecular information about biological samples.The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes,to the use of micro-spectrometers for analysis of biofluids.The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC.The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom.The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed.Finally,future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed.

  12. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    Science.gov (United States)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  13. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid

    Science.gov (United States)

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-01

    In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.

  14. UTI diagnosis and antibiogram using Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  15. Coronagraphic Notch Filter for Raman Spectroscopy

    Science.gov (United States)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  16. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    Science.gov (United States)

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... is not suitable for their unambiguous identification, especially not in solution. We attempted to increase the sensitivity by applying UV-resonance Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) techniques. The UV-Raman spectra of the three compounds in ethanol/water 50 : 50 showed only very...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  18. Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2007-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...... will be applied to many more systems in the future. A few examples will be discussed....

  19. Determination of ripeness stages of Mazafati variety of date fruit by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    R Khodabakhshian

    2016-04-01

    Full Text Available Introduction: The economical yield of date fruits depends on many factors (Al-Shahib and Marshall, 2003. One of them is harvesting in optimum stage. Generally, date fruits have four distinct stages of ripeness to satisfy different consumption requirements (e.g., fresh and processed. They are known throughout the world by their Arabic names which are Kimri, Khalal, Rutab and Tamr in order of ripeness (Imad and Abdul Wahab, 1995; Al-Shahib and Marshall, 2003; Sahari et al., 2007. Decreasing moisture content and increasing sugar content happens gradually while the date ripeness approaches to Tamr stage. From Kimri to Khalal stage, the size and acidity decreases when the color of Mazafati variety changes from green to red. The change in acidity continues from Rutab to Tamr stage while color transforms from brown to black. At the final stage of ripeness, Mazafati variety is soft and has a good storability (Al-Shahib and Marshall, 2003. The main Raman techniques commonly applied in agricultural product and food analyzing include dispersive Raman spectroscopy, Fourier Transform (FT, Raman spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS and Spatially Offset Raman Spectroscopy (SORS. Synytsya et al. (2003 illustrated that FT-Raman spectroscopy is a valuable tool in structural analysis of commercial citrus and sugar beet pectin. Yang and Irudayaraj (2003 employed an FT-Raman approach to detect and classify foodborne microorganisms on the whole apple surface for the first time. Schulz et al., (2005 revealed the potential of FT-Raman spectroscopy in natural carotenoid analysis. Also, many researchers have attempted to apply FT-Raman spectra on the whole fruits and vegetables. FT-Raman spectroscopy was used by Veraverbeke et al. (2005 to evaluate the natural, intact wax layers on the surface of whole fruits. Nikbakht et al. (2011 used a FT-Raman spectroscopy for qualitative and quantitative analysis of tomato ripeness parameters. The scope of this

  20. Spectroscopic characterization of enzymatic flax retting: Factor analysis of FT-IR and FT-Raman data

    Science.gov (United States)

    Archibald, D. D.; Henrikssen, G.; Akin, D. E.; Barton, F. E.

    1998-06-01

    Flax retting is a chemical, microbial or enzymatic process which releases the bast fibers from the stem matrix so they can be suitable for mechanical processing before spinning into linen yarn. This study aims to determine the vibrational spectral features and sampling methods which can be used to evaluate the retting process. Flax stems were retted on a small scale using an enzyme mixture known to yield good retted flax. Processed stems were harvested at various time points in the process and the retting was evaluated by conventional methods including weight loss, color difference and Fried's test, a visual ranking of how the stems disintegrate in hot water. Spectroscopic measurements were performed on either whole stems or powders of the fibers that were mechanically extracted from the stems. Selected regions of spectra were baseline and amplitude corrected using a variant of the multiplicative signal correction method. Principal component regression and partial least-squares regression with full cross-validation were used to determine the spectral features and rate of spectral transformation by regressing the spectra against the retting time in hours. FT-Raman of fiber powders and FT-IR reflectance of whole stems were the simplest and most precise methods for monitoring the retting transformation. Raman tracks the retting by measuring the decrease in aromatic signal and subtle changes in the C-H stretching vibrations. The IR method uses complex spectral features in the fingerprint and carbonyl region, many of which are due to polysaccharide components. Both spectral techniques monitor the retting process with greater precision than the reference method.

  1. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    Science.gov (United States)

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  2. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    DEFF Research Database (Denmark)

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...... (PLS) regression. High correlations (r > 0.96) were obtained from cross validations of the data estimated by FT-IR, FT-NIRand above-mentioned conventional analytical methods, except for correlations (r = 0.90-0,95) between FT-IR and SFC profiles. Overall, FT-NIR spectroscopy coupled with transmission...

  3. Skin biochemical composition analysis by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Patricia Karen; Tosato, Maira Gaspar; Alves, Rani de Souza; Martin, Airton Abrahao; Favero, Priscila Pereira; Raniero, Leandro, E-mail: amartin@univap.br [Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento - IP e D, Universidade do Vale do Paraiba - UniVap, Sao Jose dos Campos, SP (Brazil)

    2012-09-15

    Skin aging is characterized by cellular and molecular alterations. In this context, Confocal Raman spectroscopy was used in vivo to measure these biochemical changes as function of the skin depth. In this study we have tried to correlate spectra from pure amino acids to in vivo spectra from volunteers with different ages. This study was performed on 32 volunteers: 11 from Group A (20-23 years), 11 from Group B (39-42 years) and 10 from Group C (59-62 years). For each group, the Raman spectra were measured on the surface (0 mm), 30 +- 3 mm and 60 +- 3 {mu}m below the surface. The results from intergroup comparisons showed that the oldest group had a prevalence of the tyrosine band, but it also presented a decrease in the band centered at 875 cm{sup -1} of pyrrolidone acid. The amide I band centered at 1637 cm{sup -1} that is attributed to collagen, as well as other proteins and lipid, showed a smaller amount of these biomolecules for Group C, which can be explained by the decrease in collagen concentration as a function of age. (author)

  4. Evaluation of solid-state forms present in tablets by Raman spectroscopy.

    Science.gov (United States)

    Taylor, L S; Langkilde, F W

    2000-10-01

    In this study the potential of Fourier transform (FT)-Raman spectroscopy as a method to probe the solid-state form of active substances present in tablets and capsules is explored. Raman spectra were obtained from intact tablets and capsules containing enalapril maleate, prednisolone, form I and form II polymorphs of ranitidine, anhydrous and monohydrate theophylline, and warfarin sodium clathrate. Spectra were also collected from the corresponding drug substances. These studies show that it is possible to detect the active ingredients in the intact dosage form, even where the substance comprises tablet. Moreover, it is shown that, in some cases, Raman spectroscopy can also be used to investigate the solid-state form of a drug present in the dosage form and even to determine if a mixture of forms are present.

  5. Raman spectroscopy of human saliva for acute myocardial infarction detection

    Science.gov (United States)

    Chen, Maowen; Chen, Yuanxiang; Wu, Shanshan; Huang, Wei; Lin, Jinyong; Weng, Guo-Xing; Chen, Rong

    2014-09-01

    Raman spectroscopy is a rapidly non-invasive technique with great potential for biomedical research. The aim of this study was to evaluate the feasibility of using Raman spectroscopy of human saliva for acute myocardial infarction (AMI) detection. Raman spectroscopy measurements were performed on two groups of saliva samples: one group from patients (n=30) with confirmed AMI and the other group from healthy controls (n=31). The diagnostic performance for differentiating AMI saliva from normal saliva was evaluated by multivariate statistical analysis. The combination of principal component analysis (PCA) and linear discriminate analysis (LDA) of the measured Raman spectra separated the spectral features of the two groups into two distinct clusters with little overlaps, rendering the sensitivity of 80.0% and specificity of 80.6%. The results from this exploratory study demonstrated that Raman spectroscopy of human saliva can serve as a potentially clinical tool for rapid AMI detection and screening.

  6. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  7. FT-Raman study of deferoxamine and deferiprone exhibits potent amelioration of structural changes in the liver tissues of mice due to aluminum exposure

    Science.gov (United States)

    Sivakumar, S.; Khatiwada, Chandra Prasad; Sivasubramanian, J.; Raja, B.

    2014-01-01

    The present study inform the alterations on major biochemical constituents such as lipids, proteins, nucleic acids and glycogen along with phosphodiester linkages, tryptophan bands, tyrosine doublet, disulfide bridge conformations, aliphatic hydrophobic residue, and salt bridges in liver tissues of mice using Fourier transform Raman spectroscopy. In amide I, amide II and amide III, the area value significant decrease due structural alteration in the protein, glycogen and triglycerides levels but chelating agents DFP and DFO upturned it. Morphology changes by aluminium induced alterations and recovery by chelating agents within liver tissues known by histopathological examination. Concentrations of trace elements were found by ICP-OES. FT-Raman study was revealed to be in agreement with biochemical studies and demonstrate that it can successfully specify the molecular alteration in liver tissues. The tyrosyl doublet ratio I899/I831 decreases more in aluminum intoxicated tissues but treatment with DFP and DFO + DFP brings back to nearer control value. This indicates more variation in the hydrogen bonding of the phenolic hydroxyl group due to aluminum poisoning. The decreased Raman intensity ratio (I3220/I3400) observed in the aluminum induced tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the aluminum intoxicated liver tissues. Finally, FT-Raman spectroscopy might be a useful tool for obtained successfully to indicate the molecular level changes.

  8. Operando Raman Micro Spectroscopy of Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2016-01-16

    H3152 Journal of The Electrochemical Society, 163 (4) H3152-H3159 (2016) JES FOCUS ISSUE HONORING ALLEN J. BARD Operando Raman Micro- Spectroscopy of...Chemistry, 79(6), 2367 (2007). 30. H. W. Abernathy et al., “Monitoring Ag-Cr interactions in SOFC cathodes using Raman spectroscopy ,” Journal of Physical...obtain reliable inner water contents,” Journal of Raman Spectroscopy , 44(2), 321 (2013). 32. P. Huguet et al., “In situ analysis of water management

  9. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  10. Real-time in vivo cancer diagnosis using Raman spectroscopy.

    Science.gov (United States)

    Wang, Wenbo; Zhao, Jianhua; Short, Michael; Zeng, Haishan

    2015-07-01

    Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected. © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  12. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  13. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan;

    2007-01-01

    is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...

  14. Investigation of biomineralization by Raman spectroscopy

    Science.gov (United States)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  15. Fourier-Transform Raman Spectroscopy of Polymers Caractérisation de polymères par spectroscopie Raman à transformée de Fourier

    Directory of Open Access Journals (Sweden)

    Siesler H. W.

    2006-11-01

    Full Text Available The recent extension of the Fourier-Transform (FT technique to the Raman effect has launched Raman spectroscopy into a new era of polymer chemical and physical applications. Thus, the increase in signal-to-noise ratio and the improvement in time resolution have largely enhanced the potential of FT-Raman spectroscopy for analytical applications, the characterization of time-dependent phenomena and the on-line combination with other techniques. Primarily the suppression of fluorescence by shifting the excitation line to the near-infrared (NIR region has contributed to the fast acceptance as an industrial routine tool. Furthermore, the application of fiber optics has opened up the areas of process-control and remote sensing. Les applications de la spectroscopie Raman dans le domaine des polymères sont entrées dans une ère nouvelle, grâce aux récents développements de la technique à transformée de Fourier avec excitation dans le proche infrarouge. L'augmentation du rapport signal sur bruit et l'amélioration de la résolution temporelle ont fortement renforcé les potentialités de la technique en ce qui concerne les applications analytiques, la caractérisation de phénomènes qui dépendent du temps et le couplage en ligne avec d'autres techniques. La suppression du phénomène de fluorescence par déplacement de la longueur d'onde de l'excitatrice dans le proche infrarouge a contribué à l'intégration rapide de l'outil en site industriel. L'emploi de fibres optiques a permis l'accroissement des applications dans le domaine du contrôle des procédés et d'analyser à distance.

  16. Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Ponkumar

    2011-01-01

    Full Text Available Problem statement: In the present study, FT Raman spectroscopy had been used to extend our knowledge about Magnesium ion - DNA interactions at various volume ratios (1:50, 1:20, 1:10 and 1:5. Approach: The analysis of FT Raman data supported the existence of structural specificities in the interaction and also the stability of DNA secondary structure. Results: Results from the Raman spectra clearly indicate that the interaction of Magnesium ion with DNA is mainly through the phosphate groups of DNA with negligible change of the B-conformation of DNA at all the volume ratios studied. For example, band at 1079 cm-1 assigned to the symmetrical stretching vibration of the nucleic acid phosphodioxy (PO-2 group. This band in the order 1079¨ 1075¨ 1070¨ 1066¨ 1063 cm-1 at all Magnesium ion DNA concentrations studied. Similarly, Raman band at 845 cm-1 due to antisymmetrical phosphodiester (O-P-O stretching of DNA. Conclusion: Magnesium ion interaction with the DNA phosphate is weak in comparison to interactions with the bases. On the other hand, the Raman signature of B-DNA is largely unperturbed by magnesium ion, suggesting much weaker interactions.

  17. Applications of spatially offset Raman spectroscopy to defense and security

    Science.gov (United States)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  18. Raman spectroscopy of CNC-and CNF-based nanocomposites

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    In this chapter, applications of Raman spectroscopy to nanocelluloses and nanocellulose composites are reviewed, and it is shown how use of various techniques in Raman can provide unique information. Some of the most important uses consisted of identification of cellulose nanomaterials, estimation of cellulose crystallinity, study of dispersion of cellulose...

  19. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  20. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst characte

  1. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  2. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH

    2007-10-01

    Full Text Available The viability of using pulsed laser excited Raman spectroscopy as a method for diamond detection from ore, has been investigated. In this method the spontaneous Stokes Raman signal is used as indicator of diamond, and a dual channel system...

  3. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  4. Surface- and tip-enhanced raman spectroscopy in catalysis

    NARCIS (Netherlands)

    Hartman, Thomas; Wondergem, Caterina S.; Kumar, Naresh; van den Berg, Albert; Weckhuysen, Bert M.

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low

  5. Raman spectroscopy characterization of colored pigments in archaeological materials

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    . The number of research papers on the subject of Raman spectroscopy applied to pigments and art has been growing very fast during the last years. To get a comprehensive overview we refer to three recent theme numbers of Journal of Raman Spectroscopy1, 2, 3 and other dedicated texts such as e.g. Edwards et al...... to the artifacts or artworks. In this connection the Raman spectroscopy technique must be considered a most elegant method for pigment and materials analysis of relevant museum and archaeological materials. This is done by correlating some bands in the studied pigments with those of well characterized references....... The use of Raman spectroscopy can be taken to illustrate this: It provides e.g. information of importance to art restorers and museum conservation scientists in preserving materials and the understanding of deterioration processes. It does so by identification of key components, as shown in Fig. 1. Prior...

  6. Surface- and tip-enhanced raman spectroscopy in catalysis

    NARCIS (Netherlands)

    Hartman, Thomas; Wondergem, Caterina S.; Kumar, Naresh; Berg, van den Albert; Weckhuysen, Bert M.

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quan

  7. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis

    NARCIS (Netherlands)

    Hartman, Thomas; Wondergem, Caterina S.; Kumar, Naresh; van den Berg, Albert; Weckhuysen, Bert M.

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quan

  8. Molecular-level investigation on electrochemical interfaces by Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    TIAN, Zhong-Qun; REN, Bin

    2000-01-01

    The structure and dynamics of electrode/liquid interfaces play an increasingly important role in electrochemistry. Raman spectroscopy is capable of providing detailed structural information at molecular level and new insight into the interfacial structure, adsorption, reaction, electrocatalysis and corrosion. In this account we will summarize some progresses of surface Raman spectroscopy in the study of electrochemical interfaces, mainly based on our group's work, laying emphasis on the detection sensitivity, spectral resolution, time resolution and spatial resolution as well as the hyphenated technique.

  9. Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures.

    Science.gov (United States)

    Daher, Céline; Bellot-Gurlet, Ludovic; Le Hô, Anne-Solenn; Paris, Céline; Regert, Martine

    2013-10-15

    Natural organic substances are involved in many aspects of the cultural heritage field. Their presence in different forms (raw, heated, mixed), with various conservation states, constitutes a real challenge regarding their recognition and discrimination. Their characterization usually involves the use of separative techniques which imply destructive sampling and specific analytical preparations. Here we propose a non destructive approach using FT-Raman and infrared spectroscopies for the identification and differentiation of natural organic substances. Because of their related functional groups, they usually present similar vibrational signatures. Nevertheless the use of appropriate signal treatment and statistical analysis was successfully carried out to overcome this limitation, then proposing new objective discriminating methodology to identify these substances. Spectral decomposition calculations were performed on the CH stretching region of a large set of reference materials such as resins, oils, animal glues, and gums. Multivariate analyses (Principal Component Analyses) were then performed on the fitting parameters, and new discriminating criteria were established. A set of previously characterized archeological resins, with different surface aspects or alteration states, was analyzed using the same methodology. These testing samples validate the efficiency of our discriminating criteria established on the reference corpus. Moreover, we proved that some alteration or ageing of organic materials is not an issue to their recognition.

  10. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    Science.gov (United States)

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  11. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    Science.gov (United States)

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  12. Comparative spectral analysis of commercial fuel-ethanol blends using a low-cost prototype FT-Raman spectrometer

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Meyrueis, Patrick; Javahiraly, Nicolas

    2012-06-01

    The use of bio-fuels and fuel blends, specially in automotive industry, has been increasing substantially in recent years due to market prices and trends on sustainable development policies. Different spectral analysis techniques for quality control, production, purity, and counterfeit detection have been reported as non-invasive, fast, and price accessible. Raman spectra from three different commercial binary E10 fuel-ethanol blends has been obtained by using a low-cost Fourier-Transform Raman spectrometer (FT-Raman). Qualitative comparison between the commercial fuel blends and a laboratory-prepared fuel blend have been performed. The characteristic Raman lines from some additives contained in the commercial gasoline have been also observed. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66 cm-1. These Raman spectra shows reduced frequency deviation (less than 0.4 cm-1 when compared to standard Raman spectra from cyclohexane and toluene without compensation for instrumental response). Higher resolution values are possible, since the greater optical path lengths of the FT-Raman are achievable before the instrumental physical effects appear. The robust and highly flexible FT-Raman prototype proposed for the spectral analysis, consisting mainly of a Michelson interferometer and a self-designed photon counter, is able to deliver high resolution and precise Raman spectra with no additional complex hardware or software control. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by extracting the optical path information from the generated interference pattern of a λ=632.8 nm Helium-Neon laser (HeNe laser), which is used at the spectrum evaluation.

  13. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    Compared to traditional IR methods, Raman spectroscopy has the advantage of only minimal interference from water when measuring aqueous samples, which makes this method potentially useful for in situ monitoring of important industrial bioprocesses. This study demonstrates real-time monitoring...... of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...

  14. On the Contribution of Raman Spectroscopy to Forensic Science

    Science.gov (United States)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  15. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials.

    Science.gov (United States)

    Li, Ying-Sing; Church, Jeffrey S

    2014-03-01

    Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1) fabrication of nanostructurally regular and uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution. Copyright © 2014. Published by Elsevier B.V.

  16. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials

    Directory of Open Access Journals (Sweden)

    Ying-Sing Li

    2014-03-01

    Full Text Available Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1 fabrication of nanostructurally regular and uniform substrates; (2 application of statistic data analysis; and (3 isotopic dilution.

  17. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    Science.gov (United States)

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  18. The Clinical Application of Raman Spectroscopy for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Pin Gao

    2017-01-01

    Full Text Available Raman spectroscopy has been widely used as an important clinical tool for real-time in vivo cancer diagnosis. Raman information can be obtained from whole organisms and tissues, at the cellular level and at the biomolecular level. The aim of this paper is to review the newest developments of Raman spectroscopy in the field of breast cancer diagnosis and treatment. Raman spectroscopy can distinguish malignant tissues from noncancerous/normal tissues and can assess tumor margins or sentinel lymph nodes during an operation. At the cellular level, Raman spectra can be used to monitor the intracellular processes occurring in blood circulation. At the biomolecular level, surface-enhanced Raman spectroscopy techniques may help detect the biomarker on the tumor surface as well as evaluate the efficacy of anticancer drugs. Furthermore, Raman images reveal an inhomogeneous distribution of different compounds, especially proteins, lipids, microcalcifications, and their metabolic products, in cancerous breast tissues. Information about these compounds may further our understanding of the mechanisms of breast cancer.

  19. Raman microspectrometry, FT-IR and inclusion characteristics of gem garnets from Tanzania and Madagascar

    Institute of Scientific and Technical Information of China (English)

    Sang-kon Kim; Maeng-eon Park; Seung-gyun Baek; Kyu-youl Sung; Sun-ok Kim; Hee-yul Park

    2004-01-01

    Chemical composition, Raman microspectrometry, and Fourier transform infrared (FT-IR) and SEM-CL (Cathodluminescence) analyses are carried out for Tanzania and Madagascar garnets for locality identification. Inclusion study was sustained after electron probe microanalysis (EPMA). Needle-like illmenites, apatites and zircons were the most common solid inclusions in Tanzania garnets. Madagascar garnets revealed rutile needles and apatites were also observed, but differences in size, shape and distribution patterns were noticed compared to Tanzania garnets. Tanzania garnets exhibited all types of observable fluid inclusions such as "fingerprint" pattern, called Type Ⅰ-A, liquid-only (L) single phase fluid inclusion, called Type Ⅰ-B and Type Ⅱ-A (L + S), Type Ⅱ-B (L + V) and Type Ⅲ-A (L + Sylvite +S), Type Ⅲ-B (L+S+V), while no more than two phase fluid inclusions found in both Madagascar and Korea garnets even if all examined garnets from three localities retained "fingerprint" features, so called, partially healed fractures, in common. Chemical composition, Raman microspectrometry and Fourier transform infrared (FT-IR) analysis taken turned out to be useful methods for the purpose of this study. Using consequences of SEM-CL and inclusion study, accordingly,the locality identification of gem-quality garnets is capable of being available in further application for other kinds of gemstones.

  20. Coherent anti-Stokes Raman spectroscopy: Understanding the essentials

    Science.gov (United States)

    Ariunbold, Gombojav O.; Altangerel, Narangerel

    2016-12-01

    This paper is a brief overview to coherent anti- Stokes Raman spectroscopic technique and introduces the strengths and barriers to its use all based on the interpretation of simple theoretical formulae. The use of the Gaussian ultrashort pulses is highlighted as a practical elucidatory reconstruction tool of coherent Raman spectra. The paper presents the integral formulae for coherent anti-Stokes and Stokes Raman scattering, and discusses the closed-form solutions, its complex error function, and the delay time formula for enhancement of the inferred pure coherent Raman spectra. As an example, the timeresolved coherent Stokes Raman scattering experimental observations are quantitatively elucidated.Understanding the essentials of coherent Raman spectroscopy, therefore, promotes the importance of a number of experiments including the ones utilizing a broadband excitation with a narrowband delayed probing for successful background suppression.

  1. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  2. Combined FT-Raman spectroscopic and mass spectrometric study of ancient Egyptian sarcophagal fragments.

    Science.gov (United States)

    Edwards, Howell G M; Stern, Ben; Villar, Susana E Jorge; David, A Rosalie

    2007-02-01

    The application of combined Raman spectroscopic and GC-MS analytical techniques for the characterisation of organic varnish residues from Egyptian Dynastic funerary sarcophagal and cartonnage fragments from the Graeco-Roman period, ca. 2200 BP, is described. The nondestructive use of Raman spectroscopy was initially employed to derive information about the specific location of organic material on the specimens, which were then targeted in specific areas using minimal sampling for GC-MS analysis. In the case of the sarcophagal fragment, a degraded yellow-brown surface treatment was identified as a Pistacia spp. resin; this provides additional evidence for the use of this resin, which has previously been identified in Canaanite transport amphorae, varnishes and "incense" bowls in an Egyptian Late Bronze Age archaeological context. The cartonnage fragment also contained an organic coating for which the Raman spectrum indicated a degradation that was too severe to facilitate identification, but the GC-MS data revealed that it was composed of a complex mixture of fatty acid residues. The combined use of GC-MS and Raman spectroscopy for the characterisation of organic materials in an archaeological context is advocated for minimisation of sampling and restriction to specifically identified targets for museum archival specimens.

  3. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    Science.gov (United States)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  4. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    Science.gov (United States)

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-07

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

  5. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  6. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Identification of color development potential of quartz by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alkmim, Danielle G.; Lameiras, Fernando S.; Almeida, Frederico O.T., E-mail: alkmia@yahoo.com.br, E-mail: fsl@cdtn.br [Centro e Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horionte, MG (Brazil)

    2013-07-01

    Colorless quartz is usually exposed to ionizing radiation (gamma rays or high energy electron beams) to acquire different colors for jewelry. Color development is due to the presence of traces of some elements such as aluminum, iron, hydrogen, lithium, or sodium. Most quartz crystals are extracted colorless from nature and it is necessary to separate those that can develop colors from those that cannot. Irradiation tests can be used to accomplish this separation, but they take a long time. Infrared signature of colorless quartz can also be used. However, infrared spectroscopy is quite expensive, especially when using portable devices. Raman spectroscopy is now available as an inexpensive and portable technique that could provide identification of the samples of colorless quartz still in the field, facilitating the prediction for their economic exploitation. In addition, Raman spectroscopy usually requires a minimum or no sample preparation. This paper presents an investigation of the feasibility of using Raman spectroscopy as a substitute for infrared spectroscopy to predict the potential for color development of quartz. A band at 3595 cm{sup -1} in the Raman shift spectrum was observed only along the c axis of a prasiolite excited by a high power 514 nm laser. This band was not observed in quartz samples that do not develop color after irradiation. Further studies are required to identify the potential for color development by Raman spectroscopy of other types of colorless quartz. (author)

  8. Application of Raman spectroscopy technology to studying Sudan I

    Science.gov (United States)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  9. Shining light on neurosurgery diagnostics using Raman spectroscopy.

    Science.gov (United States)

    Broadbent, Brandy; Tseng, James; Kast, Rachel; Noh, Thomas; Brusatori, Michelle; Kalkanis, Steven N; Auner, Gregory W

    2016-10-01

    Surgical excision of brain tumors provides a means of cytoreduction and diagnosis while minimizing neurologic deficit and improving overall survival. Despite advances in functional and three-dimensional stereotactic navigation and intraoperative magnetic resonance imaging, delineating tissue in real time with physiological confirmation is challenging. Raman spectroscopy is a promising investigative and diagnostic tool for neurosurgery, which provides rapid, non-destructive molecular characterization in vivo or in vitro for biopsy, margin assessment, or laboratory uses. The Raman Effect occurs when light temporarily changes a bond's polarizability, causing change in the vibrational frequency, with a corresponding change in energy/wavelength of the scattered photon. The recorded inelastic scattering results in a "fingerprint" or Raman spectrum of the constituent under investigation. The amount, location, and intensity of peaks in the fingerprint vary based on the amount of vibrational bonds in a molecule and their ensemble interactions with each other. Distinct differences between various pathologic conditions are shown as different intensities of the same peak, or shifting of a peak based on the binding conformation. Raman spectroscopy has potential for integration into clinical practice, particularly in distinguishing normal and diseased tissue as an adjunct to standard pathologic diagnosis. Further, development of fiber-optic Raman probes that fit through the instrument port of a standard endoscope now allows researchers and clinicians to utilize spectroscopic information for evaluation of in vivo tissue. This review highlights the need for such an instrument, summarizes neurosurgical Raman work performed to date, and discusses the future applications of neurosurgical Raman spectroscopy.

  10. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  11. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  12. Single-pulse stimulated Raman scattering spectroscopy

    CERN Document Server

    Frostig, Hadas; Natan, Adi; Silberberg, Yaron

    2010-01-01

    We demonstrate the acquisition of stimulated Raman scattering spectra with the use of a single femtosecond pulse. High resolution vibrational spectra are obtained by shifting the phase of a narrow band of frequencies in the broadband input pulse spectrum, using spectral shaping. The vibrational spectrum is resolved by examining the amplitude features formed in the spectrum after interaction with the sample. Using this technique, low frequency Raman lines (<100cm^-1) are resolved in a straightforward manner.

  13. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-L-phenylalanine

    Science.gov (United States)

    Raja, B.; Balachandran, V.; Revathi, B.

    2015-03-01

    The FT-IR and FT-Raman spectra of N-acetyl-L-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000 K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes.

  14. Evaluation of thyroid tissue by Raman spectroscopy

    Science.gov (United States)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  15. Raman spectroscopy of shocked gypsum from a meteorite impact crater

    Science.gov (United States)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2017-07-01

    Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  16. Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers

    CERN Document Server

    Dhakal, Ashim; Peyskens, Frédéric; Jans, Karolien; Thomas, Nicolas Le; Baets, Roel

    2016-01-01

    Characterizing a monolayer of biological molecules has been a major challenge. We demonstrate nanophotonic wave-guide enhanced Raman spectroscopy (NWERS) of monolayers in the near-infrared region, enabling real-time measurements of the hybridization of DNA strands and the density of sub-monolayers of biotin-streptavidin complex immobilized on top of a photonics chip. NWERS is based on enhanced evanescent excitation and collection of spontaneous Raman scattering near nanophotonic waveguides, which for a one centimeter silicon nitride waveguide delivers a signal that is more than four orders of magnitude higher in comparison to a confocal Raman microscope. The reduced acquisition time and specificity of the signal allows for a quantitative and real-time characterization of surface species, hitherto not possible using Raman spectroscopy. NWERS provides a direct analytic tool for monolayer research and also opens a route to compact microscope-less lab-on-a-chip devices with integrated sources, spectrometers and d...

  17. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    Science.gov (United States)

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-07

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy.

  18. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

    Science.gov (United States)

    Bichara, Laura C.; Alvarez, Patricia E.; Fiori Bimbi, María V.; Vaca, Hugo; Gervasi, Claudio; Brandán, Silvia Antonia

    2016-05-01

    In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and COOsbnd CH3 groups (Ac) and the other one as constituted by two subunits with two COOsbnd CH3 groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G∗ method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain.

  19. Probing molecular symmetry with polarization-sensitive stimulated Raman spectroscopy

    CERN Document Server

    Kerdoncuff, Hugo; Westergaard, Philip G; Petersen, Jan C; Lassen, Mikael

    2016-01-01

    We demonstrate polarization-sensitive stimulated Raman spectroscopy (PS-SRS) enabling fast, high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations. The method provides information about the symmetry of the Raman-active vibrational modes. Our compact PS-SRS setup is based on a tunable continuous wave (CW) probe laser combined with a semi-monolithic nanosecond pulsed pump laser. The CW operation of the laser offers narrow linewidth and low noise, and does not require temporal synchronization with the pump. We demonstrate the technique by measuring the depolarization ratios of carbon-hydrogen (CH) stretches in two different polymer samples in the spectral range of 2825-3025 cm-1. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired polarization Raman spectra.

  20. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    Science.gov (United States)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  1. Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Elamin E. Ibrahim

    2012-01-01

    Full Text Available Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite.

  2. Micro-Raman spectroscopy of single leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Changmei Cai; Rong Chen; Juqiang Lin; Yongzeng Li; Shangyuan Feng

    2008-01-01

    The Raman spectra from leukemic cell line (HL60) and normal human peripheral blood mononuclear cells (PBMCs) are obtained by confocal micro-Raman spectroscopy using near-infrared laser (785 nm) excitation. The scanning range is from 500 to 2000 cm-1. The two average Raman spectra of normal PBMCs and carcinoma cells have clear differences because their structure and amount of nucleic acid, protein, and other major molecules are changed. The spectra are also compared and analyzed by principal component analysis (PCA) to demonstrate the two distinct clusters of normal and transformed cells. The sensitivity of this technique for identifying transformed cells is 100%.

  3. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  4. Application of laser Raman spectroscopy to dental diagnosis

    Science.gov (United States)

    Izawa, Takahiro; Wakaki, Moriaki

    2005-03-01

    The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.

  5. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions.

  6. Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin

    Science.gov (United States)

    Dereli, Ömer

    2016-05-01

    The molecular structure of 3-Aminocoumarin was determined by conformational analysis. Conformational space was scanned by conformer distribution option of Spartan 08 program package using Merck Molecular Force Field (MMFF) method. Then obtained conformers were optimized by B3LYP/6-311++ G( d, p) and B3LYP/6-311 G( d, p) levels of Density Functional Theory. As a result of these calculations, only one conformer was determined. Vibrational frequencies of this conformer were calculated by Gaussian 03 program package using the same levels of geometry optimizations. The FT-IR and Raman spectra of 3-Aminocoumarin were recorded and compared with the calculated values. Consequently, a good agreement between experimental and the calculated values were founded. Molecular electrostatic potentials (MEPs), HOMO-LUMO energies, thermodynamic properties and Mulliken atomic charges were also covered in this study.

  7. Raman spectroscopy in the diagnosis of ulcerative colitis.

    Science.gov (United States)

    Veenstra, Michelle Anne; Palyvoda, Olena; Alahwal, Hazem; Jovanovski, Marko; Reisner, Luke Anthony; King, Brady; Poulik, Janet; Klein, Michael D

    2015-02-01

    At present, the diagnosis of ulcerative colitis (UC) requires the histologic demonstration of characteristic mucosal inflammatory changes. A rapid and noninvasive diagnosis would be of value, especially if it could be adapted to a simple rectal probe. Raman spectroscopy creates a molecular fingerprint of substances by detecting laser light scattered from asymmetric, vibrating, and chemical bonds. We hypothesize that Raman spectroscopy can distinguish UC from non-UC colon tissue rapidly and accurately. Colon tissue specimens were obtained from patients operated at the Children's Hospital of Michigan, United States, including UC colon and non-UC colon. The samples were examined with a Renishaw inVia Raman microscope (Gloucestershire, United Kingdom) with a 785 nm laser. Principal component analysis and discriminant function analysis were used to classify groups. Final classification was evaluated against histologic diagnoses using leave-one-out cross-validation at a spectral level. We compared Raman spectroscopy examination of colon specimens from four patients with UC and four patients without UC. A total of 801 spectra were recorded from colon specimens. We evaluated 100 spectra each from the mucosal and serosal surfaces of patients with UC and 260 spectra from the mucosal surface and 341 spectra from the serosal surface of the patients who did not have UC. For samples from the mucosal surface, the Raman analysis had a sensitivity of 82% and a specificity of 89%. For samples from the serosal surface, Raman spectroscopy had a sensitivity of 87% and a specificity of 93%. When considering each tissue sample and deciding the diagnosis based on the majority of spectra from that sample, there were no errors in the diagnosis. Raman spectroscopy can distinguish UC from normal colon tissue rapidly and accurately. This technology offers the possibility of real-time diagnosis as well as the ability to study changes in UC-afflicted colon tissue that do not appear

  8. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2015-03-05

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100cm(-1) respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  9. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  10. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  11. Raman spectroscopy of hydrogen molecules in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, M. [Technische Universitaet Dresden, 01062 Dresden (Germany)]. E-mail: martin.hiller@physik.phy.tu-dresden.de; Lavrov, E.V. [Technische Universitaet Dresden, 01062 Dresden (Germany); Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2006-04-01

    Single-crystalline germanium samples exposed to hydrogen and/or deuterium plasma are studied by Raman scattering. Two bands at 1980 and 4155cm{sup -1} are assigned to local vibrational modes of Ge-H and H{sub 2}, respectively. Polarization sensitive Raman scattering spectra suggest that the plasma treatment results in {l_brace}111{r_brace} platelets whose basic units are Ge-H bonds. The signal at 4155cm{sup -1} is shown to result from molecular hydrogen trapped within these platelets. Another broad Raman signal around 3930cm{sup -1} seems to be due to H{sub 2} trapped in some other type of voids formed during the plasma treatment. Two sharp peaks at 3826 and 3834cm{sup -1} are assigned to ortho- and para-H{sub 2} trapped at the interstitial T site.

  12. Characterization of oil-producing microalgae using Raman spectroscopy

    Science.gov (United States)

    Samek, O.; Zemánek, P.; Jonáš, A.; Telle, H. H.

    2011-10-01

    Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry.

  13. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  14. Characterization of Momordica charantia Ussing FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Attila Keseru

    2016-11-01

    In this paper, because earlier claim shows that the plant used as stomachic, carminative, tonic, antipyretic, antidiabetic, in rheumatoid arthritis and gout, the present investigation was carried to characterized a principal components of plant using FT-IR technique

  15. Infrared and Raman Spectroscopy Principles and Spectral Interpretation

    CERN Document Server

    Larkin, Peter

    2011-01-01

    Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation

  16. Development and biological applications of optical tweezers and Raman spectroscopy

    Science.gov (United States)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be

  17. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  18. Raman Spectroscopy of Garnet—group Minerals

    Institute of Scientific and Technical Information of China (English)

    彭明生; H.K.MAO; 等

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals,which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite ,andradite and uvarovite of Ca-Fe garnet series, have been strdied.Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site.The stretch and rotatory A1g modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series ,owing to the cations residing in the Xsite connected with SiO4 tetrahedra by sharing the two edges.The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series andin the Y site for the Ca-Fe garnet series.

  19. FT-Raman investigation of milled-wood lignins : softwood, hardwood, and chemically modified black spruce lignins

    Science.gov (United States)

    Umesh P. Agarwal; James D. McSweeny; Sally A. Ralph

    2011-01-01

    Raman spectroscopy is being increasingly applied to study wood and other lignin-containing biomass/biomaterials. Lignin’s contribution to the Raman spectra of such materials needs to be understood in the context of various lignin structures, substructures, and functional groups so that lignin-specific features could be identified and the spectral information could be...

  20. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    Science.gov (United States)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  1. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  2. Raman spectroscopy and oral exfoliative cytology

    Science.gov (United States)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  3. Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces

    KAUST Repository

    Marini, Monica

    2014-05-01

    A novel approach for the study of low concentrated DNAs (60 pM) using microRaman spectroscopy is reported. A superhydrophobic substrate with array of microPillars is fabricated over which the sample was drop casted. The substrate concentrates the molecules in a very small area with higher molecular density, enabling to carry out the microRaman measurements. Two different DNAs (single strand and double strand) were used to investigate through Raman technique. A spectral Raman difference was found to distinguish the ssDNA and dsDNAs. The approach can be of interest for a wide variety of applications ranging from biological materials interactions characterization to the biomedical field. © 2014 Elsevier B.V. All rights reserved.

  4. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  5. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    Science.gov (United States)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  6. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    Science.gov (United States)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-01-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies. PMID:27725756

  7. Raman scattering excitation spectroscopy of monolayer WS2.

    Science.gov (United States)

    Molas, Maciej R; Nogajewski, Karol; Potemski, Marek; Babiński, Adam

    2017-07-11

    Resonant Raman scattering is investigated in monolayer WS2 at low temperature with the aid of an unconventional technique, i.e., Raman scattering excitation (RSE) spectroscopy. The RSE spectrum is made up by sweeping the excitation energy, when the detection energy is fixed in resonance with excitonic transitions related to either neutral or charged excitons. We demonstrate that the shape of the RSE spectrum strongly depends on the selected detection energy. The resonance of outgoing light with the neutral exciton leads to an extremely rich RSE spectrum, which displays several Raman scattering features not reported so far, while no clear effect on the associated background photoluminescence is observed. Instead, when the outgoing photons resonate with the negatively charged exciton, a strong enhancement of the related emission occurs. Presented results show that the RSE spectroscopy can be a useful technique to study electron-phonon interactions in thin layers of transition metal dichalcogenides.

  8. Novel microfluidic devices for Raman spectroscopy and optical trapping

    Science.gov (United States)

    Ottevaere, Heidi; Liu, Qing; de Coster, Diane; Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2016-09-01

    Traditionally, Raman spectroscopy is done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. We present the modeling, the design and the fabrication process of a microfluidic device incorporation Raman spectroscopy, from which one enables confocal Raman measurements on-chip. The latter is fabricated using ultra precision diamond tooling and is tested in a proof-of-concept setup, by for example measuring Raman spectra of urea solutions with various concentrations. If one wants to analyze single cells instead of a sample solution, precautions need to be taken. Since Raman scattering is a weak process, the molecular fingerprint of flowing particles would be hard to measure. One method is to stably position the cell under test in the detection area during acquisition of the Raman scattering such that the acquisition time can be increased. Positioning of cells can be done through optical trapping and leads to an enhanced signal-to-noise ratio and thus a more reliable cell identification. Like Raman spectroscopy, optical trapping can also be miniaturized. We present the modeling, design process and fabrication of a mass-manufacturable polymer microfluidic device for dual fiber optical trapping using two counterpropagating singlemode beams. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we characterize the trapping capabilities of the hot embossed chip.

  9. Raman-spectroscopy-based biosensing for applications in ophthalmology

    Science.gov (United States)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  10. [Near-infrared Raman spectroscopy for diagnosis of gastric cancer].

    Science.gov (United States)

    Jin, Shaoqin; Mao, Hua

    2014-03-01

    To establish a method for early diagnosis of gastric cancer using near-infrared Raman spectroscopy. A rapid near-infrared Raman system was used to examine the tissue specimens of pathologically confirmed gastric cancer (33 cases), gastric precancerous lesions (27 cases), and normal gastric mucosa (45 cases). All the specimens were obtained from 105 patients undergoing gastrectomy or endoscopic biopsy of suspected gastric lesions. High-quality Raman spectra ranging from 700 to 1800 cm(-1) were acquired from the gastric tissues within 5 s. The distribution pattern of Raman spectra in gastric cancer differed significantly from those of gastric precancerous lesions and normal gastric mucosa, particularly in the spectral ranges of 853 cm(-1), 936 cm(-1), 1003 cm(-1), 1032 cm(-1), 1174 cm(-1), 1208 cm(-1), 1323 cm(-1), 1335 cm(-1), 1450 cm(-1), and 1655 cm(-1), which contained signals related to proteins, nucleic acids and lipids. The diagnostic decision algorithm based on the Raman peak intensity ratios of I1003/ I1337, I1003/I1445, I1003/I1655, and I1156/I1655 yielded remarkable differences in gastric cancer from gastric precancerous lesions and normal gastric mucosa, and the ratios were significantly higher in normal gastric tissues (Pinfrared Raman spectroscopy using PCA-LDA algorithms associated with leave- one-out and cross-validation method showed diagnostic sensitivities of 81.5%, 85.3%, and 100%, and specificities of 86.4%, 100%, and 97.4% for normal gastric mucosa, precancerous lesions and gastric cancer, respectively. near-infrared Raman spectroscopy in conjunction with intensity ratio algorithms shows the potential for noninvasive diagnosis and detection of gastric malignancy at the molecular level.

  11. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    Science.gov (United States)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  12. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification.

    Science.gov (United States)

    Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-12-01

    Raman spectroscopy is a label-free method that measures quickly and contactlessly, providing detailed information from the sample, and has proved to be an ideal tool for medical and life science research. In this review, recent advances of the technique towards drug monitoring and pathogen identification by the Jena Research Groups are reviewed. Surface-enhanced Raman spectroscopy (SERS) and ultraviolet resonance Raman spectroscopy in hollow-core optical fibres enable the detection of drugs at low concentrations as shown for the metabolites of the immunosuppressive drug 6-mercaptopurine as well as antimalarial agents. Furthermore, Raman spectroscopy can be used to characterise pathogenic bacteria in infectious diseases directly from body fluids, making time-consuming cultivation processes dispensable. Using the example of urinary tract infection, it is shown how bacteria can be identified from patients' urine samples within <1 h. The methods cover both single-cell analysis and dielectrophoretic capturing of bacteria in suspension. The latter method could also be used for fast (<3.5 h) identification of antibiotic resistance as shown exemplarily for vancomycin-resistant enterococci. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Detection of Uranium Oxides by μ-Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHU; Hai-qiao; ZHANG; Qian-ci; LUO; Zhong-yan; LIU; Quan-wei

    2013-01-01

    Raman spectroscopy is a useful instrumentation with great advantages,which can offer rapid,simple,reproducible,nondestructive qualitative and quantitative analysis,and compounds characterization.It has already been used in the fields of industry,scientific research and cultural heritages protection to get information of the materials.

  14. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  15. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  16. Preliminary Study on Cordycepin-DNA Interaction by Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Jian Ya LING; Qin Zheng YANG; Shan Shan LUO; Yan LI; Chang Kai ZHANG

    2005-01-01

    The interaction of cordycepin with calf thymus DNA was investigated at physiological pH with drug/DNA molar ratio of 8. The Raman spectroscopy results indicated that the intercalation of high concentration cordycepin and the interaction of cordycepin with PO2 group led to a major reduction of B-form DNA structure in favor of A-form DNA.

  17. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    Science.gov (United States)

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  18. Hyper-Raman spectroscopy of Earth related materials

    Science.gov (United States)

    Hellwig, H.

    2004-12-01

    Raman and infrared spectroscopy proved extremely successful in obtaining structural information and thermodynamic data on samples under high pressure conditions in a diamond anvil cell [1,2]. With substantial advances in CCD detector technology and the possibility to focus visible laser light down to several microns, Raman spectroscopy can nowadays be regarded one of the standard techniques for diamond anvil cell investigations. Nevertheless, Raman scattering suffers from often strong fluorescence and the strong Raman signal of the diamonds. Infrared spectroscopy is limited by the sample size and the diffraction limit of mid- or far-infrared radiation. With increasing pressure, diamonds also show strong infrared activity, which can interfere with the signal from the sample. Detectors in the mid- and far-infrared are inherently noisy, often leading to low signal-to-noise ratios for infrared measurements. With new techniques and instrumentation available, such as low noise CCD cameras and stable diode-pumped solid state laser systems, more demanding techniques become feasible as well. Especially hyper-Raman scattering, a nonlinear optical variant of infrared spectroscopy, can be used on a more routine basis for the first time. Pioneering work in the 70s and 80s have explored some of the capabilities of Hyper-Raman spectroscopy [3]. Unlike infrared spectroscopy, Hyper-Raman is not limited by the diffraction limit of mid- or far-infrared radiation, typically restricting the lower frequency limit to several hundred wave numbers. The major advantages of hyper-Raman are essentially background free spectra and the use of wavelengths in the near-infrared and visible, making possible micro focusing and taking advantage of high efficiencies, low noise, and smooth wavelength dependencies of CCD detectors. Hyper-Raman does not suffer from saturation caused by strong absorption in the infrared and is therefore less sensitive to surface effects. For centrosymmetric materials

  19. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    DEFF Research Database (Denmark)

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...... (PLS) regression. High correlations (r > 0.96) were obtained from cross validations of the data estimated by FT-IR, FT-NIRand above-mentioned conventional analytical methods, except for correlations (r = 0.90-0,95) between FT-IR and SFC profiles. Overall, FT-NIR spectroscopy coupled with transmission....... The blends and interesterified fats samples in liquid form were measured by attenuated total reflectance (ATR) based FT-IR (spectra region: 1516-781 cm-1) and transmission mode based FT-NIR (spectra region: 5369-4752 cm-1) with temperature both controlled at 70°C. The samples in solid form were also measured...

  20. Coherent Raman dual-comb spectroscopy and imaging

    Science.gov (United States)

    Ideguchi, Takuro; Holzner, Simon; Bernhardt, Birgitta; Guelachvili, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2014-11-01

    The invention of the optical frequency comb technique has revolutionized the field of precision spectroscopy, providing a way to measure the absolute frequency of any optical transition. Since, frequency combs have become common equipment for frequency metrology. In the last decade, novel applications for the optical frequency comb have been demonstrated beyond its original purpose. Broadband molecular spectroscopy is one of those. One such technique of molecular spectroscopy with frequency combs, dual-comb Fourier transform spectroscopy provides short measurement times with resolution and accuracy. Two laser frequency combs with slightly different repetition frequencies generate pairs of pulses with a linearly-scanned delay between pulses in a pair. The system without moving parts mimics a fast scanning Fourier transform interferometer. The measurement speed may be several orders of magnitude faster than that of a Michelson-based Fourier transform spectrometer, which opens up new opportunities for broadband molecular spectroscopy. Recently, dual-comb spectroscopy has been extended to nonlinear phenomena. A broadband Raman spectrum of molecular fingerprints may be measured within a few tens of microseconds with coherent Raman dual-comb spectroscopy. Raster scanning the sample leads to hyperspectral images. This rapid and broadband label-free vibrational spectroscopy and imaging technique might provide new diagnostic methods in a variety of scientific and industrial fields.

  1. Raman spectroscopy for the characterization of algal cells

    Science.gov (United States)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  2. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  3. Spatially offset Raman spectroscopy (SORS) for liquid screening

    Science.gov (United States)

    Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel

    2011-11-01

    Recently, Spatially Offset Raman Spectroscopy (SORS) has been discussed as a novel method for the screening of liquids, aerosols and gels (LAGs) at airports and for other security applications. SORS is an optical spectroscopic method which enables the precise chemical identification of substances from a reference list and, due to the rich spectral information, has an inherently high probability of detection and low false alarm rate. The method is generally capable of screening substances inside non-metallic containers such as plastic and glass bottles. SORS is typically successful through opaque plastic and coloured glass, which are often challenging for conventional backscatter Raman spectroscopy. SORS is performed in just a few seconds by shining a laser light onto the container and then measuring the Raman signal at the excitation point but also at one or more offset positions. Each measurement has different relative orthogonal contributions from the container and contents Raman spectra, so that, with no prior knowledge, the pure Raman spectra of both the container and contents can be extracted - either by scaled subtraction or via multivariate statistical methods in an automated process. In this paper, the latest results will be described from a prototype SORS device designed for aviation security and the advantages and limitations of SORS will be discussed.

  4. Density functional theory study, FT-IR and FT-Raman spectra and SQM force field calculation for vibrational analysis of 1, 3-Bis (hydroxymethyl) benzimidazolin-2-one.

    Science.gov (United States)

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Devarajegowda, H C; Isac, Jayakumary

    2013-10-01

    FT-IR and FT-Raman spectra of 1, 3-Bis (hydroxymethyl) benzimidazolin-2-one were recorded and analyzed in the solid phase. The optimized molecular geometry and vibrational wavenumbers have also been calculated in optimized structure by using DFT method. Scaled quantum mechanical force fields have also been used to calculate potential energy distributions in order to make conspicuous vibrational assignments. The red shifting of the O-H stretching wavenumber is due to the formation of O-H···O intermolecular hydrogen bonding. The lowering and splitting of the carbonyl stretching vibrational modes is assigned to the intermolecular association based on C=O···H type hydrogen bonding in the molecule. Chemical interpretation of hyperconjugative interactions was done by natural bond orbital analysis.

  5. Results obtained by investigating saffron ussing FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Luisa Andronie

    2016-11-01

    Full Text Available The biological activity and the pharmaceutical properties of plants are strongly dependent on their structure. The FT-IR spectra of saffron (commercial have been obtained. The vibrational fundamentals from the IR spectrum, were analyzed  and assigned acoording to the available literature. In the present research work the genus saffron is selected because it is famous in wold as foods and also as medicine.

  6. Raman spectroscopy for cancer detection: instrument development and tissue diagnosis

    Science.gov (United States)

    Manoharan, Ramasamy; Wang, Yang; Boustany, Nada N.; Brennan, James F., III; Baraga, Joseph J.; Dasari, Ramachandra R.; Van Dam, Jacques; Singer, Samuel; Feld, Michael S.

    1994-12-01

    Raman spectroscopy can provide quantitative molecular information about the biochemical composition of human tissues exhibiting various stages of disease. Fluorescence interference is ubiquitous in Raman spectra of biological samples excited with visible light. However, it can be avoided by using near-infrared (NIR) or ultraviolet (UV) excitation. We are exploring the potential of these methods for detecting precancerous/cancerous changes in human tissues. The NIR studies use 830 nm excitation from a Ti:sapphire laser. Raman signals are collected by an imaging spectrograph/deep-depletion CCD detection system. High quality tissue spectra can be obtained in a few seconds or less. The UV resonance Raman studies employ wavelengths below 300 nm for selective excitation of nucleic acids, proteins and lipids. Excitation is provided by a frequency tripled/quadrupled mode-locked Ti:sapphire laser, and Raman light is collected by a one meter spectrograph/UV-enhanced CCD detector. The two systems can be coupled to appropriate microscopes for extracting morphological and biochemical information at the cellular level, which is important for understanding the origin of the Raman spectra of bulk tissue. The results of the initial studies for cancer detection in various human tissues are reported here.

  7. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, A.; Valentim, B.; Rodrigues, S.; Noronha, F. [Centro de Geologia e Departamento de Geociencias, Ambiente e Ordenamento do Territorio da Faculdade de Ciencias, Universidade do Porto, 4169-007-Porto (Portugal); Prieto, A.C. [Departamento de Fisica de la Materia Condensada, Cristalografia y Mineralogia Facultad de Ciencias, Universidad de Valladolid, 47011-Valladolid (Spain)

    2010-09-01

    The Raman spectra and the Raman parameters have been correlated with changes in the structure of carbon materials, and most of the studies have revealed different development of the Raman spectrum. In the present study micro-Raman spectroscopy was conducted on coal bulk samples and on individual coal macerals (collotelinite, fusinite, and macrinite) from a set of Penn State Coal Bank coals of increasing rank to study the variation of their spectral parameters with rank, and considering coal heterogeneity. The spectral parameters that better correlate with the increasing coal rank, for the coals studied are the full width at half maximum of graphitic band (G: at {proportional_to} 1580 cm{sup -} {sup 1}), the position of disordered band (D: at {proportional_to} 1350 cm{sup -} {sup 1}), and the integrated intensity ratio of the D band to G band (ID/IG). With increasing coal rank a narrower G band, a shift of D band to lower wavenumber, and an increase of integrated intensity ratio ID/IG are observed. For each coal, the Raman parameters obtained on fusinites and macrinites are similar and differ from those obtained on coal bulk samples and collotelinites. The variation of the Raman parameters with rank is very well reflected on the analyses of collotelinites. (author)

  8. Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations

    Science.gov (United States)

    Karabacak, Mehmet; Bilgili, Sibel; Mavis, Tugba; Eskici, Mustafa; Atac, Ahmet

    2013-11-01

    In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400 cm-1 and 3500-50 cm-1, respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The 1H, 13C and HMQC (1H-13C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400 nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement.

  9. Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid

    Science.gov (United States)

    Karabacak, M.; Kose, E.; Atac, A.; Sas, E. B.; Asiri, A. M.; Kurt, M.

    2014-11-01

    Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution.

  10. Raman spectroscopy and immunohistochemistry for schwannoma characterization: a case study

    Science.gov (United States)

    Neto, Lazaro P. M.; das Chagas, Maurilio J.; Carvalho, Luis Felipe C. S.; Ferreira, Isabelle; dos Santos, Laurita; Haddad, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    The schwannomas is a tumour of the tissue that covers nerves, called the nerve sheath. Schwannomas are often benign tumors of the Schwan cells, which are the principal glia of the peripheral nervous system (PNS). Preoperative diagnosis of this lesion usually is difficult, therefore, new techniques are being studied as pre surgical evaluation. Among these, Raman spectroscopy, that enables the biochemical identification of the tissue analyzed by their optical properties, may be used as a tool for schwannomas diagnosis. The aim of this study was to discriminate between normal nervous tissue and schwannoma through the confocal Raman spectroscopy and Raman optical fiber-based techniques combined with immunohistochemical analysis. Twenty spectra were analyzed from a normal nerve tissue sample (10) and schwannoma (10) by Holospec f / 1.8 (Kayser Optical Systems) coupled to an optical fiber with a 785nm laser line source. The data were pre-processed and vector normalized. The average analysis and standard deviation was performed associated with cluster analysis. AML, 1A4, CD34, Desmin and S-100 protein markers were used for immunohistochemical analysis. Immunohistochemical analysis was positive only for protein S-100 marker which confirmed the neural schwanomma originality. The immunohistochemistry analysis were important to determine the source of the injury, whereas Raman spectroscopy were able to differentiated tissues types indicating important biochemical changes between normal and benign neoplasia.

  11. Quantitative determination of prednisone in tablets by infrared attenuated total reflection and Raman spectroscopy.

    Science.gov (United States)

    Mazurek, Sylwester; Szostak, Roman

    2012-01-01

    The quantification of prednisone in tablets was performed using partial least squares (PLS) models based on FTIR-attenuated total reflection (ATR) and FT-Raman spectra. To compare the predictive ability of these models, the relative standard error of prediction (RSEP) values were calculated. In the case of prednisone determination from the FT-Raman data, RSEP values of 3.1 and 3.2% for the calibration and validation data sets were obtained. For FTIR-ATR models, which were constructed using five spectra for each sample, these errors amounted to 2.6 and 2.9%, respectively. Four commercial products containing 1, 5, 10, and 20 mg prednisone/tablet were quantified. Concentrations derived from the elaborated models correlated strongly with the results of reference analyses and with the declared values (in parentheses). The analyses gave recoveries of 100.0-101.6% (100.1-103.0%) and 98.1-103.2% (100.4-102.9%) for FTIR-ATR and FT-Raman data, respectively. A successful quantification of prednisolone in tablets containing 5 mg active ingredient/tablet was also performed using the PLS model, which was based on FTIR-ATR spectra, with a recovery of 99.8 (98.8%). Both reported spectroscopic techniques can be used as fast and convenient alternatives to the standard pharmacopeial methods of prednisone and prednisolone quantification in solid dosage forms. However, in the case of FTIR-ATR spectroscopy, it is necessary to repeat measurements several times to obtain sufficiently low quantification errors.

  12. Diffusion measurements in binary liquid mixtures by Raman spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander

    2007-01-01

    It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...

  13. Raman spectroscopy investigations of chemically derived zigzag edge graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    R. Nishinakagawa

    2013-09-01

    Full Text Available We fabricated graphene nanoribbons (GNRs chemically derived from expandable graphite. All GNRs exhibit atomically smooth edges that extended over their entire length. We investigated four of the fabricated GNRs using Raman spectroscopy. Two of the investigated GNRs show Raman spectra with a missing D-band peak, while D-band peaks can be clearly observed for the other two GNRs. The two GNRs which do not show the D-band peak are GNRs with zigzag edges, and the two other GNRs which show clearly the D-band peaks are possibly GNRs with armchair edges.

  14. Raman spectroscopy on ice cores from Greenland and Antarctica

    Science.gov (United States)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  15. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  16. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and ope...

  17. Direct identification of early synthetic dyes: FT-Raman study of the illustrated broadside prints of José Gaudalupe Posada (1852-1913)

    Science.gov (United States)

    Casadio, F.; Mauck, K.; Chefitz, M.; Freeman, R.

    2010-09-01

    Fourier Transform (FT)-Raman spectroscopy was used for the non-invasive, direct identification of colorants used to dye historical printed papers, overcoming obstacles such as low concentration of the dye, faded colors and fluorescence interference of the aged paper substrate. Based on a newly created FT-Raman reference database of 20 widely used dyes in the 19th century paper industry, the detectability of these dyes on aged biomaterials was determined by studying dyed paper samples from contemporary dye manuals, and identifying diagnostic peaks detectable on those substrates. Lastly, the method was applied to analyze the colorants used to dye the papers of a group of prints illustrated by the influential Mexico City artist José Guadalupe Posada, active 1876-1913. Unambiguous identification of the synthetic organic colorants Malachite Green (a triarylmethane dye), Orange II and Metanil Yellow (two acid monoazo dyes), Cotton Scarlet (an acid diazo dye), Phloxine (a xanthene dye) and Victoria Blue (a triarylmethane dye) in several of Posada’s prints challenged previous art-historical assumptions that these artworks were colored with natural dyes. The acquired knowledge has important conservation implications given that aniline dyes are sensitive to light and to aqueous treatments otherwise commonly carried out on works of art on paper.

  18. Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by fourier transform raman spectroscopy.

    Science.gov (United States)

    Sinclair, Wayne; Leane, Michael; Clarke, Graham; Dennis, Andrew; Tobyn, Mike; Timmins, Peter

    2011-11-01

    The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth.

  19. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Katarína Mlynáriková

    2015-11-01

    Full Text Available Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  20. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  1. Optical Coherence Tomography and Raman Spectroscopy of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  2. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  3. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    Science.gov (United States)

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  4. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), first order hyperpolarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Muhamed, R. Raj; Muthu, S.; Suresh, M.

    2017-01-01

    The compound (E)-1-(4-bromobenzylidene)semicarbazide(4BSC) was synthesized and characterized by FT-IR, FT-Raman, UV-Visible, 1HNMR and 13CNMR spectra. The optimized molecular geometry(bond length, bond angle), the complete vibrational frequency, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, wavelength, band gap and oscillator strength are evaluated by TD-DFT in DMSO solution and gas phase methods using 6-311++G(d,p) basis set. The calculated HOMO - LUMO band gap energies confirm that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. Besides NLO and MEP were also calculated and interpreted. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antimicrobial protein. Thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations the heat capacity (C), entropy (S) and enthalpy changes (H) and temperatures.

  5. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    Science.gov (United States)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  6. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV-Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2015-03-05

    The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated.

  7. Discrimination of serum Raman spectroscopy between normal and colorectal cancer

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi

    2011-07-01

    Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.

  8. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  9. In vivo blood glucose quantification using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Jingwei Shao

    Full Text Available We here propose a novel Raman spectroscopy method that permits the noninvasive measurement of blood glucose concentration. To reduce the effects of the strong background signals produced by surrounding tissue and to obtain the fingerprint Raman lines formed by blood analytes, a laser was focused on the blood in vessels in the skin. The Raman spectra were collected transcutaneously. Characteristic peaks of glucose (1125 cm(-1 and hemoglobin (1549 cm(-1 were observed. Hemoglobin concentration served as an internal standard, and the ratio of the peaks that appeared at 1125 cm(-1 and 1549 cm(-1 peaks was used to calculate the concentration of blood glucose. We studied three mouse subjects whose blood glucose levels became elevated over a period of 2 hours using a glucose test assay. During the test, 25 Raman spectra were collected transcutaneously and glucose reference values were provided by a blood glucose meter. Results clearly showed the relationship between Raman intensity and concentration. The release curves were approximately linear with a correlation coefficient of 0.91. This noninvasive methodology may be useful for the study of blood glucose in vivo.

  10. Biophysical basis for noninvasive skin cancer detection using Raman spectroscopy

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Markey, Mia K.; Fox, Matthew C.; Reichenberg, Jason S.; Tunnell, James W.

    2016-03-01

    Raman spectroscopy (RS) is proving to be a valuable tool for real time noninvasive skin cancer detection via optical fiber probe. However, current methods utilizing RS for skin cancer diagnosis rely on statistically based algorithms to provide tissue classification and do not elucidate the underlying biophysical changes of skin tissue. Therefore, we aim to use RS to explore skin biochemical and structural characteristics and then correlate the Raman spectrum of skin tissue with its disease state. We have built a custom confocal micro-Raman spectrometer system with an 830nm laser light. The high resolution capability of the system allows us to measure spectroscopic features from individual tissue components in situ. Raman images were collected from human skin samples from Mohs surgical biopsy, which were then compared with confocal laser scanning, two-photon fluorescence and hematoxylin and eosin-stained images to develop a linear model of skin tissue Raman spectra. In this model, macroscopic tissue spectra obtained from RS fiber probe were fit into a linear combination of individual basis spectra of primary skin constituents. The fit coefficient of the model explains the biophysical changes spanning a range of normal and various disease states. The model allows for determining parameters similar to that a pathologist is familiar reading and will be a significant guidance in developing RS diagnostic decision schemes.

  11. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    Directory of Open Access Journals (Sweden)

    Anna Chiara De Luca

    2015-06-01

    Full Text Available Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting.

  12. Determination of butter adulteration with margarine using Raman spectroscopy.

    Science.gov (United States)

    Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur

    2013-12-15

    In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration.

  13. Tip-enhanced Raman spectroscopy: From concepts to practical applications

    Science.gov (United States)

    Jiang, Nan; Kurouski, Dmitry; Pozzi, Eric A.; Chiang, Naihao; Hersam, Mark C.; Van Duyne, Richard P.

    2016-08-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that integrates the vibrational fingerprinting of Raman spectroscopy and the sub-nanometer resolution of scanning probe microscopy (SPM). As a result, TERS is capable of obtaining chemical maps of analyzed specimens with exceptional lateral resolution. This is extremely valuable for the study of interactions between molecules and substrates, in addition to structural characterization of biological objects, such as viruses and amyloid fibrils, 2D polymeric materials, and monitoring electrochemical and photo-catalytic processes. In this mini-review, we discuss the most significant advances of TERS, including: super high resolution chemical imaging, monitoring of catalytic processes, incorporation of pulsed-excitation techniques, single-site electrochemistry, biosensing, and art conservation. We begin with a short overview of TERS, comparing it with other surface analytical techniques, followed by an overview of recent developments and future applications in TERS.

  14. Raman spectroscopy as a tool for ecology and evolution

    Science.gov (United States)

    Kumar, Vipin; Ichimura, Taro; Moreau, Jerome; Furusawa, Chikara; Fujita, Hideaki; Watanabe, Tomonobu M.

    2017-01-01

    Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution. PMID:28592661

  15. Surface-enhanced Raman spectroscopy applied to food safety.

    Science.gov (United States)

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment.

  16. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    Science.gov (United States)

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  17. Raman spectroscopy on carbon nanotubes at high pressure

    OpenAIRE

    Loa, I.

    2003-01-01

    Raman spectroscopy has been the most extensively employed method to study carbon nanotubes at high pressures. This review covers reversible pressure-induced changes of the lattice dynamics and structure of single- and multi-wall carbon nanotubes as well as irreversible transformations induced by high pressures. The interplay of covalent and van-der-Waals bonding in single-wall nanotube bundles and a structural distortion near 2 GPa are discussed in detail. Attempts of transforming carbon nano...

  18. Studies of cartilaginous tissue using Raman spectroscopy method

    Science.gov (United States)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  19. Surface-enhanced Raman spectroscopy of surfactants on silver electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Soncheng; Birke, R.L.; Lombardi, J.R. (City Univ. of New York, NY (USA))

    1990-03-08

    Surface-enhanced Raman spectroscopy (SERS) has been used to study different kinds of surfactants (cationic, anionic, and nonionic surfactants) adsorbed on a roughened Ag electrode. Spectral assignments are made for the SERS spectrum of cetylpyridinium chloride (CPC), and it is shown that the molecule is oriented with its pyridinium ring end-on at the electrode surface at potentials positive to the point of zero charge (pzc) on Ag.

  20. Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy

    Science.gov (United States)

    2014-12-04

    enough to use for differentiation, we find that by utilizing an algorithm based on the Pearson correlation coefficient, differentiation can be made... correlation between a sample’s two-dimensional signature and the signatures of an average of the Fresh, Heated and UV Aged signatures. The Pearson ...an average of the signatures by utilizing a Pearson correlation algorithm we find that multi-wavelength Raman spectroscopy can distinguish fresh

  1. Application of Raman spectroscopy method for analysis of biopolymer materials

    Science.gov (United States)

    Timchenko, Elena V.; Timchenko, Pavel E.; Volchkov, S. E.; Mahortova, Alexsandra O.; Asadova, Anna A.; Kornilin, Dmitriy V.

    2016-10-01

    This work presents the results of spectral analysis of biopolymer materials that are implemented in medical sphere. Polymer samples containing polycaprolactone and iron oxides of different valence were used in the studies. Raman spectroscopy method was used as a main control method. Relative content of iron and polycaprolactone in studied materials was assessed using ratio of RS intensities values at 604 cm-1 and 1726 cm-1 wavenumbers to intensity value of 1440 cm-1 line.

  2. FT-Raman spectroscopic study of skin wound healing in diabetic rats treated with Cenostigma macrophyllum Tul

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Nayana Pinheiro Machado de Freitas; Martins, Marcelino, E-mail: nayanamachado@oi.com.br [Faculdade Diferencial Integral (FACID), Teresina, PI (Brazil); Costa, Charlytton Luis Sena da; Maia Filho, Antonio Luis [Universidade Estadual do Piaui (UESPI), Teresina, PI (Brazil); Raniero, Leandro; Martin, Airton Abrahao; Arisawa, Emilia Angela Loschiavo [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Instituto de Pesquisa e Desenvolvimento

    2014-07-01

    Introduction: patients with diabetes mellitus exhibit a delay in the lesion repair process. The active components of Cenostigma macrophyllum may represent a viable alternative to facilitate the recovery of these lesions. The aim of this study was to evaluate the effects of emulsion oil-water Cenostigma macrophyllum in the repair process of lesions in rats with induced diabetes. Methods: 63 male rats (Wistar, 200-250 g body weight, 30-40 days old) were distributed into the following groups: control (C), diabetic (D) and diabetic treated with Cenostigma macrophyllum (P), subdivided based on the experimental times, days 7, 14 and 28, with 21 animals per main group. Diabetes mellitus (DM) was induced by administration of streptozotocin (50 mg/kg via penile vein and 12-h fasting) and confirmed at day 21 (glycemic index > 240 mg/dL). In the animals of group P, 0.5 ml of the oil-water emulsion obtained from the plant seed was used. The samples were removed and hemisectioned, and one portion was used for the quantitative histological analysis of collagen using Masson's trichrome staining, while another portion was analyzed by FT-Raman spectroscopy. Results: A higher percentage area of the volume of collagen fibers was observed for the experimental time Day 14 in group P compared with group D (p < 0.001). Regarding the ratio of areas of the amides I (1700-1600 cm{sup -1}) and III (1245-1345 cm{sup -1}), the groups D and P show the opposite behavior. Conclusion: Cenostigma macrophyllum accelerated the repair process in skin of diabetic ratsfor14 days. (author)

  3. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    Science.gov (United States)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  4. Detection of propofol concentrations in blood by Raman spectroscopy

    Science.gov (United States)

    Wróbel, M. S.; Gnyba, M.; UrniaŻ, R.; Myllylä, T. S.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this paper we present a proof-of-concept of a Raman spectroscopy-based approach for measuring the content of propofol, a common anesthesia drug, in whole human blood, and plasma, which is intended for use during clinical procedures. This method utilizes the Raman spectroscopy as a chemically-sensitive method for qualitative detection of the presence of a drug and a quantitative determination of its concentration. A number of samples from different patients with added various concentrations of propofol IV solution were measured. This is most equivalent to a real in-vivo situation. Subsequent analysis of a set of spectra was carried out to extract qualitative and quantitative information. We conclude, that the changes in the spectra of blood with propofol, overlap with the most prominent lines of the propofol solution, especially at spectral regions: 1450 cm-1, 1250- 1260 cm-1, 1050 cm-1, 875-910 cm-1, 640 cm-1. Later, we have introduced a quantitative analysis program based on correlation matrix closest fit, and a LOO cross-validation. We have achieved 36.67% and 60% model precision when considering full spectra, or specified bands, respectively. These results prove the possibility of using Raman spectroscopy for quantitative detection of propofol concentrations in whole human blood.

  5. Characterization of early dental caries by polarized Raman spectroscopy

    Science.gov (United States)

    Choo-Smith, Lin-P'ing; Ko, Alex C.-T.; Hewko, Mark D.; Dong, Cecilia C.; Cleghorn, Blaine M.; Sowa, Michael G.

    2006-02-01

    The early approximal caries lesion in enamel is observed clinically as a white spot and is difficult to detect and/or monitor with current methods available to dentists. New methods with high sensitivity and specificity are required to enable improved early dental caries diagnosis. Using unpolarized Raman spectroscopy to examine unsectioned teeth, peak intensity changes in the phosphate (PO 4 3-) vibrations (ν II, ν 3 and ν 4) were observed between spectra of sound and carious enamel. However, there is little change in the ν I vibration with this approach. In contrast, when tooth sections were examined by unpolarized Raman spectroscopy, marked changes in the ν I peak at 959 cm -1 were noted between healthy and carious enamel. These differences suggest that sampling orientation play a role in understanding the spectral changes. Using polarized Raman spectroscopy to examine unsectioned samples, cross polarized measurements from sound enamel exhibited significant reduction of the ν I peak compared with parallel polarized measurements. A similar reduction was observed with carious enamel, however, the reduction was not as prominent. By calculating the depolarization ratio of the area under the ν I peak, sound enamel can be clearly distinguished from demineralized regions. The spectral changes observed are attributed to changes in the structure and/or orientation of the apatite crystals as a result of the acid demineralization process.

  6. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  7. Raman Spectroscopy and instrumentation for monitoring soil carbon systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.

    2003-12-08

    This work describes developments in the application of Raman scattering and surface-enhanced Raman scattering (SERS) towards the assessment/characterization of carbon in soil. In the past, the nonspecific total carbon mass content of soil samples has generally been determined through mass loss techniques and elemental analysis. However, because of the concern over CO{sub 2} buildup in the atmosphere and its possible role in the ''Greenhouse Effect,'' there is a need for better-defined models of global cycling of carbon. As a means towards this end, there is a need to know more about the structure and functionality of organic materials in soil. Raman spectroscopy may therefore prove to be an exceptional tool in soil carbon analysis. Based on vibrational transitions of irradiated molecules, it provides structural information that is often suitable for sample identification. Furthermore, Raman scattering yields very fine spectral features which offer the potential for multicomponent sample analysis with minimal or no sample pretreatment. Although the intensity of Raman scattering is generally extremely low, the surface-enhanced Raman scattering (SERS) effect can greatly enhance Raman signals (10{sup 6}-10{sup 8} range) through the adsorption of compounds on specially roughened metal surfaces. In our laboratory, we have investigated copper, gold and silver as possible substrate metals in the fabrication of SERS substrates. These substrates have included metal-coated microparticles, metal island films, and redox-roughened metal foils. We have evaluated several laser excitation sources spanning the 515-785 nm range for both Raman and SERS analysis. For this particular study, we have selected fulvic and humic acids as models for establishing the feasibility of using Raman and SERS in soil carbon analysis. Our studies thus far have demonstrated that copper substrates perform best in the SERS detection of humic and fulvic acids, particularly when coupled

  8. Water analysis of glass ceramics by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nease, A B; Hale, M D; Kramer, D P

    1983-12-15

    A method for measuring water concentration in glasses has been described and the results of the study of ten batches of glasses have been tabulated. It has been shown that infrared spectroscopy is a satisfactory tool for measuring water concentration in glass ceramics. The water concentrations of ten batches of glass have been shown to differ significantly, and these variances are associated with environmental humidity and glass preparation method.

  9. Four-dimensional coherent electronic Raman spectroscopy

    Science.gov (United States)

    Harel, Elad

    2017-04-01

    The correlations between different quantum-mechanical degrees of freedom of molecular species dictate their chemical and physical properties. Generally, these correlations are reflected in the optical response of the system but in low-order or low-dimensionality measurement the signals are highly averaged. Here, we describe a novel four-dimensional coherent spectroscopic method that directly correlates within and between the manifold of electronic and vibrational states. The optical response theory is developed in terms of both resonant and non-resonant field-matter interactions. Using resonance to select coherences on specific electronic states creates opportunities to directly distinguish coherent dynamics on the ground and electronically excited potentials. Critically, this method is free from lower-order signals that have plagued other electronically non-resonant vibrational spectroscopies. The theory presented here compliments recent work on the experimental demonstration of the 4D spectroscopic method described. We highlight specific means by which non-trivial effects such as anharmonicity (diagonal and off-diagonal), mode-specific vibronic coupling, and curvature of the excited states manifest in different projections of the 4D spectrum.

  10. High Resolution Analysis of Selected Organic Compounds in Icy Terrains, Using Surface-enhanced Raman Spectroscopy

    Science.gov (United States)

    Parnell, J.; Bowden, S. A.; Phillips, S. J.; Wilson, R.; Cooper, J. M.

    2008-03-01

    Surface-enhanced Raman spectroscopy will increase sensitivity by several orders of magnitude over conventional Raman, and should be considered for future missions. We demonstrate detection of organic pigments from ice containing snow algae.

  11. Industrial Applications of the Surface-Enhanced Raman Spectroscopy Application industrielle du SERS

    Directory of Open Access Journals (Sweden)

    Nabiev I.

    2006-11-01

    Full Text Available Surface-enhanced Raman scattering (SERS spectroscopy is now a well-established phenomenon, which has been thoroughly characterized in a variety of interfacial and colloidal environments. Although some quantitative aspects of the underlying enhancement mechanisms apparently remain unresolved, attention is now shifting towards application of SERS to explore phenomena of chemical, physical, biological and industrial significance. The goal of this review is to appreciate the industrial value of innovative SERS technique on the basis of our experience in development of new SERS-active substrates and in their biomedical and biotechnological applications. Examples of diverse SERS analytical applications as well as some very recent facilities, as SERS microprobe analysis, SERS fiber optics probes, FT-SERS spectroscopy, SERS detection for high-performance liquid chromatography, etc. , are also discussed. Le SERS (Surface Enhanced Raman Spectroscopy est un phénomène aujourd'hui bien connu qui a été étudié dans toute une gamme de milieux interfaciaux et colloïdaux. Si certains aspects quantitatifs des mécanismes d'exaltation restent apparemment non résolus, l'attention se porte à présent vers l'application de la spectroscopie SERS à l'exploration de phénomènes présentant un intérêt chimique, physique, biologique et industriel. L'objectif de cet article est d'estimer la valeur industrielle des nouvelles techniques de spectroscopie SERS à partir de notre expérience dans le développement de nouveaux substrats actifs en SERS et leurs applications biomédicales et biotechnologiques. Les auteurs discutent également des exemples de diverses applications analytiques de la spectroscopie SERS ainsi que de quelques procédés très récents : analyse par microsonde SERS, sondes SERS à fibres optiques, spectroscopie FT-SERS, détection SERS pour la chromatographie haute performance en phase liquide, etc.

  12. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)-2-Amino-1-PhenylEthanol

    Science.gov (United States)

    Subashini, K.; Periandy, S.

    2016-08-01

    A systematic spectroscopic study of (R)-2-Amino-1-Phenylethanol was carried out using FT-IR, FT-Raman, NMR and UV analysis. FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectrum of the title molecule were recorded in solid phase, the 1H and 13C NMR spectra were recorded in CDCl3 (deuterated chloroform) solution phase and the UV-Vis (200-800 nm) spectrum was recorded in gas phase and ethanol solution phase. Potential energy surface (PES) scan was performed using B3LYP functional with 6-311++G (d, p) basis set. The geometrical parameters (such as bond length, bond angle, dihedral angles) and theoretical frequencies of the title compound were studied from density functional theory (DFT) using B3LYP and B3PW91 functionals with 6-311++G (d, p) basis sets. The computed frequencies were scaled and compared with the experimental values and potential energy distribution (PED) has been tabulated. A comparative study of atomic charges was made by calculating Mulliken, Natural Population Analysis (NPA) and Electrostatic Potential (ESP) simultaneously, with B3LYP/6-311++G (d, p) basis set. 1H and 13C NMR spectra were recorded and chemical shifts were compared to TMS by Gauge-Independent Atomic Orbital (GIAO) method. Electronic properties such as excitation energy, energy gap between HOMO and LUMO was calculated using time dependent DFT technique. NBO analysis, which predicts the different possibilities of electronic transition in the molecule, was computed using B3PW91 functional with 6-311++G (d, p) basis set. The thermodynamic properties such as heat capacity, entropy and enthalpy at different temperatures were computed and analyzed. Molecular docking study shows that the secondary hydroxyl group and the primary amino group in the aliphatic chain attached to the benzene ring are crucial for binding and the title compound might exhibit inhibitory activity against Bacteroides fragilis (3P24) and may act as anti-bacterial agent.

  13. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  14. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: a comparison to form 2.

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A K

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  15. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  16. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  17. Genomic DNA characterization of pork spleen by Raman spectroscopy

    Science.gov (United States)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO microstructures were synthesized by the Sol-Gel method and afterward combined with porcine spleen DNA extracted in the previous stages, following standardized cell lysis, deproteinization, and precipitation processes. Raman spectroscopy was used for the characterization of structures of ZnO and ZnO-DNA complex, and the results show the respective bands of ZnO wurtzite hexagonal phase for modes E2 (M), A1(TO), E2(High), E1(LO), and 2LO. Due to the SERS effect in the spectral range from 200 to 1800 cm,-1 Raman bands caused by vibrations of the deoxyribose C-O-C binding were also observed, producing deformation of the ring as shown in the 559 cm-1 peak. The broad band at 782 cm-1, together with the complex vibration of the string 5'-COPO-C3', is over a wide band of thymine (790 cm-1) or cytosine (780 cm-1). A prominent band near 1098 cm-1 assigned to symmetric stretching vibration phosphodioxy group (PO2-) DNA backbone is most favoured in intensity by the addition of ZnO particles originated by the SERS effect. This effect suggests a possible mechanism for enhancing the Raman signal due to the electromagnetic interaction between a DNA molecule and the flat surface of the ZnO rod.

  18. New techniques in antibiotic discovery and resistance: Raman spectroscopy.

    Science.gov (United States)

    Carey, Paul R; Heidari-Torkabadi, Hossein

    2015-09-01

    Raman spectroscopy can play a role in both antibiotic discovery and understanding the molecular basis of resistance. A major challenge in drug development is to measure the population of the drug molecules inside a cell line and to follow the chemistry of their reactions with intracellular targets. Recently, a protocol based on Raman microscopy has been developed that achieves these goals. Drug candidates are soaked into live bacterial cells and subsequently the cells are frozen and freeze-dried. The samples yield exemplary (nonresonance) Raman data that provide a measure of the number of drug molecules within each cell, as well as details of drug-target interactions. Results are discussed for two classes of compounds inhibiting either β-lactamase or dihydrofolate reductase enzymes in a number of Gram-positive or Gram-negative cell lines. The advantages of the present protocol are that it does not use labels and it can measure the kinetics of cell-compound uptake on the time scale of minutes. Spectroscopic interpretation is supported by in vitro Raman experiments. Studying drug-target interactions in aqueous solution and in single crystals can provide molecular level insights into drug-target interactions, which, in turn, provide the underpinnings of our understanding of data from bacterial cells. Thus, the applicability of X-ray crystallographic-derived data to in-cell chemistry can be tested. © 2015 New York Academy of Sciences.

  19. Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates.

    Science.gov (United States)

    Mandak, Eszter; Zhu, Dan; Godany, Tamas A; Nyström, Laura

    2013-03-13

    Steryl ferulates are a mixture of minor bioactive compounds, possessing well-established health benefits. However, individual steryl ferulate species show structural differences, which seem to substantially influence their health-promoting potential. In this study, we tested Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, as potential tools in the identification of steryl ferulates. On the basis of our spectral data obtained from various individual steryl ferulates and steryl ferulate mixtures extracted from rice (γ-oryzanol), corn bran, and wheat bran, we provide comprehensive peak assignment tables for both FTIR and Raman. With the help of FTIR spectroscopy, structural differences between individual steryl ferulates were possible to identify, such as the presence of the cyclopropane ring and additional differences in the side chain of the sterane skeleton. Data obtained with Raman spectroscopy provided us with a control for FTIR peak assignment and also with some additional information on the samples. However, detecting structural differences between steryl ferulates was not possible with this method. We consider that FTIR spectroscopy alone or combined with Raman provides detailed data on the structures of steryl ferulates. Moreover, thorough peak assignment tables presented in this study could prove to be helpful tools when identifying steryl ferulates, especially as a group, in future studies.

  20. In vivo lipidomics using single-cell Raman spectroscopy.

    Science.gov (United States)

    Wu, Huawen; Volponi, Joanne V; Oliver, Ann E; Parikh, Atul N; Simmons, Blake A; Singh, Seema

    2011-03-01

    We describe a method for direct, quantitative, in vivo lipid profiling of oil-producing microalgae using single-cell laser-trapping Raman spectroscopy. This approach is demonstrated in the quantitative determination of the degree of unsaturation and transition temperatures of constituent lipids within microalgae. These properties are important markers for determining engine compatibility and performance metrics of algal biodiesel. We show that these factors can be directly measured from a single living microalgal cell held in place with an optical trap while simultaneously collecting Raman data. Cellular response to different growth conditions is monitored in real time. Our approach circumvents the need for lipid extraction and analysis that is both slow and invasive. Furthermore, this technique yields real-time chemical information in a label-free manner, thus eliminating the limitations of impermeability, toxicity, and specificity of the fluorescent probes common in currently used protocols. Although the single-cell Raman spectroscopy demonstrated here is focused on the study of the microalgal lipids with biofuel applications, the analytical capability and quantitation algorithms demonstrated are applicable to many different organisms and should prove useful for a diverse range of applications in lipidomics.

  1. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    Science.gov (United States)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  2. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  3. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    Science.gov (United States)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-06-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy.

  4. Raman spectroscopy study of calcium oxalate extracted from cacti stems.

    Science.gov (United States)

    Frausto-Reyes, Claudio; Loza-Cornejo, Sofia; Terrazas, Teresa; Terrazas, Tania; Miranda-Beltrán, María de la Luz; Aparicio-Fernández, Xóchitl; López-Macías, Brenda M; Morales-Martínez, Sandra E; Ortiz-Morales, Martín

    2014-01-01

    To find markers that distinguish the different Cactaceae species, by using near infrared Raman spectroscopy and scanning electron microscopy, we studied the occurrence, in the stem, of solid deposits in five Cactaceae species (Coryphantha clavata, Ferocactus latispinus, Opuntia ficus-indica, O. robusta, and O. strepthacantha) collected from their natural habitats from a region of México. The deposits in the tissues usually occurred as spheroidal aggregates, druses, or prismatic crystals. From the Raman spectra, the crystals were identified either as calcium oxalate monohydrate (CaC2O4·H2O) or calcium oxalate dihydrate (CaC2O4·2H2O). Opuntia species (subfamily Opuntioideae) showed the presence of CaC2O4·H2O, and the deposition of CaC2O4·2H2O was present in C. clavata and F. latispinus (subfamily Cactoideae, Cacteae tribe). As a punctual technique, Raman spectroscopy seems to be a useful tool to identify crystal composition. In addition to allowing the analysis of crystal morphology, this spectroscopic technique can be used to identify Cactaceae species and their chemotaxonomy.

  5. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  6. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  7. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    Science.gov (United States)

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  8. Raman and infrared spectroscopy of carbohydrates: A review

    Science.gov (United States)

    Wiercigroch, Ewelina; Szafraniec, Ewelina; Czamara, Krzysztof; Pacia, Marta Z.; Majzner, Katarzyna; Kochan, Kamila; Kaczor, Agnieszka; Baranska, Malgorzata; Malek, Kamilla

    2017-10-01

    Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (D-(-)-ribose, 2-deoxy-D-ribose, L-(-)-arabinose, D-(+)-xylose, D-(+)-glucose, D-(+)-galactose and D-(-)-fructose) and disaccharides (D-(+)-sucrose, D-(+)-maltose and D-(+)-lactose), and then more complex ones, i.e. trisaccharides (D-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050 cm- 1), IV (3050-2800 cm- 1) and II (1200-800 cm- 1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200 cm- 1) and I (800-100 cm- 1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.

  9. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  10. Raman Spectroscopy: an essential tool for future IODP expeditions

    Science.gov (United States)

    Andò, Sergio; Garzanti, Eduardo; Kulhanek, Denise K.

    2016-04-01

    The scientific drilling of oceanic sedimentary sequences plays a fundamental part in provenance studies, paleoclimate recostructions, and source-to-sink investigations (e.g., France-Lanord et al., 2015; Pandey et al., 2015). When studying oceanic deposits, Raman spectroscopy can and does represent an essential flexible tool for the multidisciplinary approach necessary to integrate the insight provided by different disciplines. This new user-friendly technique opens up an innovative avenue to study in real time the composition of detrital mineral grains of any origin, complementing traditional methods of provenance analysis (e.g., sedimentary petrography, heavy minerals; Andò and Garzanti, 2014). Raman spectra can readily reveal the chemistry of foraminiferal tests, nannofossils and other biogenic debris for the study of ecosystem evolution and paleoclimate, or the Ca/Mg ratio in biogenic or terrigenous carbonates for geological or marine biological applications and oil exploration (Borromeo et al., 2015). For the study of pelagic or turbiditic muds, which represent the bulk of the deep-marine sedimentary record, Raman spectroscopy allows us to identify silt-sized grains down to the size of a few microns with the same precision level required in quantitative provenance analysis of sand-sized sediments (Andò et al., 2011). Silt and siltstone also represent a very conspicuous part of the stratigraphic record onshore and usually preserve original mineralogical assemblages better than more permeable interbedded sand and sandstone (Blatt, 1985). Raman spectra can be obtained on sample volumes of only a few cubic microns by a confocal micro-Raman coupled with a standard polarizing light microscope using a 50× objective. The size of this apparatus can be easily placed onboard an IODP vessel to provide crucial information and quickly solve identification problems for the benefit of a wide range of scientists during future expeditions. Cited references Andò, S., Vignola

  11. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    Science.gov (United States)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  12. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  13. Analysis of Microstructure of Silicon Carbide Fiber by Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Baohong JIN; Nanlin SHI

    2008-01-01

    The SiC fiber was prepared by chemical vapour depostion, which consists of tungsten core, SiC layer and carbon coating. The microstructure of the fiber was investigated using Raman spectroscopy, illustrating SiC variation in different region of the fiber. The result shows that the SiC layer can be subdivided into two parts in the morphologies of SiC grains; their sizes increase and their orientations become order with increasing distance from the fiber center. It is demonstrated that the mount of free carbon in the fiber is responsible for the variation of SiC grains in sizes and morphologies. The analysis of Raman spectra shows that the predominant β-SiC has extensive stacking faults within the crystallites and mixes other polytypes and amorphous SiC into the structure in the fiber.

  14. Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    R. P. Kengne-Momo

    2012-01-01

    Full Text Available Interaction and surface binding characteristics of staphylococcal protein A (SpA and an anti-Escherichia coli immunoglobulin G (IgG were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.

  15. Surface enhanced raman spectroscopy studies on triglycine sulphate single crystals

    Science.gov (United States)

    Parameswari, A.; Mohamed Asath, R.; Premkumar, R.; Milton Franklin Benial, A.

    2017-01-01

    Adsorption characteristics of triglycine sulphate (TGS) on silver (Ag) surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of TGS were grown by slow evaporation method. Ag nanoparticles (Ag NPs) were prepared by solution combustion method and characterized. The calculated and observed structural parameters of TGS molecule were compared. Raman and SERS spectra for TGS single crystal were studied experimentally and validated theoretically. Frontier molecular orbitals (FMOs) analysis was carried out for TGS and TGS adsorbed on Ag surface. The second harmonic generation measurements confirm the nonlinear optical (NLO) activity of the TGS molecule. SERS spectral analysis reveals that the TGS adsorbed as tilted orientation on the silver surface. The theoretical and experimental results evidence the suitability of the grown TGS single crystal for optoelectronic applications.

  16. Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation.

    Science.gov (United States)

    Killeen, Daniel P; Marshall, Susan N; Burgess, Elaine J; Gordon, Keith C; Perry, Nigel B

    2017-05-03

    Fish oils are the primary dietary source of ω-3 polyunsaturated fatty acids (PUFA), but these compounds are prone to oxidation, and commercial fish oil supplements sometimes contain less PUFA than claimed. These supplements are predominantly sold in softgel capsules. In this work, we show that Fourier transform (FT)-Raman spectra of fish oils (n = 5) and ω-3 PUFA concentrates (n = 6) can be acquired directly through intact softgel (gelatin) capsules. These spectra could be used to rapidly distinguish supplements containing ethyl esters from those containing triacylglyceride oils. Raman spectroscopy calibrated with partial least-squares regression against traditional fatty acid methyl ester analyses by gas chromatography-mass spectrometry could be used to rapidly and nondestructively quantitate PUFA and other fatty acid classes directly though capsules. We also show that FT-Raman spectroscopy can noninvasively detect oxidation with high sensitivity. Oils with peroxide values of as low as 10 mequiv kg(-1), which are on the cusp of falling outside of specification, could be readily distinguished from oils that were within specification (7 mequiv kg(-1)).

  17. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.

    Science.gov (United States)

    Buckley, Kevin; Ryder, Alan G

    2017-06-01

    The production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.) and have spawned a large (>€35 billion sales annually in Europe) and growing biopharmaceutical industry (BioPharma). The structural and chemical complexity of biologics, combined with the intricacy of cell-based manufacturing, imposes a huge analytical burden to correctly characterize and quantify both processes (upstream) and products (downstream). In small molecule manufacturing, advances in analytical and computational methods have been extensively exploited to generate process analytical technologies (PAT) that are now used for routine process control, leading to more efficient processes and safer medicines. In the analytical domain, biologic manufacturing is considerably behind and there is both a huge scope and need to produce relevant PAT tools with which to better control processes, and better characterize product macromolecules. Raman spectroscopy, a vibrational spectroscopy with a number of useful properties (nondestructive, non-contact, robustness) has significant potential advantages in BioPharma. Key among them are intrinsically high molecular specificity, the ability to measure in water, the requirement for minimal (or no) sample pre-treatment, the flexibility of sampling configurations, and suitability for automation. Here, we review and discuss a representative selection of the more important Raman applications in BioPharma (with particular emphasis on mammalian cell culture). The review shows that

  18. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies.

    Science.gov (United States)

    Zimmermann, Boris; Baranović, Goran

    2011-01-25

    A simple IR spectroscopy based methodology in routine screening studies of polymorphism is proposed. Reflectance and transmittance temperature-dependent IR measurements (coupled with the 2D-IR data presentation and the baseline analysis) offer a positive identification of each polymorphic phase, therefore allowing simple and rapid monitoring of the measured system. Applicability and flexibility of the methodology was demonstrated on the measurement of the model polymorphic compound paracetamol under various conditions (including geometric constraints and elevated pressure). The thermal behavior of paracetamol strongly depends on slight variations in experimental conditions that can result in formation of various phases (three polymorphs and the amorphous form). The amorphous phase can crystallize during heating into either Form II or Form III within almost identical temperature range. Likewise, the crystal transformations II→I and III→II also can proceed within almost identical temperature range. Furthermore, the thermal behavior is even more diverse than that, and includes the crystallizations of Forms I, II and III from the melt, and the high temperature II→I transition. The variety of the temperatures of the transformations is a major obstacle for unambiguous identification of a particular phase by DSC and a major reason for the implementation of these IR methods.

  19. FT-IR, FT-Raman, UV/Vis spectra and fluorescence imaging studies on 2-(bromoacetyl)benzo(b)furan by ab initio DFT calculations.

    Science.gov (United States)

    Veeraiah, A

    2015-08-05

    The vibrational and electronic properties of 2-(bromoacetyl)benzo(b)furan have been studied in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-31G(d,p) basis set. The theoretically calculated optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yield good agreement between the observed and calculated values. The complete assignments of fundamental modes were performed on the basis of the potential energy distribution (PED). UV-visible spectrum of the compound was recorded in the region 300-600 nm and compared with the theoretical spectrum obtained from SAC-CI calculations. A good agreement is observed between the experimental and theoretical spectra. Fluorescence microscopic imaging studies proved that the compound can be used as one of the potential light sources in the yellow region with suitable excitation. Further, the predicted electronic transitions between the MOs 47→64, 52→62, 56→65, 56→72, 56→77 of the compound show a strong line at 569.8 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    Science.gov (United States)

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations.

    Science.gov (United States)

    Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R

    2015-03-05

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. NMR, FT-IR, FT-Raman, UV spectroscopic, HOMO-LUMO and NBO analysis of cumene by quantum computational methods

    Science.gov (United States)

    Sivaranjani, T.; Xavier, S.; Periandy, S.

    2015-03-01

    This work presents the investigation of cumene using the FT-IR, FT-Raman, NMR and UV spectra obtained through various spectroscopic techniques. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been scaled and compared with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, and potential energy surface (PES) is performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. NLO properties related to polarizability and hyperpolarizability are also discussed.

  3. Quantum chemical calculation (electronic and topologic) and experimental (FT-IR, FT-Raman and UV) analysis of isonicotinic acid N-oxide

    Science.gov (United States)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-04-01

    In this work, the molecular conformation, vibrational and electronic analysis of isonicotinic acid N-oxide (iso-NANO) were presented in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The geometry optimization and energies associated possible two conformers (Rot-I and Rot-II) were computed. The vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The obtained structures were analyzed with the Atoms in Molecules (AIMs) methodology. The computational results diagnose the most stable conformer of iso-NANO as the Rot-I form. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (OPDOS) diagrams analysis for the most stable conformer (Rot-I) were calculated using the same method. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results.

  4. FT-IR, FT-Raman and computational study of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenesulfonamide.

    Science.gov (United States)

    Chandran, Asha; Varghese, Hema Tresa; Mary, Y Sheena; Panicker, C Yohannan; Manojkumar, T K; Van Alsenoy, Christian; Rajendran, G

    2012-06-15

    The FT-IR and FT-Raman spectra of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenesulfonamide were recorded and analyzed. Geometry and harmonic vibrational wavenumbers were calculated theoretically using Gaussian 03 set of quantum chemistry codes. Calculations were performed at the Hartree-Fock (HF) and density functional theory (DFT) levels of theory. The calculated wavenumbers (B3LYP) agree well with the observed wavenumbers. Potential energy distribution is done using GAR2PED program. The red shift of the N-H stretching bands in the infrared spectrum from the computed wavenumber indicates the weakening of the N-H bond. The calculated first hyperpolarizability is comparable with the reported value of similar derivative and may be an attractive object for further studies of nonlinear optics. The variations in the CN bond lengths of the title molecule suggest an extended π-electron delocalization over the sulfaguanidine moiety which is responsible for the nonlinearity of the molecule. The geometrical parameters of the title compound are in agreement with that of reported similar derivatives. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. FT-IR, FT-Raman and UV spectroscopic investigation, electronic properties, electric moments, and NBO analysis of anethole using quantum chemical calculations.

    Science.gov (United States)

    Sinha, L; Prasad, O; Chand, S; Sachan, A K; Pathak, S K; Shukla, V K; Karabacak, M; Asiri, A M

    2014-12-10

    FT-IR and FT-Raman spectra of anethole (1-Methoxy-4-(1-propenyl)benzene), a flavoring agent of commercial value, have been recorded in the regions 4000-400 and 4000-100cm(-1) respectively. The structure of the title molecule has been optimized and the structural parameters have been calculated by DFT/B3LYP method with 6-311++G(d,p) basis set. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. UV-Vis spectrum of the title compound was recorded in the region 200-500nm and the electronic properties such as HOMO and LUMO energies and associated energy gap were calculated by Time dependent-density functional theory (TD-DFT) approach. Nonlinear optical (NLO) study divulges the nonlinear properties of the molecule. Stability of the title molecule arising from hyper-conjugative interactions and charge delocalization has been investigated using natural bond orbital (NBO) analysis. The theoretical results were found to be in coherence with the measured experimental data. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    Science.gov (United States)

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Experimental FTIR, FT-IR (gas phase), FT-Raman and NMR spectra, hyperpolarizability studies and DFT calculations of 3,5-dimethylpyrazole.

    Science.gov (United States)

    Sundaraganesan, N; Kavitha, E; Sebastian, S; Cornard, J P; Martel, M

    2009-10-15

    In the present study, structural properties of 3,5-dimethylpyrazole (3,5-DMP) have been studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase and gas phase) and Fourier transform Raman spectra of 3,5-DMP were recorded. The Vibrational frequencies of 3,5-DMP in the ground state have been calculated by using density functional method (B3LYP) with 6-31G(d,p), 6-311G(d,p) and 6-311++G(d,p) as basis sets. Comparison of the observed fundamental vibrational frequencies of 3,5-DMP with calculated results show that 6-311++G(d,p) superior to other basis sets for molecular vibrational problems. Non linear optical NLO behavior of the examined molecule was investigated by the determination of the electric dipole moment mu, the polarizability alpha and the hyperpolarizability beta using the B3LYP/cc-pvdz method. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  8. Study On Gallstone And Bezoar (Ox Gallstone) by FT-IR Spectroscopy

    Science.gov (United States)

    Wu, Jinguang; Shen, Guorong; Guo, Hai; Xu, Guangxian

    1985-12-01

    Some specimens of gallstones with black colour and pigment gallstones were studied by FT-IR spectroscopy. From the subtraction spectra of the samples using calcium bilirubin as the reference substance, the characteristic bands of the proteins were obtained. Bezoar is the gallstone of ox. It is an important ingredient of some Chinese traditional medicines. Four specimens of natural bezoar produced from different places were studied by FT-IR. From the subtraction spectra of the bezoar samples using calcium bilirubin as the reference, the main bands of protein were also obtained. The secondary structures of the proteins were discussed.

  9. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  10. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer

    Science.gov (United States)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-01

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.

  11. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates.

    Science.gov (United States)

    Swiderski, G; Kalinowska, M; Wojtulewski, S; Lewandowski, W

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  12. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    Science.gov (United States)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  13. Raman spectroscopy for the control of the atmospheric bioindicators

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Shamina, L. A.; Zherdeva, L. A.

    2015-09-01

    Experimental studies of optical parameters of different atmospheric bioindicators (arboreous and terricolous types of plants) have been performed with Raman spectroscopy. The change in the optical parameters has been explored for the objects under direct light exposure, as well as for the objects placed in the shade. The age peculiarities of the bioindicators have also been taken into consideration. It was established that the statistical variability of optical parameters for arboreous bioindicators was from 9% to 15% and for plants from 4% to 8.7%. On the basis of these results dandelion (Taraxacum) was chosen as a bioindicator of atmospheric emissions.

  14. A Survey of Olivine Alteration Products Using Raman Spectroscopy

    Science.gov (United States)

    Kuebler, K.; Jolliff, B. L.; Wang, A.; Haskin, L. A.

    2004-01-01

    Identification of mineral alteration products will aid in the crucial task of interpreting past Martian environmental conditions, especially aqueous environments. Olivine has been identified at the surface of Mars and is readily altered in aqueous environments. Using Raman spectroscopy, we studied three rocks with altered olivine and compared the data with mineral chemistry from electron microprobe analysis. Although the alteration in all three samples has loosely been called iddingsite their appearances and modes of occurrences differ as described. Alteration products in all three samples are likely fine-grained mixtures.

  15. Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Inzana, Jason; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2012-01-01

    Although glucocorticoids are among the most frequently prescribed anti-inflammatory agents used in the treatment of rheumatoid arthritis, extended exposure to this steroid hormone is the leading cause of iatrogenic osteoporosis. Recently, Raman spectroscopy has been utilized to exploit biochemical differences between osteoporotic and normal bones in order to predict fracture risk. In this presentation, we report the results of ongoing research in our laboratory towards the clinical translation of this technique. We will discuss strategies for the transcutaneous acquisition of spectra from the tibiae of mice that are of sufficient quality to generate accurate predictions of fracture risk.

  16. Localized thermal mapping using coherent anti-Stokes Raman spectroscopy.

    Science.gov (United States)

    Beier, Hope T; Noojin, Gary D; Rockwell, Benjamin A

    2012-08-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is explored as a tool for obtaining micro-scale thermal measurements. A single femtosecond oscillator is used to pump a photonic crystal fiber to provide the broadband Stokes pulse. The CARS signals from the broad OH-stretching modes between 3000 and 3600 cm(-1) are shown to correlate with temperature with an accuracy of ± 1°C for water and ± 1.5°C for phosphate-buffered saline. Local variation of temperature is mapped on a microscopic level, using black-dyed microspheres as thermal sources.

  17. FT-Raman study of quinine aqueous solutions with varying pH: 2D correlation study

    Science.gov (United States)

    Wesełucha-Birczyńska, Aleksandra

    2007-01-01

    Quinine (C 20H 24N 2O 2) is one of the best known, for its antimalarial activity, Cinchona alkaloid. In the current study 2D correlation method was applied to analyze FT-Raman spectra of quinine aqueous solutions with varying pH, which was regarded as an external perturbation. Protonation appears to be the main cause leading to the emergence of cross peaks in the synchronous and asynchronous correlation maps. One should know that protonation process is an important step associated with quinine antimalarial activity. Methoxy group manifests its presence by creation of the respective correlation peaks and seems to be significant for quinine mode of action.

  18. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  19. A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Evdokia Kastanos

    2012-01-01

    Full Text Available The current state of the art on bacterial classification using Raman and Surface Enhanced Raman Spectroscopy (SERS for the purpose of developing a rapid and more accurate method for urinary tract infection (UTI diagnosis is presented. SERS, an enhanced version of Raman offering much increased sensitivity, provides complex biochemical information which, in conjunction with advanced analysis and classification techniques, can become a valuable diagnostic tool. The variety of metal substrates used for SERS, including silver and gold colloids, as well as nanostructured metal surfaces, is reviewed. The challenges in preprocessing noisy and complicated spectra and the various methods used for feature creation as well as a novel method using spectral band ratios are described. The various unsupervised and supervised classification methods commonly used for SERS spectra of bacteria are evaluated. Current research on transforming SERS into a valuable clinical tool for the diagnosis of UTIs is presented. Specifically, the classification of bacterial spectra (a as positive or negative for an infection, (b as belonging to a particular species of bacteria, and (c as sensitive or resistant to an antibiotic are described. This work can lead to the development of novel technology with extremely important benefits for public health.

  20. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    Science.gov (United States)

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws.

  1. Raman spectroscopy of thin-film silicon on woven polyester

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Helena; Wilson, John [Department of Physics, School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (United Kingdom); Mather, Robert [Power Textiles Limited, Upland House, Ettrick Road, Selkirk TD7 5AJ (United Kingdom)

    2011-12-15

    Thin-film silicon deposited by plasma-enhanced chemical vapour deposition (PECVD), encompasses both hydrogenated amorphous silicon (a-Si:H) and 'nanocrystalline silicon' (nc-Si), the latter being a two-phase mixture of discrete nanocrystallites in an amorphous matrix. It is distinguished from a-Si:H by a characteristic Raman spectrum. As the film structure moves from amorphous to more crystalline, the Raman TO phonon spectral region no longer consists of a broad amorphous peak at {proportional_to}480 cm{sup -1} but instead has an obvious narrower peak located at higher wavenumber. The accepted signature peak for nc-Si lies between these two and most probably arises from the hexagonal, wurtzite structure of the nanocrystals. Here we use Raman spectroscopy to show how the structure of thin-film silicon on woven polyester is influenced by the substrate as well as by the deposition conditions. We find that the rough surface of the textile substrate enables nc-Si formation, provided that the correct deposition conditions are employed and that the substrate temperature does not exceed 210 C. Although the gas mixture is the dominant parameter for determining the film structure, and input power also has a significant effect, we find that a specific combination of these interrelated parameters is essential to control the final structure. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. [Rapid detection of chlorinated organic mixture by laser Raman spectroscopy].

    Science.gov (United States)

    Ma, Jing

    2014-07-01

    In order to realize the rapid, nondestructive detection of organic compounds, a two-dimensional analysis method based on technology of laser Raman spectroscopy was proposed. The results show that using 532 nm laser as excitation light source, the observation of 236.2, 348.9, 449.4 and 513.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 6.4 : 1.7: 9.4 : 1.0 can determine the existence of tetrachloroethylene. The observation of 707.5, 1 087.9, 1 175.8 and 3 078.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 9.6 : 6.4 : 1.0 : 3.9 can determine the existence of chlorobenzene. In other words, that through the comprehensive study of spectral lines and intensity ratio of some spectral lines, the presence of organic compounds in the mixed solution can be determined quickly. In the aspect of quantitative analysis, using multi-spectral analysis combined with least square fitting method can improve the reliability of the measurement, The accuracy of sample concentration was 98.4%. This spectral measurement method is a potential tool for organic component identification and concentration analysis which has a prosperous application prospects.

  3. In vivo Raman spectroscopy for oral cancers diagnosis

    Science.gov (United States)

    Singh, S. P.; Deshmukh, Atul; Chaturvedi, Pankaj; Krishna, C. Murali

    2012-01-01

    Oral squamous cell carcinoma is sixth among the major malignancies worldwide. Tobacco habits are known as major causative factor in tumor carcinogenesis in oral cancer. Optical spectroscopy methods, including Raman, are being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant and malignant oral ex-vivo tissues. In the present study we have recorded in vivo spectra from contralateral normal and diseased sites of 50 subjects with pathologically confirmed lesions of buccal mucosa using fiber-optic-probe-coupled HE-785 Raman spectrometer. Spectra were recorded on similar points as per teeth positions with an average acquisition time of 8 seconds. A total of 215 and 225 spectra from normal and tumor sites, respectively, were recorded. Finger print region (1200-1800 cm-1) was utilized for classification using LDA. Standard-model was developed using 125 normal and 139 tumor spectra from 27 subjects. Two separate clusters with an efficiency of ~95% were obtained. Cross-validation with leave-one-out yielded ~90% efficiency. Remaining 90 normal and 86 tumor spectra were used as test data and predication efficiency of model was evaluated. Findings of the study indicate that Raman spectroscopic methods in combination with appropriate multivariate tool can be used for objective, noninvasive and rapid diagnosis.

  4. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy.

    Science.gov (United States)

    Aureliano, Manuel; Ohlin, C André; Vieira, Michele O; Marques, M Paula M; Casey, William H; Batista de Carvalho, Luís A E

    2016-04-25

    The decaniobate ion, (Nb10 = [Nb10O28](6-)) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28](6-)), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59, which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 > pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH conditions for at least two weeks and at moderate temperature. The Raman method provides a means of establishing speciation in the difficult niobate system and these findings have important consequences for toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates.

  5. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  6. Tackling field-portable Raman spectroscopy of real world samples

    Science.gov (United States)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  7. Antenna Design for Directivity-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2012-01-01

    Full Text Available Antenna performance can be described by two fundamental parameters: directivity and radiation efficiency. Here, we demonstrate nanoantenna designs in terms of improved directivity. Performance of the antennas is demonstrated in Raman scattering experiments. The radiated beam is directed out of the plane by using a ground plane reflector for easy integration with commercial microscopes. Parasitic elements and parabolic and waveguide nanoantennas with a ground plane are explored. The nanoantennas were fabricated by a series of electron beam evaporation steps and focused ion beam milling. As we have shown previously, the circular waveguide nanoantenna boosts the measured Raman signal by 5.5x with respect to a dipole antenna over a ground plane; here, we present the design process that led to the development of that circular waveguide nanoantenna. This work also shows that the parabolic nanoantenna produces a further fourfold improvement in the measured Raman signal with respect to a circular waveguide nanoantenna. The present designs are nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. These designs can find applications in microscopy, spectroscopy, light-emitting devices, photovoltaics, single-photon sources, and sensing.

  8. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    Science.gov (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  9. Calibration of Raman spectroscopy at 1064 nm for beeswax quantification.

    Science.gov (United States)

    Pan, A; Chiussi, S; Serra, J; González, P; León, B

    2007-11-01

    In the early sixties, coating with molten beeswax was considered a valuable method for preventing the erosive action of weather and/or salinity on the surface of granite sculptures and monuments. This technique had been traditionally employed by the Galician stoneworkers for partial repair of historical monuments. For this purpose, beeswax was applied to the Renaissance Frieze in the Cloister of the Cathedral of Santiago de Compostela in Galicia (Northwest Spain). The beeswax treatment was counterproductive. An intense grain disaggregation of the granite can be observed in the Frieze, owing to the crystallization of salts. As a consequence, the restoration of the Cloister presents many problems. This fact imposes the need for an exhaustive study of the wax-stone system and the demand for a nondestructive method to measure the beeswax thickness at the stone surface. The aim of this contribution is the evaluation of a laser-based method, namely Fourier transform Raman spectroscopy, for analyzing the wax presence in specific rocky material of the Frieze to be restored. To obtain a reliable quantitative calibration, we prepared beeswax films of five different thicknesses on aluminum plates (26.6-97.2 microm). Nylon was selected as external reference to obtain the Raman emission independently from the laser beam power. The ratios of the relative intensities of the Raman bands corresponding to beeswax and nylon were used for the construction of a calibration curve used for the quantitative analysis. The intensities at 2879 cm(-1), I(c2879), and 2880 cm(-1), I(n2880), for beeswax and nylon, respectively, in the Raman spectra of each material were used. A linear dependence was found for the ratio I(c2879)/I(n2880) with the beeswax thickness. The validation of this calibration curve was tested with a second validation set of samples that spans beeswax film thicknesses both inside and outside the calibration range (12.1 to 180 mum), in order to evaluate in addition the

  10. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd

    2010-12-16

    True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.

  11. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine.

    Science.gov (United States)

    Rawat, Poonam; Singh, R N; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-05-15

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, (1)H NMR, (13)C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π→π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89×10(-30)esu, (gas phase); 68.79×10(-30) (CHCl3), esu; 76.76×10(-30)esu (CH2Cl2), 85.16×10(-30)esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram

  12. Rapid quantitative analysis of Dimethoate pesticide using surface enhanced raman spectroscopy

    Science.gov (United States)

    A method for rapid quantitative detection of dimethoate pesticide by using surface-enhanced Raman spectroscopy (SERS) has been described. Significantly enhanced Raman signals of pesticide in low concentrations of 0.5 ~ 10 ug/mL were acquired by confocal raman micro-spectrometry with renishaw diagno...

  13. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1994-01-01

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of crystal-clas

  14. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell.

  15. Raman Spectroscopy Applied to Mars Water Cycle Studies

    Science.gov (United States)

    Nikolakakos, G.; Whiteway, J. A.

    2014-12-01

    One of the key findings during the Phoenix and Mars Science Laboratory landed Mars missions has been the detection of perchlorate, a highly deliquescent salt. Perchlorates are of great interest on Mars due to their high affinity for water vapour as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in influencing the hydrological cycle on Mars. In order to experimentally study brine formation on Mars and assess the feasibility of a future landed detection tool, a stand-off Raman spectroscopy instrument and environmental simulation chamber have been developed at York University. A sample of magnesium perchlorate has been subjected to the water vapour pressure, background pressure and temperatures found at polar Martian latitudes. Results indicate that at a water vapour pressure of ~20 Pa, Raman spectroscopy is able to detect the onset of brine formation and provide an estimate of the quantity of water taken up by the sample. At the lower water vapour pressures typically found on Mars ( ~1 Pa), it appears that slower dynamics inhibit the onset of water uptake over relevant time scales. The experimental setup and current results will be presented.

  16. FT-Raman and FT-IR vibrational spectroscopic studies of Sr{sub 2}RESbO{sub 6} (RE = La to Lu and Y) double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Martinez, F.; Montero, J.L.; Carrillo, I. [Departamento de Quimica Industrial y Polimeros, EUITI, Universidad Politecnica de Madrid, 28012 Madrid (Spain); Colon, C., E-mail: cristobal.colon@upm.es [Departamento Fisica Aplicada, EUITI, Universidad Politecnica de Madrid, 28012 Madrid (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer 14 double perovskites Sr{sub 2}RESbO{sub 6} were synthesized. Black-Right-Pointing-Pointer Crystal lattice parameters have been obtained. Black-Right-Pointing-Pointer IR and Raman spectra have been obtained. Black-Right-Pointing-Pointer The crystal structure has been studied. - Abstract: The Sr{sub 2}RESbO{sub 6} double perovskites (RE = La to Lu and Y) were synthesized by ceramic method. The structure and phase purity of the prepared double perovskites were examined by X-ray diffraction pattern and vibrational spectroscopy. A systematic analysis of the compounds structure was carried out for the first time by Raman and IR spectroscopies. A simple inspection of the diffraction patterns shows that these compounds have lower symmetry than the cubic which can be usually found in the Ba{sub 2}RESbO{sub 6} double perovskites. The four active modes (A{sub 1g}, E{sub g}, and two T{sub 2g}) in the Raman spectra and the active mode (T{sub 1u}) in the IR spectra previously described in the spectroscopic data of Ba compounds have changed. In the Sr compounds these modes have been split into its components, in some cases, being active in both types of spectra. According to our data the Sr{sub 2}RESbO{sub 6} double perovskites can be described by a monoclinic symmetry cell, space group P2{sub 1}/n. However, in the cases of Sr{sub 2}LaSbO{sub 6} and Sr{sub 2}PrSbO{sub 6} an alternative structure should be searched by neutron diffraction technique.

  17. Characterization of alunite supergroup minerals by Raman spectroscopy.

    Science.gov (United States)

    Maubec, N; Lahfid, A; Lerouge, C; Wille, G; Michel, K

    2012-10-01

    Raman spectroscopy has been used to study the molecular structure of different natural minerals of the alunite supergroup (AB(3)(XO(4))(2)(OH)(6)), with A=K(+), Na(+), Ca(2+), Sr(2+), Ba(2+), B=Al(3+), Fe(3+) and X=S(6+), P(5+). The influence of the ions, in A-, B- and X-sites, is highlighted in the Raman spectra by variations in the position of certain vibrations and is discussed in association with published crystallographic data in order to describe the observed differences. It was found that A-site substitutions are characterized by wavenumber shifts of the vibrations involving hydroxyl groups. The positions of these vibrational bands vary linearly with the ionic radius of the ions in this site. B-site substitutions induce shifts of all bands due to structural modifications that lead to differences in the chemical environment around the hydroxyl and XO(4) groups and changes in B-O bond lengths. A correlation showed that these shifts correlate well with the ionic radii of the B-ions. The spectra of compounds containing both sulfate and phosphate groups are described by numerous vibration bands caused by a complex elemental composition and a symmetry change of the XO(4) groups. This study has also made it possible to generalize substitution effects on the wavenumbers of several vibrations and show that Raman spectroscopy could be a powerful tool for identifying and distinguishing minerals of the alunite supergroup. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.

    Science.gov (United States)

    Akerholm, Margaretha; Hinterstoisser, Barbara; Salmén, Lennart

    2004-02-25

    The cellulose structure is a factor of major importance for the strength properties of wood pulp fibers. The ability to characterize small differences in the crystalline structures of cellulose from fibers of different origins is thus highly important. In this work, dynamic FT-IR spectroscopy has been further explored as a method sensitive to cellulose structure variations. Using a model system of two different celluloses, the relation between spectral information and the relative cellulose Ialpha content was investigated. This relation was then used to determine the relative cellulose Ialpha content in different pulps. The estimated cellulose I allomorph compositions were found to be reasonable for both unbleached and bleached chemical pulps. In addition, it was found that the dynamic FT-IR spectroscopy technique had the potential to indicate possible correlation field splitting peaks of cellulose Ibeta.

  19. Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Dana, Kathryn; Shende, Chetan; Huang, Hermes; Farquharson, Stuart

    Increases in illicit drug use and the number of emergency-room visits attributable to drug misuse or abuse highlight the need for an efficient, reliable method to detect drugs in patients in order to provide rapid and appropriate care. A surface-enhanced Raman spectroscopy (SERS)-based method was successfully developed to rapidly measure cocaine in saliva at clinical concentrations, as low as 25 ng/mL. Pretreatment steps comprising chemical separation, physical separation, and solid-phase extraction were investigated to recover the analyte drug from the saliva matrix. Samples were analyzed using Fourier-transform (FT) and dispersive Raman systems, and statistical analysis of the results shows that the method is both reliable and accurate, and could be used to quantify unknown samples. The procedure requires minimal space and equipment and can be completed in less than 16 minutes. Finally, due to the inclusion of a buffer solution and the use of multiple robust pretreatment steps, with minimal further development this method could also be applied to other drugs of interest.

  20. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.

    Science.gov (United States)

    Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John

    2015-07-01

    Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science.

  1. Application of Raman multivariate curve resolution to solvation-shell spectroscopy.

    Science.gov (United States)

    Fega, Kathryn Rebecca; Wilcox, David Scott; Ben-Amotz, Dor

    2012-03-01

    Raman spectroscopy and multivariate curve resolution (Raman-MCR) are combined to yield a powerful spectroscopic method for identifying solute-induced perturbations of solvent molecules. The principles and applications of the resulting solvation-shell spectroscopy are described and illustrated using both numerical model spectra and experimental Raman spectra, including water in acetone and aqueous OH(-), as well as of both neutral and ionic acetic acid solutions. The results illustrate the quantitative capabilities of Raman-MCR as a solvation-shell spectroscopy, including fundamental limitations arising from "intensity" and "rotational" ambiguities.

  2. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO, NLO) investigation and molecular docking study of (R)-2-Methylamino-1-Phenylethanol (Halostachine)

    Science.gov (United States)

    Subashini, K.; Govindarajan, R.; Surendran, R.; Mukund, K.; Periandy, S.

    2016-12-01

    FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of (R)-2-Methylamino-1-Phenylethanol have been recorded in solid phase, 1H and 13C NMR in deuterated chloroform (CDCl3) phase and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The values of dipole moment (μ), polarizability (α) and hyper polarizability (β) of the molecule were calculated using which, the non-linear optical property of the molecule has been discussed. The observed HOMO-LUMO mappings reveals the different charge transfer possibilities within the molecule. Natural Bond Orbital analysis was computed and possible transitions were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functionals with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Bacillus anthracis (3V5O).

  3. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    Science.gov (United States)

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV-Visible investigation and optical analysis

    Science.gov (United States)

    Panneerdoss, I. Joseph; Jeyakumar, S. Johnson; Ramalingam, S.; Jothibas, M.

    2015-08-01

    In this original work, the Indium oxide (In2O3) thin film is deposited cleanly on microscope glass substrate at different temperatures by spray pyrolysis technique. The physical properties of the films are characterized by XRD, SEM, AFM and AFM measurements. The spectroscopic investigation has been carried out on the results of FT-IR, FT-Raman and UV-Visible. XRD analysis exposed that the structural transformation of films from stoichiometric to non-stoichiometric orientation of the plane vice versa and also found that, the film is polycrystalline in nature having cubic crystal structure with a preferred grain orientation along (2 2 2) plane. SEM and AFM studies revealed that, the film with 0.1 M at 500 °C has spherical grains with uniform dimension. The complete vibrational analysis has been carried out and the optimized parameters are calculated using HF and DFT (CAM-B3LYP, B3LYP and B3PW91) methods with 3-21G(d,p) basis set. Furthermore, NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) technique. The molecular electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, molecular electrostatic potential energy (MEP) analysis and Polarizability first order hyperpolarizability calculations are performed by time dependent DFT (TD-DFT) approach. The energy excitation on electronic structure is investigated and the assignment of the absorption bands in the electronic spectra of steady compound is discussed. The calculated HOMO and LUMO energies showed the enhancement of energy gap by the addition of substitutions with the base molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) at different temperatures are calculated and interpreted in gas phase.

  5. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation and molecular docking study of 1-(4-Methylbenzyl) piperazine

    Science.gov (United States)

    Subashini, K.; Periandy, S.

    2017-04-01

    The title compound, 1-(4-Methylbenzyl) piperazine, was analyzed by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. Density functional theory (DFT) calculation with 6-311++G (d, p) basis set along with B3LYP and B3PW91 functionals have been used to compute ground state molecular geometries and vibrational frequencies. The assignments of the vibrational spectra have carried out with the help of Potential Energy distribution (PED) analysis. Factor group analysis has also been tabulated. Charge distribution, Frontier Molecular Orbitals, UV-Vis spectra, Molecular Electrostatic Potential (MEP) maps, Non-linear optical (NLO) property and thermodynamic properties of the title compound at different temperatures, were determined using B3LYP functional along with 6-311++G (d, p) basis set. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functional with 6-311++G (2d, p) basis sets. Natural Bond orbital analysis were computed and possible transitions were correlated with the electronic transitions. The title compound not only exhibits appreciable dipole moment and hyper polarizability (indicating good NLO properties) but also forms a stable complex with Bacillus cereus, (2HUC), with binding affinity -6.7 kcal/mol through molecular docking, suggesting that, it might exhibit inhibitory activity against Bacillus cereus.

  6. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation, molecular docking and molecular simulation dynamics on 1-Methyl-3-Phenylpiperazine

    Science.gov (United States)

    Subashini, K.; Periandy, S.

    2017-09-01

    The title compound was analyzed, by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. Conformational analysis was done using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in terms of parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The observed HOMO-LUMO mappings reveal the different charge transfer possibilities within the molecule. The percentage contribution of a group to each molecular orbital was calculated using Gauss Sum program. Natural bond orbital analysis was computed and possible transition were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functional with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Clostridium botulinum (2J3X). The interaction of the ligand (title molecule) with 2J3X for 2 ns duration and radial distribution function have been observed through molecular dynamics simulations.

  7. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  8. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  9. The 14th Annual James L. Waters Symposium at Pittcon: Raman Spectroscopy

    Science.gov (United States)

    Gardner, Charles W.

    2007-01-01

    Raman Spectroscopy was the main topic of the 14th Annual James L. Waters Symposium, which was held in March 2003 at Pittcon. The development of the enabling technologies that have made Raman spectroscopy a routine analysis tool in many laboratories worldwide is discussed.

  10. Profiling of liquid crystal displays with Raman spectroscopy: Preprocessing of spectra.

    NARCIS (Netherlands)

    O. Stanimirovic; H.F.M. Boelens; A.J.G. Mank; H.C.J. Hoefsloot; A.K. Smilde

    2005-01-01

    Raman spectroscopy is applied for characterizing paintable displays. Few other options than Raman spectroscopy exist for doing so because of the liquid nature of functional materials. The challenge is to develop a method that can be used for estimating the composition of a single display cell on the

  11. New Insight into Erythrocyte through In Vivo Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Abdali, Salim; Brazhe, Alexey R.

    2009-01-01

    The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples co...

  12. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    Science.gov (United States)

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  13. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael

    2017-03-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.

  14. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    Science.gov (United States)

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination.

  15. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (pspectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  16. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    Science.gov (United States)

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  17. Spectral monitoring of toluene and ethanol in gasoline blends using Fourier-Transform Raman spectroscopy

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick; Javahiraly, Nicolas

    2013-04-01

    The combination of fossil-derived fuels with ethanol and methanol has acquired relevance and attention in several countries in recent years. This trend is strongly affected by market prices, constant geopolitical events, new sustainability policies, new laws and regulations, etc. Besides bio-fuels these materials also include different additives as anti-shock agents and as octane enhancer. Some of the chemical compounds in these additives may have harmful properties for both environment and public health (besides the inherent properties, like volatility). We present detailed Raman spectral information from toluene (C7H8) and ethanol (C2H6O) contained in samples of ElO gasoline-ethanol blends. The spectral information has been extracted by using a robust, high resolution Fourier-Transform Raman spectrometer (FT-Raman) prototype. This spectral information has been also compared with Raman spectra from pure additives and with standard Raman lines in order to validate its accuracy in frequency. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66cm-1. This allows resolving tight adjacent Raman lines like the ones observed around 1003cm-1 and 1030cm-1 (characteristic lines of toluene). The Raman spectra obtained show a reduced frequency deviation when compared to standard Raman spectra from different calibration materials. The FT-Raman spectrometer prototype used for the analysis consist basically of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling is achieved with conventional62.5/125μm multi-mode fibers. This FT-Raman setup is able to extract high resolution and frequency precise Raman spectra from the additives in the fuels analyzed. The proposed prototype has no additional complex hardware components or costly software modules. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by accurately

  18. Classification of oral cancers using Raman spectroscopy of serum

    Science.gov (United States)

    Sahu, Aditi; Talathi, Sneha; Sawant, Sharada; Krishna, C. Murali

    2014-03-01

    Oral cancers are the sixth most common malignancy worldwide, with low 5-year disease free survival rates, attributable to late detection due to lack of reliable screening modalities. Our in vivo Raman spectroscopy studies have demonstrated classification of normal and tumor as well as cancer field effects (CFE), the earliest events in oral cancers. In view of limitations such as requirement of on-site instrumentation and stringent experimental conditions of this approach, feasibility of classification of normal and cancer using serum was explored using 532 nm excitation. In this study, strong resonance features of β-carotenes, present differentially in normal and pathological conditions, were observed. In the present study, Raman spectra of sera of 36 buccal mucosa, 33 tongue cancers and 17 healthy subjects were recorded using Raman microprobe coupled with 40X objective using 785 nm excitation, a known source of excitation for biomedical applications. To eliminate heterogeneity, average of 3 spectra recorded from each sample was subjected to PC-LDA followed by leave-one-out-cross-validation. Findings indicate average classification efficiency of ~70% for normal and cancer. Buccal mucosa and tongue cancer serum could also be classified with an efficiency of ~68%. Of the two cancers, buccal mucosa cancer and normal could be classified with a higher efficiency. Findings of the study are quite comparable to that of our earlier study, which suggest that there exist significant differences, other than β- carotenes, between normal and cancerous samples which can be exploited for the classification. Prospectively, extensive validation studies will be undertaken to confirm the findings.

  19. Romanian Wines Quality and Authenticity Using FT-MIR Spectroscopy Coupled with Multivariate Data Analysis

    Directory of Open Access Journals (Sweden)

    Roxana BANC

    2014-12-01

    Full Text Available Fourier Transform Mid-Infrared Spectroscopy (FT-MIR combined with multivariate data analysis have been applied for the discrimination of 15 different Romanian wines (white, rosé and red wines, obtained from different origin-denominated cultivars. Principal component analysis and hierarchical cluster analysis was performed using different regions of FT-MIR spectra for all wines. The general fingerprint of wines was splitted in four characteristic regions, corresponding to phenolic derivatives, carbohydrates, amino acids and organic acids, which confer the wines quality and authenticity. By qualitative and quantitative evaluation of each component category, it was possible to discriminate each wine category, from red, to rosé and white colours, to dry, half-dry and half-sweet flavours. The multivariate data analysis based on absorption peaks from FT-MIR spectra demonstrated a very good, significant clustering of samples, based on the four main components: phenolics, carbohydrates, amino acids and organic acids. Therefore, the ATR-FT-MIR analysis proved to be a very fast, cheap and efficient tool to evaluate the quality and authenticity of wines, and to discriminate each wine category, based on their colour and sweetness, as consequence of their biological (cultivar specificity.

  20. Diagnosing breast cancer using Raman spectroscopy: prospective analysis

    Science.gov (United States)

    Haka, Abigail S.; Volynskaya, Zoya; Gardecki, Joseph A.; Nazemi, Jon; Shenk, Robert; Wang, Nancy; Dasari, Ramachandra R.; Fitzmaurice, Maryann; Feld, Michael S.

    2009-01-01

    We present the first prospective test of Raman spectroscopy in diagnosing normal, benign, and malignant human breast tissues. Prospective testing of spectral diagnostic algorithms allows clinicians to accurately assess the diagnostic information contained in, and any bias of, the spectroscopic measurement. In previous work, we developed an accurate, internally validated algorithm for breast cancer diagnosis based on analysis of Raman spectra acquired from fresh-frozen in vitro tissue samples. We currently evaluate the performance of this algorithm prospectively on a large ex vivo clinical data set that closely mimics the in vivo environment. Spectroscopic data were collected from freshly excised surgical specimens, and 129 tissue sites from 21 patients were examined. Prospective application of the algorithm to the clinical data set resulted in a sensitivity of 83%, a specificity of 93%, a positive predictive value of 36%, and a negative predictive value of 99% for distinguishing cancerous from normal and benign tissues. The performance of the algorithm in different patient populations is discussed. Sources of bias in the in vitro calibration and ex vivo prospective data sets, including disease prevalence and disease spectrum, are examined and analytical methods for comparison provided. PMID:19895125

  1. Real-time control of microreactors by Raman spectroscopy

    Science.gov (United States)

    Shende, Chetan; Maksymiuk, Paul; Inscore, Frank; Farquharson, Stuart

    2006-10-01

    In recent years a paradigm in chemical manufacturing has emerged, numbering-up production instead of the traditional scaling-up. This new approach employs nanoliter to milliliter reactors that increase control of reaction pathways, product choice and yield. These small-scale reactors virtually eliminate mixing and heat transfer problems associated with large-scale reactors that often limit yield. The value of small-scale reactors is being recognized by the pharmaceutical industry where only small-scale synthesis is required until clinical trials are complete, at which time fullscale production needs to be accomplished in the shortest possible time. One of the most often used reaction steps during the synthesis of pharmaceuticals is protecting carboxylic acid groups by esterification. We have been developing Raman spectroscopy as a process analytical tool to monitor and control chemistry in such small-scale reactors. Here we present Raman spectra of the esterification of benzoic acid performed in a 5-mL batch reactor.

  2. STRUCTURAL ANALYSIS OF WOOD-LEATHER PANELS BY RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Tilman Grünewald,

    2012-02-01

    Full Text Available Besides other ligno-cellulosic materials such as straw, rice husks, or bagasse, wet blue particles from leather production are a promising new raw material stock for wood-based panels, as they offer not only a high availability, but increase the properties of the panel with regard to fire resistance or mechanical characteristics. A panel with a mixture of 42.5% wood fibers, 42.5% wet blue leather particles, and 15% lignin adhesive was produced, and an inhomogeneous sample was prepared. An area of 9 x 10 mm was rasterized and scanned by means of Raman Spectroscopy. Furthermore, the reference spectra of the constituents, i.e. wood fiber, wet blue leather particle, and lignin powder were recorded. The obtained data were treated and analyzed using chemometric methods (principal components analysis PCA and cluster analysis. An important finding was that the reference data were not directly represented in the panels’ spectra, and the correlation matrix of the PCA was not applicable to the panel data. This indicated that chemical changes might take place during the pressing. After processing the panel Raman spectra with the help of PCA and cluster analysis, three distinctive clusters were obtained, discriminating wood, leather, and mixed regions. With the assigned spectral information, it was possible to create a spectral image of the surface.

  3. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-02-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.

  4. Raman spectroscopy of hot hydrogen above 200 GPa.

    Science.gov (United States)

    Howie, Ross T; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2015-05-01

    It has been theorized that at high pressure the increased energy of the zero-point oscillations in hydrogen would destabilize the lattice and form a ground fluid state at 0 K (ref. 1). Theory has also suggested that this fluid state, representing a new state of matter, might have unusual properties governed by quantum effects, such as superfluidity or superconductivity. Here, by combining Raman spectroscopy and in situ high-temperature, high-pressure techniques, we demonstrate that above 200 GPa a new phase transition occurs as temperature is increased, for example 480 K at 255 GPa. If the transformation is interpreted as melting, it would be the lowest melting temperature of any material at these high pressures. We also find a new triple point between phases I and IV and the new phase, and demonstrate that hydrogen retains its molecular character around this point. These data may require a significant revision of the phase diagram of hydrogen above 200 GPa.

  5. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  6. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    Science.gov (United States)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  7. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  8. Experimental based calibration for strain measurement in silicon with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhlobich, Natallia; Kuettner, Martin; Heuer, Henning; Opitz, Joerg [Fraunhofer IZFP-D, Dresden (Germany)

    2009-07-01

    Raman spectroscopy becomes more and more important in research and development i.e. for pharmaceutical, chemical or biological applications. Also in semiconductor or photovoltaic industries Raman spectroscopy on silicon will be an important method to measure strain and chemical-physical interactions. To increase spatial resolution for near field Raman spectroscopy with a basically weak intensity an optimization problem between fast measurements versus perfect peak quality has to be solved. Different parameters of the experiment are used to improve the quality of Raman peaks and to decrease the exposure time. Applied stress in the samples is calculated with help of a theoretical model for 4 point bending. The dependance between mechanical stress and Raman shift is obtained. The influence of different parameters of the experiment on the interpretation of Raman data is discussed. The results of this work will be used in the further developing of a scanning near-field optical microscopy technique for stress mapping with high spatial resolution.

  9. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  10. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.

    Science.gov (United States)

    Frank, Otakar; Dresselhaus, Mildred S; Kalbac, Martin

    2015-01-20

    CONSPECTUS: The special properties of graphene offer immense opportunities for applications to many scientific fields, as well as societal needs, beyond our present imagination. One of the important features of graphene is the relatively simple tunability of its electronic structure, an asset that extends the usability of graphene even further beyond present experience. A direct injection of charge carriers into the conduction or valence bands, that is, doping, represents a viable way of shifting the Fermi level. In particular, electrochemical doping should be the method of choice, when higher doping levels are desired and when a firm control of experimental conditions is needed. In this Account, we focus on the electrochemistry of graphene in combination with in situ Raman spectroscopy, that is, in situ Raman spectroelectrochemistry. Such a combination of methods is indeed very powerful, since Raman spectroscopy not only can readily monitor the changes in the doping level but also can give information on eventual stress or disorder in the material. However, when Raman spectroscopy is employed, one of its main strengths lies in the utilization of isotope engineering during the chemical vapor deposition (CVD) growth of the graphene samples. The in situ Raman spectroelectrochemical study of multilayered systems with smartly designed isotope compositions in individual layers can provide a plethora of knowledge about the mutual interactions (i) between the graphene layers themselves, (ii) between graphene layers and their directly adjacent environment (e.g., substrate or electrolyte), and (iii) between graphene layers and their extended environment, which is separated from the layer by a certain number of additional graphene layers. In this Account, we show a few examples of such studies, from monolayer to two-layer and three-layer specimens and considering both turbostratic and AB interlayer ordering. Furthermore, the concept and the method can be extended further

  11. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    Science.gov (United States)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  12. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to

  13. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  14. Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Silva, W Ruchira; Keller, Emily L; Frontiera, Renee R

    2014-08-05

    Surface-enhanced Raman spectroscopy (SERS) is a promising technique for in vivo bioanalyte detection, but accurate characterization of SERS biosensors can be challenging due to difficulties in differentiating resonance and surface enhancement contributions to the Raman signal. Here, we quantitate the resonance Raman cross-sections for a commonly used near-infrared SERS dye, 3,3'-diethylthiatricarbocyanine (DTTC). It is typically challenging to measure resonance Raman cross-sections for fluorescent dye molecules due to the overwhelming isoenergetic fluorescence signal. To overcome this issue, we used etalon-based femtosecond stimulated Raman spectroscopy, which is intrinsically designed to acquire a stimulated Raman signal without strong fluorescence or interference from signals resulting from other four-wave mixing pathways. Using this technique, we found that the cross-sections for most of the resonantly enhanced modes in DTTC exceed 10(-25) cm(2)/molecule. These cross-sections lead to high signal magnitude SERS signals from even weakly enhancing SERS substrates, as much of what appears to be a SERS signal is actually coming from the intrinsically strong resonance Raman signal. Our work will lead to a more accurate determination of SERS enhancement factors and SERS substrate characterization in the biologically relevant near-infrared region, ultimately leading to a more widespread use of SERS for biosensing and bioimaging applications.

  15. Analysis of hydrocarbon fuel properties by means of Raman spectroscopy

    Science.gov (United States)

    Flatley, Martin W.

    The project is focused on the determination of Raman spectra of hydrocarbon fuel samples using a spectrometer employing a silicon linear array detector which has a spectral range of 400 nm to 1.1 mum. The spectra are processed using chemometric techniques in order to determine the concentrations of the tracked blend components and analytical values that are used to ensure that desired specifications are achieved. The verification is based on the American Standard Testing Methods procedures for the determination of the motor, research, and road octane numbers, simulated distillation and Reid vapour pressure. Blending is one of the most important steps in the final production of hydrocarbon fuels; as many as ten complex components are mixed to achieve the desired properties of the final product. Traditionally, blending relies on well-established analytical methods such as gas chromatography for component and simulated distillation analysis, knock engines and near infrared spectroscopy for octane analysis. All of these methods are reliable and accurate, but their results are not available in real time but rather with a substantial delay, since it is in the nature of the methods that the sample must be transported from a test site to the site where the instrument is located. Additional time is required for performing the analytical procedure; e.g. the results of a gas chromatography analysis are only available from minutes to hours after the sample has been introduced into the instrument. Consequently, the results, although accurate, become only available after the process of blending has been completed. The thesis describes an implementation of a Raman spectroscopic method, which is novel in the given context, since it allows monitoring and control of the blending process online, in real time. A Raman spectrometer was designed, using a solid state laser for excitation (785 nm, 800 mW), a blazed grating for the diffraction (600 lines-per-millimeter, 750 nm blaze, 635

  16. Analysis and Assessment of Agrimonia Pilosa Ledeb from Different Sources Using FT-IR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Bao-qing WANG; Zhe-xiong JIN

    2010-01-01

    To get the IR spectrums of Agrimonia Pilosa Ledeb (APL) from China and Japan areas,and to find out the characters of IR spectrums through the content of different chemical constituents,to provide a fast and effective analysis method monitor the inherent qualities of traditional Chinese medicine-APL.Fourier Transform Infrared Spectroscopy(FT-IR) was applied to detect sample of APL from China and Japan areas.This study showed that the IR spectra of APL from China and Japan areas have their unique IR fingerprint features.The contents of tannin and calcium phosphate in APL from China is different APL from Japan.So FT-IR is a very quick,effective and well repetitive method for monitoring and distinguishing the traditional Chinese medicine.

  17. HOMO-LUMO, UV, NLO, NMR and vibrational analysis of 3-methyl-1-phenylpyrazole using FT-IR, FT-RAMAN FT-NMR spectra and HF-DFT computational methods

    Science.gov (United States)

    Carthigayan, K.; Xavier, S.; Periandy, S.

    2015-05-01

    In this paper, the spectral analysis of 3-methyl-1-phenylpyrazole is carried out using the FT-IR, FT Raman, FT NMR and UV-Vis spectra with the help of quantum mechanical computations using HF and density functional theories. The different conformers of the compound and their minimum energies are studied using B3LYP functional with 6-311+G (d, p) basis set and the most stable conformer with minimum energy was identified and the same conformer was used for further computations. The computed wave numbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the modes of vibrations are assigned and the structure the molecule is analyzed in terms of parameters like bond length, bond angle and dihedral angle predicted by both HF and B3LYP methods with 6-311+G (d, p) and 6-311++G (d, p) basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non-linear property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated.

  18. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  19. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  20. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  1. NIR-FT Raman, FT-IR and surface-enhanced Raman scattering and DFT based theoretical studies on the adsorption behaviour of (S)-Phenylsuccinic acid on silver nanoparticles

    Indian Academy of Sciences (India)

    D Sajan; V Bena Jothy; Thomas Kuruvilla; I Hubert Joe

    2010-07-01

    Single crystals of ()-phenylsuccinic acid (SPSA) were grown by the slow evaporation technique and vibrational spectral analysis was carried out using near-IR Fourier transform Raman and Fourier transform IR spectroscopy. The density functional theoretical (DFT) computations were also performed at the B3LYP/6-311G(d, p) level to derive the equilibrium geometry, vibrational wavenumbers and intensities. Vibrational spectral investigation confirmed the formation of cyclic dimers in the crystal, with the carboxyl groups of each acid molecule being hydrogen bonded to those of the adjacent molecules. The Raman vibrational wavenumbers of the adsorption geometry of (S)-phenylsuccinic acid (SPSA) on a silver surface have been simulated using DFT-B3PW91 with lanl2dz basis set and it compared with the experimental spectrum. The large enhancement of in-plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in an `at least vertical’ or slightly tilted orientation, with the ring perpendicular to the silver surface. The calculated vibrational spectra are in agreement with experimental values confirming the validity of the proposed adsorption configurations.

  2. Elucidation of Chemical Reactions by Two-Dimensional Resonance Raman Spectroscopy

    Science.gov (United States)

    Moran, Andrew

    Two-dimensional (2D) Raman spectroscopies were proposed by Mukamel and Loring in1985 as a method for resolving line broadening mechanisms of vibrational motions in liquids. Significant technical issues challenged the development of both five- and seven-pulse 2D Raman spectroscopies. For this reason, 2D Raman experiments were largely abandoned in 2002 following the first demonstrations of 2D infrared spectroscopies (i.e., an alternate approach for obtaining similar information). We have recently shown that 2D Raman experiments conducted under electronically resonant conditions are much less susceptible to the problems encountered in the earlier 2D Raman work, which was carried out off-resonance. In effect, Franck-Condon activity obviates the problematic selection rules encountered under electronically off-resonant conditions. In this presentation, I will discuss applications of 2D resonance Raman spectroscopies to photodissocation reactions of triiodide and myoglobin. It will be shown that vibrational resonances of the reactants and products can be displayed in separate dimensions of a 2D resonance Raman spectrum when the photo-dissociation reaction is fast compared to the vibrational period. Such 2D spectra expose correlations between the nonequilibrium geometry of the reactant and the distribution of vibrational quanta in the product, thereby yielding insight in the photo-dissociation mechanism. Our results suggest that the ability of 2D resonance Raman spectroscopy to detect correlations between reactants and products will generalize to other ultrafast processes such as electron transfer and energy transfer.

  3. Advances in structural studies of viruses by Raman spectroscopy

    Science.gov (United States)

    Towse, Stacy A.; Benevides, James M.; Thomas, George J., Jr.

    1991-05-01

    Assembly of an icosahedral capsid from a single species of coat protein subunit requires different subunit conformations at different lattice positions . In the double-stranded DNA bacteriophage P22 formation of correctly dimensioned capsids is mediated by interactions between subunits of coat and scaffolding proteins . We have employed Raman spectroscopy to investigate the specific intrasubunit conformations and intersubunit interactions required to close icosahedral shells which are competent to package the P22 genome . Preliminary results from coat protein subunits polymerized to form capsids in the presence and absence of the scaffolding protein indicate different distributions of subunit secondary structure for these two assembly conditions . The difference in structure affects a small portion of the coat subunit (z2 . 3 or 10 of 430 amino acid residues per subunit) and involves a transition from a-helix in the scaffoldassembled shell to B-strand in particles assembled without scaffold mediation . The secondary structure change is accompanied by changes in specific amino acid side chains indicative of a greater variety of side chain environments for particles assembled without scaffolding protein . The detection of small changes in protein structure is facilitated by recent developments in instrumentation and progress in the assignment of protein Raman bands to specific configurational states. Application of this methodology to the bacteriophage P22 tailspike protein has also permitted characterization of differences in thermal unfolding pathways of the wild-type protein and temperature-sensitive-folding mutant . Similar methods applied to mature icosahedral bacteriophages (P22 and TI) which package a double-stranded DNA chromosome reveal subtle but definitive perturbations to dsDNA conformation in the packaged state. 1.

  4. Stress analysis of zirconia studied by Raman spectroscopy at low temperatures.

    Science.gov (United States)

    Kurpaska, L; Kozanecki, M; Jasinski, J J; Sitarz, M

    2014-10-15

    The paper presents effect of low temperature upon location of selected Raman bands. The structural properties of pure zirconium pre-oxidized at 773K and 873K have been studied during cooling in the range of temperatures 273K and 93K by Raman spectroscopy. Analysis of the Raman band positions for the monoclinic phase of zirconia oxide was performed. Raman spectroscopy has shown that monoclinic phase of zirconia oxide undergoes a continuous band displacement, individual for each studied Raman mode. Registered shift is aimed towards the high frequency direction. Recorded Raman band displacement was employed to study stress state in zirconia oxide films grown on pure zirconium developed during control cooling. Presented results showed a good correlation between different thicknesses of the oxide scale.

  5. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Directory of Open Access Journals (Sweden)

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  6. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber.

    Science.gov (United States)

    Yang, Xuan; Zhang, Alissa Y; Wheeler, Damon A; Bond, Tiziana C; Gu, Claire; Li, Yat

    2012-01-01

    This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0-25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (~50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy.

  7. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips.

  8. Application of Raman Spectroscopy for Quality Monitoring in the Meat Processing Industry

    DEFF Research Database (Denmark)

    Berhe, Daniel Tsegay

    -destructive quality monitoring in the meat processing industry as it requires no further sample preparation. Water, which is the main component of meat, is also not a problem for Raman spectroscopic measurement because water is a poor Raman scatter. Two major product quality related issues, cooking of meat and fat......The objective of this thesis was to test the potential application of Raman spectroscopy for quality monitoring in the meat processing industry. Raman spectroscopy is a spectroscopic technique, which can provide rapid chemical information at the molecular level. It can, therefore, be used for non...... quality were selected as focus areas: Endpoint Temperature (EPT) and gross fatty acid (FA) composition. Endpoint temperature of a cooked product is an important parameter as it is related to the microbial safety and palatability of the product. The project aimed at using Raman spectroscopy...

  9. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical calculation studies on the 6-chloro-4-hydroxy-3-phenyl pyridazine compound

    Science.gov (United States)

    Sarıkaya, Ebru Karakaş; Bahçeli, Semiha; Varkal, Döndü; Dereli, Ömer

    2017-08-01

    In this work, the study of the6-chloro-4-hydroxy-3-phenyl pyridazine compound, (C10 H7 N2 O Cl with synonym 4-pyridazinol, 6-chloro-3-phenyl-), was verified experimentally by using the Fourier Transformed Infrared (FT-IR), micro-Raman and UV/vis (in N,N-dimethylformamide solvent) spectroscopies. Furthermore, the optimized molecular geometry, conformatinal analysis, vibrational frequencies, the simulated UV/vis spectra (in gas and in N,N-dimethylformamide solvent), 1H and 13C NMR chemical shift (in gas, in chloroform and N,N-dimethylformamide in solvents) values, HOMO-LUMO analysis, the molecular electrostatic potential (MEP) surface and thermodynamic parameters ofthe6-chloro-4-hydroxy-3-phenyl pyridazine compound were calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The comparison of the calculated and vibrational frequencies with the experimental values provides important information about the title compound.

  10. Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells

    Science.gov (United States)

    Bankapur, Aseefhali; Zachariah, Elsa; Chidangil, Santhosh; Valiathan, Manna; Mathur, Deepak

    2010-01-01

    An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC) and white blood cells (WBC) under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm) is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW). Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip. PMID:20454686

  11. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  12. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration

    Science.gov (United States)

    Moura, Catarina Costa; Tare, Rahul S.; Oreffo, Richard O. C.; Mahajan, Sumeet

    2016-01-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  13. Quantitative determination of pulegone in pennyroyal oil by FT-IR spectroscopy.

    Science.gov (United States)

    Petrakis, Eleftherios A; Kimbaris, Athanasios C; Pappas, Christos S; Tarantilis, Petros A; Polissiou, Moschos G

    2009-11-11

    Pulegone constitutes a monoterpene occurring in Mentha species and primarily in Mentha pulegium L. (pennyroyal). A major source of human exposure to pulegone is the use of pennyroyal essential oil in flavorings, confectionery and cosmetics. The rapid quantification of pulegone in hydrodistilled pennyroyal oils (which were also "spiked" to increase the validation range) by Fourier transform infrared spectroscopy (FT-IR) combined with partial least-squares (PLS) regression was evaluated, using the spectral region 1650-1260 cm(-1). Gas chromatography was applied as the reference method for pennyroyal oil samples, which ranged in pulegone content from 157 to 860 mg/mL. The two methods were subjected to statistical tests and proved equivalent in terms of accuracy and reproducibility (99% confidence level). The use of FT-IR spectroscopy could offer a viable alternative to the standard analysis procedures presently applied for quantification of valuable plant substances and could also provide the processing industry with a simple and high-throughput technique for the fast quality check of incoming raw materials such as pennyroyal oils.

  14. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    Science.gov (United States)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  15. Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Heinz; Mul, Guido; Wasylenko, Walter; Hamdy, M. Sameh; Frei, Heinz

    2008-06-04

    Vanadia was incorporated in the 3-dimensional mesoporous material TUD-1 with a loading of 2percent w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product, i.e. cyclohexenone, was identified. This demonstrates for the first time that hydroxylated vanadia centers in mesoporous materials can be activated by visible light to induce oxidation reactions. Using the rapid scan method, a strong perturbation of the vanadyl environment could be observed in the selective oxidation process induced by a 458 nm laser pulse of 480 ms duration. This is proposed to be caused by interaction of the catalytic centre with a cyclohexenyl hydroperoxide intermediate. The restoration of the vanadyl environment could be kinetically correlated to the rate of formation of cyclohexenone, and is explained by molecular rearrangement and dissociation of the peroxide to ketone and water. The ketone diffuses away from the active center and ATR infrared probing zone, resulting in a decreasing ketone signal on the tens of seconds time scale after initiation of the photoreaction. This study demonstrates the high potential of time resolved ATR FT-IR spectroscopy for mechanistic studies of liquid phase reactions by monitoring not only intermediates and products, but by correlating the temporal behavior of these species to molecular changes of the vanadyl catalytic site.

  16. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  17. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  18. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  19. Utility of FT-IR imaging spectroscopy in estimating differences between the quality of bovine blastocysts

    Science.gov (United States)

    Wiecheć, A.; Opiela, J.; Lipiec, E.; Kwiatek, W. M.

    2013-10-01

    This study was conducted to verify whether the FT-IR spectroscopy and Focal Plane Array (FPA) imaging can be successfully applied to estimate the quality of bovine blastocysts (on the basis of the concentration of nucleic acids and amides). The FT-IR spectra of inner cell mass from blastocysts of three different culture systems were examined. The spectral changes between blastocysts were analyzed in DNA (spectral range of 1240-950 cm-1) and protein amides (1800-1400 cm-1). Blastocyst 1 (BL1-HA) was developed from the fertilized oocyte cultured with low concentration of hialuronian (HA), Blastocyst 2 and 3 were developed from the oocytes cultured in standard conditions. Cleavage stage blastocyst 2 (BL2-SOF) has been cultured in SOF medium while blastocyst 3 (BL3-VERO) was cultured in co-culture with VERO cells. The multivariate statistical analysis (Hierarchical Cluster Analysis - HCA and Principal Component Analysis - PCA) of single cells spectra showed high similarity of cells forming the inner cell mass within single blastocyst. The main variance between the three examined blastocysts was related to amides bands. Differences in the intensities of the amides' peaks between the bovine blastocysts derived from different culture systems indicated that specific proteins reflecting the appearance of a new phenotype were produced. However, for the three blastocysts, the α-helix typical peak was twice more intensive than the β-sheet typical peak suggesting that the differentiation processes had been started. Taking into account the quantitative and qualitative composition of the protein into examined blastocysts, it can be assumed, that the quality of the BL1-HA turned out much more similar to BL3-VERO than to BL2-SOF. FT-IR spectroscopy can be successfully applied in reproductive biology research for quality estimation of oocytes and embryos at varied stages of their development. Moreover this technique proved to be particularly useful when the quantity of the

  20. Mediaeval cantorals in the Valladolid Biblioteca: FT-Raman spectroscopic study.

    Science.gov (United States)

    Edwards, H G; Farwell, D W; Rull Perez, F; Medina Garcia, J

    2001-03-01

    Raman spectroscopic studies of three mediaeval cantorals in the Biblioteca of the University of Valladolid has revealed information about the pigments used on these large manuscripts. Although executed in a simple colour palette, very pure cinnabar was used as the major colourant, offsetting the carbon black of the verses and script. A dark blue colour was achieved using a mixture of azurite (basic copper carbonate) and carbon, whereas a light blue colour was azurite alone. A grey colour was achieved using azurite, carbon particles and a calcareous 'limewash'. A yellow pigment, used sparely in the cantorals was ascribed to saffron; unusually, there was no evidence for the presence of the yellow mineral pigments orpiment, realgar and massicot. In several regions of the vellum specimens, evidence for biodeterioration was observed through the signatures of hydrated calcium oxalate. We report for the first time the Raman spectra of pigment in situ on a vellum fragment, which also shows evidence of substrate bands; comparison of black and red pigmented regions of vellum specimens has shown the presence of calcium oxalate in the black pigmented script but not in the red pigment regions, which suggests that the cinnabar in the red-pigmented regions acts as a toxic protectant for the vellum substrate against biological colonisation processes.

  1. CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin

    NARCIS (Netherlands)

    Brandt, N.N.; Chikishev, A.Yu.; Chikishev, A.Y.; Greve, Jan; Koroteev, N.I.; Otto, Cornelis; Sakodinskaya, I.K.; Sakodynskaya, I.K.

    2000-01-01

    We report on the comparative analysis of the conformation-sensitive bands of free enzyme (chymotrypsin), liganded enzyme (chymotrypsin anthranilate) and enzyme complex with 18-crown-6. The studies were carried out by Raman scattering spectroscopy and polarization-sensitive coherent anti-Stokes Raman

  2. Raman spectroscopy application in frozen carrot cooked in different ways and the relationship with carotenoids

    NARCIS (Netherlands)

    Camorani, Paolo; Chiavaro, Emma; Cristofolini, Luigi; Paciulli, Maria; Zaupa, Maria; Visconti, Attilio; Fogliano, Vincenzo; Pellegrini, Nicoletta

    2015-01-01

    BACKGROUND: Raman spectroscopy, in its confocal micro-Raman variation, has been recently proposed as a spatially resolved method to identify carotenoids in various food matrices, being faster, non-destructive, and avoiding sample extraction, but no data are present in the literature concerning it

  3. Raman spectroscopy of bladder tissue in the presence of 5-aminolevulinic acid

    NARCIS (Netherlands)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, Rj. A.; Uff, J.; Mahadevan-Jansen, A.; Stone, N.

    2009-01-01

    Raman spectroscopy has the ability to provide differential diagnosis of different cancers with high sensitivity and specificity. A major limitation in its clinical application is the weak nature of Raman signal, which inhibits scanning large surface areas of tissues. In bladder cancer diagnosis, flu

  4. Fast single-photon avalanche diode arrays for laser Raman spectroscopy

    NARCIS (Netherlands)

    Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R.

    2011-01-01

    We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite an

  5. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    Science.gov (United States)

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  6. Fast single-photon avalanche diode arrays for laser Raman spectroscopy

    NARCIS (Netherlands)

    Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R.

    2011-01-01

    We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite an

  7. Influence of confinement on solvation of ethanol in water studied by Raman spectroscopy

    NARCIS (Netherlands)

    Ratajska-Gadomska, B.; Gadomski, W.

    2010-01-01

    Herewith we present the results of our studies on the effect of confinement on the solvation of ethyl alcohol in aqueous solutions using Raman spectroscopy of the O-H stretching band. Based on Gaussian-Lorentzian deconvolution of the O-H band Raman spectra we investigate the local structures created

  8. FT-Infrared and FT-Raman Spectroscopic Studies of Complexes (C5H5)2TiCl2,(C5H4Me)2TiCl2 and (C5HMe4)2TiCl2

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The FT-IR and FT-Raman spectra of complexes (C5H5)2TiC12( Ⅰ ), (C5H4Me)2TiCl2( Ⅱ )and (C5HMe4)2TiCl2( Ⅲ ) have been obtained and discussed. The FT-Raman spectral data provide some new vibrational information about complexes ( Ⅰ ), ( Ⅱ ) and ( Ⅲ ). The assignmentsof cyclopentadienyl vibrational modes and skeletal vibrational modes have been made.

  9. Ultrastable and Compact Deep UV Laser Source for Raman Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deep-ultraviolet (UV) Raman spectroscopy is a powerful method to collect chemically specific information about complex samples because deep-UV (?? < 250 nm)...

  10. Band-edge Bilayer Plasmonic Nanostructure for Surface Enhanced Raman Spectroscopy

    CERN Document Server

    Mousavi, S Hamed Shams; Atabaki, Amir H; Adibi, Ali

    2014-01-01

    Spectroscopic analysis of large biomolecules is critical in a number of applications, including medical diagnostics and label-free biosensing. Recently, it has been shown that Raman spectroscopy of proteins can be used to diagnose some diseases, including a few types of cancer. These experiments have however been performed using traditional Raman spectroscopy and the development of the Surface enhanced Raman spectroscopy (SERS) assays suitable for large biomolecules could lead to a substantial decrease in the amount of specimen necessary for these experiments. We present a new method to achieve high local field enhancement in surface enhanced Raman spectroscopy through the simultaneous adjustment of the lattice plasmons and localized surface plasmon polaritons, in a periodic bilayer nanoantenna array resulting in a high enhancement factor over the sensing area, with relatively high uniformity. The proposed plasmonic nanostructure is comprised of two interacting nanoantenna layers, providing a sharp band-edge ...

  11. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    Science.gov (United States)

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  12. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    Science.gov (United States)

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  13. Chemometrical Contributions Extending the Application of Near-Infrared and Raman Spectroscopy

    NARCIS (Netherlands)

    Groot, P.J. de

    2004-01-01

    Raman and near-infrared (NIR) reflectance spectroscopy are increasingly being applied in industry and laboratories. Examples are: investigation of interactions between DNA molecules, characterizing polymer properties, and separating demolition waste. These applications demand robust systems and requ

  14. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    Science.gov (United States)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  15. Raman spectroscopy of chalcogenide thin films prepared by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Erazu, M.; Rocca, J. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Fontana, M., E-mail: merazu@fi.uba.a [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Urena, A.; Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Pradel, A. [ICG, UMR 5253 CNRS UM 2 ENSCM UM1 equipe PMDP CC3, Universite Montpellier 2, 34095 Montpellier Cedex 5 (France)

    2010-04-16

    Chalcogenide glasses have many technological applications as a result of their particular optical and electrical properties. Ge-Se and Ag-Ge-Se systems were recently studied and tested as new materials for building non-volatile memories. Following these ideas, thin films of Ge-Se and Ag-Ge-Se were deposited using pulsed laser deposition (PLD). Ag was sputtered over binary films (for a composition between 0.05 and 0.25 Ag atomic fraction) and photo-diffused afterwards. Thus, three kinds of samples were analyzed by means of Raman spectroscopy, in order to provide information on the short- and medium-range order: PLD binary films before Ag doping, after Ag doping and PLD ternary films. Before Ag doping, binary films exhibited Ge-Se corner-sharing tetrahedra modes at 190 cm{sup -1}, low scattering from edge-sharing tetrahedra at 210 cm{sup -1}, and Se chains at 260 cm{sup -1} (stretching mode). However, after the diffusion process was complete, we observed an intensity reduction of bands centered at 210 cm{sup -1} and 260 cm{sup -1}. The spectra of the photo-diffused films were similar to those of films deposited using a ternary target. Relaxation effects in binary glasses were also analyzed. Results were compared with those of other authors.

  16. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  17. The synthesis of metoprolol monitored using Raman spectroscopy and chemometrics.

    Science.gov (United States)

    Svensson, O; Josefson, M; Langkilde, F W

    2000-08-01

    The synthesis of Metoprolol base was studied using Raman spectroscopy with a 785-nm laser, optical fibres, a holographic transmission grating, confocal optics and a charge-coupled device (CCD) detector. The reaction mixture was heated according to a temperature gradient and spectra of the reaction mixture were obtained by focusing the laser beam through ordinary reaction flasks. Because of overlapping bands, multivariate techniques such as principal components analysis (PCA) and partial least-squares projections to latent structures (PLS) were used in the evaluation of the obtained spectra. The use of PCA or PLS against time does not require any calibration samples and a quantitative calibration is not necessary in order to monitor the reaction. A method for reaction endpoint determination, based on euclidean distances in the score space, is presented. The use of multivariate batch control charts have been demonstrated and a number of problems and solutions regarding the sample presentation have been discussed. The effect of spectral pretreatment on the multivariate results is shown and discussed. The monitoring results show that the time to produce Metoprolol base could be reduced.

  18. Measuring depth profiles of residual stress with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  19. Raman spectroscopy of human vitreous collagen in diabetic retinopathy

    Science.gov (United States)

    Sebag, Jerry; Nie, Shuming; Reiser, Karen M.; Yu, Nai-Teng

    1992-08-01

    In diabetes nonenzymatic glycation alters collagen throughout the body resulting in the histopathology that underlies diabetic disease in several organs. In the eye such changes in vitreous collagen could contribute to vitreous degeneration and the progression of proliferative diabetic retinopathy. Previous studies have demonstrated early glycation and advanced endproducts in the vitreous of humans with proliferative diabetic retinopathy. Near-infrared Fourier-transform Raman spectroscopy was performed on vitreous obtained at surgery from diabetic patients and from non-diabetic control subjects. The findings were compared to measurements obtained in untreated and glycated (in vitro) rat-tail tendon collagen. The results demonstrated substantial changes in diabetic vitreous collagen resulting from glycation, most likely advanced glycation endproducts. This approach appears to be useful as a means of characterizing the molecular changes induced by diabetes. Furthermore, this technique could be developed as a way of quantifying these changes in vivo in several tissues, so as to gauge the severity of non-enzymatic glycation and monitor the response to therapy.

  20. A pseudo-Voigt component model for high-resolution recovery of constituent spectra in Raman spectroscopy

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Schmidt, Mikkel Nørgaard; Rindzevicius, Tomas

    2017-01-01

    Raman spectroscopy is a well-known analytical technique for identifying and analyzing chemical species. Since Raman scattering is a weak effect, surface-enhanced Raman spectroscopy (SERS) is often employed to amplify the signal. SERS signal surface mapping is a common method for detecting trace...