WorldWideScience

Sample records for frustrated quantum antiferromagnets

  1. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    International Nuclear Information System (INIS)

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  2. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Science.gov (United States)

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  3. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  4. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  5. Solution to the sign problem in a frustrated quantum impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Hann, Connor T., E-mail: connor.hann@yale.edu [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Huffman, Emilie [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science, Bangalore, 560 012 (India)

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weight configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.

  6. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  7. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  8. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  9. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    Science.gov (United States)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  10. Frustration and quantum criticality

    Science.gov (United States)

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  11. Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)

    2015-07-01

    Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.

  12. Frustration and quantum criticality.

    Science.gov (United States)

    Vojta, Matthias

    2018-03-15

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.

  13. Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7

    Science.gov (United States)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro; Yasuda, Jun; Baba, Yoichi; Nishi, Masakazu; Hirota, Kazuma; Narumi, Yasuo; Hagiwara, Masayuki; Kindo, Koichi; Saito, Takashi; Ajiro, Yoshitami; Yoshimura, Kazuyoshi

    2006-11-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional S = 1/2 square-lattice system (CuBr)LaNb2O7, prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb2O7. (CuBr)LaNb2O7 exhibits a second-order magnetic transition at 32 K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb2O7, despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q = (π, 0, π) with a reduced moment of 0.6μB. Mixed ferromagnetic nearest-neighbor (J1) and antiferromagnetic second-nearest-neighbor (J2) interactions are of comparable strength (J1/kB = -35.6 K and J2/kB = 41.3 K), placing the system in a more frustrated region of the CAF phase than ever reported.

  14. High-field magnetotransport in microstructures of the frustrated antiferromagnet Yb2Pt2Pb

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Moll, P. J. W. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    Frustrated quantum magnets exhibit a rich variety of non-trivial quantum ground states due to their remnant entropy at zero temperature. Most studied materials are insulators, with magnetic coupling of localized spins mediated by exchange interactions. Yb2Pt2Pb (YPP) is a rare example of a metallic frustrated quantum magnet, where Yb3+ J=7/2 moments are arranged in dimers forming a Shastry-Sutherland lattice. In addition, the itinerant charge carriers of the metal provide gapless excitations able to mediate magnetic interactions (RKKY) as well as hybridize with the 4f-states, which has been proposed to lead to a novel charge-orbital separation. YPP orders antiferromagnetically (AFM) below TN = 2.1 K, and strong g-factor anisotropy confines the spins into the ab planes. Accordingly, fields aligned parallel to the planes suppress the AFM order already below 4 T, while fields of up to 65 T along the c direction do not lead to saturation in the magnetization and step-like features even at B ~ 25 T were observed [4]. Here we probe the electronic structure of YPP by quantum oscillation and conductivity measurements in high fields, which tune the energy balance of the 4f states and thus the degree of charge-orbital separation.

  15. High-order study of the quantum critical behavior of a frustrated spin-1/2 antiferromagnet on a stacked honeycomb bilayer

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.

    2017-12-01

    We study a frustrated spin-1/2 J1-J2-J3-J1⊥ Heisenberg antiferromagnet on an A A -stacked bilayer honeycomb lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor antiferromagnetic (AFM) exchange couplings J1,J2 , and J3, respectively. The two layers are coupled with an AFM NN exchange coupling J1⊥≡δ J1 . The model is studied for arbitrary values of δ along the line J3=J2≡α J1 that includes the most highly frustrated point at α =1/2 , where the classical ground state is macroscopically degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase diagram of the model in the α δ plane in the window 0 ≤α ≤1 ,0 ≤δ ≤1 . This includes two AFM phases with Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond crystalline order. We obtain accurate estimations of the two phase boundaries, δ =δci(α) , or equivalently, α =αc i(δ ) , with i =1 (Néel) and 2 (striped). The two boundaries exhibit an "avoided crossing" behavior with both curves being re-entrant. Thus, in this α δ window, Néel order exists only for values of δ in the range δc1 (α ) , with δc1 0 for αc 1(0 ) ≈0.49 (1 ) , and striped order similarly exists only for values of δ in the range δc2 (α ) , with δc2 αc2(0) ≈0.600 (5 ) and δc2 0 for αc 2(0 ) >α >α2<≈0.56 (1 ) .

  16. Er2Ti2O7: Evidence of quantum order by disorder in a frustrated antiferromagnet

    DEFF Research Database (Denmark)

    Champion, J.D.M.; Harris, M.J.; Holdsworth, P.C.W.

    2003-01-01

    Er(2)Ti(2)O(7) has been suggested to be a realization of the frustrated XY pyrochlore lattice antiferromagnet, for which theory predicts fluctuation-induced symmetry breaking in a highly degenerate ground state manifold. We present a theoretical analysis of the classical model compared...

  17. Collinear order in frustrated quantum antiferromagnet on square lattice (CuBr)LaNb2O7

    International Nuclear Information System (INIS)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro

    2006-01-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional s=1/2 square-lattice system (CuBr)LaNb 2 O 7 , prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb 2 O 7 . (CuBr)LaNb 2 O 7 exhibits a second-order magnetic transition at 32K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb 2 O 7 , despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q=(π, 0, π) with a reduced moment of 0.6μ B . Mixed ferromagnetic nearest-neighbor (J 1 ) and antiferromagnetic second-nearest-neighbor (J 2 ) interactions are of comparable strength (J 1 /k B =-35.6K and J 2 /k B =41.3K), placing the system in a more frustrated region of the CAF phase than ever reported. (author)

  18. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  19. Characterizing and quantifying frustration in quantum many-body systems.

    Science.gov (United States)

    Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F

    2011-12-23

    We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.

  20. Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet

    Directory of Open Access Journals (Sweden)

    Žukovič Milan

    2014-07-01

    Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.

  1. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  2. Effects of interfacial frustration in ferromagnet/antiferromagnet bilayers

    Science.gov (United States)

    Urazhdin, Sergei; Ma, Tianyu

    While the ferromagnet (F)/antiferromagnet (AF) bilayers have been extensively studied in the context of exchange bias, and more recently in the context of antiferromagnetic spintronics, the fundamental understanding of the nature of the magnetic state in this system is still a subject a debate. We will present measurements of magnetization aging in several F/AF systems based on AF=FeMn, CoO, and NiO, universally observed in all of these systems when AF layers are sufficiently thin. Quite generally, the aging curves are well-described by the power law with a small exponent. We show that the aging characteristics such as the dependence on temperature and the magnetic history are inconsistent with the Arrhenius activation, disproving the granular models of exchange bias. Furthermore, we show that the aging characteristics qualitatively change across the exchange bias blocking temperature, demonstrating that the latter is similar to the glass transition temperature, and is not simply of a characteristic activation temperature of the AF domains. We discuss the our findings in the context of frustration due to the random effective exchange field at the F/AF interface. supported by NSF DMR.

  3. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  4. Antiferromagnetic geometric frustration under the influence of the next-nearest-neighbor interaction. An exactly solvable model

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-02-01

    The influence of the next-nearest-neighbor interaction on the properties of the geometrically frustrated antiferromagnetic systems is investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the square-kagome recursive lattice, where the next-nearest-neighbor interaction is supposed between sites within each elementary square of the lattice. The thermodynamic properties of the model are investigated in detail and it is shown that the competition between the nearest-neighbor antiferromagnetic interaction and the next-nearest-neighbor ferromagnetic interaction changes properties of the single-point ground states but does not change the frustrated character of the basic model. On the other hand, the presence of the antiferromagnetic next-nearest-neighbor interaction leads to the enhancement of the frustration effects with the formation of additional plateau and single-point ground states at low temperatures. Exact expressions for magnetizations and residual entropies of all ground states of the model are found. It is shown that the model exhibits various ground states with the same value of magnetization but different macroscopic degeneracies as well as the ground states with different values of magnetization but the same value of the residual entropy. The specific heat capacity is investigated and it is shown that the model exhibits the Schottky-type anomaly behavior in the vicinity of each single-point ground state value of the magnetic field. The formation of the field-induced double-peak structure of the specific heat capacity at low temperatures is demonstrated and it is shown that its very existence is directly related to the presence of highly macroscopically degenerated single-point ground states in the model.

  5. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    International Nuclear Information System (INIS)

    Cador, Olivier; Gatteschi, Dante; Sessoli, Roberta; Barra, Anne-Laure; Timco, Grigore A.; Winpenny, Richard E.P.

    2005-01-01

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site

  6. Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip

    Energy Technology Data Exchange (ETDEWEB)

    Cador, Olivier [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Gatteschi, Dante [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Sessoli, Roberta [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy)]. E-mail: roberta.sessoli@unifi.it; Barra, Anne-Laure [Laboratoire des Champs Magnetiques Intenses-CNRS, F-38042 Grenoble Cede 9 (France); Timco, Grigore A. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Winpenny, Richard E.P. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2005-04-15

    The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site.

  7. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  8. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    Science.gov (United States)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  9. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  10. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields

    International Nuclear Information System (INIS)

    Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J

    2009-01-01

    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.

  11. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Directory of Open Access Journals (Sweden)

    Borovský Michal

    2016-01-01

    Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  12. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  13. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  14. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  15. Direct evidence of spin frustration in the fcc antiferromagnet NiS sub 2

    CERN Document Server

    Matsuura, M; Endoh, Y; Hirota, K; Yamada, K

    2002-01-01

    NiS sub 2 is a well-known Mott insulator with anomalous antiferromagnetic long-range order of coexistent type I (Q sub M =(1,0,0), T sub N sub 1 =40 K) and type II (Q sub M =(1/2,1/2,1/2), T sub N sub 2 =30 K). Extensive neutron-scattering measurements reveal that magnetism in NiS sub 2 is governed by geometrical spin frustration, resulting in magnetic diffuse scattering extending along the fcc zone boundary. Although the diffuse scattering exists at temperatures as high as 250 K (6T sub N sub 1), it disappears rapidly below T sub N sub 2 , associated with minor crystal distortion. We observed a clear energy gap in addition to the low-energy spin-wave excitation at significantly below 30 K, and obtain evidence that degeneracy due to the coexistence of the two types of antiferromagnetism is relieved in the ground state via the reduction in symmetry due to distortion. (orig.)

  16. Fractional excitations in the square-lattice quantum antiferromagnet

    DEFF Research Database (Denmark)

    Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech

    2015-01-01

    -projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish...... the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration....

  17. [mu]SR magnetic response in frustrated antiferromagnets of type RMn[sub 2] (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. (Physics Dept., TU Munich, Garching (Germany)); Asch, L. (Physics Dept., TU Munich, Garching (Germany)); Kratzer, A. (Physics Dept., TU Munich, Garching (Germany)); Kalvius, G.M. (Physics Dept., TU Munich, Garching (Germany)); Muench, K.H. (Physics Dept., TU Munich, Garching (Germany)); Ballou, R. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Deportes, J. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Waeppling, R. (Dept. of Physics, Univ. of Uppsala (Sweden)); Litterst, F.J. (Inst. for Metal Physics, TU Braunschweig (Germany)); Klauss, H.H. (Inst. for Metal Physics, TU Braunschweig (Germany)); Niedermayer, C. (Faculty for Physics, Univ. Konstanz (Germany)); Chappert, J. (CEA/DRFMC, CEN Grenoble, 38 (France))

    1994-07-01

    Zero, longitudinal and transverse field [mu]SR was carried out in the antiferromagnets YMn[sub 2], Y[sub 0.95] Tb[sub 0.15] Mn[sub 2], Y[sub 0.9]Tb[sub 0.1]Mn[sub 2], Y[sub 0.99] Sc[sub 0.01] Mn[sub 2], Y[sub 0.98]Sc[sub 0.02]Mn[sub 2] and TbMn[sub 2]. The dynamics of Mn magnetic moments above T[sub N] is typical for an itinerant antiferromagnet. Within a certain temperature range above T[sub N] part of the material enters a randomly ordered (spin glass like) magnetic state as an out-come of frustration. At temperatures above [approx] 150 K the muon spin relaxation rate indicates that the muon has become mobile. (orig.)

  18. Antiferromagnetism, structural instability and frustration in intermetallic AFe4X2 systems

    Science.gov (United States)

    Rosner, Helge; Bergmann, Christoph; Weber, Katharina; Kraft, Inga; Mufti, N.; Klauss, Hans-Henning; Dellmann, T.; Woike, T.; Geibel, Christoph

    2013-03-01

    Magnetic systems with reduced dimensionality or frustration attract strong interest because these features lead to an increase of quantum fluctuations and often result in unusual properties. Here, we present a detailed study of the magnetic, thermodynamic, and structural properties of the intermetallic AFe4X2 compounds (A=Sc,Y,Lu,Zr; X=Si,Ge) crystallizing in the ZrFe4Si2 structure type. Our results evidence that these compounds cover the whole regime from frustrated AFM order up to an AFM quantum critical point. Susceptibility χ(T), specific heat, resistivity, and T-dependent XRD measurements were performed on polycrystalline samples. In all compounds we observed a Curie-Weiss behavior in χ(T) at high T indicating a paramagnetic moment of about 3μB/Fe. Magnetic and structural transitions as previously reported for YFe4Ge2 occur in all compounds with trivalent A. However, transition temperatures, nature of the transition as well as the relation between structural and magnetic transitions change significantly with the A element. Low TN's and large θCW /TN ratios confirm the relevance of frustration. The results are analyzed and discussed with respect to electronic, structural and magnetic instabilities applying DFT calculations. Financial support from the DFG (GRK 1621) is acknowledged

  19. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    Directory of Open Access Journals (Sweden)

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  20. CePdAl. A frustrated Kondo lattice at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.

  1. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  2. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    Science.gov (United States)

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  3. The Heisenberg antiferromagnet on the square-kagomé lattice

    Directory of Open Access Journals (Sweden)

    J. Richter

    2009-01-01

    Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.

  4. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  5. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  6. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  7. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  8. Quantum entanglement and quantum phase transitions in frustrated Majumdar-Ghosh model

    International Nuclear Information System (INIS)

    Liu Guanghua; Wang Chunhai; Deng Xiaoyan

    2011-01-01

    By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J 2 ∼0.58, but not at the Majumdar-Ghosh point (J 2 =0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point J C 2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 ; Kuboki and Fukuyama, 1987 ; Chitra et al., 1995 ). Across the J C 2 , the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.

  9. Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels

    DEFF Research Database (Denmark)

    Zaharko, O.; Cervellino, A.; Tsurkan, V.

    2010-01-01

    Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al1−xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J2 is gradually superseded...... by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third......-neighbor exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1−xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher...

  10. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  11. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  12. Quantum criticality among entangled spin chains

    Science.gov (United States)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  13. Phase transitions in two-dimensional uniformly frustrated XY models. I. antiferromagnetic model on a triangular lattice

    International Nuclear Information System (INIS)

    Korshunov, S.E.; Uimin, G.V.

    1986-01-01

    A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction

  14. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  15. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.

    Science.gov (United States)

    Owerre, S A

    2017-09-27

    In the conventional ferromagnetic systems, topological magnon bands and thermal Hall effect are due to the Dzyaloshinskii-Moriya interaction (DMI). In principle, however, the DMI is either negligible or it is not allowed by symmetry in some quantum magnets. Therefore, we expect that topological magnon features will not be present in those systems. In addition, quantum magnets on the triangular-lattice are not expected to possess topological features as the DMI or spin-chirality cancels out due to equal and opposite contributions from adjacent triangles. Here, however, we predict that the isomorphic frustrated honeycomb-lattice and bilayer triangular-lattice antiferromagnetic system will exhibit topological magnon bands and topological thermal Hall effect in the absence of an intrinsic DMI. These unconventional topological magnon features are present as a result of magnetic-field-induced non-coplanar spin configurations with nonzero scalar spin chirality. The relevance of the results to realistic bilayer triangular antiferromagnetic materials are discussed.

  16. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  17. 133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4

    Science.gov (United States)

    Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.

    2006-10-01

    We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.

  18. μSR Study of the Unusual Magnetic Ordering in the Frustrated Antiferromagnet Zn(CrxGa1-x)2O4

    International Nuclear Information System (INIS)

    Kikuchi, H.; Fukushima, H.; Higemoto, W.; Nishiyama, K.

    2001-01-01

    μSR spectra on the spin frustrating spinel antiferromagnet Zn(Cr x Ga 1-x ) 2 O 4 (x=0.9,1.0) have been measured. For x=1.0 compound, both the relaxation rate and the initial asymmetry showed distinct anomalies at the Neel temperature. The magnetic susceptibility for the x=0.9 compound was known to have a faint peak at around 12 K, whose origin was not clear so far. Our μSR study revealed that this temperature is the onset temperature of development of the magnetic correlation accompanied by appreciable spin fluctuations.

  19. Construction and study of exact ground states for a class of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Fannes, M.

    1989-01-01

    Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt

  20. Quantum phase transitions and anomalous Hall effect in frustrated Kondo lattices

    Science.gov (United States)

    Paschen, Silke; Grefe, Sarah Elaine; Ding, Wenxin; Si, Qimiao

    Among the pyrochlore iridates, the metallic compound Pr2 Ir2O7 (Pr-227) has shown characteristics of a possible chiral spin liquid state and quantum criticality. An important question surrounding the significant anomalous Hall response observed in Pr-227 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on frustrated lattices. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr-227 and related frustrated Kondo-lattice systems.

  1. Ising antiferromagnet on the Archimedean lattices

    Science.gov (United States)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  2. 'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings

    International Nuclear Information System (INIS)

    Meleshenko, Peter A.; Klinskikh, Alexander F.

    2011-01-01

    We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.

  3. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    Science.gov (United States)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  4. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    International Nuclear Information System (INIS)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.

  5. Anomalous properties and coexistence of antiferromagnetism and superconductivity near a quantum critical point in rare-earth intermetallides

    International Nuclear Information System (INIS)

    Val’kov, V. V.; Zlotnikov, A. O.

    2013-01-01

    Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.

  6. Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain

    Science.gov (United States)

    Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami

    2018-01-01

    The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.

  7. Misjudging frustrations in spin liquids from oversimplified use of Curie-Weiss law

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Abhishek, E-mail: msan@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Ray, Sugata [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-02-15

    Absence of a single smoking-gun experiment to identify a quantum spin liquid, has kept their characterisation difficult till date. Featureless dc magnetic susceptibility and large antiferromagnetic frustration are always considered as the essential pointers to these systems. However, we show that the amount of frustration estimated by using generalised Curie-Weiss law on these susceptibility data are prone to errors and thus should be dealt with caution. We measure and analyse susceptibility data of Ba{sub 3}ZnIr{sub 2}O{sub 9}, a spin orbital liquid candidate and Gd{sub 2}O{sub 3}, a 1.5 K antiferromagnet and show the distinguishing features between them. A continuous and significant change in Curie and Weiss constants is seen to take place in Ba{sub 3}ZnIr{sub 2}O{sub 9} and other reported spin liquids with the change in the range of fitting temperatures showing the need of a temperature ‘range-of-fit’ analysis before commenting on the Weiss constants of spin liquids. The variation observed is similar to fluctuations among topological sectors persisting over a range of temperature in spin-ice candidates. On the other hand, even though we find correlations to exist at even 100 times the ordering temperature in Gd{sub 2}O{sub 3}, no such fluctuation is observed which may be used as an additional distinguishing signature of spin liquids over similarly featureless correlated paramagnets. - Highlights: • Curie-Weiss fitting may give erroneous frustration parameters in spin-liquids. • The results depend upon choice of fitting method and temperature range used. • More appropriate method is to use a ʽrange of fit’ analysis. • Can distinguish between spin-liquids and correlated paramagnets.

  8. Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets

    International Nuclear Information System (INIS)

    Zinke, R; Richter, J; Drechsler, S-L

    2010-01-01

    We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.

  9. Antiferromagnetism and its origin in iron-based superconductors (Review Article)

    International Nuclear Information System (INIS)

    Ding, Ming-Cui; Zhang, Yu-Zhong; Lin, Hai-Qing

    2014-01-01

    In iron-based superconductors, unravelling the origin of the antiferromagnetism is a crucial step towards understanding the high-T c superconductivity as it is widely believed that the magnetic fluctuations play important roles in the formation of the Cooper pairs. Therefore, in this paper, we will briefly review experimental results related to the antiferromagnetic state in iron-based superconductors and focus on a review of the theoretical investigations which show applicability of the itinerant scenario to the observed antiferromagnetism and corresponding phase transitions in various families of the iron-based superconductors. A proposal of coupling between frustrated and un frustrated bands for understanding the reduced magnetic moment typically observed in iron pnictides is also reviewed. While all the above theoretical investigations do not rule out a possible existence of localized electrons in iron-based superconductors, these results strongly indicate a close relation between itinerant electrons and the magnetically ordered state and point out the importance of taking into account the orbital degrees of freedom.

  10. Quantum disordered phase in a doped antiferromagnet

    International Nuclear Information System (INIS)

    Kuebert, C.; Muramatsu, A.

    1995-01-01

    A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained for the long-wavelength limit of the spin-fermion model, which is given by the O(3) non-linear σ model, a free fermionic part and current-current interactions. By choosing local spin quantization axes for the fermionic spinor we show that the low-energy limit of the model is equivalent to a U(1) gauge theory, where both the bosonic and fermionic degrees of freedom are minimally coupled to a vector gauge field. Within a large-N expansion, the strength of the gauge fields is found to be determined by the gap in the spin-wave spectrum, which is dynamically generated. The explicit doping dependence of the spin-gap is determined as a function of the parameters of the original model. As a consequence of the above, the gauge-fields mediate a long-range interaction among dopant holes and S-1/2 magnetic excitations only in the quantum disordered phase. The possible bound-states in this regime correspond to charge-spin separation and pairing

  11. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  12. Frustrated lattices of Ising chains

    International Nuclear Information System (INIS)

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  13. Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    DEFF Research Database (Denmark)

    Stone, M.B.; Reich, D.H.; Broholm, C.

    2003-01-01

    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...

  14. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  15. Candidate for a fully frustrated square lattice in a verdazyl-based salt

    Science.gov (United States)

    Yamaguchi, H.; Tamekuni, Y.; Iwasaki, Y.; Hosokoshi, Y.

    2018-05-01

    We present an experimental realization of an S =1 /2 fully frustrated square lattice (FFSL) composed of a verdazyl-based salt (p -MePy-V) (TCNQ ) .(CH3)2CO . Ab initio molecular orbital calculations indicate that there are four types of competing ferro- and antiferromagnetic nearest-neighbor interactions present in the system, which combine to form an S =1 /2 FFSL. Below room temperature, the magnetic susceptibility of the material can be considered to arise from the S =1 /2 FFSL formed by the p -MePy-V and indicates that the system forms a quantum valence-bond solid state whose excitation energy is gapped. Furthermore, we also observe semiconducting behavior arising from the one-dimensional chain structure of the TCNQ molecules.

  16. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model

    International Nuclear Information System (INIS)

    Zhao-Sen, Liu; Vladimir, Sechovský; Martin, Diviš

    2011-01-01

    A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Peters, D; Selke, W; McCulloch, I P

    2010-01-01

    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.

  18. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    Science.gov (United States)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  19. Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of superconductivity

    International Nuclear Information System (INIS)

    Harrison, N; McDonald, R D; Mielke, C H; Bauer, E D; Ronning, F; Thompson, J D

    2009-01-01

    We report quantum oscillation measurements on CaFe 2 As 2 under strong magnetic fields-recently reported to become superconducting under pressures of as little as a kilobar. The largest observed carrier pocket occupies less than 0.05% of the paramagnetic Brillouin zone volume-consistent with Fermi surface reconstruction caused by antiferromagnetism. On comparing several alkaline earth AFe 2 As 2 antiferromagnets (with A = Ca, Sr and Ba), the dependences of the Fermi surface cross-sectional area F α and the effective mass m α * of the primary observed pocket on the antiferromagnetic/structural transition temperature T s are both found to be consistent with the case for quasiparticles in a conventional spin-density wave model. These findings suggest that the recently proposed strain-enhanced superconductivity in these materials occurs within a broadly conventional spin-density wave phase. (fast track communication)

  20. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  1. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  2. Quasistatic antiferromagnetism in the quantum wells of SmTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Need, Ryan F.; Marshall, Patrick B.; Kenney, Eric; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Kirby, Brian J.; Stemmer, Susanne; Graf, Michael J.; Wilson, Stephen D.

    2018-03-01

    High carrier density quantum wells embedded within a Mott insulating matrix present a rich arena for exploring unconventional electronic phase behavior ranging from non-Fermi-liquid transport and signatures of quantum criticality to pseudogap formation. Probing the proposed connection between unconventional magnetotransport and incipient electronic order within these quantum wells has however remained an enduring challenge due to the ultra-thin layer thicknesses required. Here we address this challenge by exploring the magnetic properties of high-density SrTiO3 quantum wells embedded within the antiferromagnetic Mott insulator SmTiO3 via muon spin relaxation and polarized neutron reflectometry measurements. The one electron per planar unit cell acquired by the nominal d0 band insulator SrTiO3 when embedded within a d1 Mott SmTiO3 matrix exhibits slow magnetic fluctuations that begin to freeze into a quasistatic spin state below a critical temperature T*. The appearance of this quasistatic well magnetism coincides with the previously reported opening of a pseudogap in the tunneling spectra of high carrier density wells inside this film architecture. Our data suggest a common origin of the pseudogap phase behavior in this quantum critical oxide heterostructure with those observed in bulk Mott materials close to an antiferromagnetic instability.

  3. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    Science.gov (United States)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  4. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  5. Modified spin-wave theory with ordering vector optimization: frustrated bosons on the spatially anisotropic triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Meditarranean Technology Park, E-08860 Castelldefels, Barcelona (Spain); Roscilde, Tommaso [Laboratoire de Physique, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69007 Lyon (France); Murg, Valentin; Ignacio Cirac, J; Schmied, Roman, E-mail: Philipp.Hauke@icfo.e [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2010-05-15

    We investigate a system of frustrated hardcore bosons, modeled by an XY antiferromagnet on the spatially anisotropic triangular lattice, using Takahashi's modified spin-wave (MSW) theory. In particular, we implement ordering vector optimization on the ordered reference state of MSW theory, which leads to significant improvement of the theory and accounts for quantum corrections to the classically ordered state. The MSW results at zero temperature compare favorably to exact diagonalization (ED) and projected entangled-pair state (PEPS) calculations. The resulting zero-temperature phase diagram includes a one-dimensional (1D) quasi-ordered phase, a 2D Neel ordered phase and a 2D spiraling ordered phase. Strong indications coming from the ED and PEPS calculations, as well as from the breakdown of MSW theory, suggest that the various ordered or quasi-ordered phases are separated by spin-liquid phases with short-range correlations, in analogy to what has been predicted for the Heisenberg model on the same lattice. Within MSW theory, we also explore the finite-temperature phase diagram. In agreement with the Berezinskii-Kosterlitz-Thouless (BKT) theory, we find that zero-temperature long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition temperature), while zero-temperature quasi-ordered phases become short-range correlated at finite temperature. These results show that, despite its simplicity, MSW theory is very well suited to describing ordered and quasi-ordered phases of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero and finite temperatures. While MSW theory, just as other theoretical methods, cannot describe spin-liquid phases, its breakdown provides a fast and reliable method for singling out Hamiltonians that may feature these intriguing quantum phases. We thus suggest a tool for guiding our search for interesting systems whose properties are necessarily studied with a physical quantum simulator

  6. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  7. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  8. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  9. Magnetic domains and frustration in metallic CePdAl

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Stefan; Huesges, Zita; Huang, Chien-Lung; Stockert, Oliver [Max Planck Institute CPfS, Dresden (Germany); Fritsch, Veronika; Sakai, Akito [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Grube, Kai; Taubenheim, Christian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany)

    2016-07-01

    Magnetic frustration is an exciting topic in condensed matter physics, since it can lead to new ground states of materials, e.g. a spin liquid or spin glass state. Effects of magnetic frustration have been investigated intensively for insulating materials. However, the existence of magnetic frustration in metallic systems is still under debate. CePdAl is a metallic Kondo system, where geometric magnetic frustration arises from the formation of Ce ions on a distorted Kagome lattice. Neutron scattering experiments revealed, that only two thirds of the magnetic Ce moments order antiferromagnetically below T{sub N}=2.7 K, whereas the other third remains mainly disordered. Thermodynamic as well as neutron scattering measurements are presented to verify the existence of partial magnetic frustration in CePdAl. Recently neutron diffraction experiments under magnetic fields applied along two orthogonal directions in the magnetically hard basal plane were performed. They show opposite effects on the magnetic intensity of a selected magnetic domain depending on the field direction with respect to the propagation vector. If this is only an effect of different domain population or also due to a change in magnetic frustration shall be discussed.

  10. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  11. Ising critical behaviour in the one-dimensional frustrated quantum XY model

    International Nuclear Information System (INIS)

    Granato, E.

    1993-06-01

    A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs

  12. Field-controlled spin current in frustrated spin chains

    Directory of Open Access Journals (Sweden)

    A.K. Kolezhuk

    2009-01-01

    Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.

  13. Possibility of a two-dimensional spin liquid in CePdAl induced by partial geometric frustration?

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, V. [Universitaet Augsburg, Institut fuer Physik, Experimentalphysik VI (Germany); Karlsruher Institut fuer Technologie (Germany); Grube, K.; Kittler, W.; Taubenheim, C.; Loehneysen, H. von [Karlsruher Institut fuer Technologie (Germany); Huesges, Z.; Lucas, S.; Stockert, O. [Max-Planck-Institut fuer chemische Physik fester Stoffe, Dresden (Germany); Green, E. [Hochfeldzentrum Dresden-Rossendorf (Germany)

    2015-07-01

    CePdAl crystallizes in the hexagonal ZrNiAl structure, where the magnetic ions form a distorted kagome lattice. At T{sub N} = 2.7 K the onset of antiferromagnetic (AF) order is observed. Neutron scattering experiments revealed a partial frustration in the distorted kagome planes of this structure: two-thirds of the Ce moments form ferromagnetic chains, which are antiferromagnetically coupled, the remaining third do not participate in any long-range order. Along the c-axis the magnetic moments exhibit an amplitude modulation. Accordingly, the kagome planes are stacked on top of each other, resulting in corrugated AF planes parallel to the c-axis formed by the ordered magnetic moments, which are separated by the frustrated moments. It is an intriguing and yet unresolved question if this third of frustrated moments forms a spin liquid state in CePdAl. Based on measurements of specific heat, thermal expansion, magnetization and electrical resistivity we want to discuss this possibility.

  14. Antiferromagnetic Ordering in Quasi-Triangular Localized Spin System, β'-Et2Me2P[Pd(dmit)2]2, Studied by 13C NMR

    Science.gov (United States)

    Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo

    2014-05-01

    We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.

  15. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  16. Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.

    Science.gov (United States)

    Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong

    2016-01-13

    The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.

  17. Frustration by Multiple Spin Exchange in 2D Solid 3He Films

    International Nuclear Information System (INIS)

    Siqueira, M.; Nyeki, J.; Cowan, B.; Saunders, J.

    1997-01-01

    Measurements of the magnetization and heat capacity of the second layer of 3 He films adsorbed on graphite indicate that the evolution of the exchange from antiferromagnetic to ferromagnetic arises from a tuning of the competing exchange processes. At certain coverages the coexistence of an antiferromagnetic heat capacity with a ferromagnetic magnetization is a clear manifestation, predicted by theory, of frustration. At the ferromagnetic anomaly the system is well described by series expansions for a 2D Heisenberg ferromagnet on a triangular lattice. copyright 1997 The American Physical Society

  18. Multipartite entanglement and frustration

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2010-01-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  19. Multipartite entanglement and frustration

    Science.gov (United States)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-02-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  20. Multipartite entanglement and frustration

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma (Italy)], E-mail: paolo.facchi@ba.infn.it

    2010-02-15

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  1. Anisotropic quantum quench in the presence of frustration or background gauge fields: A probe of bulk currents and topological chiral edge modes

    Science.gov (United States)

    Killi, Matthew; Trotzky, Stefan; Paramekanti, Arun

    2012-12-01

    Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in gapped topological states, such as quantum Hall or quantum spin Hall insulators.

  2. Quantum Number Fractionalization in Antiferromagnets

    OpenAIRE

    Laughlin, R. B.; Giuliano, D.; Caracciolo, R.; White, O.

    1998-01-01

    This is a pedagogical introduction to the mathematics of 1-dimensional spin-1/2 antiferromagnets. Topics covered include the Haldane-Shastry Hamiltonian, vector ``supercharges'', conserved spin currents, spinons, the supersymmetric Kuramoto-Yokoyama Hamiltonian, and holons.

  3. Numerical study of ground state and low lying excitations of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Trivedi, N.; Ceperley, D.M.

    1989-01-01

    The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves

  4. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu, Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  5. An equilibrium for frustrated quantum spin systems in the stochastic state selection method

    International Nuclear Information System (INIS)

    Munehisa, Tomo; Munehisa, Yasuko

    2007-01-01

    We develop a new method to calculate eigenvalues in frustrated quantum spin models. It is based on the stochastic state selection (SSS) method, which is an unconventional Monte Carlo technique that we have investigated in recent years. We observe that a kind of equilibrium is realized under some conditions when we repeatedly operate a Hamiltonian and a random choice operator, which is defined by stochastic variables in the SSS method, to a trial state. In this equilibrium, which we call the SSS equilibrium, we can evaluate the lowest eigenvalue of the Hamiltonian using the statistical average of the normalization factor of the generated state. The SSS equilibrium itself has already been observed in unfrustrated models. Our study in this paper shows that we can also see the equilibrium in frustrated models, with some restriction on values of a parameter introduced in the SSS method. As a concrete example, we employ the spin-1/2 frustrated J 1 -J 2 Heisenberg model on the square lattice. We present numerical results on the 20-, 32-, and 36-site systems, which demonstrate that statistical averages of the normalization factors reproduce the known exact eigenvalue to good precision. Finally, we apply the method to the 40-site system. Then we obtain the value of the lowest energy eigenvalue with an error of less than 0.2%

  6. Monte Carlo study of one hole in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Sorella, S.

    1992-01-01

    Using the standard Quantum Monte Carlo technique for the Hubbard model, I present here a numerical investigation of the hole propagation in a Quantum Antiferromagnet. The calculation is very well stabilized, using selected sized systems and special use of the trial wavefunction that satisfy the close shell condition in presence of an arbitrarily weak Zeeman magnetic field, vanishing in the thermodynamic limit. In this paper the author investigates the question of vanishing or nonvanishing quasiparticle weight, in order to clarify whether the Mott insulator should behave just as conventional insulator with an upper and lower Hubbard band. By comparing the present finite size scaling with several techniques predicting a finite quasiparticle weight the data seem more consistent with a vanishing quasiparticle weight, i.e., as recently suggested by P.W. Anderson the Hubbard-Mott insulator should be characterized by non-trivial excitations which cannot be interpreted in a simple quasi-particle picture. However it cannot be excluded, based only on numerical grounds, that a very small but non vanishing quasiparticle weight should survive in the thermodynamic limit

  7. Magnetic behaviour of interacting antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D

    2012-01-01

    Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)

  8. Quantum group based theory for antiferromagnetism and superconductivity: proof and further evidence

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Sher; Mamun, S.M.; Yanagisawa, T.; Khan, Hayatullah; Rahman, M.O.; Termizi, J.A.S

    2003-10-15

    Previously one of us presented a conjecture to model antiferromagnetism and high temperature superconductivity and their 'unification' by quantum group symmetry rather than the corresponding classical symmetry in view of the critique by Baskaran and Anderson of Zhang's classical SO(5) model. This conjecture was further sharpened, experimental evidence and the important role of 1-d systems (stripes) was emphasized and moreover the relationship between quantum groups and strings via WZWN models were given in an earlier paper. In this brief note we give and discuss mathematical proof of this conjecture, which completes an important part of this idea, since previously an explicit simple mathematical proof was lacking. It is important to note that in terms of physics that the arbitrariness (freedom) of the d-wave factor g{sup 2}(k) is tied to quantum group symmetry whereas in order to recover classical SO(5) one must set it to unity in an adhoc manner. We comment on the possible connection between this freedom and the pseudogap behaviour in the cuprates.

  9. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    Science.gov (United States)

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  10. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  11. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  12. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    International Nuclear Information System (INIS)

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  13. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  14. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    International Nuclear Information System (INIS)

    MacDougall, Gregory J.; Gout, Delphine J.; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey A.; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

  15. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  16. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  17. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  18. DTADH and quantum critical phenomena caused by anisotropy and external magnetic field for spin-1/2 Heisenberg diamond chains

    International Nuclear Information System (INIS)

    Li Yanchao

    2010-01-01

    Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J 3 anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.

  19. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  20. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  1. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    Science.gov (United States)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  2. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  3. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  4. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  5. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  6. The coprime quantum chain

    Science.gov (United States)

    Mussardo, G.; Giudici, G.; Viti, J.

    2017-03-01

    In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j  =  (q  -  2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .

  7. Quadrupolar frustration in shastry-sutherland lattice of DyB4 studied by resonant x-ray scattering

    International Nuclear Information System (INIS)

    Okuyama, Daisuke; Matsumura, Takeshi; Nakao, Hironori; Murakami, Youichi

    2005-01-01

    We have observed geometrical frustration of quadrupolar and magnetic moments in dysprosium tetraboride, DyB 4 , where the rare-earth sites form a Shastry-Sutherland lattice. Resonant X-ray scattering at the L III absorption edge of Dy was utilized. Analysis of the energy, polarization, temperature, and azimuthal-angle dependences of the E1 resonance of the (100) forbidden reflection show that the magnetic and quadrupolar components within the frustrated c plane have a short-range correlation, suggesting that the moments are fluctuating. In contrast, the basic antiferromagnetic component along the c-axis has a long-range order. (author)

  8. Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields.

    Science.gov (United States)

    Troiani, Filippo; Affronte, Marco; Carretta, Stefano; Santini, Paolo; Amoretti, Giuseppe

    2005-05-20

    We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.

  9. Antisite disorder-induced low-field magnetoresistance in some frustrated Sr2FeMoO6

    International Nuclear Information System (INIS)

    Cai Tianyi; Ju Sheng; Li Zhenya

    2006-01-01

    Considering the existence of antiferromagnetic patches induced by the antisite disorder in ferrimagnetic Sr 2 FeMoO 6 , we have developed a resistor network model to account for the effects of the antisite disorder on the magnetoresistance in this material. It is proposed that the magnetic disorder resulting from the existence of frustration around the antiferromagnetic patches will be suppressed under the applied magnetic field and low-field magnetoresistance will be observed. For samples with low levels of antisite defects, the magnetoresistive behaviour may be strongly affected by the different degrees of magnetic inhomogeneity. Our calculated results are in agreement with experimental observations

  10. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    Science.gov (United States)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  11. Quantum electric-dipole liquid on a triangular lattice.

    Science.gov (United States)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  12. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    International Nuclear Information System (INIS)

    Liu Guanghua; Li Ruoyan; Tian Guangshan

    2012-01-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h c = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1. (paper)

  13. Study into critical properties of 3D frustrated Heisenberg model on triangular lattice by the use of Monte Carlo methods

    International Nuclear Information System (INIS)

    Murtazaev, A.K.; Ramazanov, M.K.; Badiev, M.K.

    2009-01-01

    The critical properties of the 3D frustrated antiferromagnetic Heisenberg model on a triangular lattice are investigated by the replica Monte Carlo method. The static magnetic and chiral critical exponents of heat capacity a = 0.05(2), magnetization Β 0.30(1), Β k = 0.52(2), susceptibility Γ = 1.36(2), Γ k = 0.93(3), and correlation radius Ν 0.64(1), Ν k = 0.64(2) are calculated by using the finitesize scaling theory. The critical Fisher exponents η = - 0.06(3), η k = 0.63(4) for this model are estimated for the first time. A new universality class of the critical behavior is shown to be formed by the 3D frustrated Heisenberg model on the triangular lattice. A type of the interlayer exchange interaction is found to influence the universality class of antiferromagnetic Heisenberg model on the a triangular lattice.

  14. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    Science.gov (United States)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  15. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    Science.gov (United States)

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C 9 H 18 N 2 CuBr 4 . Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  16. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  17. 4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu2(BO3)2

    Science.gov (United States)

    Zayed, M. E.; Rüegg, Ch.; Larrea J., J.; Läuchli, A. M.; Panagopoulos, C.; Saxena, S. S.; Ellerby, M.; McMorrow, D. F.; Strässle, Th.; Klotz, S.; Hamel, G.; Sadykov, R. A.; Pomjakushin, V.; Boehm, M.; Jiménez-Ruiz, M.; Schneidewind, A.; Pomjakushina, E.; Stingaciu, M.; Conder, K.; Rønnow, H. M.

    2017-10-01

    The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry-Sutherland lattice realized by SrCu2(BO3)2 (refs ,) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

  18. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    Science.gov (United States)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  19. Critical behavior of 2 and 3 dimensional ferro- and antiferromagnetic spin ice systems in the framework of the Effective Field Renormalization Group technique

    OpenAIRE

    Garcia-Adeva, A. J.; Huber, D. L.

    2001-01-01

    In this work we generalize and subsequently apply the Effective Field Renormalization Group technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagome and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As ...

  20. NMR evidence of a gapless chiral phase in the S=1 zigzag antiferromagnet CaV2O4

    International Nuclear Information System (INIS)

    Fukushima, Hiroyuki; Kikuchi, Hikomitsu; Chiba, Meiro; Fujii, Yutaka; Yamamoto, Yoshiyuki; Hori, Hidenobu

    2002-01-01

    We have performed magnetic susceptibility and 51 V NMR experiments with CaV 2 O 4 , a model substance for a frustrated S=1 spin chain with competing nearest neighbor (NN) and next-nearest neighbor (NNN) antiferromagnetic interactions. We report on the analysis of the magnetic susceptibility and the 51 V NMR experiments suggesting a gapless nature of CaV 2 O 4 . The absence of a spin gap is in clear contrast to the case of a non-frustrated spin chains which usually have a Haldane gap. (author)

  1. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  2. Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice

    Science.gov (United States)

    Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.

    2018-06-01

    We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.

  3. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    Science.gov (United States)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  4. Exotic spin phases in the one-dimensional spin-1/2 quantum magnet LiCuSbO{sub 4} as seen by high-field NMR and ESR spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Iakovleva, Margarita [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Zavoisky Physical Technical Institute, Kazan (Russian Federation); Grafe, Hans-Joachim; Kataev, Vladislav; Alfonsov, Alexey; Sturza, Mihai I.; Wurmehl, Sabine [IFW Dresden, Dresden (Germany); Vavilova, Evgeniia [Zavoisky Physical Technical Institute, Kazan (Russian Federation); Nojiri, Hiroyuki [Institute of Materials Research, Sendai (Japan); Buechner, Bernd [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany)

    2016-07-01

    We will present our recent results of high-field NMR and sub-THz ESR studies of the quantum magnet LiCuSbO{sub 4} (LCSO) that presents an excellent model system of a one-dimensional spin-1/2 quantum magnet with frustrated exchange interactions. Such networks are predicted to exhibit a plethora of novel ground states beyond classical ferro- or antiferromagnetic phases. In LCSO the absence of a long-range magnetic order down to sub-Kelvin temperatures is suggestive of the realization of a quantum spin liquid state. Our NMR and ESR measurements in strong magnetic fields up to 16 Tesla reveal clear indications for the occurrence of an exotic field-induced hidden phase which we will discuss in terms of multipolar physics.

  5. Universal properties of strongly frustrated quantum magnets in high magnetic fields

    International Nuclear Information System (INIS)

    Richter, J.

    2007-01-01

    For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)

  6. Antiferromagnetic ground state in NpCoGe

    Czech Academy of Sciences Publication Activity Database

    Colineau, E.; Griveau, J.C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, Alexander; Caciuffo, R.

    2014-01-01

    Roč. 89, č. 11 (2014), "115135-1"-"115135-11" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : neptunium * anti-ferromagnetism * quantum critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  7. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  8. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    International Nuclear Information System (INIS)

    Yoshida, Beni

    2011-01-01

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  9. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  10. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    Science.gov (United States)

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  11. Domain wall motion in magnetically frustrated nanorings

    Science.gov (United States)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  12. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  13. Doping effects on the relaxation of frustration and magnetic properties of YMn0.9Cu0.1O3

    Science.gov (United States)

    Xiao, L. X.; Xia, Z. C.; Wang, X.; Ni, Y.; Yu, W.; Shi, L. R.; Jin, Z.; Xiao, G. L.

    2017-12-01

    The crystal structure and magnetic properties of hexagonal YMn0.9Cu0.1O3 single crystal are systematically investigated. The refinement results of XRD show the lattice constant decreases, which is unusually due to the doped Cu2+ ion has a larger ionic radius than the Mn3+ ions. The XPS results show that the coexistence of Mn2+, Mn3+ and Mn4+ ions in YMn0.9Cu0.1O3 single crystal. Magnetization measurements show that Cu doped YMn0.9Cu0.1O3 and parent YMnO3 have almost the same antiferromagnetic transition temperature TN, which indicates the AFM interaction is robust in the geometry frustrated system. Because doping directly destroy some of the Mn3+ ions nets, the relaxation of frustration of Mn in-plane 2D triangular geometry network leads to the significantly decrease of Mn3+ ions AFM interaction. In addition, the coexistence and competition between the ferromagnetic and antiferromagnetic interactions among the Mn2+, Mn3+ and Mn4+ ions lead to a complicated and irreversible magnetization behavior in YMn0.9Cu0.1O3 single crystal.

  14. Thermodynamic investigations of the quasi-2d triangular Heisenberg antiferromagnet Cs{sub 2}CuCl{sub 2}Br{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tutsch, Ulrich; Postulka, Lars; Wolf, Bernd; Lang, Michael; Well, Natalija van; Ritter, Franz; Krellner, Cornelius; Assmus, Wolf [Physikalisches Institut, Goethe-University Frankfurt (Germany)

    2015-07-01

    The system Cs{sub 2}CuCl{sub 4-x}Br{sub x} (0 ≤ x ≤ 4) is a quasi-two-dimensional Heisenberg antiferromagnet with a triangular in-plane arrangement of the spin-spin couplings. The ratio J{sup '}/J of the corresponding coupling constants determines the degree of frustration in the system and has been found to be 0.34 (x = 0) and 0.74 (x = 4) for the border compounds. One may ask whether for some intermediate Br concentration an even higher degree of frustration can be reached. Indeed, some indications have been reported by Ono et al. Here, we present specific heat C and susceptibility χ measurements below 1 K in magnetic fields B up to 13.5 T for the intermediate compound Cs{sub 2}CuCl{sub 2}Br{sub 2}, which, due to site-selective substitution, shows a well-ordered halide sublattice. Indications for an antiferromagnetic transition are observed around 90 mK for B = 0. A small field of B = 0.14 T is sufficient to fully suppress this anomaly. Taking into account the high saturation field of about 20 T, extrapolated from χ(T = const, B) scans at low temperatures, this small ordered region in the B-T plane clearly indicates a high degree of frustration in Cs{sub 2}CuCl{sub 2}Br{sub 2}.

  15. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    Science.gov (United States)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  16. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...

  17. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  18. Enhancement of geometric phase by frustration of decoherence: A Parrondo-like effect

    Science.gov (United States)

    Banerjee, Subhashish; Chandrashekar, C. M.; Pati, Arun K.

    2013-04-01

    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to a Parrondo-like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.

  19. Quantum Statistical Mechanics on a Quantum Computer

    OpenAIRE

    De Raedt, H.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    1999-01-01

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  20. A spin-frustrated cobalt(II) carbonate pyrochlore network.

    Science.gov (United States)

    Zheng, Yanzhen; Ellern, Arkady; Kögerler, Paul

    2011-11-01

    The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO(3))(2)Na(3)Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co(4)(μ(3)-CO(3))(4)} tetrahedral building blocks, in which the Co(II) centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO(2))(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na(+) and Cl(-) ions. Antiferromagnetic coupling between adjacent Co(II) centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position 3, one Na atom on position 2 and a carbonate C atom on position 3.

  1. Frustration in biomolecules.

    Science.gov (United States)

    Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G

    2014-11-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature

  2. Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation

    Science.gov (United States)

    Carlo, J. P.; Derakhshan, S.; Greedan, J. E.

    Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.

  3. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  4. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    Science.gov (United States)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  5. Antiferromagnetic exchange coupling measurements on single Co clusters

    Science.gov (United States)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  6. Quantum discord and quantum phase transition in spin chains

    OpenAIRE

    Dillenschneider, Raoul

    2008-01-01

    Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.

  7. On the simplest scale invariant tree-tensor-states preserving the quantum symmetries of the antiferromagnetic XXZ chain

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the line of critical antiferromagnetic XXZ chains with coupling J  >  0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.

  8. Antiferromagnetic transition in graphene functionalized with nitroaniline

    Science.gov (United States)

    Komlev, Anton A.; Makarova, Tatiana L.; Lahderanta, Erkki; Semenikhin, Petr Valeryevich; Veinger, Anatoly I.; Kochman, Igor V.; Magnani, Giacomo; Bertoni, Giovanni; Pontiroli, Daniele; Ricco, Mauro

    2017-07-01

    Magnetic properties of graphene nanostructures functionalized with aromatic radicals were investigated by electron spin resonance (ESR) and superconducting quantum interference device (SQUID) techniques. Three types of functionalized graphene samples were investigated (functionalization was performed by 4-bromoaniline, 4-nitroaniline, or 4-chloroaniline). According to SQUID measurements, in case of functionalization by nitroaniline, sharp change in temperature dependence of magnetic susceptibility was observed near 120 K. Such behavior was explained as antiferromagnetic ordering. The same but more extended effect was observed in ESR measurements below 160 K. In the ESR measurements, only one resonance line with g-factor equal to 2.003 was observed. Based on the temperature dependencies of spin concentration and resonance position and intensity, the effect was explained as antiferromagnetic ordering along the extended defects on the basal planes of the graphene.

  9. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  10. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  11. Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems

    OpenAIRE

    Tanaka, Shu; Tamura, Ryo

    2012-01-01

    Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...

  12. Quantum phases, supersolids and quantum phase transitions of interacting bosons in frustrated lattices

    International Nuclear Information System (INIS)

    Ye, Jinwu; Chen, Yan

    2013-01-01

    By using the dual vortex method (DVM), we develop systematically a simple and effective scheme to use the vortex degree of freedoms on dual lattices to characterize the symmetry breaking patterns of the boson insulating states in the direct lattices. Then we apply our scheme to study quantum phases and phase transitions in an extended boson Hubbard model slightly away from 1/3 (2/3) filling on frustrated lattices such as triangular and Kagome lattice. In a triangular lattice at 1/3, we find a X-CDW, a stripe CDW phase which was found previously by a density operator formalism (DOF). Most importantly, we also find a new CDW-VB phase which has both local CDW and local VB orders, in sharp contrast to a bubble CDW phase found previously by the DOF. In the Kagome lattice at 1/3, we find a VBS phase and a 6-fold CDW phase. Most importantly, we also identify a CDW-VB phase which has both local CDW and local VB orders which was found in previous QMC simulations. We also study several other phases which are not found by the DVM. By analyzing carefully the saddle point structures of the dual gauge fields in the translational symmetry breaking sides and pushing the effective actions slightly away from the commensurate filling f=1/3(2/3), we classified all the possible types of supersolids and analyze their stability conditions. In a triangular lattice, there are X-CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. In a Kagome lattice, there are 6-fold CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. We show that independent of the types of the SS, the quantum phase transitions from solids to supersolids driven by a chemical potential are in the same universality class as that from a Mott insulator to a superfluid, therefore have exact exponents z=2, ν=1/2, η=0 (with

  13. Antiferromagnetic spintronics

    Science.gov (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  14. Energy of the amplitude mode in the bicubic antiferromagnet: Series expansion results

    Science.gov (United States)

    Oitmaa, J.

    2018-05-01

    Series expansion methods are used to study the quantum critical behavior of the bicubic spin-1/2 antiferromagnet. Excitation energies are computed throughout the Brillouin zone, for both the Néel and dimer phases. We compute the energy of the amplitude/Higgs mode and show that it becomes degenerate with the magnon modes at the quantum critical point, as expected on general symmetry grounds.

  15. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar, South Sulawesi 90245 (Indonesia)

    2016-03-11

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  16. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Bansawang, B.J.; Tahir, Dahlang

    2016-01-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  17. Effective Hamiltonian and low-lying eigenenergy clustering patterns of four-sublattice antiferromagnets

    DEFF Research Database (Denmark)

    Zhang, N.G.; Henley, C.L.; Rischel, C.

    2002-01-01

    We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...

  18. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)

    1996-12-09

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)

  19. Origin of ferroelectricity and exotic magnetism in frustrated LiCuVO4

    Science.gov (United States)

    Mourigal, Martin

    2013-03-01

    The spin-1/2 Heisenberg chain with competing ferromagnetic nearest-neighbor (J1) and antiferromagnetic next-nearest neighbor (J2) interactions is probably one the simplest, yet richest model in frustrated magnetism. It is experimentally realized in a diversity of Mott insulators, in particular in copper-oxide materials built-up from edge-sharing CuO6 octahedra. The quasi-1D compound LiCuVO4 stands out for the diverse emergent magnetic and multiferroic phenomena it displays, its simple crystal structure and its availability as high-quality single crystals. I will review recent elastic neutron scattering works on LiCuVO4 which elucidate the nature of its ground-state as a function of applied electric field and magnetic field up to 14 T. Below 3.5 T, a model long-range ordered ferroelectric spin-cycloid is unveiled, its chirality fully controlled by an applied electric field, and the corresponding magnetoelectric coupling in excellent agreement with the predictions of a purely electronic mechanism based on spin currents. Above 8 T, a transition to a new quantum state is observed. This new phase resembles the longitudinal density-wave of magnon-pairs (p=2 SDW) predicted in the purely 1D case but is characterized by the intriguing absence of long-ranged dipolar correlations. Work performed at the Institut Laue-Langevin in Grenoble and in collaboration with M. Enderle, B. Fåk, R. K. Kremer and J. Law.

  20. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.

    2018-02-15

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  1. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  2. Signatures of a gearwheel quantum spin liquid in a spin-1/2 pyrochlore molybdate Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.

    2017-12-01

    We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .

  3. Spintronics of antiferromagnetic systems

    International Nuclear Information System (INIS)

    Gomonaj, E.V.; Loktev, V.M.

    2014-01-01

    Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.

  4. Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field

    International Nuclear Information System (INIS)

    Sato, Masahiro; Oshikawa, Masaki

    2002-01-01

    We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)

  5. Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain

    International Nuclear Information System (INIS)

    Qu Shaohua; Zhu Lin

    2008-01-01

    The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain

  6. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  7. Quo vadis optica quantorum?

    International Nuclear Information System (INIS)

    Lewenstein, M.

    2005-01-01

    In my talk I will present the recent developments of quantum optics, and in particular physics of ultra-cold gases that occur at the interplay between quantum optics, atomic physics, quantum information, statistical mechanics, condensed matter physics and even high energy physics, and touch the same frontiers and challenges of modern physics. In particular I will discuss the possibility of studying and discovering new phenomena in physics of frustrated anti-ferromagnets, and about possibility of studying some aspects of abelian and non-abelian gauge field theories. (author)

  8. Perspectives of antiferromagnetic spintronics

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  9. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2

    Science.gov (United States)

    Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.

    2018-04-01

    We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.

  10. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  11. Electric control of antiferromagnets

    OpenAIRE

    Fina, I.; Marti, X.

    2016-01-01

    In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...

  12. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Javed, Qurat-ul-ain; Feng-Ping Wang; Rafique, M. Yasir; Toufiq, Arbab Mohammad; Iqbal, M. Zubair

    2012-01-01

    We have reported new magnetic and optical properties of Mn 2 O 3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV—visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn 2 O 3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn 2 O 3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at T N = 83 K. Furthermore, the Mn 2 O 3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV—visible spectrophotometry was used to determine the transmittance behaviour of Mn 2 O 3 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis—Mott model. The UV—visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region

  13. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  14. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet

    International Nuclear Information System (INIS)

    Basu, S.; Singh, A.

    1996-01-01

    A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society

  15. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    Science.gov (United States)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  16. Magnetization plateaux and jumps in frustrated four-leg spin tubes in magnetic fields

    International Nuclear Information System (INIS)

    Rosales, H D; Arlego, M; Albarracín, F A Gómez

    2014-01-01

    We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: density matrix renormalization group (DMRG), a low-energy effective Hamiltonian (LEH) and a Hartree variational approach (HVA). We find that in the limit of weakly interacting plaquettes, singlet and triplet states play an important role in the formation of magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field. These results are consistent with the DMRG and HVA calculations

  17. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.

    2017-05-30

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  18. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.

    2017-01-01

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  19. Synthesis, characterization and magnetic properties of a manganese (II) silicate containing frustrated S=5/2 zig–zag ladders

    International Nuclear Information System (INIS)

    Brandão, P.; Santos, A.M. dos; Paixão, L.S.; Reis, M.S.

    2014-01-01

    The hydrothermal synthesis, structural characterization and magnetic properties of a manganese silicate with ideal formula of NaMn 2 Si 3 O 8 (OH) is reported. This compound is a synthetic analog to the naturally occurring mineral Serandite. The crystal structure comprises MnO 6 octahedra and SiO 4 tetrahedra. The MnO 6 share four edges with neighboring octahedra forming double chains. These chains are connected by silicate chains Si 3 O 8 (OH) resulting in an open framework structure with six-member ring channels where sodium ions are located. From the magnetic point of view, the intra-chain exchange between neighboring S=5/2 manganese ions is weak, partly due to the distortion observed in the octahedra, but also due to the frustrated topology of the chain. A successful fitting of the magnetic susceptibility was obtained by considering a double chain numerical model with Monte Carlo derived empirical parameters. -- Graphical abstract: A manganese silicate prepared hydrothermally with formula NaMn 2 Si 3 O 8 (OH) possessing the structure of the mineral Serandite contains doubled chains of edge-sharing MnO 6 octahedra. The magnetic susceptibility was measured and shows an antiferromagnetic behavior. Highlights: • Characterization of a synthetic analog to the mineral Serandite: NaMn 2 Si 3 O 8 (OH). • Fitting of the magnetic susceptibility considering a classical regular chain. • Weak metal–oxygen–metal super-exchange interactions; antiferromagnetic in nature. • Elevated degree of frustration along the chain, without sign of interchain ordering

  20. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  1. Perspectives of antiferromagnetic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  2. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.

    Science.gov (United States)

    Wang, Yong-Lei; Ma, Xiaoyu; Xu, Jing; Xiao, Zhi-Li; Snezhko, Alexey; Divan, Ralu; Ocola, Leonidas E; Pearson, John E; Janko, Boldizsar; Kwok, Wai-Kwong

    2018-06-11

    Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics 1 , such as data storage, memory and logic 2 . However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system 3,4 . Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure 5 . The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions 6 , electrons and holes in two-dimensional materials 7,8 , and topological insulators 9 , as well as colloids in soft materials 10-13 .

  3. Infrared investigation of the phonon spectrum in the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Pfuner, F; Degiorgi, L [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Berger, H; Forro, L [Institut de Physique de la Matiere Complexe (IPMC), EPF Lausanne, CH-1015 Lausanne (Switzerland)

    2009-09-16

    We present our optical investigations on the frustrated spin cluster compound FeTe{sub 2}O{sub 5}Cl, which develops a long-range antiferromagnetic order below 10 K. We measure the optical reflectivity from the far-infrared to the ultraviolet with polarized light. We focus our attention on the lattice dynamics by discussing the infrared-active modes. Our findings reveal a polarization dependence of the vibrational modes but which do not seem to be affected by structural anomalies linked to the magnetically ordered state at low temperatures.

  4. Magnetoresistance and spin frustration at low temperature in LaMn sub 1 sub - sub x Ni sub x O sub 3 sub + subdelta (0 <= x <= 0.1)

    CERN Document Server

    Yamamoto, A

    2003-01-01

    This paper investigates the relation between the temperature dependence of magnetoresistance (MR) and spin frustration in LaMnO sub 3 sub + subdelta when Ni is doped into the Mn site. The specimens experience magnetic frustration introduced by the competition between antiferromagnetic (AFM) and ferromagnetic (FM) interactions. According to the temperature dependence of magnetization after cooling the specimen in zero field and non-zero field, Ni-doped specimens behave like cluster glasses. This magnetic frustration at the low temperature is believed to result from the disordered spin structure between AFM and FM phases in these specimens. When the structural symmetry in the specimen is higher, the FM arrangement increases by double the exchange interaction. However, MR decreases in the same temperature region for the same reason. We suggest that the temperature dependence of MR below the Curie temperature in the Ni-doped specimen is controlled by the change of magnetization that occurs with structural change.

  5. Frustration Tolerance in Youth With ADHD.

    Science.gov (United States)

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  6. Isolable Triradical Trication of Hexaaza[16]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System.

    Science.gov (United States)

    Kurata, Ryohei; Sakamaki, Daisuke; Uebe, Masashi; Kinoshita, Mariko; Iwanaga, Tetsuo; Matsumoto, Takashi; Ito, Akihiro

    2017-08-18

    A new derivative of hexaaza[1 6 ]paracyclophane in which p-phenylenes are alternately replaced by 9,10-anthrylenes was prepared to investigate the impact on overall π-conjugation as well as conformational change of the macrocycle. The charge and spin distribution for one-electron and three-electron oxidation of the macrocycle was elucidated by means of electrochemical, spectroelectrochemical, EPR spectroscopic, and SQUID magnetometric methods. In particular, the triradical trication was successfully isolated as an air-stable salt, and moreover, its structure was disclosed by X-ray analysis. The triradical trication was characterized as a spin-frustrated three-spin system with the antiferromagnetic exchange interaction (J/k B ≃ - 74 K).

  7. Quantum fluctuations in the competition among spin glass, antiferromagnetism and local pairing superconductivity

    International Nuclear Information System (INIS)

    Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.

    2007-01-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines

  8. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  9. Evolution of topological features in finite antiferromagnetic Heisenberg chains

    International Nuclear Information System (INIS)

    Chen Changfeng

    2003-01-01

    We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed

  10. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  11. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

    Science.gov (United States)

    Farkašovský, Pavol

    2018-05-01

    The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

  12. Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain

    International Nuclear Information System (INIS)

    Richter, J; Haertel, M; Ihle, D; Drechsler, S-L

    2009-01-01

    We studied the thermodynamics of the one-dimensional J 1 -J 2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds J 1 2 > 0 using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on J 2 1 |/4 where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J 2 . The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from χ ∝ T -2 at J 2 1 |/4 to χ ∝ T -3/2 at the quantum-critical point J 2 = |J 1 |/4. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat C v (T) for J 2 and |J 1 |/8, indicating its strong influence on the low-energy spectrum.

  13. Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief

    2016-01-01

    Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al . [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al ., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase. (paper)

  14. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  15. Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder

    Science.gov (United States)

    Qi, Yan; Lv, Song-Wei; Du, An; Yu, Nai-sen

    2016-11-01

    We study a mixed spin-(3/2, 1) ladder system with antiferromagnetic rung coupling and next-nearest-neighbor interaction. The exactly solved Ising-chain model is employed to investigate the ground-state properties and thermodynamics of the low-dimensional ladder system. Our results show that the competition between different exchange couplings brings in a large variety of ground states characterized by various values of normalized magnetization equal to 0, 1/5, 2/5, 3/5, 1. Moreover, an interesting double-peak structure is also detected in the thermal dependence of magnetic susceptibility and specific heat when the frustration comes into play. It is shown that the double-peak phenomenon at zero-field for the case of AF2 ground-state arises from the very strong antiferromagnetic rung coupling, while other cases are attributed to the excitations induced by temperature and external field around the phase boundary. Project supported by the National Natural Science Foundation of China (Grant No. 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DC201501065 and DCPY2016014), and the Doctoral Starting-up Foundation of Dalian Nationalities University, China.

  16. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  17. Antiferromagnetic skyrmions

    Science.gov (United States)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  18. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  19. Localized-magnon states in strongly frustrated quantum spin lattices

    International Nuclear Information System (INIS)

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  20. Classical and quantum simulations of many-body systems

    International Nuclear Information System (INIS)

    Murg, Valentin

    2008-01-01

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  1. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  2. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  3. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  4. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  5. Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G

    2015-01-01

    Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)

  6. Quantum Triple Point and Quantum Critical End Points in Metallic Magnets.

    Science.gov (United States)

    Belitz, D; Kirkpatrick, T R

    2017-12-29

    In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink the region of concurrent FM and AFM order, change various transitions from second to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and paramagnetic phases all coexist or a quantum critical end point.

  7. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  8. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  9. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo_2V_2O_8

    International Nuclear Information System (INIS)

    Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.

    2016-01-01

    The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)

  10. Quantum critical dynamics for a prototype class of insulating antiferromagnets

    Science.gov (United States)

    Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao

    2018-06-01

    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.

  11. Frustrated magnetization in PrxLa1-xBaCuO5Fe

    International Nuclear Information System (INIS)

    Ortiz, W.A.; Araujo-Moreira, F.M.; Prassides, K.

    1999-01-01

    The crystal structure of the system Pr x La 1-x BaCuO 5 Fe has been recently reviewed. The magnetic structure of samples with x = 0 and x = 1 is mainly due to effective local moments of iron and copper. In Pr-rich samples, Fe ions occupy two non-equivalent positions, making it substantially plausible that two or more magnetic subsets might coexist in the system. This contribution presents magnetization studies on five samples of the Pr x La 1-x BaCuO 5 Fe system (x = 0.0, 0.2, 0.5, 0.7 and 1.0). All samples exhibit a strong irreversible behavior between zero-field-cooled and field-cooled procedures below a certain irreversibility temperature T i . Above T i , both branches are coincident and well described by a Curie-Weiss fitting. Decreasing the temperature below T i , the zero-field-cooled response increases less than the field-cooled curve, indicating some degree of frustrated antiferromagnetic couplings. (orig.)

  12. Classical and quantum simulations of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Murg, Valentin

    2008-04-07

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  13. Emptiness formation probability and quantum Knizhnik-Zamolodchikov equation

    International Nuclear Information System (INIS)

    Boos, H.E.; Korepin, V.E.; Smirnov, F.A.

    2003-01-01

    We consider the one-dimensional XXX spin-1/2 Heisenberg antiferromagnet at zero temperature and zero magnetic field. We are interested in a probability of formation of a ferromagnetic string P(n) in the antiferromagnetic ground-state. We call it emptiness formation probability (EFP). We suggest a new technique for computation of the EFP in the inhomogeneous case. It is based on the quantum Knizhnik-Zamolodchikov equation (qKZ). We calculate EFP for n≤6 for inhomogeneous case. The homogeneous limit confirms our hypothesis about the relation of quantum correlations and number theory. We also make a conjecture about a structure of EFP for arbitrary n

  14. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field.

    Science.gov (United States)

    Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R

    2017-08-04

    The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  15. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2 Ti2 O7 in a Magnetic Field

    Science.gov (United States)

    Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.

    2017-08-01

    The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  16. New Type of Quantum Criticality in the Pyrochlore Iridates

    Directory of Open Access Journals (Sweden)

    Lucile Savary

    2014-11-01

    Full Text Available Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  17. Mechanisms for spin supersolidity in S=(1/2) spin-dimer antiferromagnets

    International Nuclear Information System (INIS)

    Picon, J.-D.; Albuquerque, A. F.; Schmidt, K. P.; Laflorencie, N.; Troyer, M.; Mila, F.

    2008-01-01

    Using perturbative expansions and the contractor renormalization (CORE) algorithm, we obtain effective hard-core bosonic Hamiltonians describing the low-energy physics of S=1/2 spin-dimer antiferromagnets known to display supersolid phases under an applied magnetic field. The resulting effective models are investigated by means of mean-field analysis and quantum Monte Carlo simulations. A ''leapfrog mechanism,'' through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings, is unveiled that accounts for the supersolid behavior

  18. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    International Nuclear Information System (INIS)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-01-01

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb 2 Ti 2 O 7 . However, previous structural studies indicated that Tb 2 Ti 2 O 7 is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb 2 Ti 2 O 7 is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u 2 's) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L III and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb 2 Ti 2 O 7 has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures

  19. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  20. Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet

    Science.gov (United States)

    Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.

    Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.

  1. Teaching Students to Overcome Frustration.

    Science.gov (United States)

    Henley, Martin

    1997-01-01

    Offers concrete strategies for teaching students about frustration, reducing classroom stress, and integrating frustration-tolerance techniques into the regular curriculum. Discusses how to teach self-control within the curriculum with tips on relaxation, support, and acknowledging accomplishments. Claims that such steps will reduce related…

  2. Frustration: A common user experience

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    % of their time redoing lost work. Thus, the frustrating experiences accounted for a total of 27% of the time, This main finding is exacerbated by several supplementary findings. For example, the users were unable to fix 26% of the experienced problems, and they rated that the problems recurred with a median....... In the present study, 21 users self-reported their frustrating experiences during an average of 1.72 hours of computer use. As in the previous studies the amount of time lost due to frustrating experiences was disturbing. The users spent 16% of their time trying to fix encountered problems and another 11...

  3. Optical determination of the Neel vector in a CuMnAs thin-film antiferromagnet

    Czech Academy of Sciences Publication Activity Database

    Saidl, Vít; Němec, P.; Wadley, P.; Hills, V.; Campion, R. P.; Novák, Vít; Edmonds, K. W.; Maccherozzi, F.; Dhesi, S.S.; Gallagher, B. L.; Trojánek, F.; Kuneš, Jan; Železný, Jakub; Malý, P.; Jungwirth, Tomáš

    2017-01-01

    Roč. 11, č. 2 (2017), s. 91-96 ISSN 1749-4885 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : magneto-optics * spintronics * antiferromagnets Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 37.852, year: 2016

  4. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice

    Science.gov (United States)

    Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun

    2018-05-01

    We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.

  5. Measuring the excitations in a new S  =  1/2 quantum spin chain material with competing interactions

    Science.gov (United States)

    Rule, K. C.; Mole, R. A.; Zanardo, J.; Krause-Heuer, A.; Darwish, T.; Lerch, M.; Yu, D.

    2018-05-01

    Recently a new one-dimensional (1D) quantum spin chain system has been reported: catena-dichloro(2-Cl-3Mpy)copper(II), (where 2-Cl-3Mpy=2-chloro-3-methylpyridine). Preliminary calculations and bulk magnetic property measurements indicate that this system does not undergo magnetic ordering down to 1.8 K and is a prime candidate for investigating frustration in a J 1/J 2 system (where the nearest neighbour interactions, J 1, are ferromagnetic and the next nearest neighbour interactions, J 2, are antiferromagnetic). Calculations predicted three possible magnetic interaction strengths for J 1 below 6 meV depending on the orientation of the ligand. For one of the predicted J 1 values, the existence of a quantum critical point is implied. A deuterated sample of catena-dichloro(2-Cl-3Mpy)copper(II) was synthesised and the excitations measured using inelastic neutron scattering. Scattering indicated the most likely scenario involves spin-chains where each chain consists of only one of the three possible magnetic excitations in this material, rather than the completely random array of exchange interactions within each chain as predicted by Herringer et al (2014 Chem. Eur. J. 20 8355–62). This indicates the possibility of tuning the chemical structure to favour a system which may exhibit a quantum critical point.

  6. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  7. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  8. Order by Quenched Disorder in the Model Triangular Antiferromagnet RbFe (MoO4 )2

    Science.gov (United States)

    Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Shapiro, A. Ya.; Zhitomirsky, M. E.

    2017-07-01

    We observe a disappearance of the 1 /3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe (MoO4 )2 . The reason is an effective lifting of degeneracy of mean-field ground states by a random potential of impurities, which compensates, in the low-temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound, thus allowing for an investigation of the remarkable competition between thermal and structural disorder.

  9. Neutron scattering studies on frustrated magnets

    International Nuclear Information System (INIS)

    Arima, Taka-hisa

    2013-01-01

    A lot of frustrated magnetic systems exhibit a nontrivial magnetic order, such as long-wavelength modulation, noncollinear, or noncoplanar order. The nontrivial order may pave the way for the novel magnetic function of matter. Neutron studies are necessary to determine the magnetic structures in the frustrated magnetic systems. In particular, spin-polarized neutron scattering is a useful technique for the investigation of the novel physical properties relevant to the nontrivial spin arrangement. Here some neutron studies on a multiferroic perovskite manganese oxide system are demonstrated as a typical case. The frustrated magnetic systems may also a playground of novel types of local magnetic excitations, which behave like particles in contrast to the magnetic waves. It is becoming a good challenge to study such particle-type magnetic excitations relevant to the magnetic frustration. (author)

  10. Quantum spin liquid signatures in Kitaev-like frustrated magnets

    Science.gov (United States)

    Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek

    2018-02-01

    Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.

  11. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, M., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar [INIFTA-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cabrera, A. F., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Stewart, S. J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí No. 6200, Florencio Varela (Argentina)

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  12. Relieving geometrical frustration through doping in the Dy1−x Cax BaCo4O7 swedenborgites

    International Nuclear Information System (INIS)

    Nath Panja, Soumendra; Kumar, Jitender; Dengre, Shanu; Nair, Sunil

    2016-01-01

    The geometrically frustrated antiferromagnet DyBaCo 4 O 7 is investigated through a combination of x-ray diffraction, magnetization and dielectric measurements. Systematic doping in the series Dy 1−x Ca x BaCo 4 O 7 causes a lifting of the geometrical frustration resulting in a structural transition from a trigonal P31c to an orthorhombic Pbn2 1 symmetry at x   =  0.4. This structural transition can also be accessed as a function of temperature, and all our orthorhombic specimens exhibit this transition at elevated temperatures. The temperature at which this structural transition occurs is observed to scale linearly with the mean ionic radius of the R site ion. However, CaBaCo 4 O 7 which has an equal number of Co 2+  and Co 3+ ions clearly violates this quasilinear relationship, indicating that charge ordering could also play a critical role in stabilizing the orthorhombic distortion in this system. Using thermoremanent magnetization measurements to circumvent the problem of the large paramagnetic background arising from Dy 3+ ions, we chart out the phase diagram of the Dy 1−x Ca x BaCo 4 O 7 series. (paper)

  13. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-06-14

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb{sub 2}Ti{sub 2}O{sub 7}. However, previous structural studies indicated that Tb{sub 2}Ti{sub 2}O{sub 7} is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb{sub 2}Ti{sub 2}O{sub 7} is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u{sup 2}'s) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L{sub III} and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb{sub 2}Ti{sub 2}O{sub 7} has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures.

  14. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  15. Quantum computational capability of a 2D valence bond solid phase

    International Nuclear Information System (INIS)

    Miyake, Akimasa

    2011-01-01

    Highlights: → Our model is the 2D valence bond solid phase of a quantum antiferromagnet. → Universal quantum computation is processed by measurements of quantum correlations. → An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  16. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    Walther, P.

    2012-01-01

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  17. Hole spectral functions in lightly doped quantum antiferromagnets

    Science.gov (United States)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  18. Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2010-01-11

    Low-temperature specific-heat measurements on YbRh{sub 2}Si{sub 2} at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at T{sub N}=72 mK. The corresponding critical exponent alpha turns out to be alpha=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where alphaapprox =0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives alphaapprox =1/2. We demonstrate that this value of alpha is in good agreement with the specific-heat measurements.

  19. Vector boson excitations near deconfined quantum critical points.

    Science.gov (United States)

    Huh, Yejin; Strack, Philipp; Sachdev, Subir

    2013-10-18

    We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.

  20. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  1. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  2. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  3. No-go theorem for one-way quantum computing on naturally occurring two-level systems

    International Nuclear Information System (INIS)

    Chen Jianxin; Chen Xie; Duan Runyao; Ji Zhengfeng; Zeng Bei

    2011-01-01

    The ground states of some many-body quantum systems can serve as resource states for the one-way quantum computing model, achieving the full power of quantum computation. Such resource states are found, for example, in spin-(5/2) and spin-(3/2) systems. It is, of course, desirable to have a natural resource state in a spin-(1/2), that is, qubit system. Here, we give a negative answer to this question for frustration-free systems with two-body interactions. In fact, it is shown to be impossible for any genuinely entangled qubit state to be a nondegenerate ground state of any two-body frustration-free Hamiltonian. What is more, we also prove that every spin-(1/2) frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states. In other words, there cannot be any interesting entanglement features in the ground state of such a qubit Hamiltonian.

  4. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO 4

    Science.gov (United States)

    Smith, R.; Reyes, A. P.; Ashey, R.; Caldwell, T.; Prokofiev, A.; Assmus, W.; Teitel'baum, G.

    2006-05-01

    Our 51V NMR measurements in the LiCuVO 4 single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the 51V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  5. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  6. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    International Nuclear Information System (INIS)

    Yang Song; Bayat, Abolfazl; Bose, Sougato

    2010-01-01

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.

  7. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  8. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  9. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  10. Phase transition and frustration in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Hasnaoui, K.

    2008-10-01

    The thermodynamics of nuclear matter which constitutes the crust of proto-neutron stars and neutron stars is studied in this thesis. Obtaining information on the star matter thermodynamics will enhance the understanding of physical phenomena involved in the cooling of proto-neutron stars, and in the formation of type II supernovae. One of the main goals is to extract the star-matter phase diagram in order to determine if instabilities and/or critical points are present. The work is divided into two parts: in the first one classical approaches are developed, while the second one presents a quantum approach. The classical approaches are based on the Ising model and on the renormalisation group. They give us qualitative information on the phenomenology of phase transitions for star matter, and allow a discussion on the properties of the phase diagram under the generic phenomenon of Coulomb frustration. The quantum approach is based on a fermionic molecular dynamics model that we have developed from the density functional formalism, and numerically implemented using Skyrme forces optimized on neutron rich nuclei and neutron matter. This thesis work shows some first applications to the study the thermodynamics of finite nuclear systems, as well as nuclear structure calculations for light nuclei. A new formalism based on the molecular dynamics model is sketched which will ultimately allow treating the numerical quantum problem for the infinite star matter. (author)

  11. Magnetic phase diagram of a frustrated spin ladder

    Science.gov (United States)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  12. Padé approximations for the magnetic susceptibilities of Heisenberg antiferromagnetic spin chains for various spin values

    International Nuclear Information System (INIS)

    Law, J M; Benner, H; Kremer, R K

    2013-01-01

    The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3

  13. Deliberate exotic magnetism via frustration and topology

    Science.gov (United States)

    Nisoli, Cristiano; Kapaklis, Vassilios; Schiffer, Peter

    2017-03-01

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

  14. Magnetic-field-induced Quantum Phase in S = 1/2 Frustrated Trellis Lattice

    Science.gov (United States)

    Yamaguchi, Hironori; Yoshizawa, Daichi; Kida, Takanori; Hagiwara, Masayuki; Matsuo, Akira; Kono, Yohei; Sakakibara, Toshiro; Tamekuni, Yusuke; Miyagai, Hirotsugu; Hosokoshi, Yuko

    2018-04-01

    We present a new model compound of an S = 1/2 frustrated system with ferromagnetic interaction composed of verdazyl radical β-2,3,5-Cl3-V. The ab initio molecular orbital calculation indicates the formation of an S = 1/2 trellis lattice in which zigzag chains and ladders with ferromagnetic rung interaction are two-dimensionally coupled. We observe a field-induced successive phase transition and an unconventional change in the magnetization curve near the saturation field, accompanied by T2 dependence on the magnetic specific heat. A two-dimensional spin-nematic state attributed to the ferromagnetic rung interactions is a possible candidate for the ground state in high-field regions.

  15. [French validation of the Frustration Discomfort Scale].

    Science.gov (United States)

    Chamayou, J-L; Tsenova, V; Gonthier, C; Blatier, C; Yahyaoui, A

    2016-08-01

    Rational emotive behavior therapy originally considered the concept of frustration intolerance in relation to different beliefs or cognitive patterns. Psychological disorders or, to some extent, certain affects such as frustration could result from irrational beliefs. Initially regarded as a unidimensional construct, recent literature considers those irrational beliefs as a multidimensional construct; such is the case for the phenomenon of frustration. In order to measure frustration intolerance, Harrington (2005) developed and validated the Frustration Discomfort Scale. The scale includes four dimensions of beliefs: emotional intolerance includes beliefs according to which emotional distress is intolerable and must be controlled or avoided as soon as possible. The intolerance of discomfort or demand for comfort is the second dimension based on beliefs that life should be peaceful and comfortable and that any inconvenience, effort or hassle should be avoided. The third dimension is entitlement, which includes beliefs about personal goals, such as merit, fairness, respect and gratification, and that others must not frustrate those non-negotiable desires. The fourth dimension is achievement, which reflects demands for high expectations or standards. The aim of this study was to translate and validate in a French population the Frustration and Discomfort Scale developed by Harrington (2005), assess its psychometric properties, highlight the four factors structure of the scale, and examine the relationships between this concept and both emotion regulation and perceived stress. We translated the Frustration Discomfort Scale from English to French and back from French to English in order to ensure good quality of translation. We then submitted the scale to 289 students (239 females and 50 males) from the University of Savoy in addition to the Cognitive Emotional Regulation Questionnaire and the Perceived Stress Scale. The results showed satisfactory psychometric

  16. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  17. Quantum Bertrand duopoly with differentiated products

    International Nuclear Information System (INIS)

    Lo, C.F.; Kiang, D.

    2004-01-01

    We apply Li et al.'s 'minimal' quantization rules [Phys. Lett. A 306 (2002) 73] to investigate the quantum version of the Bertrand duopoly with differentiated products. In particular, we have examined how the quantum entanglement affects the outcome of the classical game. It is found that while negative entanglement diminishes the profit of each firm below the classical limit, positive entanglement enhances the profit monotonically, reaching a maximum in the limit of maximal entanglement. As a consequence, the frustrating dilemma-like situation is completely resolved in the quantum version of the game

  18. Small clusters with anisotropic antiferromagnetic exchange in a magnetic field

    International Nuclear Information System (INIS)

    Parkinson, J B; Elliott, R J; Timonen, J

    2004-01-01

    We consider small symmetric clusters of magnetic atoms (spins) with anisotropic exchange interaction between the atoms in a magnetic field at zero temperature. The inclusion of the anisotropy leads to a wealth of different phases as a function of the applied magnetic field. These are not phases in the thermodynamic sense with critical properties but rather physical structures with different arrangements of the spins and hence different symmetries. We study the spatial symmetry of these phases, for the classical and quantum cases. Results are presented mainly for three frustrated systems, the triangle, the tetrahedron and the five-atom ring, which have many interesting features. In the classical limit we obtain phase diagrams in which some of the phase changes occur because of energy crossings and others due to energy bifurcations, corresponding to 'first-' and 'second-order' changes. In the quantum case we show how the symmetries of the states are related to the corresponding classical symmetries

  19. Quantum crystal growing: adiabatic preparation of a bosonic antiferromagnet in the presence of a parabolic inhomogeneity

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Eckardt, André

    2013-01-01

    felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...

  20. Organizational Frustration: A Model and Review of the Literature.

    Science.gov (United States)

    Spector, Paul E.

    1978-01-01

    This discussion is divided into four parts: (1) the definition of frustration; (2) general behavioral reactions to frustration which have implications for organizations; (3) integration of the individual behavioral reactions into a model of organizational frustration; and (4) a review of the supporting evidence for the model. (Author)

  1. Detecting quantum critical points using bipartite fluctuations.

    Science.gov (United States)

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.

  2. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  3. Field-dependent antiferromagnetism and ferromagnetism of the two copper sublattices in Sr2Cu3O4Cl2

    International Nuclear Information System (INIS)

    Kastner, M.A.; Aharony, A.; Birgeneau, R.J.; Chou, F.C.; Entin-Wohlman, O.; Greven, M.; Harris, A.B.; Kim, Y.J.; Lee, Y.S.; Parks, M.E.; Zhu, Q.

    1999-01-01

    The Cu 3 O 4 layer in Sr 2 Cu 3 O 4 Cl 2 is a variant of the square CuO 2 lattice of the high-temperature superconductors, in which the center of every second plaquette contains an extra Cu 2+ ion. The ions that make up the conventional CuO 2 network, called CuI, have CuI-CuI exchange energy ∼130meV, and order antiferromagnetically at about 380 K; the CuII-CuII exchange is only ∼10meV, and the CuII close-quote s order at ∼40K. A study is reported here of the dependence of the magnetization on field, temperature, and crystallographic orientation for this interesting system. We show that the small permanent ferromagnetic moment, that appears when the CuI spins order, and the unusual spin rotation transitions seen most clearly for one particular direction of the magnetic field, are the result of several small bond-dependent anisotropic terms in the spin Hamiltonian that are revealed because of the frustration of the isotropic Heisenberg interaction between CuI and CuII spins. These include a term which favors collinearity of the CuI and CuII spins, which originates from quantum fluctuations, and also the pseudodipolar interaction. Some of these small interactions also come into play in other lamellar cuprates, connected with the high-T c superconductivity materials, and in many spin-chain and spin-ladder compounds. copyright 1999 The American Physical Society

  4. The 8th International Conference on Highly Frustrated Magnetism (HFM 2016)

    Science.gov (United States)

    Gardner, J. S.; Kao, Y. J.

    2017-04-01

    The 8th International Conference on Highly Frustrated Magnetism 2016 (HFM 2016) took place between the 7th and 11th of September 2016 at the GIS Convention Center at National Taiwan University, Taipei, Taiwan. Over 260 participants from all over the world, attended the meeting making it the largest HFM to-date and revealing the impressive growth in the community since the original meeting in Waterloo, Canada where 80 participants attended. Preceding the meeting a school was held at the National Synchrotron Radiation Research Center to help those new to the field understand the material they were likely to see at HFM2016. Our thanks to the international speakers who attended this school John Chalker, Michel Kenzelmann, Philippe Mendels, Luigi Paolasini, Kirrily Rule, Yixi Su, Isao Watanabe and those from Taiwan W. T. Chen, Y-J, Kao, L. J. Chang and C. S. Ku, for their enlightening presentations. The HFM 2016 conference consisted of five plenary talks by H Takagi, B D Gaulin, L Balents, Y Tokura and S T Bramwell, 20 invited and 40 contributed presentations, and about 160 poster presentations from all aspects of theoretical and experimental frustrated magnetism. During the conference period, many stimulating discussions were held both inside and outside the conference room. Excursions to Taipei 101 and the National Palace Museum, as well as several organized dinners and receptions allowed the participants to initiate collaborations and discuss the hottest issues. The subjects covered in the conference included: · Quantum frustrated magnetism and spin liquids · Novel ordering of geometrically frustrated magnets · Frustration effect on the coupling to lattice, orbital and charge degrees of freedom · Exotic phenomena induced by macroscopic degeneracy · Field effect on frustrated magnetism etc. These proceeding represent a very small, but valuable contribution to the community. I hope you enjoy reading them. In view of the rapid growth of the field, it has been

  5. Haldane-gap excitations in the low-Hc one-dimensional quantum antiferromagnet Ni(C5D14N2)2N3(PF6)

    International Nuclear Information System (INIS)

    Zheludev, A.; Chen, Y.; Broholm, C. L.; Honda, Z.; Katsumata, K.

    2001-01-01

    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet Ni(C 5 D 14 N 2 ) 2 N 3 (PF 6 ), that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δ x =0.42(3) meV, Δ y =0.52(6) meV, and Δ z =1.9(1) meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are measured. The dispersion relation is studied for momentum transfers both along and perpendicular to the chains' direction. The in-chain exchange constant J=2.8 meV is found to be much larger than interchain coupling, J y =1.8(4)x10 -3 meV and J x =4(3)x10 -4 meV, along the b and a axes, respectively. The results are discussed in the context of future experiments in high magnetic fields

  6. On the geometry of fracture and frustration

    NARCIS (Netherlands)

    Koning, Vinzenz

    2014-01-01

    Geometric frustration occurs when local order cannot propagate through space. A common example is the surface of a soccer ball, which cannot be tiled with hexaganons only. Geometric frustration can also be present in materials. In fact, geometry can act as an instrument to design the mechanical,

  7. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  8. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Reyes, A.P. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Ashey, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Caldwell, T. [NHMFL, Los Alamos, NM 87545 (United States); Prokofiev, A. [Goethe University, 60054 Frankfurt (Germany); Assmus, W. [Goethe University, 60054 Frankfurt (Germany); Teitel' baum, G. [E.K.Zavoiskii Institute for Technical Physics of the RAS, Sibirskii Trakt 10/7, Kazan 420029 (Russian Federation)]. E-mail: grteit@kfti.knc.ru

    2006-05-01

    Our {sup 51}V NMR measurements in the LiCuVO{sub 4} single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the {sup 51}V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  9. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  10. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  11. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Magnetically frustrated double perovskites: synthesis, structural properties, and magnetic order of Sr{sub 2}BOsO{sub 6} (B = Y, In, Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Avijit Kumar; Sarapulova, Angelina; Adler, Peter; Kanungo, Sudipta; Mikhailova, Daria; Schnelle, Walter; Hu, Zhiwei; Kuo, Changyang; Yan, Binghai; Felser, Claudia; Tjeng, Liu Hao [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Reehuis, Manfred [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Siruguri, Vasudeva; Rayaprol, Sudhindra [UGC-DAE Consortium for Scientific Research (CSR), Mumbai Centre, Mumbai (India); Soo, Yunlian [Department of Physics, National Tsing Hua University, Hsinchu (China); Jansen, Martin [Max-Planck-Institut fuer Chemische Physik fester Stoffe,Dresden (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2015-02-15

    Double perovskites Sr{sub 2}BOsO{sub 6} (B = Y, In, and Sc) were prepared from the respective binary metal oxides, and their structural, magnetic, and electronic properties were investigated. At room temperature all these compounds crystallize in the monoclinic space group P2{sub 1}/n. They contain magnetic osmium (Os{sup 5+}, t{sub 2g}{sup 3}) ions and are antiferromagnetic insulators with Neel temperatures T{sub N} = 53 K, 26 K, and 92 K for B = Y, In, and Sc, respectively. Powder neutron diffraction studies on Sr{sub 2}YOsO{sub 6} and Sr{sub 2}InOsO{sub 6} showed that the crystal structures remain unchanged down to 3 K. The Y and In compounds feature a type I antiferromagnetic spin structure with ordered Os moments of 1.91 μ{sub B} and 1.77 μ{sub B}, respectively. The trend in T{sub N} does not simply follow the development of the lattice parameters, which suggests that d{sup 0} compared to d{sup 10} ions on the B site favor a somewhat different balance of exchange interactions in the frustrated Os{sup 5+} fcc-like lattice. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Geometric spin frustration for isolated plaquettes of the lattices: An extended irreducible tensor operator method

    International Nuclear Information System (INIS)

    Wang Fan; Chen Zhida

    2006-01-01

    A new strategy to search for the good quantum numbers for the corner-sharing spin systems, as archetypal plaquettes of the lattices, was suggested for the first time in order to study on geometric spin frustration. The calculations on energy spectra by using the irreducible tensor operator method with the new strategy can be much reduced. As representative examples the energy spectra for the spin pentamer of the tetrahedron with a centered spin site and the spin heptamer of three corner-sharing equilateral-triangle were examined in order to confirm efficiency of the new strategy. Through our code, with automatically searching for the good quantum numbers, the projection operators S iz , S ix and S iy matrices in the ground state space for the spin heptamer were reliably constructed

  14. Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    Fariba Masoudi

    2017-11-01

    Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of  Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for  cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid

  15. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  16. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe4O7.0: Magnetism and transport

    International Nuclear Information System (INIS)

    Duffort, V.; Sarkar, T.; Caignaert, V.; Pralong, V.; Raveau, B.; Avdeev, M.; Cervellino, A.; Waerenborgh, J.C.; Tsipis, E.V.

    2013-01-01

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe 4 O 7.0 by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T S =180 K, a magnetic transition is observed below T N =95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k 1 =(0,0,½), shows that one iron Fe2 exhibits a larger magnetic moment than the three others, suggesting a possible charge ordering according to the formula YBaFe 3+ Fe 3 2+ O 7.0 . The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T S =180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe 4 O 7 . Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe 4 O 7 were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K

  17. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg

    2016-01-01

    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  18. Equivalence of the O( n) vector ferromagnetic and antiferromagnetic models

    Science.gov (United States)

    Sousa, J. Ricardo de

    The effective-field renormalization group (EFRG) approach is used to find the Néel temperature ( TN) of the O( n) vector model with antiferromagnetic (AF) interaction. The EFRG method is illustrated by employing approximations in which clusters with one ( N‧=1) and two ( N=2) spins are used. The critical temperature TN is obtained as a function of component ( n) and coordination ( z) numbers. For all values of n and z we show that TN= Tc, where Tc is the Curie temperature for the ferromagnetic (F) case. As a comparison, the results of the quantum Heisenberg model ( n=3) with F and AF interactions are also presented, and we find that TN> Tc, which is different from the classical result Tc= TN.

  19. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  20. Fermi Surfaces in the Antiferromagnetic, Paramagnetic and Polarized Paramagnetic States of CeRh2Si2 Compared with Quantum Oscillation Experiments

    Science.gov (United States)

    Pourret, Alexandre; Suzuki, Michi-To; Palaccio Morales, Alexandra; Seyfarth, Gabriel; Knebel, Georg; Aoki, Dai; Flouquet, Jacques

    2017-08-01

    The large quantum oscillations observed in the thermoelectric power in the antiferromagnetic (AF) state of the heavy-fermion compound CeRh2Si2 disappear suddenly when entering in the polarized paramagnetic (PPM) state at Hc ˜ 26.5 T, indicating an abrupt reconstruction of the Fermi surface. The electronic band structure was calculated using [LDA+U] for the AF state taking the correct magnetic structure into account, for the PPM state, and for the paramagnetic state (PM). Different Fermi surfaces were obtained for the AF, PM, and PPM states. Due to band folding, a large number of branches was expected and observed in the AF state. The LDA+U calculation was compared with the previous LDA calculations. Furthermore, we compared both calculations with previously published de Haas-van Alphen experiments. The better agreement with the LDA approach suggests that above the critical pressure pc CeRh2Si2 enters in a mixed-valence state. In the PPM state under a high magnetic field, the 4f contribution at the Fermi level EF drops significantly compared with that in the PM state, and the 4f electrons contribute only weakly to the Fermi surface in our approach.

  1. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  2. Maximal frustration as an immunological principle.

    Science.gov (United States)

    de Abreu, F Vistulo; Mostardinha, P

    2009-03-06

    A fundamental problem in immunology is that of understanding how the immune system selects promptly which cells to kill without harming the body. This problem poses an apparent paradox. Strong reactivity against pathogens seems incompatible with perfect tolerance towards self. We propose a different view on cellular reactivity to overcome this paradox: effector functions should be seen as the outcome of cellular decisions which can be in conflict with other cells' decisions. We argue that if cellular systems are frustrated, then extensive cross-reactivity among the elements in the system can decrease the reactivity of the system as a whole and induce perfect tolerance. Using numerical and mathematical analyses, we discuss two simple models that perform optimal pathogenic detection with no autoimmunity if cells are maximally frustrated. This study strongly suggests that a principle of maximal frustration could be used to build artificial immune systems. It would be interesting to test this principle in the real adaptive immune system.

  3. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    Science.gov (United States)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  4. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  5. Properties of spin-1/2 triangular-lattice antiferromagnets CuY2Ge2O8 and CuLa2Ge2O8

    Science.gov (United States)

    Cho, Hwanbeom; Kratochvílová, Marie; Sim, Hasung; Choi, Ki-Young; Kim, Choong Hyun; Paulsen, Carley; Avdeev, Maxim; Peets, Darren C.; Jo, Younghun; Lee, Sanghyun; Noda, Yukio; Lawler, Michael J.; Park, Je-Geun

    2017-04-01

    We found new two-dimensional (2D) quantum (S =1 /2 ) antiferromagnetic systems: Cu R E2G e2O8 (R E =Y and La). According to our analysis of high-resolution x-ray and neutron diffraction experiments, the Cu network of Cu R E2G e2O8 (R E =Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg≅2 eV . Taken together, our observations make Cu R E2G e2O8 (R E =Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.

  6. Spin waves in quantum crystals

    International Nuclear Information System (INIS)

    Kondratenko, P.S.

    1975-01-01

    The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature

  7. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  8. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  9. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  10. Magnon Spin Nernst Effect in Antiferromagnets

    Science.gov (United States)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  11. Magnon Spin Nernst Effect in Antiferromagnets.

    Science.gov (United States)

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  12. Spin dynamics in the strongly magnetically frustrated compounds YBaCo{sub 3}AlO{sub 7} and YBaCo{sub 3}FeO{sub 7} probed by NMR and ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iakovleva, Margarita [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); E. K. Zavoisky Physical-Technical Institute, Kazan (Russian Federation); Zeisner, Julian; Zimmermann, Stephan; Buechner, Bernd [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Valldor, Martin [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Vavilova, Evgeniia [E. K. Zavoisky Physical-Technical Institute, Kazan (Russian Federation); Grafe, Hans-Joachim; Alfonsov, Alexey; Kataev, Vladislav [IFW Dresden, Dresden (Germany)

    2016-07-01

    In the Swedenborgite type compounds YBaCo{sub 3}AlO{sub 7} and YBaCo{sub 3}FeO{sub 7} the magnetic lattice can be described as a stacking of kagome layers, where unconventional ground states such as a spin liquid state can be expected due to the strong geometrical frustration. We performed a combined experimental study of magnetic properties of single crystals of YBaCo{sub 3}AlO{sub 7} and YBaCo{sub 3}FeO{sub 7} with high field ESR and high field NMR spectroscopy. The experimental results show the occurrence of short-range quasi static electron spin correlations at T{sup *} ∼ 22 K for YBaCo{sub 3}AlO{sub 7} and T{sup *} ∼ 60K for YBaCo{sub 3}FeO{sub 7} but not a long-range antiferromagnetic order. We compare our results with AC and DC susceptibility measurements and discuss a possible competition between a spin glass-like state due to intrinsic structural disorder and a spin liquid state arising from strong magnetic frustration in this materials.

  13. Role-separating ordering in social dilemmas controlled by topological frustration

    Science.gov (United States)

    Amaral, Marco A.; Perc, Matjaž; Wardil, Lucas; Szolnoki, Attila; da Silva Júnior, Elton J.; da Silva, Jafferson K. L.

    2017-03-01

    ``Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.

  14. Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model

    Science.gov (United States)

    Orth, Peter P.

    2014-03-01

    In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.

  15. Critical Kondo destruction and the violation of the quantum-to-classical mapping of quantum criticality

    International Nuclear Information System (INIS)

    Kirchner, Stefan; Si Qimiao

    2009-01-01

    Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.

  16. Frustrations among graduates of athletic training education programs.

    Science.gov (United States)

    Bowman, Thomas G; Dodge, Thomas M

    2013-01-01

    Although previous researchers have begun to identify sources of athletic training student stress, the specific reasons for student frustrations are not yet fully understood. It is important for athletic training administrators to understand sources of student frustration to provide a supportive learning environment. To determine the factors that lead to feelings of frustration while completing a professional athletic training education program (ATEP). Qualitative study. National Athletic Trainers' Association (NATA) accredited postprofessional education program. Fourteen successful graduates (12 women, 2 men) of accredited professional undergraduate ATEPs enrolled in an NATA-accredited postprofessional education program. We conducted semistructured interviews and analyzed data with a grounded theory approach using open, axial, and selective coding procedures. We negotiated over the coding scheme and performed peer debriefings and member checks to ensure trustworthiness of the results. Four themes emerged from the data: (1) Athletic training student frustrations appear to stem from the amount of stress involved in completing an ATEP, leading to anxiety and feelings of being overwhelmed. (2) The interactions students have with classmates, faculty, and preceptors can also be a source of frustration for athletic training students. (3) Monotonous clinical experiences often left students feeling disengaged. (4) Students questioned entering the athletic training profession because of the fear of work-life balance problems and low compensation. In order to reduce frustration, athletic training education programs should validate students' decisions to pursue athletic training and validate their contributions to the ATEP; provide clinical education experiences with graded autonomy; encourage positive personal interactions between students, faculty, and preceptors; and successfully model the benefits of a career in athletic training.

  17. The association between Internet addiction and belief of frustration intolerance: the gender difference.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Chung-Sheng; Wang, Shing-Yaw

    2008-06-01

    This study evaluated the association between Internet addiction and frustration intolerance, the gender difference of frustration intolerance, and the gender differences of the association between Internet addiction and frustration intolerance. Participants were 2,114 students (1,204 male and 910 female) who were recruited to complete the Chen Internet Addiction Scale and Frustration Discomfort scale. Females had higher scores on the subscale of entitlement and emotional intolerance and the total scale of the frustration intolerance. There was a significant gender difference on the association between Internet addiction and frustration intolerance. The association was higher in male adolescents. Regression analysis revealed male adolescents with Internet addiction had higher intolerance to frustration of entitlement and emotional discomfort, and female adolescents with it had higher intolerance to emotional discomfort and lower tolerance to frustration of achievement. Frustration intolerance should be evaluated for adolescents with Internet addiction, especially for males. Rational emotive behavior therapy focusing on different irrational beliefs should be provided to male and female adolescents with Internet addiction.

  18. fNIRS Evidence of Prefrontal Regulation of Frustration in Early Childhood

    OpenAIRE

    Perlman, Susan B.; Luna, Beatriz; Hein, Tyler C.; Huppert, Theodore J.

    2013-01-01

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3–5 year-old children, who are not readily adaptable for typical neu...

  19. {mu}SR study of organic systems: ferromagnetism, antiferromagnetism, the spin-crossover effect, and fluctuations in magnetic nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Blundell, S.J.; Pratt, F.L.; Lancaster, T.; Marshall, I.M.; Steer, C.A.; Hayes, W.; Sugano, T.; Letard, J.-F.; Caneschi, A.; Gatteschi, D.; Heath, S.L

    2003-02-01

    We present the results of recent {mu}SR experiments on a variety of novel organic and molecular magnetic systems. Muons are sensitive to local static fields and magnetic fluctuations, but can probe much more than just the onset of long-range magnetic order. We review our work on nitronyl nitroxide organic ferromagnets and antiferromagnets. We describe a muon study of the spin-crossover phenomenon which has been studied in Fe(PM-PEA){sub 2}(NCS){sub 2}, and which shows Gaussian and root-exponential muon relaxation in the high-spin and low-spin phases, respectively. Experiments on a disc-shaped molecular complex containing Fe{sub 19} (with spin ((31)/(2))) reveal the effects of quantum tunneling of magnetization and allow an estimate of the quantum tunneling rate.

  20. μSR study of organic systems: ferromagnetism, antiferromagnetism, the spin-crossover effect, and fluctuations in magnetic nanodiscs

    International Nuclear Information System (INIS)

    Blundell, S.J.; Pratt, F.L.; Lancaster, T.; Marshall, I.M.; Steer, C.A.; Hayes, W.; Sugano, T.; Letard, J.-F.; Caneschi, A.; Gatteschi, D.; Heath, S.L.

    2003-01-01

    We present the results of recent μSR experiments on a variety of novel organic and molecular magnetic systems. Muons are sensitive to local static fields and magnetic fluctuations, but can probe much more than just the onset of long-range magnetic order. We review our work on nitronyl nitroxide organic ferromagnets and antiferromagnets. We describe a muon study of the spin-crossover phenomenon which has been studied in Fe(PM-PEA) 2 (NCS) 2 , and which shows Gaussian and root-exponential muon relaxation in the high-spin and low-spin phases, respectively. Experiments on a disc-shaped molecular complex containing Fe 19 (with spin ((31)/(2))) reveal the effects of quantum tunneling of magnetization and allow an estimate of the quantum tunneling rate

  1. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States

    Science.gov (United States)

    Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi

    2009-08-01

    We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.

  2. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  3. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    Science.gov (United States)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0    U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  4. Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model

    International Nuclear Information System (INIS)

    Si-Lakhal, B.; Abada, A.

    2003-11-01

    Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)

  5. Antiferromagnetic domains in rare earth metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S B [Hull Univ. (UK). Dept. of Applied Physics

    1975-12-01

    Anomalies in the c-axis elastic properties of antiferromagnetic Dy, 50% Tb-Ho and 60% Gd-Y are reported. The anomalies are only present when the sample is cycled from the ferromagnetic to the antiferromagnetic state and are attributed to domains in the helical regime.

  6. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  7. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    Science.gov (United States)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  8. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  9. Superconductivity in doped antiferromagnets

    International Nuclear Information System (INIS)

    Lagos, M.

    1990-09-01

    The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs

  10. Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations in insulating and superconducting S = ½ systems

    DEFF Research Database (Denmark)

    Christensen, Niels Bech

    . Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Usingpolarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally...... polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described bylinear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo...

  11. Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators

    Directory of Open Access Journals (Sweden)

    Nora Hassan

    2018-05-01

    Full Text Available Quasi-two-dimensional Mott insulators based on BEDT-TTF molecules have recently demonstrated a variety of exotic states, which originate from electron–electron correlations and geometrical frustration of the lattice. Among those states are a triangular S = 1/2 spin liquid and quantum dipole liquid. In this article, we show the power of Raman scattering technique to characterize magnetic and electronic excitations of these states. Our results demonstrate a distinction between a spectrum of magnetic excitations in a simple Mott insulator with antiferromagnetic interactions, and a spectrum of an insulator with an additional on-site charge degree of freedom.

  12. How Is Frustration Related to Online Gamer Loyalty? A Synthesis of Multiple Theories.

    Science.gov (United States)

    Huang, Han-Chung; Liao, Gen-Yih; Chiu, Kay-Ling; Teng, Ching-I

    2017-11-01

    Online games can frustrate their gamers, but little was known about how such frustration impacts gamer loyalty. Because novice and experienced gamers may respond differently to frustration, this study investigates how gamers' frustration influences their loyalty and how this influence may differ between novice and experienced gamers. Because of the complexity of this issue, multiple theories were synthesized to develop the theoretical model. This study collected responses from 558 online gamers. Findings indicate that frustration is positively related to novice gamers' participation in task teams, and subsequently their loyalty. However, frustration is negatively related to the self-efficacy of experienced gamers and to their loyalty.

  13. Perceived levels of frustration during clinical situations in athletic training students.

    Science.gov (United States)

    Heinerichs, Scott; Curtis, Neil; Gardiner-Shires, Alison

    2014-01-01

    Athletic training students (ATSs) are involved in various situations during the clinical experience that may cause them to express levels of frustration. Understanding levels of frustration in ATSs is important because frustration can affect student learning, and the clinical experience is critical to their development as professionals. To explore perceived levels of frustration in ATSs during clinical situations and to determine if those perceptions differ based on sex. Cross-sectional study with a survey instrument. A total of 14 of 19 professional, undergraduate athletic training programs accredited by the Commission on Accreditation of Athletic Training Education in Pennsylvania. Of a possible 438 athletic training students, 318 (72.6%) completed the survey. The Athletic Training Student Frustration Inventory was developed and administered. The survey gathered demographic information and included 24 Likert-scale items centering on situations associated with the clinical experience. Descriptive statistics were computed on all items. The Mann-Whitney U was used to evaluate differences between male and female students. A higher level of frustration was perceived during the following clinical situations: lack of respect by student-athletes and coaching staffs, the demands of the clinical experience, inability of ATSs to perform or remember skills, and ATSs not having the opportunity to apply their skills daily. Higher levels of frustration were perceived in female than male ATSs in several areas. Understanding student frustration during clinical situations is important to better appreciate the clinical education experience. Low levels of this emotion are expected; however, when higher levels exist, learning can be affected. Whereas we cannot eliminate student frustrations, athletic training programs and preceptors need to be aware of this emotion in order to create an environment that is more conducive to learning.

  14. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  15. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  16. Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order

    Science.gov (United States)

    Jian, Shao-Kai; Nie, Wenxing

    2018-03-01

    We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.

  17. Phase transitions and reflection positivity for a class of quantum lattice systems

    International Nuclear Information System (INIS)

    Perez, J.F.; Wreszinski, W.F.

    1980-08-01

    A form reflection positivity in planes containing sites is proved for a class of quantum lattice systems. Two apllications to typical models are given: a proof of phase transition of ferromagnetic type by the method of infrared bounds for hhe Fisher-stabilized Ising antiferromagnet in an external magnetic field with parallel and tranverse components, and a proof of a phase transition of antiferromagnetic type for the same model with no stabilization by a suitable version of the Peierls argument. The spherical model is also discussed in an appendix. (Author) [pt

  18. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  19. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    Science.gov (United States)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  20. Theoretical modeling of diluted antiferromagnetic systems

    International Nuclear Information System (INIS)

    Pozo, J; Elgueta, R; Acevedo, R

    2000-01-01

    Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak

  1. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    Science.gov (United States)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  2. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  3. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...

  4. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.

  5. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  6. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  7. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates

    International Nuclear Information System (INIS)

    Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.

    2007-01-01

    The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed

  8. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  9. Investigation of the antiferromagnetic - ferromagnetic dimer chain compound BaCu{sub 2}V{sub 2}O{sub 8} at zero and finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Klyushina, Ekaterina; Lake, Bella [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Tiegel, Alexander; Manmana, Salvatore [Georg-August-Universitaet Goettingen (Germany); Islam, Nazmul; Klemke, Bastian [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Park, Jitae [Heinz Maier-Leibnitz Zentrum, TU Muenchen, Garching (Germany); Honecker, Andreas [Universite de Cergy-Pontoise (France)

    2016-07-01

    Highly dimerized quantum magnets have attracted a great deal of attention in the recently due to the unconventional temperature behavior of their magnetic excitations. Here we present our investigations of the highly dimerized antiferromagnet-ferromagnetic 1D chain BaCu{sub 2}V{sub 2}O{sub 8} both at base and at finite temperatures. The single crystal inelastic neutron scattering measurements at base temperature reveal that there are two excitation branches which disperse along the L direction over the energy range of 36-46 meV. The comparison with DMRG simulations indicates that the antiferromagnetic dimers are coupled ferromagnetically along the c axis. The line shape of the excitations at the dispersion minima was found to become asymmetry with increasing temperature. Thus unconventional thermal behavior also exists in dimer compounds with ferromagnetic interdimer coupling.

  10. Nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch

    2008-01-01

    I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...

  11. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells

    Science.gov (United States)

    Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.

    2018-01-01

    Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.

  12. Large magnetization and frustration switching of magnetoresistance in the double-perovskite ferrimagnet Mn2FeReO6.

    Science.gov (United States)

    Arévalo-López, Angel M; McNally, Graham M; Attfield, J Paul

    2015-10-05

    Ferrimagnetic A2 BB'O6 double perovskites, such as Sr2 FeMoO6 , are important spin-polarized conductors. Introducing transition metals at the A-sites offers new possibilities to increase magnetization and tune magnetoresistance. Herein we report a ferrimagnetic double perovskite, Mn2 FeReO6 , synthesized at high pressure which has a high Curie temperature of 520 K and magnetizations of up to 5.0 μB which greatly exceed those for other double perovskite ferrimagnets. A novel switching transition is discovered at 75 K where magnetoresistance changes from conventional negative tunneling behavior to large positive values, up to 265 % at 7 T and 20 K. Neutron diffraction shows that the switch is driven by magnetic frustration from antiferromagnetic Mn(2+) spin ordering which cants Fe(3+) and Re(5+) spins and reduces spin-polarization. Ferrimagnetic double perovskites based on A-site Mn(2+) thus offer new opportunities to enhance magnetization and control magnetoresistance in spintronic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spin frustration of a spin-1/2 Ising–Heisenberg three-leg tube as an indispensable ground for thermal entanglement

    International Nuclear Information System (INIS)

    Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre

    2016-01-01

    The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles. - Highlights: • Spin-1/2 Ising–Heisenberg three-leg tube is exactly solved in a zero magnetic field. • Thermal entanglement is only present in a frustrated part of the parameter space. • Spin frustration and thermal entanglement show antagonistic reentrance. • Specific heat may display a sharp narrow peak due to massive thermal excitations.

  14. Area law for fixed points of rapidly mixing dissipative quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandão, Fernando G. S. L. [Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052 (United States); Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Cubitt, Toby S. [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom); Lucia, Angelo, E-mail: anlucia@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); Michalakis, Spyridon [Institute for Quantum Information and Matter, Caltech, California 91125 (United States); Perez-Garcia, David [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); IMI, Universidad Complutense de Madrid, Madrid (Spain); ICMAT, C/Nicolás Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.

  15. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  16. Physics of lateral triple quantum-dot molecules with controlled electron numbers

    International Nuclear Information System (INIS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-01-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron–electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation. (review article)

  17. Perspectives of optical lattices with state-dependent tunneling in approaching quantum magnetism in the presence of the external harmonic trapping potential

    International Nuclear Information System (INIS)

    Sotnikov, Andrii

    2016-01-01

    We study theoretically potential advantages of two-component mixtures in optical lattices with state-dependent tunneling for approaching long-range-order phases and detecting easy-axis antiferromagnetic correlations. While we do not find additional advantages of mixtures with large hopping imbalance for approaching quantum magnetism in a harmonic trap, it is shown that a nonzero difference in hopping amplitudes remains highly important for a proper symmetry breaking in the pseudospin space for the single-site-resolution imaging and can be advantageously used for a significant increase of the signal-to-noise ratio and thus detecting long-range easy-axis antiferromagnetic correlations in the corresponding experiments. - Highlights: • The most optimal ways to observe magnetic correlations in a quantum-gas microscope are presented. • Importance of a controlled symmetry breaking for antiferromagnetism is studied. • A quantitative theoretical analysis for the entropy in ultracold fermionic mixtures is performed. • No advantages from realizations with the strong hopping asymmetry are found.

  18. Antiferromagnetic CsCrF{sub 5} and canted antiferromagnetism in RbCrF{sub 5} and KCrF{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Jagličić, Zvonko, E-mail: zvonko.jaglicic@imfm.si [University of Ljubljana, Faculty of Civil and Geodetic Engineering, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Mazej, Zoran, E-mail: zoran.mazej@ijs.si [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2017-07-15

    Highlights: • Cr(IV) ions are antiferromagnetically coupled within chains in ACrF{sub 5} (A = Cs, Rb, K). • Small structural difference causes huge difference in magnetic properties below 10 K. • Canted antiferromagnetism has been observed in RbCrF{sub 5} and KCrF{sub 5} at low temperature. - Abstract: In ACrF{sub 5} (A = Cs, Rb, K), Cr(IV) ions are coordinated by six fluoride ligands where the resulting CrF{sub 6} octahedra share cis vertexes to form infinite chains of ([Cr{sup IV}F{sub 5}]{sup −}){sub n}. The geometry of the latter in Cs compound differs from that in K and Rb compounds. The results of investigations of the magnetic behaviour of these compounds have shown that an antiferromagnetic superexchange interaction is present within the chains with J{sub Cs} = −10.2 cm{sup −1}, J{sub Rb} = −13.3 cm{sup −1}, and J{sub K} = −13.1 cm{sup −1}. Additional ferromagnetic-like long-range ordering has been observed in KCrF{sub 5} and RbCrF{sub 5} below 6 K which can be explained, in a correlation with their crystal structures, as canted antiferromagnetism.

  19. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    Science.gov (United States)

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  20. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  1. Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UN F ⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UN F ≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UN F < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one

  2. Fermi Surface with Dirac Fermions in CaFeAsF Determined via Quantum Oscillation Measurements

    Science.gov (United States)

    Terashima, Taichi; Hirose, Hishiro T.; Graf, David; Ma, Yonghui; Mu, Gang; Hu, Tao; Suzuki, Katsuhiro; Uji, Shinya; Ikeda, Hiroaki

    2018-02-01

    Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we comprehensively determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase π . The carrier density is of the order of 10-3 per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-B magnetoresistance and an anomalous resistivity increase above about 30 T for B ∥c , the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase (T >118 K ), which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.

  3. Fermi Surface with Dirac Fermions in CaFeAsF Determined via Quantum Oscillation Measurements

    Directory of Open Access Journals (Sweden)

    Taichi Terashima

    2018-02-01

    Full Text Available Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we comprehensively determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase π. The carrier density is of the order of 10^{-3} per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-B magnetoresistance and an anomalous resistivity increase above about 30 T for B∥c, the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase (T>118  K, which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.

  4. Pseudo-particles picture in single-hole-doped two-dimensional Neel ordered antiferromagnet

    International Nuclear Information System (INIS)

    Pereira, A R; Ercolessi, E; Pires, A S T

    2007-01-01

    Using the nonlinear σ model on a non-simply connected manifold, we consider the interaction effects between the elementary excitations (magnons and skyrmions) and static spin vacancy (hole) in two-dimensional quantum antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The phase-shifts of the scattered magnons are obtained and used to calculate the zero point energy of spin waves measured with respect to the vacuum. It is suggested that this zero point energy lowers the energy cost of removing spins from the lattice. We also study the problems of the skyrmion-hole interactions and the skyrmion-hole (half-skyrmion-hole) bound states in the presence of magnons. We argue that two adjacent non-magnetic impurities are attracted when they are placed at the centre of half-skyrmions

  5. Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse scattering in the layered kagome system CaBaCo2Fe2O7

    Science.gov (United States)

    Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.

    2018-04-01

    The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.

  6. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  7. Spin Quantum Tunneling via Entangled States in a Dimer of Exchange-Coupled Single-Molecule Magnets

    Science.gov (United States)

    Tiron, R.; Wernsdorfer, W.; Foguet-Albiol, D.; Aliaga-Alcalde, N.; Christou, G.

    2003-11-01

    A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum mechanically coupled dimer, and also allows the measurement of the longitudinal and transverse superexchange coupling constants.

  8. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions

    Science.gov (United States)

    Keleş, Ahmet; Zhao, Erhai

    2018-05-01

    The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.

  9. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  10. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  11. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  12. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sakhratov, Yu. A. [National High Magnetic Field Laboratory (United States); Svistov, L. E., E-mail: svistov@kapitza.ras.ru [Russian Academy Sciences, Kapitza Institute for Physical Problems (Russian Federation); Kuhns, P. L.; Zhou, H. D.; Reyes, A. P. [National High Magnetic Field Laboratory (United States)

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  13. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  14. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš

    2015-01-01

    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  15. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    Science.gov (United States)

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…

  16. Developmental Changes in the Rosenzweig Picture--Frustration Study, Children's Form.

    Science.gov (United States)

    Graybill, Daniel

    1987-01-01

    Study examined the validity of 1948 norms of the Picture-Frustration Study, Children's Form. Instrument was administered to 140 children, grades 2 through 6, as part of a project investigating effects of video games. Though findings differed from the 1948 norms, they supported the validity of the Children's Form of the Picture-Frustration Study.…

  17. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  18. Antiferromagnetic phase of the gapless semiconductor V3Al

    Science.gov (United States)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  19. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  20. Spin-glass state in the mixed system (Co1-xFex)2(OH)3Cl on deformed pyrochlore lattice

    International Nuclear Information System (INIS)

    Fujihala, M.; Hagihala, M.; Zheng, X.G.; Kawae, T.

    2009-01-01

    Magnetic interactions in a new geometrically frustrated system (Co 1-x Fe x ) 2 (OH) 3 Cl are investigated using magnetic susceptibility and μSR study. While Co 2 (OH) 3 Cl is ferromagnetic and Fe 2 (OH) 3 Cl antiferromagnetic, the partially substituted series (Co 1-x Fe x ) 2 (OH) 3 Cl show spin-glass behaviours, wherein ferromagnetic interactions prevail for low Fe concentration and antiferromagnetic ones prevail for high Fe concentration. In special, analysis of the AC magnetic susceptibility and ZF-μ + SR for the x=0.5 sample suggest that CoFe(OH) 3 Cl has both features of chemically disordered random spin glass and geometrically frustrated spin glass. It is also the first spin-glass system for the newly found geometric frustration series M 2 (OH) 3 X.

  1. Rigorous decoupling between edge states in frustrated spin chains and ladders

    Science.gov (United States)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  2. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  3. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    OpenAIRE

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tact...

  4. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  5. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  6. A study of the quantum classical crossover in the spin dynamics of the 2D S = 5/2 antiferromagnet Rb2MnF4: neutron scattering, computer simulations and analytic theories

    International Nuclear Information System (INIS)

    Huberman, T; Tennant, D A; Cowley, R A; Coldea, R; Frost, C D

    2008-01-01

    We report comprehensive inelastic neutron scattering measurements of the magnetic excitations in the 2D spin-5/2 Heisenberg antiferromagnet Rb 2 MnF 4 as a function of temperature from deep in the Néel ordered phase up to paramagnetic, 0.13 B T/4JS −1 for temperatures up to near the Curie–Weiss temperature, Θ CW . For wavevectors smaller than ξ −1 , relaxational dynamics occurs. The observed renormalization of spin wave energies, and evolution of excitation lineshapes, with increasing temperature are quantitatively compared with finite-temperature spin wave theory and computer simulations for classical spins. Random phase approximation calculations provide a good description of the low temperature renormalization of spin waves. In contrast, lifetime broadening calculated using the first Born approximation shows, at best, modest agreement around the zone boundary at low temperatures. Classical dynamics simulations using an appropriate quantum classical correspondence were found to provide a good description of the intermediate and high temperature regimes over all wavevector and energy scales, and the crossover from quantum to classical dynamics observed around Θ CW /S, where the spin S = 5/2. A characterization of the data over the whole wavevector/energy/temperature parameter space is given. In this, T 2 behaviour is found to dominate the wavevector and temperature dependence of the linewidths over a large parameter range, and no evidence of hydrodynamic behaviour or dynamical scaling behaviour found within the accuracy of the datasets. An efficient and easily implemented classical dynamics methodology is presented that provides a practical method for modelling other semiclassical quantum magnets

  7. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament.

    Science.gov (United States)

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2015-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  8. Frustration influences impact of history and disciplinary attitudes on physical discipline decision making.

    Science.gov (United States)

    Russa, Mary B; Rodriguez, Christina M; Silvia, Paul J

    2014-01-01

    Although intergenerational patterns of punitive physical punishment garner considerable research attention, the mechanisms by which historical, cognitive, and contextual factors interplay to influence disciplinary responding remains poorly understood. Disciplinary attitudes have been shown to mediate the association between disciplinary history and disciplinary responding. The present study investigated whether frustration influences these mediation effects. Half of a sample of 330 undergraduates was randomly assigned to frustration induction. Structural equation modeling confirmed that, for participants in the frustration condition, the relation between disciplinary history and physical discipline decision-making was fully mediated by attitudes approving physical discipline. In contrast, for respondents in the no-frustration condition, the pathway from disciplinary history to discipline decision-making was only partially mediated by attitudes. Under conditions of frustration, attitudes may become a more central means by which personal disciplinary history is associated with disciplinary decision-making. © 2013 Wiley Periodicals, Inc.

  9. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  10. Quantum image encryption based on generalized affine transform and logistic map

    Science.gov (United States)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  11. Frustrated Lewis pairs: Design and reactivity

    Indian Academy of Sciences (India)

    for FLP systems and their unique reactivity are discussed here. Keywords. Lewis .... we will concentrate on the design principles of such. FLPs and the ... Designs of frustrated Lewis pairs ..... 64 and neutral titanium (III) complex [Cp2TiOC6.

  12. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  13. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo

    2017-01-01

    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  14. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  15. Decofinement, dimensional crossover and quantum criticality in coupled correlated chains with frustration

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    The dynamics of the charge sector of a one-dimensional quarter-filled electronic system with extended Hubbard interactions were recently mapped onto that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. Motivated by studying the effects of inter-chain couplings, we investigate the phase diagram for the case of a system of many coupled effective (TFIM) chains. A random phase approximation analysis reveals a phase diagram with an ordered phase existing at finite temperatures. The phase boundary ends at a zero temperature quantum critical point. Critical quantum fluctuations are found to drive a zero temperature deconfinement transition, as well as enhance the dispersion of excitations in the transverse directions, leading to a dimensional crossover at finite temperatures. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (author)

  16. Effect of frustration on brain activation pattern in subjects with different temperament.

    Directory of Open Access Journals (Sweden)

    Maria eBierzynska

    2016-01-01

    Full Text Available In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging (fMRI session, the subjects underwent two weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response (GSR and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus and inferior parietal lobule (IPL than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  17. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two prism configuration

    DEFF Research Database (Denmark)

    Broe, Jacob; Keller, Ole

    2002-01-01

    It is predicted that the Goos-Hänchen effect can be resonantly enhanced by placing a metallic quantum well (ultrathin film) at the dielectric-vacuum (air) interface. We study the enhancement of the phenomenon, as it appears in frustrated total internal reflection with p-polarized light, both...... by depositing quantum wells on the glass-vacuum interfaces to obtain a better spatial photon localization....

  18. Understanding the Impact of User Frustration Intensities on Task Performance Using the OCC Theory of Emotions

    Science.gov (United States)

    Washington, Gloria

    2012-01-01

    Have you heard the saying "frustration is written all over your falce"? Well this saying is true, but that is not the only place. Frustration is written all over your face and your body. The human body has various means to communicate an emotion without the utterance of a single word. The Media Equation says that people interact with computers as if they are human: this includes experiencing frustration. This research measures frustration by monitoring human body-based measures such as heart rate, posture, skin temperature. and respiration. The OCC Theory of Emotions is used to separate frustration into different levels or intensities. The results of this study showed that individual intensities of frustration exist, so that task performance is not degraded. Results from this study can be used by usability testers to model how much frustration is needed before task performance measures start to decrease.

  19. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  20. Decorated Shastry-Sutherland lattice in the spin-(1)/(2) magnet CdCu2(BO3)2

    Science.gov (United States)

    Janson, O.; Rousochatzakis, I.; Tsirlin, A. A.; Richter, J.; Skourski, Yu.; Rosner, H.

    2012-02-01

    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.80.104405 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling Jd within the structural Cu2O6 dimers, two interdimer couplings Jt1 and Jt2, forming magnetic tetramers, and a ferromagnetic coupling Jit between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings Jd : Jt1 : Jt2 : Jit = 1 : 0.20 : 0.45 : -0.30, with Jd of about 178 K. The inequivalence of Jt1 and Jt2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.

  1. Single-site approximation for the s-f model of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Takahashi, Masao; Nolting, Wolfgang

    2001-01-01

    For the s-f model of an antiferromagnetic semiconductor, the effect of the antiferromagnetic ordering of the localized spins on the conduction-electron state is investigated over a wide range of exchange strengths by combining the effective-medium approach with the Green's function in the 2x2 sublattice Bloch function representation. The band splitting due to the reduced magnetic Brillouin zone occurs below the Neel temperature. There is a marked effect of the thermal fluctuation of the antiferromagnetically ordered localized spins on the conduction electron at the energies near the top (bottom) of the lower- (higher-) energy subband

  2. Frustration-Instigated Behavior and Learned Helplessness.

    Science.gov (United States)

    Winefield, Anthony H.

    1979-01-01

    Compares M. E. P. Seligman's recent work on learned helplessness with N. R. F. Maier's 30-year-old work on frustration behavior. Notes striking similarities between the two approaches. Concludes that the learned helplessness model might explain the "abnormal fixations" that Maier reported. (Author/RL)

  3. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  4. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    Science.gov (United States)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  5. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    Science.gov (United States)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  6. Frustrated magnetism in Yb{sub 2}Fe{sub 12}P{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Grube, Kai; Zocco, Diego A.; Weber, Frank; Kuntz, Sebastian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology, Institut fuer Festkoerperphysik, 76021 Karlsruhe (Germany); Baumbach, Ryan [National High Magnetic Field Laboratory, Tallahassee (United States); Hamlin, James [Departement of Physics, University of Florida, Gainesville (United States); Lum, Ivy; Maple, M. Brian [Department of Physics, University of California, San Diego (United States); Lynn, Jeff; Huang, Qingzhen [NIST Center for Neutron Research, Gaithersburg (United States); Janoschek, Marc [Los Alamos National Laboratory (United States)

    2016-07-01

    Yb{sub 2}Fe{sub 12}P{sub 7} is characterized by a low magnetic transition temperature of T{sub N} ∼1 K and the breakdown of Fermi-liquid behavior. These properties suggest the proximity to a quantum critical point (QCP). The non-Fermi-liquid (NFL) behavior, however, does not conform to the standard QCP scenario described by the Hertz-Millis-Moriya theory. We measured thermal expansion, magnetostriction and magnetization. The pressure dependence was studied up to 15 GPa using resistivity measurements in piston cylinder and diamond anvil cells. The measurements reveal that only a small fraction of the Yb moments participate in the long-range magnetic order. The Grueneisen ratio does not diverge for T → 0 indicating that the NFL behavior is not related to a nearby pressure-induced QCP. In view of the unusual noncentrometric crystal structure, our observations might point to geometric frustration of the magnetic moments.

  7. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  8. Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid

    International Nuclear Information System (INIS)

    Akhiezer, I.A.; Barannik, E.A.

    1980-01-01

    The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru

  9. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  10. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  11. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  12. More Opportunities than Wealth. A Network of Power and Frustration

    Energy Technology Data Exchange (ETDEWEB)

    Mahault, Benoit Alexandre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saxena, Avadh Behari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, only minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.

  13. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  14. A mechanism for the downturn in inverse susceptibility in triangle-based frustrated spin systems

    International Nuclear Information System (INIS)

    Isoda, M

    2008-01-01

    A mechanism for the downturn of inverse magnetic susceptibility below an intermediate temperature, recently observed in many experiments, is proposed as an intrinsic feature of lattices with triangle-based frustrated geometries. The temperature at the bending of the inverse susceptibility curve may be related to the features of other thermodynamic properties; the hump of the specific heat and the emergence of a 1/3 plateau in magnetization under a magnetic field. This fact is derived through a Monte Carlo simulation study of the Ising model on triangular and kagome lattices, and the exact calculation for the single and small-sized triangle clusters, on both the Ising and Heisenberg models. These results may indicate the dominance of S(S z ) = 1/2 quantum (classical) trimer formation in the intermediate-energy regime in two-dimensional triangle-based lattices

  15. [Tolerance for frustration as a reliability factor in the work of the human operator].

    Science.gov (United States)

    Makarevich, O F

    1986-01-01

    Frustration tolerance is a personality trait that contributes to the reliable performance of an air traffic controller. This paper presents the results of a psychological examination of air traffic controllers using the Rosenzweig frustration test and emphasizes a correlation between the predominant behavior type in frustrating circumstances and professional success. The paper contains examples of realistic observations over air traffic controllers which confirm experimental data.

  16. A neutron scattering study on the antiferromagnet in an exchange biased systems

    Energy Technology Data Exchange (ETDEWEB)

    Solina, Danica; Lott, Dieter; Fenske, Jochen; Schreyer, Andreas [Institute of Materials Research, GKSS Research Centre, Geesthacht (Germany); Schmidt, Wolfgang [Institut-Laue-Langevin, Grenoble (France); Wu, Yu-Chang; Lai, Chih-Huang [Department of Materials Science and Engineering, National Tsing Hua University, HsinChu (China)

    2008-07-01

    The magnetic structure of single crystal antiferromagnetic PtMn that biases CoFe has been studied using neutron scattering. Polarized neutron reflection (PNR) was used to determine the switching behaviour of the ferromagnetic layer and polarized neutron diffraction (PND) to probe the magnetic configuration of the anti-ferromagnetic layer. PNR suggests a combination of rotation and domain formation. Changes were observed in the PND patterns taken at points around the hysteresis loop. The diffraction data has been simulated with a 'twisting' of part of the anti-ferromagnetic layer as the ferromagnetic layer changes.

  17. Field-induced States and Excitations in the Quasicritical Spin-1 /2 Chain Linarite

    Science.gov (United States)

    Cemal, Eron; Enderle, Mechthild; Kremer, Reinhard K.; Fâk, Björn; Ressouche, Eric; Goff, Jon P.; Gvozdikova, Mariya V.; Zhitomirsky, Mike E.; Ziman, Tim

    2018-02-01

    The mineral linarite, PbCuSO4(OH )2 , is a spin-1 /2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite, its strong dependence of the magnetic field direction, and the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field.

  18. The regulation of induced depression during a frustrating situation: benefits of expressive suppression in Chinese individuals.

    Science.gov (United States)

    Yuan, Jiajin; Liu, Yingying; Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.

  19. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  20. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  1. Children, Hyperactivity and Low Frustration Tolerance.

    Science.gov (United States)

    Shaughnessy, Michael F.; Scott, Patricia Carol

    This paper addresses issues regarding the hyperactive child, the impulsive child, and the low frustration tolerance child. It points out the subjectivity involved in identifying children as hyperactive, and outlines various forms of hyperactivity: the child who is in constant movement, the child who manages control in school but exhibits whirlwind…

  2. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  3. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  4. Frustration of contract e impossibility of performance en el common law inglés

    OpenAIRE

    José Félix Chamie

    2009-01-01

    Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  5. The Act of Giving and Frustration: An Analysis in Determination of Psychological Distance

    Directory of Open Access Journals (Sweden)

    Wagner Junior Ladeira

    2016-03-01

    Full Text Available This article aims to analyze a scenario of giving, within a time gap, can be influenced by the frustration of an unfulfilled goal. From an experimental plan was checking the indulgence with others and with the gift at Christmas (Study 1, the influence of own frustrations (Study 2 and others (Study 3. The results show that the increase (decrease of frustration with the layout for goal himself can generate indulgence (control at the time of giving both to himself as another person.

  6. Magnetic diffuse scattering: a theorist's perspective

    International Nuclear Information System (INIS)

    Long, M.W.

    1996-01-01

    We attempt to show that magnetic diffuse scattering is the natural probe for frustrated antiferromagnetism. Comparison between nuclear and magnetic diffuse scattering compares the range of atomic clustering with the range of the magnetic impurity. At low temperature frustration is expected to lead to large differences which are a natural signature for the relevance of such frustration effects. We provide some elementary examples in first-row transition metals which display fairly dramatic effects. (author) 11 figs., tabs., 8 refs

  7. Magnetic diffuse scattering: a theorist`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Long, M W [Birmingham Univ., School of Physics, Birmingham (United Kingdom)

    1996-11-01

    We attempt to show that magnetic diffuse scattering is the natural probe for frustrated antiferromagnetism. Comparison between nuclear and magnetic diffuse scattering compares the range of atomic clustering with the range of the magnetic impurity. At low temperature frustration is expected to lead to large differences which are a natural signature for the relevance of such frustration effects. We provide some elementary examples in first-row transition metals which display fairly dramatic effects. (author) 11 figs., tabs., 8 refs.

  8. High-frequency effects in antiferromagnetic Sr3Ir2O7

    Science.gov (United States)

    Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.

  9. Numerical simulation of spin-qubit operation in coupled quantum dots

    International Nuclear Information System (INIS)

    Goto, Daisuke; Eto, Mikio

    2007-01-01

    Electronic states and spin operation in coupled quantum dots are numerically studied, considering realistic shape of quantum dots and electron-electron interaction. (i) We evaluate the spin coupling J between two electron spins, as a function of magnetic field perpendicular to the quantum dots. We observe a transition from antiferromagnetic coupling (J>0) to ferromagnetic coupling (J<0) at magnetic field of a few Tesla. The spin coupling is hardly influenced by the size difference between the quantum dots if the energy levels are matched. (ii) We simulate SWAP gate operations by calculating the time development of two electron spins. We show that a sudden change of tunnel barrier may result in the gate errors. The spin exchange is incomplete in the presence of strong spin-orbit interaction in InGaAs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature

  11. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný, J.

    2014-10-06

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  12. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Vý borný , K.; Zemen, J.; Mašek, J.; Manchon, Aurelien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-01-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  13. Frustrated Lewis pairs-assisted tritium labeling

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Široká, Sabina; Elbert, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 219 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * one-pot synthesis * tritium -labeling Subject RIV: CC - Organic Chemistry

  14. Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1.

    Science.gov (United States)

    Husain, Shahrukh; Kumar, Vijay; Hassan, Md Imtaiyaz

    2018-07-14

    Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  16. The regulation of induced depression during a frustrating situation: benefits of expressive suppression in Chinese individuals.

    Directory of Open Access Journals (Sweden)

    Jiajin Yuan

    Full Text Available BACKGROUND: Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. METHOD: Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. RESULTS: Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. CONCLUSIONS: Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.

  17. The Regulation of Induced Depression during a Frustrating Situation: Benefits of Expressive Suppression in Chinese Individuals

    Science.gov (United States)

    Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Background Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Method Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Results Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Conclusions Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies. PMID:24827934

  18. Frustration of contract e impossibility of performance en el common law inglés

    Directory of Open Access Journals (Sweden)

    José Félix Chamie

    2009-06-01

    Full Text Available Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  19. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    Science.gov (United States)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  20. Co-existence of long-range order and spin fluctuation in a new geometric frustration series M2(OH)3Cl

    International Nuclear Information System (INIS)

    Zheng, X.G.; Hagihala, Masato; Toriyi, Takato

    2007-01-01

    Recently, we observed the co-existence of a long-range magnetic order and spin fluctuation in a clean compound of clinoatacamite, Cu 2 (OH) 3 Cl (PRL95 (2005) 057201). The present work reports magnetic studies on other compounds of this transition metal series M 2 (OH) 3 Cl, where M represents three-dimensional (3D)-electron magnetic ions of Co 2+ , Fe 2+ , etc., respectively. The present study shows that this co-existence is a common feature of the M 2 Cl(OH) 3 series, no matter whether it is anti-ferromagnetic, as in the case of Fe 2 (OH) 3 Cl (T N =15 K), or ferromagnetic, as in the case of Co 2 (OH) 3 Cl (T C =10.5 K). These compounds show a 3D network of corner-sharing tetrahedrons for the magnetic ions. The tetrahedron is slightly tilted with roughly 10% longer distance between the M-M bonded by Cl than those bonded by O and this distortion is suspected to be responsible for the partial order. This research suggests that the transition metal hydroxyhalide M 2 Cl(OH) 3 series are new geometric frustration system on tetrahedral lattice for d-electron spins

  1. Quantum phase transition and thermodynamic properties of a fourfold magnetic periodic system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuling, E-mail: wangshuling0324.student@sina.com [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ruixue [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Linjie [Department of Physics, China Three Gorges University, Yi Chang 443002 (China); Fu, Hua-Hua; Zhu, Si-cong [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ni, Yun [Huazhong University of Science and Technology, Wenhua College, Wuhan 430074 (China); Meng, Yan [Department of Physics, Xingtai University, Xingtai 054001 (China); Yao, Kailun [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2014-12-15

    Based on the experimental synthesis of organic compound verdazyl radical β-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl, consisting of four antiferromagnetic couplings, we study the magnetic properties and thermodynamic behaviors for different antiferromagnetic interactions using Green’s function theory. Under different fields, there are five regimes containing two gapless phases and three magnetization plateaus (M=0, 1/2 and saturated magnetization) distinguished by four critical lines, which are evidenced by the two-site entanglement entropy and closely related to the energy spectra. In addition, we calculate the susceptibility and specific heat, to demonstrate the low-lying excitations at low temperatures. It will provide guidance for us to synthesize varieties of unconventional magnetic materials, and stimulate future studies on quantum spin systems. - Highlights: • The antiferromagnetic interaction-magnetic field phase diagrams are constructed. • The magnetization per site makes different contribution to the 1/2 plateau. • The spectral functions for different magnetic interactions are studied. • We investigate the gapless or gapped low-lying excitations at low temperatures.

  2. NMR Study of the S=1/2 Quantum Kagome Lattice Antiferromagnet [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O(Frustrated Systems, Field-Induced Phase Transitions and Dynamics in Quantum Spin Systems)

    OpenAIRE

    Satoru, MAEGAWA; Kenji, YOSHIOKA; Shinichi, KAWAHARA; Akira, OYAMADA; Kenichi, FUJITA; Ryohei, YAMAGUCHI; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University

    2005-01-01

    A quantum kagome lattice magnet, [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O with s=1/2 has been studied by magnetization and NMR experiments. No magnetic phase transition was observed down to 180mK. The spin-lattice relaxation rate T^_1 above 20K is almost temperature independent, while below 10K the rates decrease sharply as the temperature is decreased, and can be described as T^_1=B exp(-△/κ_BT). The field dependence on the energy gap △ has been obtained and is found to show plateaus between 3.2 and...

  3. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.

    Science.gov (United States)

    Brede, Markus; Kalloniatis, Alexander C

    2016-06-01

    We present an analysis of conditions under which the dynamics of a frustrated Kuramoto-or Kuramoto-Sakaguchi-model on sparse networks can be tuned to enhance synchronization. Using numerical optimization techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics enhance synchronization when operating on slow time scales, and impede synchronization when operating on fast time scales relative to the Kuramoto dynamics.

  4. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.

    1981-08-01

    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  5. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  6. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  7. Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)

    International Nuclear Information System (INIS)

    Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S

    2012-01-01

    We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).

  8. Spin Dynamics and Critical Fluctuations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1975-01-01

    A comprehensive elastic- and inelastic-neutron-scattering study of the binary mixed antiferromagnet Rb2Mn0.5Ni0.5F4 has been carried out. The pure materials, Rb2MnF4 and Rb2NiF4 are [2d] near-Heisenberg antiferromagnets of the K2NiF4 type. Elastic-scattering experiments demonstrate that the Mn...

  9. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  10. Thermal excitations of frustrated XY spins in two dimensions

    International Nuclear Information System (INIS)

    Benakli, M.; Zheng, H.; Gabay, M.

    1996-11-01

    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near T c : transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature T CG of the frustrated XY models. In particular, we find that T CG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs

  11. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    Science.gov (United States)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  12. The detectability lemma and its applications to quantum Hamiltonian complexity

    International Nuclear Information System (INIS)

    Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph

    2011-01-01

    Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general

  13. Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets

    DEFF Research Database (Denmark)

    Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.

    1977-01-01

    Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...

  14. An exact method for computing the frustration index in signed networks using binary programming

    OpenAIRE

    Aref, Samin; Mason, Andrew J.; Wilson, Mark C.

    2016-01-01

    Computing the frustration index of a signed graph is a key step toward solving problems in many fields including social networks, physics, material science, and biology. The frustration index determines the distance of a network from a state of total structural balance. Although the definition of the frustration index goes back to 1960, its exact algorithmic computation, which is closely related to classic NP-hard graph problems, has only become a focus in recent years. We develop three new b...

  15. Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain

    International Nuclear Information System (INIS)

    Wu, F; Wang, W Z

    2006-01-01

    Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain

  16. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    Science.gov (United States)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  17. 41 CFR 101-26.311 - Frustrated shipments.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  18. The difficult doctor? Characteristics of physicians who report frustration with patients: an analysis of survey data

    Directory of Open Access Journals (Sweden)

    Garrett Joanne M

    2006-10-01

    Full Text Available Abstract Background Literature on difficult doctor-patient relationships has focused on the "difficult patient." Our objective was to determine physician and practice characteristics associated with greater physician-reported frustration with patients. Methods We conducted a secondary analysis of the Physicians Worklife Survey, which surveyed a random national sample of physicians. Participants were 1391 family medicine, general internal medicine, and medicine subspecialty physicians. The survey assessed physician and practice characteristics, including stress, depression and anxiety symptoms, practice setting, work hours, case-mix, and control over administrative and clinical practice. Physicians estimated the percentage of their patients who were "generally frustrating to deal with." We categorized physicians by quartile of reported frustrating patients and compared characteristics of physicians in the top quartile to those in the other three quartiles. We used logistic regression to model physician characteristics associated with greater frustration. Results In unadjusted analyses, physicians who reported high frustration with patients were younger (p 55 per week, higher stress, practice in a medicine subspeciality, and greater number of patients with psychosocial problems or substance abuse. Conclusion Personal and practice characteristics of physicians who report high frustration with patients differ from those of other physicians. Understanding factors contributing to physician frustration with patients may allow us to improve the quality of patient-physician relationships.

  19. Two-dimensional frustrated spin systems in high magnetic fields

    International Nuclear Information System (INIS)

    Schmidt, B; Shannon, N; Thalmeier, P

    2006-01-01

    We discuss our numerical results on the properties of the S = 1/2 frustrated J 1 -J 2 Heisenberg model on a square lattice as a function of temperature and frustration angle φ = tan -1 (J 2 /J 1 ) in an applied magnetic field. We cover the full phase diagram of the model in the range π ≤ φ ≤ π. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally

  20. Analog assessment of frustration tolerance: association with self-reported child abuse risk and physiological reactivity.

    Science.gov (United States)

    Rodriguez, Christina M; Russa, Mary Bower; Kircher, John C

    2015-08-01

    Although frustration has long been implicated in promoting aggression, the potential for poor frustration tolerance to function as a risk factor for physical child abuse risk has received minimal attention. Instead, much of the extant literature has examined the role of anger in physical abuse risk, relying on self-reports of the experience or expression of anger, despite the fact that this methodology is often acknowledged as vulnerable to bias. Therefore, the present investigation examined whether a more implicit, analog assessment of frustration tolerance specifically relevant to parenting would reveal an association with various markers of elevated physical child abuse risk in a series of samples that varied with regard to age, parenting status, and abuse risk. An analog task was designed to evoke parenting-relevant frustration: the task involved completing an unsolvable task while listening to a crying baby or a toddler's temper tantrum; time scores were generated to gauge participants' persistence in the task when encountering such frustration. Across these studies, low frustration tolerance was associated with increased physical child abuse potential, greater use of parent-child aggression in discipline encounters, dysfunctional disciplinary style, support for physical discipline use and physical discipline escalation, and increased heart rate. Future research directions that could better inform intervention and prevention programs are discussed, including working to clarify the processes underlying frustration intolerance and potential interactive influences that may exacerbate physical child abuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spin-triplet excitons and anisotropy effects in the S=12 gapped antiferromagnet BaCuSi2O6

    International Nuclear Information System (INIS)

    Zvyagin, S.A.; Wosnitza, J.; Krzystek, J.; Stern, R.; Jaime, M.; Sasago, Y.; Uchinokura, K.

    2007-01-01

    BaCuSi 2 O 6 can be regarded as an almost ideal realization of an S=12 system of weakly interacting spin dimers with spin-singlet ground state and gapped excitation spectrum. We argue that the fine structure observed in low-temperature EPR spectra of BaCuSi 2 O 6 is a fingerprint of triplet excitations (excitons). Analyzing the angular dependence of the exciton modes allows us to precisely calculate the zero-field splitting within the triplet states and, correspondingly, the anisotropy parameter, D=0.07cm -1 . The proposed procedure can be applied for studying anisotropy effects in a large number of S=12 gapped quantum antiferromagnets with dimerized or alternating spin structure

  2. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  3. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    Science.gov (United States)

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  4. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Science.gov (United States)

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The classification of idiopathic spasmodic torticollis: three types based on social adaptation and frustration tolerance.

    Science.gov (United States)

    Kashiwase, H; Kato, M

    1997-12-01

    In this study, idiopathic spasmodic torticollis (ST) has been classfied into three types from the opinion of social adaptation and the differences of frustration tolerance. The three types were as follows: type I (overadaptive type), type II (maladaptive type), and type III (compatible type). Type I is a typical psychosomatic with high frustration tolerance. Type II is personality disorder with low frustration tolerance. In type III, frustration tolerance varies depending on social circumstances (i.e., different at home and at the office). In type I, the prognosis of ST is generally unfavorable, since it is associated with recurrence and prolongation of the symptoms. In type II, the prognosis of ST is generally favorable. However, type II patients experience relationship or social difficulties. One characteristic of type III is that the onset of symptoms is usually found in an older person because of proper use of frustration tolerance at home and at the office.

  6. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition

    Science.gov (United States)

    Abrahams, Elihu; Wölfle, Peter

    2012-01-01

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893

  7. Mn2Au: Body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitataxy

    Czech Academy of Sciences Publication Activity Database

    Wu, H.C.; Liao, Z.M.; Sofin, R.G.S.; Feng, G.; Ma, X.M.; Shick, Alexander; Mryasov, O. N.; Shvets, I.V.

    2012-01-01

    Roč. 24, č. 47 (2012), s. 6374-6379 ISSN 0935-9648 Institutional research plan: CEZ:AV0Z10100520 Keywords : antiferromagnets * antiferromagnetic spintronics * exchange bias * molecular beam epitaxy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 14.829, year: 2012

  8. Using the J1–J2 quantum spin chain as an adiabatic quantum data bus

    International Nuclear Information System (INIS)

    Chancellor, Nicholas; Haas, Stephan

    2012-01-01

    This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J 1 –J 2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so-called Majumdar–Ghosh point. We examine several annealing protocols for this process and find similar results for all of them. The annealing process works well up to a critical frustration threshold. There is also a brief section examining what other models this protocol could be used for, examining its use in the XXZ and XYZ models. (paper)

  9. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  10. Analogies between antiferromagnets and antiferroelectrics

    International Nuclear Information System (INIS)

    Enz, C.P.; Matthias, B.T.

    1980-01-01

    Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)

  11. Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

    Science.gov (United States)

    Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C

    2017-04-26

    Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly

  12. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  13. Ferrocene-based diradicals of imino nitroxide, nitronyl nitroxide and verdazyl, and their cations are possible SMM: A quantum chemical study

    Science.gov (United States)

    Pal, Arun K.; Datta, Sambhu N.

    2017-05-01

    Six diradicals designed from imino nitroxide, verdazyl and nitronyl nitroxide monoradicals coupled via the ferrocene moiety and six corresponding triradical cations are quantum chemically investigated. The transoid conformation is employed for considerations of general stability. All biradicals are found as very weakly and antiferromagnetically coupled. This agrees with experiment. The cations have strong antiferromagnetic spin-coupling. The charge and spin population distributions, spin alternation pattern, and the disjoint nature of SOMOs can be used to explain the nature and extent of magnetic interaction. Calculated EPR characteristics identify the neutral species as well as their cations as possible single molecule magnets.

  14. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    Science.gov (United States)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  15. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  16. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    International Nuclear Information System (INIS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-01-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.

  17. Machine learning of frustrated classical spin models. I. Principal component analysis

    Science.gov (United States)

    Wang, Ce; Zhai, Hui

    2017-10-01

    This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.

  18. Extracting the Single-Particle Gap in Carbon Nanotubes with Lattice Quantum Monte Carlo

    Directory of Open Access Journals (Sweden)

    Berkowitz Evan

    2018-01-01

    Full Text Available We show how lattice Quantum Monte Carlo simulations can be used to calculate electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path integral formalism and use methods developed within the lattice QCD community for our numerical work and compare our results to empirical data of the Anti-Ferromagnetic Mott Insulating gap in large diameter tubes.

  19. Doctrine of Frustration of Contract in English, American and Iranian Law (Comparative Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Daraei

    2015-05-01

    Full Text Available Pacta sunt servanda” is one of the most fundamental principles in the common law and Iranian legal systems, which have been exposed to exceptions in the process of time. These exceptions are part of general doctrine of frustration. Iranians exceptions to this rule are named as “Ta`azzor” and “Ta`assor” rules. Doctrine of Frustration in Common law includes three subdivision theories: “impossibility of performance”, “frustration of purpose” and “impracticability” (hardship. All of these theories applied where a supervening event occurs. In English courts, only first two theories are accepted but third one is applicable in American courts. In imamieh Jurisprudence and Iranian law, “Ta`azzor” rule in most aspects is similar to Impossibility and “Ta`assor” rule is somehow like Impracticability. Some Iranian lawyers are said that we have no rule like “Frustration of Purpose” but I believe we can find traces of this theory in Imamieh jurisprudence and according which it is part of “Ta`azzor” rule.

  20. Thermoinduced magnetization in nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine

    2004-01-01

    We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...

  1. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  2. Real-time functional integral approach to the quantum disordered spin systems

    International Nuclear Information System (INIS)

    Kopec, T.K.

    1989-01-01

    In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter

  3. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921 ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  4. Spin-orbit torque in two-dimensional antiferromagnetic topological insulators

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.

  5. Spin-orbit torque in two-dimensional antiferromagnetic topological insulators

    KAUST Repository

    Ghosh, Sumit

    2017-01-24

    We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.

  6. ZnFe{sub 2}O{sub 4} antiferromagnetic structure redetermination

    Energy Technology Data Exchange (ETDEWEB)

    Kremenović, Aleksandar, E-mail: akremenovic@rgf.bg.ac.rs [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Antić, Bratislav [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Vulić, Predrag [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Blanuša, Jovan [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Tomic, Aleksandra [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027 (United States)

    2017-03-15

    Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within C{sub a}2 space group having four different crystallographic/magnetic sites for 32 Fe{sup 3+} spins within magnetic unit cell. - Highlights: • Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. • Antiferromagnetic non-collinear structure model is established within C{sub a}2 space group. • Four different crystallographic/magnetic sites contain 32 Fe{sup 3+} spins within magnetic unit cell.

  7. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  8. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  9. The allure of the forbidden: breaking taboos, frustration, and attraction to violent video games.

    Science.gov (United States)

    Whitaker, Jodi L; Melzer, André; Steffgen, Georges; Bushman, Brad J

    2013-04-01

    Although people typically avoid engaging in antisocial or taboo behaviors, such as cheating and stealing, they may succumb in order to maximize their personal benefit. Moreover, they may be frustrated when the chance to commit a taboo behavior is withdrawn. The present study tested whether the desire to commit a taboo behavior, and the frustration from being denied such an opportunity, increases attraction to violent video games. Playing violent games allegedly offers an outlet for aggression prompted by frustration. In two experiments, some participants had no chance to commit a taboo behavior (cheating in Experiment 1, stealing in Experiment 2), others had a chance to commit a taboo behavior, and others had a withdrawn chance to commit a taboo behavior. Those in the latter group were most attracted to violent video games. Withdrawing the chance for participants to commit a taboo behavior increased their frustration, which in turn increased their attraction to violent video games.

  10. Magnetic dimerization in the frustrated spin ladder Li2Cu2O (SO4)2

    Science.gov (United States)

    Vaccarelli, O.; Rousse, G.; Saúl, A.; Radtke, G.

    2017-11-01

    The magnetic properties of Li2Cu2O (SO4)2 are investigated in the framework of density functional theory. In its high-temperature tetragonal structure, this compound appears as a rare material realization of a frustrated spin-1/2 two-leg ladder, where magnetic frustration arises from competing nearest and next-nearest interactions along the legs. Through a large magnetoelastic coupling, the triclinic distortion occurring around 125 K is shown to induce the formation of a staggered dimer structure, lifting most of the magnetic frustration.

  11. New antiferromagnetic semiconductor CuCr1.5Sb0.5S4

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Koroleva, L.I.; Mikheev, M.G.; Odintsov, A.G.; Filimonov, D.S.

    1993-01-01

    New halcogenide compound with spinel-antiferromagnetic semiconductor CuCr 1.5 Sb 0.5 S 4 are obtained and studied for the first time. Magnetic properties of this compound, namely, magnetization linear dependence, maximum on PHI(T) curve in the low-temperature area and realization of the Curie-Weis law for paramagnetic susceptibility with negative paramagnetic temperature testiby to the fact that this compound is antiferromagnetic

  12. Electrodynamics of quantum spin liquids

    Science.gov (United States)

    Dressel, Martin; Pustogow, Andrej

    2018-05-01

    Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

  13. Tunable Quantum Spin Liquidity in Mo3O13 Cluster Mott Insulators

    Science.gov (United States)

    Akbari-Sharbaf, Arash; Ziat, Djamel; Verrier, Aime; Quilliam, Jeffrey A.; Sinclair, Ryan; Zhou, Haidong D.; Sun, Xuefeng F.

    A study of a tunable quantum spin liquid (QSL) phase in the compound Li2In1- x ScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, 1) will be presented. Crystal structure of these compounds can be viewed as Mo ions arranged on an asymmetric Kagome lattice (KL), with two different Mo-Mo bond lengths, separated by nonmagnetic layers composed of Li, In, and Sc ions. Using X-ray diffraction spectroscopy, muon spin relaxation spectroscopy, bulk magnetic susceptibility and specific heat measurements we show that by changing the composition of the nonmagnetic layers we can drive the system from an ordered antiferromagnetic state to a quantum spin liquid state. The mechanism responsible for the tunability of the magnetic phase in this class of materials may be associated with the degree of asymmetry of the KL controlled by the composition of the nonmagnetic layers. For high degree of asymmetry the constraint on the electronic distribution leads to a configuration of Mo3O8 clusters with net spin-1/2 per cluster arrange on a triangular lattice and long range antiferromagnetic order. For low degree of asymmetry the electronic distribution leads to a magnetic phase with QSL character. We acknowledge support from NSERC and CFREF.

  14. Psychometric properties of Frustration Discomfort Scale in a Turkish sample.

    Science.gov (United States)

    Ozer, Bilge Uzun; Demir, Ayhan; Harrington, Neil

    2012-08-01

    The present study assessed the psychometric properties of the Frustration Discomfort Scale for Turkish college students. The Frustration Discomfort Scale (FDS), Procrastination Assessment Scale-Student, and Rosenberg Self-Esteem Scale were administered to a sample of 171 (98 women, 73 men) Turkish college students. The results of the confirmatory factor analysis yielded fit index values demonstrating viability of the four-dimensional solution as in the original. Findings also revealed that, as predicted, the Discomfort Intolerance subscale of Turkish FDS was most strongly correlated with procrastination. Overall results provided evidence for the factor validity and reliability of the Turkish version of the scale for use in a Turkish population.

  15. Low Tolerance for Frustration: Target Group for Reading Disabilities

    Science.gov (United States)

    Orlow, Maria

    1974-01-01

    Presents findings which can aid in the prevention and remediation of reading disabilities in children who have a low tolerance for frustration, many of whom often become acute reading disability cases. (TO)

  16. Dynamics of neurotic frustration of teenagers living in radioactive contaminated regions

    International Nuclear Information System (INIS)

    Obukhov, S.G.

    1999-01-01

    Clinical psycho pathologic and psychologic examination of 150 teenagers (236 boys and 274 girls) living in radioactive contaminated regions (contaminated density of cesium 137 was 1,5 - 22 Ci/km 2 ) was fulfilled for neurotic frustration dynamics determination. Neurotic disorders of various degrees (from subclinical ones to those clinically diagnosed) such as vegetative dysfunction and frustration of adaptation were revealed in 42% of the examined patients. Therapeutic and rehabilitation measures resulted in positive changes reflecting the psycho pathologic symptoms reduction and stabilisation of a psycho emotional and vegetative state

  17. Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Explanation of the Spectral Shape Anomaly

    Science.gov (United States)

    Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.

    1996-03-01

    We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.

  18. Twisted injectivity in projected entangled pair states and the classification of quantum phases

    Energy Technology Data Exchange (ETDEWEB)

    Buerschaper, Oliver, E-mail: obuerschaper@perimeterinstitute.ca

    2014-12-15

    We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems by showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as DIJKGRAAF–WITTEN topological quantum field theory (TQFT). - Highlights: • We introduce a new standard form for projected entangled pair states via a twisted group symmetry which is given by nontrivial matrix product operators. • We construct a large family of gapped, frustration-free Hamiltonians in two dimensions from this new standard form. • We rigorously show how this new standard form for low energy states determines the emergent topological order.

  19. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  20. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.