WorldWideScience

Sample records for fruity aroma production

  1. FRUITY AROMA PRODUCTION BY Ceratocystis fimbriata IN SOLID CULTURES FROM AGRO-INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Adriana Bramorski

    1998-09-01

    Full Text Available Solid state fermentations were carried out to test the efficacy of Ceratocystis fimbriata to grow on different agro-industrial substrates and aroma production. Seven media were prepared using cassava bagasse, apple pomace, amaranth and soya bean. All the media supported fungal growth. While amaranth medium produced pineapple aroma, media containing cassava bagasse, apple pomace and soya bean produced a strong fruity aroma. The aroma production was growth dependent and the maximum aroma intensity was detected a few hours before or after the maximum respirometric activity. Sixteen compounds were separated by gas cromatography of the components present in the headspace and fifteen of them were identified as acid (1, alcohols (6, aldehyde (1, ketones (2 and esters (5.Este estudo explorou a versatilidade de Ceratocystis fimbriata de crescer e produzir aromas naturais sobre substratos de resíduos agro-industriais. Bagaço de mandioca, bagaço de maçã, amaranto e soja em diferentes proporções compuseram os sete meios utilizados, mostrando ser substratos adequados para o crescimento e produção de aroma por este fungo em fermentação no estado sólido. Todos os meios contendo bagaço de mandioca, bagaço de maçã e soja em sua composição proporcionaram um forte aroma frutal, enquanto, o meio de amaranto produziu um agradável aroma de abacaxi. A produção de aroma foi dependente do crescimento, visto que a máxima intensidade do aroma foi detectado poucas horas antes ou depois da atividade respiratória máxima. Foram detectados dezesseis compostos pela cromatografia de gás no headspace das culturas, e quinze deles foram identificados: 1 ácido, 6 alcoois, 1 aldeído, 2 cetonas e 5 ésteres.

  2. Media components and amino acid supplements influencing the production of fruity aroma by Geotrichum candidum Influência da composição do meio de cultivo e da suplementação com aminoácidos na produção de aroma frutal por Geotrichum candidum

    Directory of Open Access Journals (Sweden)

    T. Pinotti

    2006-12-01

    Full Text Available The ability of Geotrichum candidum to produce fruity aroma in food grade sucrose, molasses, corn steep liquor and peptone based culture media was tested by sensory evaluation and analyzed by gas chromatography mass spectrometry. A strong and sweet fruity aroma was produced from molasses, with peptone or corn steep liquor stimulating aroma production. Molasses with peptone supplemented with leucine, valine, or alanine yielded better fruity aroma production and the presence of many esters was consistent with the fruity aroma production.Geotrichum candidum foi cultivado em diversos meios de cultura contendo sacarose ou melaço e milhocina ou peptona e a produção de aroma frutal foi verificada através de avaliação sensorial e cromatografia gasosa acoplada a espectrometria de massas. Os meios contendo melaço, peptona e leucina, valina ou alanina apresentaram os melhores resultados e a presença de diversos ésteres foi consistente com a formação de aroma frutal.

  3. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    Science.gov (United States)

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

  4. 2-Methylbutyl acetate in wines: Enantiomeric distribution and sensory impact on red wine fruity aroma.

    Science.gov (United States)

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2017-12-15

    Enantiomers of 2-methylbutyl acetate were assayed in red and white commercial wines from various vintages and origins, using chiral gas chromatography (γ-cyclodextrin), revealing the exclusive presence of the S-enantiomeric form. Results also confirmed that (S)-2-methylbutyl acetate levels were generally higher in red than white wines of the same age, and that acetate levels increased gradually during ageing. Olfactory threshold of (S)-2-methylbutyl acetate was evaluated at 313µg/L in dilute alcohol solution (12% v/v) and 1083µg/L in a fruity aromatic reconstitution, reflecting its presence in wines at subthreshold concentrations. At concentrations considerably lower than its olfactory threshold, 2-methylbutyl acetate was associated with blackberry-fruit and banana notes. It was also revealed that, even at subthreshold concentrations, this compound had a modification on the perception of fruity aromas in the matrices studied. Sensory profiles highlighted, for the first time, its specific contribution to black-, fresh-, and jammy-fruit notes, despite its subthreshold concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of trehalose addition on volatiles responsible for strawberry aroma.

    Science.gov (United States)

    Kopjar, Mirela; Hribar, Janez; Simcic, Marjan; Zlatić, Emil; Pozrl, Tomaz; Pilizota, Vlasta

    2013-12-01

    Aroma is one of the most important quality properties of food products and has a great influence on quality and acceptability of foods. Since it is very difficult to control, in this study the effect of addition of trehalose (3, 5 and 10%) to freeze-dried strawberry cream fillings was investigated as a possible means for retention of some of the aroma compounds responsible for the strawberry aroma. In samples with added trehalose, higher amounts of fruity esters were determined. Increase of trehalose content did not cause a proportional increase in the amount of fruity esters. However, results of our research showed that trehalose addition did not have the same effect on both gamma-decalactone and furaneol.

  6. Insights into the Key Aroma Compounds in Mango (Mangifera indica L. 'Haden') Fruits by Stable Isotope Dilution Quantitation and Aroma Simulation Experiments.

    Science.gov (United States)

    Munafo, John P; Didzbalis, John; Schnell, Raymond J; Steinhaus, Martin

    2016-06-01

    Thirty-four aroma-active compounds, previously identified with high flavor dilution factors by application of an aroma extract dilution analysis, were quantified in tree-ripened fruits of mango (Mangifera indica L. 'Haden'). From the results, the odor activity value (OAV) was calculated for each compound as the ratio of its concentration in the mangoes to its odor threshold in water. OAVs > 1 were obtained for 24 compounds, among which ethyl 2-methylbutanoate (fruity; OAV 2100), (3E,5Z)-undeca-1,3,5-triene (pineapple-like; OAV 1900), ethyl 3-methylbutanoate (fruity; OAV 1600), and ethyl butanoate (fruity; OAV 980) were the most potent, followed by (2E,6Z)-nona-2,6-dienal (cucumber-like), ethyl 2-methylpropanoate (fruity), (E)-β-damascenone (cooked apple-like), ethyl hexanoate (fruity), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 3-methylbut-2-ene-1-thiol (sulfurous), γ-decalactone (peach-like), β-myrcene (terpeny), (3Z)-hex-3-enal (green), 4-methyl-4-sulfanylpentan-2-one (tropical fruit-like), and ethyl octanoate (fruity). Aroma simulation and omission experiments revealed that these 15 compounds, when combined in a model mixture in their natural concentrations, were able to mimic the aroma of the fruits.

  7. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.

    Science.gov (United States)

    Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J

    2018-03-14

    Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.

  8. Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies.

    Science.gov (United States)

    Ferreira, Vicente; Ortín, Natalia; Escudero, Ana; López, Ricardo; Cacho, Juan

    2002-07-03

    The aroma of a Grenache rosé wine from Calatayud (Zaragoza, Spain) has been elucidated following a strategy consisting of an aroma extract dilution analysis (AEDA), followed by the quantitative analysis of the main odorants and the determination of odor activities values (OAVs) and, finally, by a series of reconstitution and omission tests with synthetic aroma models. Thirty-eight aroma compounds were found in the AEDA study, 35 of which were identified. Twenty-one compounds were at concentrations higher than their corresponding odor thresholds. An aroma model prepared by mixing the 24 compounds with OAV > 0.5 in a synthetic wine showed a high qualitative similarity with the aroma of the rosé wine. The addition of compounds with OAV 10 was very different from that of the wine. Omission tests revealed that the most important odorant of this Grenache rosé wine was 3-mercapto-1-hexanol, with a deep impact on the wine fruity and citric notes. The synergic action of Furaneol and homofuraneol also had an important impact on wine aroma, particularly in its fruity and caramel notes. The omission of beta-damascenone, which had the second highest OAV, caused only a slight decrease on the intensity of the aroma model. Still weaker was the sensory effect caused by the omission of 10 other compounds, such as fatty acids and their ethyl esters, isoamyl acetate, and higher alcohols.

  9. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines.

    Science.gov (United States)

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-10-11

    Sauvignon blanc wine, balanced by herbaceous and tropical aromas, is fermented at low temperatures (10-15 °C). Anecdotal accounts from winemakers suggest that cold fermentations produce and retain more "fruity" aroma compounds; nonetheless, studies have not confirmed why low temperatures are optimal for Sauvignon blanc. Thirty-two aroma compounds were quantitated from two Marlborough Sauvignon blanc juices fermented at 12.5 and 25 °C, using Saccharomyces cerevisiae strains EC1118, L-1528, M2, and X5. Fourteen compounds were responsible for driving differences in aroma chemistry. The 12.5 °C-fermented wines had lower 3-mercaptohexan-1-ol (3MH) and higher alcohols but increased fruity acetate esters. However, a sensory panel did not find a significant difference between fruitiness in 75% of wine pairs based on fermentation temperature, in spite of chemical differences. For wine pairs with significant differences (25%), the 25 °C-fermented wines were fruitier than the 12.5 °C-fermented wines, with high fruitiness associated with 3MH. We propose that the benefits of low fermentation temperatures are not derived from increased fruitiness but a better balance between fruitiness and greenness. Even so, since 75% of wines showed no significant difference, higher fermentation temperatures could be utilized without detriment, lowering costs for the wine industry.

  10. Aroma compounds in fresh cut pomegranate arils.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum). Although arils have fruity and sweet characteristics, we found no publications describing actual compounds responsible for their typical flavor. Since most commercial usage of pomegranates in...

  11. On the effects of higher alcohols on red wine aroma.

    Science.gov (United States)

    de-la-Fuente-Blanco, Arancha; Sáenz-Navajas, María-Pilar; Ferreira, Vicente

    2016-11-01

    This work aims to assess the aromatic sensory contribution of the four most relevant wine higher alcohols (isobutanol, isoamyl alcohol, methionol and β-phenylethanol) on red wine aroma. The four alcohols were added at two levels of concentration, within the natural range of occurrence, to eight different wine models (WM), close reconstitutions of red wines differing in levels of fruity (F), woody (W), animal (A) or humidity (H) notes. Samples were submitted to discriminant and descriptive sensory analysis. Results showed that the contribution of methionol and β-phenylethanol to wine aroma was negligible and confirmed the sensory importance of the pair isobutanol-isoamyl alcohol. Sensory effects were only evident in WM containing intense aromas, demonstrating a strong dependence on the aromatic context. Higher alcohols significantly suppress strawberry/lactic/red fruity, coconut/wood/vanilla and humidity/TCA notes, but not the leather/animal/ink note. The spirit/alcoholic/solvent character generated by higher alcohols has been shown to be wine dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Characterization of the key aroma compounds in pink guava (Psidium guajava L.) by means of aroma re-engineering experiments and omission tests.

    Science.gov (United States)

    Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter

    2009-04-08

    Seventeen aroma-active volatiles, previously identified with high flavor dilution factors in fresh, pink Colombian guavas (Psidium guajava L.), were quantified by stable isotope dilution assays. On the basis of the quantitative data and odor thresholds in water, odor activity values (OAV; ratio of concentration to odor threshold) were calculated. High OAVs were determined for the green, grassy smelling (Z)-3-hexenal and the grapefruit-like smelling 3-sulfanyl-1-hexanol followed by 3-sulfanylhexyl acetate (black currant-like), hexanal (green, grassy), ethyl butanoate (fruity), acetaldehyde (fresh, pungent), trans-4,5-epoxy-(E)-2-decenal (metallic), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel, sweet), cinnamyl alcohol (floral), methyl (2S,3S)-2-hydroxy-3-methylpentanoate (fruity), cinnamyl acetate (floral), methional (cooked potato-like), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (seasoning-like). Studies on the time course of odorant formation in guava puree or cubes, respectively, showed that (Z)-3-hexenal was hardly present in the intact fruits, but was formed very quickly during crushing. The aroma of fresh guava fruit cubes, which showed a very balanced aroma profile, was successfully mimicked in a reconstitute consisting of 13 odorants in their naturally occurring concentrations. Omission tests, in which single odorants were omitted from the entire aroma reconstitute, revealed (Z)-3-hexenal, 3-sulfanyl-1-hexanol, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-sulfanylhexyl acetate, hexanal, ethyl butanoate, cinnamyl acetate, and methional as the key aroma compounds of pink guavas.

  13. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement.

    Science.gov (United States)

    Renault, Philippe; Coulon, Joana; de Revel, Gilles; Barbe, Jean-Christophe; Bely, Marina

    2015-08-17

    The aim of this work was to study ester formation and the aromatic impact of Torulaspora delbrueckii when used in association with Saccharomyces cerevisiae during the alcoholic fermentation of must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. Our results showed that mixed inoculations allowed the increase, in comparison to S. cerevisiae pure culture, of some esters specifically produced by T. delbrueckii and significantly correlated to the maximal T. delbrueckii population reached in mixed cultures. Thus, ethyl propanoate, ethyl isobutanoate and ethyl dihydrocinnamate were considered as activity markers of T. delbrueckii. On the other hand, isobutyl acetate and isoamyl acetate concentrations were systematically increased during mixed inoculations although not correlated with the development of either species but were rather due to positive interactions between these species. Favoring T. delbrueckii development when performing sequential inoculation enhanced the concentration of esters linked to T. delbrueckii activity. On the contrary, simultaneous inoculation restricted the growth of T. delbrueckii, limiting the production of its activity markers, but involved a very important production of numerous esters due to more important positive interactions between species. These results suggest that the ester concentrations enhancement via interactions during mixed modalities was due to S. cerevisiae production in response to the presence of T. delbrueckii. Finally, sensory analyses showed that mixed inoculations between T. delbrueckii and S. cerevisiae allowed to enhance the complexity and fruity notes of wine in comparison to S. cerevisiae pure culture. Furthermore, the higher levels of ethyl propanoate, ethyl isobutanoate, ethyl dihydrocinnamate and isobutyl acetate in mixed wines were found responsible for the increase of

  14. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies.

    Science.gov (United States)

    Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua

    2017-06-24

    The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.

  15. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum) juices. Although, arils have fruity and sweet characteristics, we found no publications describing volatile and semi-volatile compounds responsible for their typical flavor. Only two reports w...

  16. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography-olfactometry and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Gürbüz, Ozan; Rouseff, June M; Rouseff, Russell L

    2006-05-31

    Seventy-four aroma active compounds were observed in Merlot and Cabernet Sauvignon wines produced in California and Australia. Volatiles were sampled using solid phase microextraction and analyzed using time-intensity gas chromatography-olfactometry and gas chromatography-mass spectrometry (GC-MS). The most intense odorants were 3-methyl-1-butanol, 3-hydroxy-2-butanone, octanal, ethyl hexanoate, ethyl 2-methylbutanoate, beta-damascenone, 2-methoxyphenol, 4-ethenyl-2-methoxy-phenol, ethyl 3-methylbutanoate, acetic acid, and 2-phenylethanol. Aroma compounds were classified according to their aroma descriptor similarity and summed into nine distinct categories consisting of fruity, sulfury, caramel/cooked, spicy/peppery, floral, earthy, pungent/chemical, woody, and green/vegetative/fatty. Both Merlot and Cabernet Sauvignon wines were characterized by high fruity, caramel, green, and earthy aroma totals. Although there were distinct quantitative differences between Merlot and Cabernet wines, the relative aroma category profiles of the four wines were similar. Of the 66 volatiles identified by GC-MS, 28 were esters and 19 were minor alcohols. Between 81 and 88% of the total MS total ion chromatogram peak areas from each wine type were produced from only eight compounds: ethanol, ethyl octanoate, ethyl decanoate, ethyl acetate, 3-methyl-1-butanol, ethyl hexanoate, diethyl succinate, and 2-phenylethanol. Merlot wines from both Australia and California contained 4-5 times more ethyl octanoate than Cabernet Sauvignon wines from the same sources.

  17. Changes in Wine Aroma Composition According to Botrytized Berry Percentage: A Preliminary Study on Amarone Wine

    Directory of Open Access Journals (Sweden)

    Bruno Fedrizzi

    2011-01-01

    Full Text Available The aim of this study is to evaluate the impact of Botrytis cinerea, a noble rot, on the aroma components of Amarone, a dry red wine produced from withered grapes. A comparative analysis of wines obtained from manually selected healthy and botrytized grapes was done. Aroma analysis revealed that most compounds varied significantly according to the percentage of botrytized berries utilized. Botrytized wines contained less fatty acids and more fruity acetates than healthy wines. A positive correlation between the content of N-(3-methylbutylacetamide, sherry lactone and an unidentified compound and the level of fungal infection was also observed. The results indicate that noble rot can significantly modify important aroma components of Amarone wine.

  18. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Aroma Characterization and Safety Assessment of a Beverage Fermented by Trametes versicolor.

    Science.gov (United States)

    Zhang, Yanyan; Fraatz, Marco Alexander; Müller, Julia; Schmitz, Hans-Joachim; Birk, Florian; Schrenk, Dieter; Zorn, Holger

    2015-08-12

    A cereal-based beverage was developed by fermentation of wort with the basidiomycete Trametes versicolor. The beverage possessed a fruity, fresh, and slightly floral aroma. The volatiles of the beverage were isolated by liquid-liquid extraction (LLE) and additionally by headspace solid phase microextraction (HS-SPME). The aroma compounds were analyzed by a gas chromatography system equipped with a tandem mass spectrometer and an olfactory detection port (GC-MS/MS-O) followed by aroma (extract) dilution analysis. Thirty-four different odor impressions were perceived, and 27 corresponding compounds were identified. Fifteen key odorants with flavor dilution (FD) factors ranging from 8 to 128 were quantitated, and their respective odor activity values (OAVs) were calculated. Six key odorants were synthesized de novo by T. versicolor. Furthermore, quantitative changes during the fermentation process were analyzed. To prepare for the market introduction of the beverage, a comprehensive safety assessment was performed.

  20. Insights into the Key Compounds of Durian (Durio zibethinus L. 'Monthong') Pulp Odor by Odorant Quantitation and Aroma Simulation Experiments.

    Science.gov (United States)

    Li, Jia-Xiao; Schieberle, Peter; Steinhaus, Martin

    2017-01-25

    Sixteen compounds, previously identified as potent odorants by application of an aroma extract dilution analysis and the gas chromatography-olfactometry analysis of static headspace samples, were quantitated in the pulp of durians, variety Monthong, and odor activity values (OAVs) were calculated by dividing the concentrations obtained by the odor thresholds of the compounds in water. In combination with data recently reported for hydrogen sulfide and short-chain alkanethiols, OAVs > 1 were obtained for 19 compounds, among which ethyl (2S)-2-methylbutanoate (fruity; OAV 1700000), ethanethiol (rotten onion; OAV 480000), and 1-(ethylsulfanyl)ethane-1-thiol (roasted onion; OAV 250000) were the most potent, followed by methanethiol (rotten, cabbage; OAV 45000), ethane-1,1-dithiol (sulfury, durian; OAV 23000), and ethyl 2-methylpropanoate (fruity; OAV 22000). Aroma simulation and omission experiments revealed that the overall odor of durian pulp could be mimicked by only two compounds, namely, ethyl (2S)-2-methylbutanoate and 1-(ethylsulfanyl)ethane-1-thiol, when combined in their natural concentrations.

  1. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: its application potential in wine aroma enhancement.

    Science.gov (United States)

    Hu, K; Zhu, X L; Mu, H; Ma, Y; Ullah, N; Tao, Y S

    2016-02-01

    The aim of the work was to evaluate the application potential of a glycosidase extract of one indigenous non-Saccharomyces strain in wine aroma enhancement. The isolate was selected from a local winemaking region in China for its high β-glucosidase level and was identified as Rhodotorula mucilaginosa. The tolerance of the glycosidase extract to the typical winemaking conditions was assessed using the activity of its β-glucosidase. After that, the hydrolysis capacity of R. mucilaginosa glycosidase for liberation of grape aroma glycosides was characterized in comparison to commercial enzyme preparations. Results of this work revealed that glycosidase extract from R. mucilaginosa proved to be active in the presence of 0-20% (w/v) glucose, 0-20% (v/v) ethanol and at pH 3·0-5·0. In the hydrolysis of aroma precursors, enzymes obtained from different origins possessed various levels of specificity and activity, showing high origin dependence (α = 0·05). Compared to commercial enzymes, the indigenous R. mucilaginosa glycosidase extract presented better catalytic preference for the 'fruity and floral' glycosides of benzenic compounds and C13 -norisoprenoids, but less sensitivity to the glycosides of C6 compounds and volatile phenols. This work presents a novel extracellular glycosidase preparation from an indigenous Rhodotorula mucilaginosa strain selected from a local winemaking region in China. This enzyme extract exhibits strong tolerance towards winemaking conditions. It shows hydrolysis specificity for glycosides of benzenic compounds and C13 -norisoprenoids, proving a potential candidate for improving floral and fruity aroma characteristics of wine. © 2015 The Society for Applied Microbiology.

  3. Effect of methyl butyrate aroma on the survival and viability of human breast cancer cells in vitro

    International Nuclear Information System (INIS)

    Khan, M.A.; Rumana Ahmad, R.; Srivastava, A.N.

    2016-01-01

    Background: Aroma can have far reaching effects on mind, body and soul. Pleasant aromas are known to have a soothing effect on the mind and are known to relieve stress and enhance concentration. Recently, it has been demonstrated that aroma may also have some curative effects as well as benefits and can be used both for prophylaxis and therapy of diseases. Our aim was to test our hypothesis whether aroma can cure or prevent cancer. Methyl butyrate (MB) is the methyl ester of butyric acid having a characteristic sweet and fruity odor like that of apples and pineapples. It occurs in many plant products in minute quantities and in pineapple oil. Methods: In the present study, the effect of aroma of MB has been evaluated on human breast cancer cell line MDA-MB-231 in vitro . The percentage viability of the cell line was determined by using Trypan blue dye exclusion assay. Results: It was found that MB at a concentration of 0.01 M was effective in causing considerable cytotoxicity (40%) in breast cancer cells (without even coming in contact with cells) while at 0.02 M, % cytotoxicity was found to be 50%. Mechanism of action of MB on cancer cells was investigated by acridine orange–ethidium bromide assay using fluorescence microscopy and DNA fragmentation assay. MB aroma appeared to induce necrosis in cancer cells exposed to it. Conclusion: No study involving the effect of aroma/smell on cancer cells has ever been reported before and warrants further investigation on other cancer and normal cell lines.

  4. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models.

    Science.gov (United States)

    Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente

    2003-04-23

    Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.

  5. Women have better olfactory perception for wine aromas

    Directory of Open Access Journals (Sweden)

    Wurz Douglas André

    2017-01-01

    Full Text Available The objective of this work was to verify the influence of the gender on the olfactory perception of aromas found in the wines, as well as to identify the aromatic groups most perceived by men and women. Twenty different aromas of different aromatic classes described in the wines were used: fruity, spices, wood, herbaceous, floral, buttery, defects. The different aromatic groups were packed in Erlenmeyer glasses wrapped with aluminum paper in order to avoid the visualization of the aromas by the participants. Fifty people, 25 men and 25 women, aged between 21 and 65 years, were ramdomly separated in groups of 10 people to participate of the evaluation. The influence of the gender on the ability to identify aromas was verified. Women matched 56.8% of the aromas, while men matched 44.6%. In relation to the aromatic class, a greater index of the feminine gender in all the aromatic classes was verified, being spices the group of aromas that women most perceived, with 80.6% of hits, followed by the floral aromas with 50% accuracy. For men, the aromatic class with the highest index of accuracy was also the spices, however, with a success rate of 58.4%, followed by the herbaceous group with 38.2% of correct answers. Both females and males obtained high scores for the group of wine defects (acetic acid and ethyl acetate, 85.2% and 81.0%, respectively, overcoming the other aromatic classes. Buttery aromas were the ones least recognized by women, with 30.8% of hits, whereas the least perceived aroma for men were the floral ones, with no hits observed in any group of participants. The results found in this study show that there are differences in olfactory perception between men and women, and this factor, in addition to the wine service temperature, wine glass type, olfactory memory, must also be considered in sensory analysis. Female gender has a greater ability to identify aromas in relation to the male gender, since women have a greater number of cells

  6. HS/GC-MS analyzed chemical composition of the aroma of fruiting bodies of two species of genus Lentinus (Higher Basidiomycetes).

    Science.gov (United States)

    Mata, Gerardo; Valdez, Karina; Mendoza, Remedios; Trigos, Ángel

    2014-01-01

    The chemical composition of the aroma of fresh fruiting bodies of the cultivated mushroom Lentinus boryanus is described here and compared with medicinal shiitake mushroom L. edodes. Volatile compounds were analyzed through headspace sampling coupled with gas chromatography-mass spectrometry. The mushrooms under study were grown on different substrates based on barley straw, sugarcane bagasse, oak wood sawdust, and beech leaf litter. It was determined that L. boryanus as well as L. edodes contain an abundant amount of a volatile compound identified as 3-octanone with a sweet fruity aroma. On the other hand, only L. boryanus produced 3-octanol a characteristic aroma of cod liver oil. In total, 10 aromatic compounds were identified, some of which were obtained exclusively in one species or substrate.

  7. Optimisation of minimal media for production of aroma compounds typical for fermented milk products

    Directory of Open Access Journals (Sweden)

    Nevenka Mazić

    2008-08-01

    Full Text Available The aim of this research was to optimize the composition of minimalgrowth media containing lactose and milk, in which lactic acid bacteria (LAB would produce the maximum amount of volatile aroma compounds typical for fermented milk products. Ingredients used for the preparation of media were casein, tri-sodium-citrate, lactose, milk minerals, whey proteins and milk with 1.5% fat. The several prepared media differed mainly in the amount of citrate and whey proteins. Fermentation was carried out at room temperature until the media reached pH value of 5. Samples were evaluated for sensory characteristics using quantitative descriptive analysis (QDA. In all media the target pH was reached after 68-71 hours of fermentation, depending on citrate level. Fermentation and the production of aroma compounds were more intensive in media that contained whey proteins compared to media with only casein. Increased citrate level had a positive influence on the aroma production. Citrate increased the initial pH of the media and acted as a buffer during fermentation, which lead to longer fermentation and prolonged production of aroma compounds. At pH around 5, the desired cultured aroma was the most intensive, whereas sour taste was less dominant. The substrate with 0.25% citrate and 0.1% whey proteins, at pH 5, was rated as best regarding its sensory characteristics.

  8. Characterization of the aroma-active compounds in pink guava (Psidium guajava, L.) by application of the aroma extract dilution analysis.

    Science.gov (United States)

    Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter

    2008-06-11

    The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.

  9. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties.

    Science.gov (United States)

    Ubeda, Cristina; San-Juan, Felipe; Concejero, Belén; Callejón, Raquel M; Troncoso, Ana M; Morales, M Lourdes; Ferreira, Vicente; Hernández-Orte, Purificación

    2012-06-20

    This paper reports the determination of glycosidically bound aroma compounds and the olfactometric analysis in four strawberry varieties (Fuentepina, Camarosa, Candonga and Sabrina). Different hydrolytic strategies were also studied. The results showed significant differences between acid and enzymatic hydrolysis. In general terms, the greater the duration of acid hydrolysis, the higher was the content of norisoprenoids, volatile phenols, benzenes, lactones, Furaneol, and mesifurane. A total of 51 aglycones were identified, 38 of them unreported in strawberry. Olfactometric analyses revealed that the odorants with higher modified frequencies were Furaneol, γ-decalactone, ethyl butanoate, ethyl hexanoate, ethyl 3-methylbutanoate, diacetyl, hexanoic acid, and (Z)-1,5-octadien-3-one. This last compound, described as geranium/green/pepper/lettuce (linear retention index = 1378), was identified for the first time. Differences with regard to fruity, sweet, floral, and green aroma characters were observed among varieties. In Candonga and Fuentepina, the green character overpowered the sweet. In the other two strawberry varieties sweet attributes were stronger than the rest.

  10. Determination of Selected Aromas in Marquette and Frontenac Wine Using Headspace-SPME Coupled with GC-MS and Simultaneous Olfactometry

    Directory of Open Access Journals (Sweden)

    Somchai Rice

    2018-03-01

    Full Text Available Understanding the aroma profile of wines made from cold climate grapes is needed to help winemakers produce quality aromatic wines. The current study aimed to add to the very limited knowledge of aroma-imparting compounds in wines made from the lesser-known Frontenac and Marquette cultivars. Headspace solid-phase microextraction (SPME and gas chromatography-mass spectrometry (GC-MS with simultaneous olfactometry was used to identify and quantify selected, aroma-imparting volatile organic compounds (VOC in wines made from grapes harvested at two sugar levels (22° Brix and 24° Brix. Aroma-imparting compounds were determined by aroma dilution analysis (ADA. Odor activity values (OAV were also used to aid the selection of aroma-imparting compounds. Principal component analysis and hierarchical clustering analysis indicated that VOCs in wines produced from both sugar levels of Marquette grapes are similar to each other, and more similar to wines produced from Frontenac grapes harvested at 24° Brix. Selected key aroma compounds in Frontenac and Marquette wines were ethyl hexanoate, ethyl isobutyrate, ethyl octanoate, and ethyl butyrate. OAVs >1000 were reported for three aroma compounds that impart fruity aromas to the wines. This study provides evidence that aroma profiles in Frontenac wines can be influenced by timing of harvesting the berries at different Brix. Future research should focus on whether this is because of berry development or accumulation of aroma precursors and sugar due to late summer dehydration. Simultaneous chemical and sensory analyses can be useful for the understanding development of aroma profile perceptions for wines produced from cold-climate grapes.

  11. Characterization of the major odor-active compounds in Thai durian ( Durio zibethinus L. 'Monthong') by aroma extract dilution analysis and headspace gas chromatography-olfactometry.

    Science.gov (United States)

    Li, Jia-Xiao; Schieberle, Peter; Steinhaus, Martin

    2012-11-14

    An aroma extract dilution analysis applied on the volatile fraction isolated from Thai durian by solvent extraction and solvent-assisted flavor evaporation resulted in 44 odor-active compounds in the flavor dilution (FD) factor range of 1-16384, 41 of which could be identified and 24 that had not been reported in durian before. High FD factors were found for ethyl (2S)-2-methylbutanoate (fruity; FD 16384), ethyl cinnamate (honey; FD 4096), and 1-(ethylsulfanyl)ethanethiol (roasted onion; FD 1024), followed by 1-(ethyldisulfanyl)-1-(ethylsulfanyl)ethane (sulfury, onion), 2(5)-ethyl-4-hydroxy-5(2)-methylfuran-3(2H)-one (caramel), 3-hydroxy-4,5-dimethylfuran-2(5H)-one (soup seasoning), ethyl 2-methylpropanoate (fruity), ethyl butanoate (fruity), 3-methylbut-2-ene-1-thiol (skunky), ethane-1,1-dithiol (sulfury, durian), 1-(methylsulfanyl)ethanethiol (roasted onion), 1-(ethylsulfanyl)propane-1-thiol (roasted onion), and 4-hydroxy-2,5-dimethylfuran-3(2H)-one (caramel). Among the highly volatile compounds screened by static headspace gas chromatography-olfactometry, hydrogen sulfide (rotten egg), acetaldehyde (fresh, fruity), methanethiol (rotten, cabbage), ethanethiol (rotten, onion), and propane-1-thiol (rotten, durian) were found as additional potent odor-active compounds. Fourteen of the 41 characterized durian odorants showed an alkane-1,1-dithiol, 1-(alkylsulfanyl)alkane-1-thiol, or 1,1-bis(alkylsulfanyl)alkane structure derived from acetaldehyde, propanal, hydrogen sulfide, and alkane-1-thiols. Among these, 1-(propylsulfanyl)ethanethiol, 1-{[1-(methylsulfanyl)ethyl]sulfanyl}ethanethiol, and 1-{[1-(ethylsulfanyl)ethyl]sulfanyl}ethanethiol were reported for the first time in a natural product.

  12. Coffee residues as substrates for aroma production by Ceratocystis fimbriata in solid state fermentation Produção de aromas por Ceratocystis fimbriata em fermentaç��o no estado sólido utilizando resíduos da agroindústria do café como substratos

    Directory of Open Access Journals (Sweden)

    Adriane Bianchi Pedroni Medeiros

    2003-07-01

    Full Text Available The ability of two different strains of Ceratocystis fimbriata for fruity aroma production by solid state fermentation (SSF was tested on coffee pulp and coffee husk complemented with glucose as substrates. Experiments were carried out in 250 mL Erlenmeyer flasks and the experimental conditions were: 70% of initial moisture, 20% of glucose addition and pH 6.0. Aeration was made by passive diffusion through the gauze covering the flasks. Headspace analysis of the culture by gas chromatography (GC showed that 12 compounds were produced with coffee husk. Maximum total volatiles (TV concentration was reached after 72 h of culture with coffee husk as substrate (28 µmol.L-1.g-1. Ethyl acetate, ethanol and acetaldehyde were the major compounds produced, representing 84.7%, 7.6% and 2.0% of TV, respectively. A pre-treatment with heat (100ºC/ 40 min of substrates did not improve TV production. Respirometry analysis was used to determine the growth of the culture by measuring carbon dioxide produced. Results showed that the CO2 production follows the aroma production. This result shows the great potential for the use coffee pulp and coffee husk as substrates to microbial aroma production by solid state fermentation.Neste trabalho duas diferentes cepas de Ceratocystis fimbriata foram testadas para a produção de aromas frutais em fermentação no estado sólido (FES utilizando como substratos casca e polpa de café, suplementados com glicose. Os experimentos foram realizados em frascos Erlenmeyer de 250 mL. As condições experimentais foram: umidade inicial de 70%, adição de 20% de glicose e pH 6,0. Os frascos foram cobertos com gaze e a aeração ocorreu por difusão passiva. A análise do "headspace"da cultura foi feita por cromatografia gasosa e 12 compostos foram detectados utilizando a casca de café. A análise respirométrica foi realizada para o acompanhamento do crescimento do microrganismo pela determinação do dióxido de carbono

  13. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    Science.gov (United States)

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  14. Volatile compounds responsible for aroma of Jutrzenka liquer wine.

    Science.gov (United States)

    Jeleń, Henryk H; Majcher, Małgorzata; Dziadas, Mariusz; Zawirska-Wojtasiak, Renata; Czaczyk, Katarzyna; Wąsowicz, Erwin

    2011-10-21

    Jutrzenka is a sweet liquer wine produced in Poland from the grape variety of the same name, developed in Poland to withstand the harsh climate of winery regions. Jutrzenka wine has a characteristic aroma with strong fruity and flowery notes, which make it unique among other liquer wines as demonstrated in sensory profile analysis. The work was aimed at characterization of volatile compounds in this wine, with the emphasis on characterization of compounds responsible for its unique aroma. Gas chromatography-olfactometry (GC-O) was applied to identify the key odorants using aroma extract dilution analysis (AEDA) approach. To facilitate free and bound terpenes and C(13)-norisoprenoids identification solid phase extraction (SPE) was used followed by GC/MS. Among identified key odorants β-damascenone was the compound having the highest FD (4096), followed by isoamyl alcohol, 4-mercapto-4-methyl-2-pentanone (FD=2048), methional, linalool, ethyl decanoate (FD=1024) and ethyl hexanoate, furaneol (FD=512). Other significant compounds were ethyl 2-methyl propanoate, ethyl 2-methylbutanoate and phenyl ethyl alcohol. Determination of odor activity values (OAV) showed the highest values for β-damascenone (566), 4-mercapto-4-methyl-2-pentanone (288) ethyl hexanoate (32) and linalool (7). Jutrzenka exhibited also a rich profile of free, and to lesser extent bound terpenes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Effect of cofermentation of grape varieties on aroma profiles of la mancha red wines.

    Science.gov (United States)

    García-Carpintero, Eva Gómez; Sánchez-Palomo, Eva; Gómez Gallego, Manuel A; González-Viñas, Miguel A

    2011-10-01

    The effect of winemaking using blends of red grape varieties cultivated in La Mancha region (Spain) on the aroma profile of wines was researched by chemical characterization. Free and glycosidically bound aroma compounds were isolated by solid phase extraction using dichloromethane and ethyl acetate, respectively, as solvents in elution and then analyzed by gas chromatography-mass spectrometry. Free and bound volatile compounds were analyzed in Cencibel, Bobal, and Moravia Agria monovarietal wines, and in 3 wines obtained with the blending of grapes: Cencibel (50%) + Bobal (50%); Cencibel (50%) + Moravía Agria (50%); Cencibel (33%) + Bobal (33%) + Moravía Agria (33%). Aroma compounds were studied in terms of odor activity values (OAVs). Ninety free aroma compounds and sixty-five bound aroma compounds were identified and quantified. The odor activity values for the different compounds were classified into 7 odorant series. The fruity and sweet series contributed most strongly to the aroma profile of all wines, independently of the winemaking technique used. In general, co-winemaking wines present a more complex chemical profile than monovarietal wines. Practical Application: Some grape varieties could benefit from this process with the presence of other varieties that might have an excess of aroma compounds. In this study, the wines were elaborated by blending different grape varieties together; this process implies co-maceration and co-fermentation steps. The co-winemaking technique could benefit from additional molecules provided by the other varieties, which results in a more complex formation than in the case of monovarietal wines. This technique provides a viable alternative to traditional winemaking methods for improving and enhancing the sensory profile of elaborated wines. © 2011 Institute of Food Technologists®

  16. Sensory analysis and aroma compounds of buckwheat containing products-a review.

    Science.gov (United States)

    Starowicz, Małgorzata; Koutsidis, Georgios; Zieliński, Henryk

    2017-07-07

    Buckwheat is a rich source of starch, proteins, minerals and antioxidants, and as such has become a popular functional ingredient incorporated in diverse recipes/products with particular use in the gluten free market. Due to the absence of gluten, application of buckwheat or buckwheat derived ingredients in this particular food sector has increased significantly over recent years with many buckwheat-based products appearing globally. Sensory analysis is an integral part of the development of products that fulfill consumer expectations. Therefore, investigations on the incorporation of health promoting functional ingredients such as buckwheat into traditional recipes are often complemented by the evaluation of appearance, aroma, taste and texture as well as overall quality through standardized procedures involving trained judges or consumer panels. Aroma is of particular importance in driving consumer preference and its sensory assessment is often complemented with analytical workflows aiming to isolate and determine the concentration of volatile compounds in food and understand the effect of food components on the overall aroma intensity and/or perception of the final product. The present manuscript provides a review of recent advances and knowledge on the sensory characteristics, consumer preference and volatile compound analysis of buckwheat and buckwheat based products.

  17. Investigations on the Aroma of Cocoa Pulp ( Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans.

    Science.gov (United States)

    Chetschik, Irene; Kneubühl, Markus; Chatelain, Karin; Schlüter, Ansgar; Bernath, Konrad; Hühn, Tilo

    2018-03-14

    The odor-active constituents of cocoa pulp have been analyzed by aroma extract dilution analysis (AEDA) for the first time. Pulps of three different cocoa varieties have been investigated. The variety CCN51 showed low flavor intensities, in terms of flavor dilution (FD) factors, in comparison to varieties FSV41 and UF564, for which floral and fruity notes were detected in higher intensities. To gain first insights on a molecular level of how the cocoa pulp odorants affected the odor quality of cocoa beans during fermentation, quantitative measurements of selected aroma compounds were conducted in pulp and bean at different time points of the fermentation. The results showed significantly higher concentrations of 2-phenylethanol and 3-methylbutyl acetate in pulp than in the bean during the different time steps of the fermentation, whereas the reverse could be observed for the odorants linalool and 2-methoxyphenol. The findings of this study constitute a basis for further investigations on the aroma formation of cocoa during fermentation.

  18. Effects of bunch rot (Botrytis cinerea) and powdery mildew (Erysiphe necator) fungal diseases on wine aroma

    Science.gov (United States)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2017-03-01

    This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.

  19. Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science.

    Science.gov (United States)

    Steinhaus, Petra; Schieberle, Peter

    2007-07-25

    Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.

  20. Biochemistry of Apple Aroma: A Review

    Directory of Open Access Journals (Sweden)

    Miguel Espino-Díaz

    2016-01-01

    Full Text Available Flavour is a key quality att ribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in Apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.

  1. Biochemistry of Apple Aroma: A Review

    Science.gov (United States)

    Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo

    2016-01-01

    Summary Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production. PMID:28115895

  2. Effect of pre-bloom leaf removal on grape aroma composition and wine sensory profile of Semillon cultivar.

    Science.gov (United States)

    Alessandrini, Massimiliano; Battista, Fabrizio; Panighel, Annarita; Flamini, Riccardo; Tomasi, Diego

    2018-03-01

    Early leaf removal at pre-bloom is an innovative viticultural practice for regulating yield components and improving grape quality. The effects of this technique on vine performance, grape composition and wine sensory profile of Semillon variety were assessed. Pre-bloom leaf removal enhanced canopy porosity, total soluble solids in musts and reduced cluster compactness. This practice had a strong effect on glycoside aroma precursors, in particular by increasing glycoside terpenols and norisoprenoids. Metabolites of linalool were the most responsive to leaf removal. Wine produced from defoliated vines was preferred in tasting trials for its more intense fruity notes and mouthfeel attributes. Pre-bloom leaf removal is a powerful technique for modifying canopy microclimate, vine yield, grape composition and wine quality. The increase of glycoside aroma compounds in treated grapes has potential positive effect in improving the sensory profile of the resulting wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    Science.gov (United States)

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Application HTST-heating of the mash and its influence on the aroma composition during the production of apple brandy (author's transl)].

    Science.gov (United States)

    Schreier, P; Drawert, F; Steiger, G

    1978-08-18

    The influence of HTST-heating of the mash aroma composition during production of apply brandy has been investigated by means of gas chromatography and coupled gas chromatography--mass spectrometry. Starting from the apple aroma the changes in aroma components were studied quantitatively during the conventional production (without enzyme inhibition) as well as after HTST-heating (enzyme inactivation) of the mash. For this purpose 98 aroma compounds were determined in the course of mash production, fermentation and distillation. When employing HTST-heating the original aroma components of the apple particularly the fruit esters were present in appreciably higher concentrations in the mash as well as in the distillate than with the conventional production method. Simultaneously HTST-heating reduced the secondary aroma substances in mash and distillate which are formed with the conventional method by enzymatic-oxidative processes. In the unaged apple brandy obtained from HTST-treated mash lower amounts of lactates and higher concentrations of acetals were found compared with the conventionally produced distillate.

  5. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  6. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile.

    Science.gov (United States)

    Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang

    2018-01-01

    The use of selected Saccharomyces and non- Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii ( TD 12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC 45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC 45/ TD 12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/ TD 12 generated more C 6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non- Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  7. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile

    Directory of Open Access Journals (Sweden)

    Bo-Qin Zhang

    2018-04-01

    Full Text Available The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12, simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol, ethyl esters (ethyl decanoate and ethyl butanoate, terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol and acetate esters (ethyl acetate and isoamyl acetate. Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  8. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile

    Science.gov (United States)

    Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang

    2018-01-01

    The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide

  9. Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products

    International Nuclear Information System (INIS)

    Moshonas, M.G.; Shaw, P.E.

    1982-01-01

    Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 5-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found in peel oil from fruit treated with phosphine. (author)

  10. Impacto de las condiciones de beneficio sobre los compuestos precursores de aroma en granos de cacao (Theobroma cacao L del clon CCN-51.

    Directory of Open Access Journals (Sweden)

    Andrea Pallares Pallares

    2016-01-01

    Full Text Available Abstract The influence of the days of fermentation and drying in the aroma compounds (volatile fraction of cocoa beans CCN-51 was evaluated. The method used was Gas ChromatographyMass Spectrometry, coupled to Head Space Solid Phase Micro Extraction (HS-SPMEGC-GS. A multifactorial experimental design was created, containing 15 experiments per repetition. The fermentation technique was microfermentation in boxes, while drying was achieved by exposing the samples to the sun. A Principal Component Analysis (PCA allowed to explain 68% of the total variability associated with aroma characteristics (volatile compounds. Both, desirable and undesirable compounds were identified throughout the processes of fermentation and drying. The benefit process (fermentation and drying was divided in stages depending on the degree of fermentation. The desirable compounds identified were: 3-methy-1-butanol, 2-phenyl-ethanol, benzaldehyde, phenyl acetaldehyde, ethylhexanoate, ethyl benzoate, ethylphenyl acetate and 2-phenyl ethyl acetate, which are associated with odoriferous notes very nice (chocolate, candy, sweet, nutty, honey, fruity, floral. Finally, a pre-treatment of cocoa beans CCN-51 prior to fermentation was proposed to be incorporated during the benefit of the beans as it seems to enhance the formation of desirable aroma compounds.

  11. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  12. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters.

    Science.gov (United States)

    Cai, Jian; Zhu, Bao-Qing; Wang, Yun-He; Lu, Lin; Lan, Yi-Bin; Reeves, Malcolm J; Duan, Chang-Qing

    2014-07-01

    The influence of pre-fermentation cold maceration (CM) on Cabernet Sauvignon wines fermented in two different industrial-scale fermenters was studied. CM treatment had different effects on wine aroma depending on the types of fermenter, being more effective for automatic pumping-over tank (PO-tank) than automatic punching-down tank (PD-tank). When PO-tank was used, CM-treated wine showed a decrease in some fusel alcohols (isobutanol and isopentanol) and an increase in some esters (especially acetate esters). However, no significant changes were detected in these compounds when PD-tank was used. Ethyl 2-hexenoate and diethyl succinate were decreased, while geranylacetone was increased by the CM treatment in both fermenters. β-Damascenone was increased by the CM treatment in PO-tank fermented wines but decreased in PD-tank fermented wines. The fruity, caramel and floral aroma series were enhanced while chemical series were decreased by the CM treatment in PO-tank fermented wines. The content of (Z)-6-nonen-1-ol in the final wines was positively correlated to CM treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods.

    Science.gov (United States)

    Szczygiel, Edward J; Harte, Janice B; Strasburg, Gale M; Cho, Sungeun

    2017-09-01

    Food products produced with bean ingredients are gaining in popularity among consumers due to the reported health benefits. Navy bean (Phaseolus vulgaris) powder produced through extrusion can be considered as a resource-efficient alternative to conventional methods, which often involve high water inputs. Therefore, navy bean powders produced with extrusion and conventional methods were assessed for the impact of processing on consumer liking in end-use products and odor-active compounds. Consumer acceptance results reveal significant differences in flavor, texture and overall acceptance scores of several products produced with navy bean powder. Crackers produced with extruded navy bean powder received higher hedonic flavor ratings than those produced with commercial navy bean powder (P < 0.001). GC-O data showed that the commercial powder produced through conventional processing had much greater contents of several aliphatic aldehydes commonly formed via lipid oxidation, such as hexanal, octanal and nonanal with descriptors of 'grassy', 'nutty', 'fruity', 'dusty', and 'cleaner', compared to the extruded powder. Extrusion processed navy bean powders were preferred over commercial powders for certain navy bean powder applications. This is best explained by substantial differences in aroma profiles of the two powders that may have been caused by lipid oxidation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Development of a SPME-GC-MS method for the determination of volatile compounds in Shanxi aged vinegar and its analytical characterization by aroma wheel.

    Science.gov (United States)

    Zhu, Hong; Zhu, Jie; Wang, Lili; Li, Zaigui

    2016-01-01

    A solid-phase microextraction followed by gas chromatography-mass spectrometry method was developed to determine the volatile compounds in Shanxi aged vinegar. The optimal extraction conditions were: 50 °C for 20 min with a PDMS/DVB fiber. This analytical method was validated and showed satisfactory repeatability (0.5 %aroma-active compounds. Among them, propanoic acid, acetic acid, trimethyl-oxazole, butanoic acid, acetoin, 3-methylbutanoic acid and furfural were the most powerful odorants. The aroma wheel of Shanxi aged vinegar showed that the classes of sensory descriptors are first fatty and roasty, next woody and nutty and minor fruity and floral. Principal component analysis enabled us to investigate dissimilarity/similarity of Shanxi aged vinegar sample of different raw material and ageing time.

  15. SIFAT FISIOKIMIA DAN AROMA EKSTRAK VANILI

    Directory of Open Access Journals (Sweden)

    Dwi Setyaningsih

    2007-12-01

    Full Text Available The curing process of vanilla beans from dried vanilla to vanilla extract would give added value to vanilla products. Aroma and taste in vanilla extract depend on variety of plants, cultivation methods, and curing process. Indonesian vanilla extract tend to give woody and phenolic aroma because it was harvested too early and it did not cure perfectly. This study was to identify the physicochemical and aroma characteristics of vanilla extracts from importer, exporter, and vanilla extracts from the newest experiment from our laboratory. There were seven samples, three from importers (Tahiti grade I, Tahiti grade II, Virginia Dare, two from Indonesian Vanilla exporters (Djasula Wangi, Cobra, and two from our laboratory (G11, 57. The physicochemical characteristics which were analyzed were vanillin content, ash, soluble ash, alkalinity of soluble ash, alkalinity of total ash, total acidity, and lead number, all compared with the Food and Drugs Administration (FDA standard. Sensory analysis used aroma description test consist of qualitative descriptive test (in-depth interview and focus group methods and quantitative descriptive analysis. The result showed that the laboratory's sample from modified curing process (G11 followed the FDA standard in physicochemical characters, but the aroma description was not as strong as the aroma of vanilla extract from exporters, namely Cobra with creamy, sweet, and vanilla aroma; and vanilla extract from importer, namely Virginia with smoky and spicy aroma

  16. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  17. Authenticity of aroma components Enantiomeric separation and compound specific stable isotope analysis

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg

    of both enantiomers contrary to natural aromas where often only one of the enantiomers will be in excess. Consequently, if equal amounts of enantiomers are detected in a food product labelled “Natural” it could be an indication of adulteration. Artificial aroma compounds often have very different ratios......The word “authenticity” is increasingly used in the marketing of food products. A product can be marketed claiming its authenticity such as containing only natural ingredients or originating from a special location produced using local traditional production methods. Within the area of food...... ingredients a problem with authenticity of aroma compounds has occurred, because natural aromas are wholly or partly replaced with synthetic ones. This is a large economic problem, since natural aromas are often more expensive than artificial ones. Furthermore, the European Union has legal requirements...

  18. Red wine produced from the Isabella and Ives cultivar (Vitis Labrusca: profile of volatiles and aroma descriptors

    Directory of Open Access Journals (Sweden)

    Narciza Maria de Oliveira ARCANJO

    2018-03-01

    Full Text Available Abstract Considering the potential consumption and economic the importance that Isabella and Ives wines represent in the Brazilian consumer market as well as the scarcity of scientific data examining their quality, the objective of this study was to investigate the sensory quality and the volatiles profile of these wines. The volatile compounds were extracted by headspace solid-phase microextraction (HS-SPME and a total of 54 compounds were detected in red wine samples including esters (23, terpenes (12, alcohols (10, aldehydes and ketones (5 and amines (1 as well as 3 compounds belonging to other classes. Isabella and Ives red wines were sensorially characterized by 14 descriptors, through quantitative descriptive analysis (QDA. The PCAs fruity descriptors were the primary contributors to the aroma profile of the analyzed wines due to the presence of ethyl acetate and esters, especially in the wine coded as QM, which exhibited the highest variety of compounds. The differences observed in the principal components analysis, might have been influenced by the grape composition of each wine. Although the wines were from the same region, each came from a different winery and was subject to unique production processes.

  19. Time-Related Changes in Volatile Compounds during Fermentation of Bulk and Fine-Flavor Cocoa (Theobroma cacao Beans

    Directory of Open Access Journals (Sweden)

    Juan Manuel Cevallos-Cevallos

    2018-01-01

    Full Text Available Chocolate is one of the most consumed foods worldwide and cacao fermentation contributes to the unique sensory characteristics of chocolate products. However, comparative changes in volatiles occurring during fermentation of Criollo, Forastero, and Nacional cacao—three of the most representative cultivars worldwide—have not been reported. Beans of each cultivar were fermented for five days and samples were taken every 24 hours. Volatiles from each sample were adsorbed into a solid phase microextraction fiber and analyzed by gas chromatography-mass spectrometry. Aroma potential of each compound was determined using available databases. Multivariate data analyses showed partial clustering of samples according to cultivars at the start of the fermentation but complete clustering was observed at the end of the fermentation. The Criollo cacao produced floral, fruity, and woody aroma volatiles including linalool, epoxylinalool, benzeneethanol, pentanol acetate, germacrene, α-copaene, aromadendrene, 3,6-heptanedione, butanal, 1-phenyl ethenone, 2-nonanone, and 2-pentanone. Nacional cacao produced fruity, green, and woody aroma volatiles including 2-nonanone, 3-octen-1-ol, 2-octanol acetate, 2-undecanone, valencene, and aromadendrene. The Forastero cacao yielded floral and sweet aroma volatiles such as epoxylinalool, pentanoic acid, benzeneacetaldehyde, and benzaldehyde. This is the first report of volatiles produced during fermentation of Criollo, Forastero, and Nacional cacao from the same origin.

  20. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2011-01-01

    Full Text Available In order to investigate the composition of secondary aroma compounds of fresh grape marc distillates as a result of variety and production technology, 30 samples (6 varieties×5 samples were analysed. White grape marc samples from Malvazija istarska, Chardonnay and Muscat Blanc were obtained as by-products in standard white wine production, while red grape marc samples from Teran and Cabernet Sauvignon were obtained after standard red wine production procedures. Marc from red grape variety Muškat ruža porečki was obtained during the production of rosé wines. All fermented marc samples were distilled using a traditional copper alembic. The obtained distillates were subjected to GC/MS and GC/FID analyses. Malvazija istarska distillates exhibited exceptionally high methanol content. Distillates from white grape varieties were found to be characterized by higher C6 alcohol and 1-propanol concentrations, while red grape distillates contained higher amounts of the majority of alcohols, acids, and esters. In Muškat ruža distillates intermediate concentrations of many important aroma compounds were found. It was concluded that differences in the production technology parameters, depending on the variety, resulted in differences in secondary aroma profiles, most evident between distillates from white and red varieties. These findings were confirmed applying stepwise linear discriminant analysis (SLDA, which resulted in 100 % correct classification of distillates according to the variety and corresponding production technology.

  1. Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses.

    Science.gov (United States)

    Noguerol-Pato, R; González-Álvarez, M; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2012-10-15

    The aroma profiles obtained of three Garnacha Tintorera-based wines were studied: a base wine, a naturally sweet wine, and a mixture of naturally sweet wine with other sweet wine obtained by fortification with spirits. The aroma fingerprint was traced by GC-MS analysis of volatile compounds and by sensorial analysis of odours and tastes. Within the volatiles compounds, sotolon (73 μg/L) and acetoin (122 μg/L) were the two main compounds found in naturally sweet wine. With regards to the odorant series, those most dominant for Garnacha Tintorera base wine were floral, fruity and spicy. Instead, the most marked odorant series affected by off-vine drying of the grapes were floral, caramelized and vegetal-wood. Finally, odorant series affected by the switch-off of alcoholic fermentation with ethanol 96% (v/v) fit for human consumption followed by oak barrel aging were caramelized and vegetal-wood. A partial least square test (PLS-2) was used to detect correlations between sets of sensory data (those obtained with mouth and nose) with the ultimate aim of improving our current understanding of the flavour of Garnacha Tintorera red wines, both base and sweet. Based on the sensory dataset analysis, the descriptors with the highest weight for separating base and sweet wines from Garnacha Tintorera were sweetness, dried fruit and caramel (for sweet wines) vs. bitterness, astringency and geranium (for base wines). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A comparative study on aromatic profiles of strawberry vinegars obtained using different conditions in the production process.

    Science.gov (United States)

    Ubeda, Cristina; Callejón, Raquel M; Troncoso, Ana M; Moreno-Rojas, Jose M; Peña, Francisco; Morales, M Lourdes

    2016-02-01

    Impact odorants in strawberry vinegars produced in different containers (glass, oak and cherry barrels) were determined by gas chromatography-olfactometry using modified frequency (MF) technique, and dynamic headspace gas chromatography-mass spectrometry. Aromatic profile of vinegar from strawberry cooked must was also studied. All strawberry vinegars retained certain impact odorants from strawberries: 3-nonen-2-one, (E,E)-2,4-decadienal, guaiacol, nerolidol, pantolactone+furaneol, eugenol, γ-dodecalactone and phenylacetic acid. Isovaleric acid, pantolactone+furaneol, p-vinylguaiacol, phenylacetic acid and vanillin were the most important aroma-active compounds in all vinegars. The strawberry cooked must vinegar accounted for the highest number of impact odorants. Wood barrels provided more aroma complexity than glass containers. Impact odorants with grassy characteristics were predominant in vinegar from glass containers, and those with sweet and fruity characteristics in vinegars from wood barrels. Principal component analysis indicated that the production process led to differences in the impact odorants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Science.gov (United States)

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  4. Development of a headspace trap HRGC/MS method for the assessment of the relevance of certain aroma compounds on the sensorial characteristics of commercial apple juice.

    Science.gov (United States)

    Nikfardjam, Martin Pour; Maier, Daniel

    2011-06-15

    A reliable and simple method was developed for the completely automatised analysis of apple juice aroma compounds. In total 26 flavour compounds could be measured by headspace trap gas chromatography/mass spectrometry (GC/MS). We used the method to analyse 85 commercially available apple juices, of which 67 apple juices were not from concentrate. Our results show that apple juices not from concentrate are mainly characterised by flavour compounds responsible for fruity, ripe, and sweet aroma impressions, such as 1-butanol, 2-methyl-1-butanol, ethylbutyrate, and ethyl-2-methylbutyrate. On the contrary, apple juices made from concentrate were dominated by acetaldehyde, E-2-hexenal, 3-methyl-1-butanol, ethyl acetate, and hexanal, which are mainly responsible for sensory impressions, such as 'green, fresh, estery'. According to our data, neither of the single compounds nor indexes calculated thereof as suggested by some authors could be used for the reliable assessment of apple juice quality. Thus, these results suggest that sensory evaluation remains the ultimate mean to reliably assess apple juice quality. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Effects of Six Commercial Saccharomyces cerevisiae Strains on Phenolic Attributes, Antioxidant Activity, and Aroma of Kiwifruit (Actinidia deliciosa cv.) Wine

    Science.gov (United States)

    Li, Xingchen; Cao, Lin; Li, Shaohua; Wang, Ranran; Jiang, Zijing; Che, Zhenming; Lin, Hongbin

    2017-01-01

    “Hayward” kiwifruit (Actinidia deliciosa cv.), widely planted all around the world, were fermented with six different commercial Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, WLP77, JH-2, and CR476) to reveal their influence on the phenolic profiles, antioxidant activity, and aromatic components. Significant differences in the levels of caffeic acid, protocatechuate, and soluble solid content were found among wines with the six fermented strains. Wines fermented with RC212 strain exhibited the highest total phenolic acids as well as DPPH radical scavenging ability and also had the strongest ability to produce volatile esters. Wines made with S. cerevisiae BM 4×4 had the highest content of volatile acids, while the highest alcohol content was presented in CR476 wines. Scoring spots of wines with these strains were separated in different quadrants on the components of phenolics and aromas by principal component analyses. Kiwifruit wines made with S. cerevisiae RC212 were characterized by a rich fruity flavor, while CR476 strain and WLP77 strain produced floral flavors and green aromas, respectively. Altogether, the results indicated that the use of S. cerevisiae RC212 was the most suitable for the fermentation of kiwifruit wine with desirable characteristics. PMID:28251154

  6. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method.

    Science.gov (United States)

    Wang, Dong; Duan, Chang-Qing; Shi, Ying; Zhu, Bao-Qing; Javed, Hafiz Umer; Wang, Jun

    2017-08-01

    The conditions of sample pretreatments and HS-SPME for extracting volatile compounds from raisins were optimized, and the method was validated in the study. Free and glycosidically bound volatile compounds in three different fragrance intensities raisins were analysed using this method. There were 91 compounds identified, and 72, 26 and 8 of these compounds came from fresh grapes, the auto-oxidation of unsaturated fatty acids (UFAO) and the Maillard reaction, respectively. The aroma profiles of Thompson Seedless raisins (TSRs) and Centennial Seedless raisins (CSRs) were similar, while the floral, fruity, green and roasted aromas of CSRs were higher than those of TSRs due to the contributions of benzeneacetaldehyde, 2-pentylfuran, (E)-2-nonenal and 3-ethyl-2,5-dimethyl pyrazine. Decanal, rose oxide, geraniol, linalool and β-damascenone made the floral and fruity aromas of Zixiang Seedless raisins (ZSRs) greater than those in TSRs and CSRs, but the green and roasted aroma intensities of ZSRs were lower. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Aroma effects on food choice task behavior and brain responses to bakery food product cues

    NARCIS (Netherlands)

    Wijk, de Rene A.; Smeets, Paul A.M.; Polet, Ilse A.; Holthuysen, Nancy T.E.; Zoon, Jet; Vingerhoeds, Monique H.

    2018-01-01

    Bread, and especially whole grain bread is an important source of dietary fibers. It was tested with behavioral and fMRI measures whether bread becomes more attractive when it is presented with bread aroma. Twenty-eight healthy normal-weight women were exposed to images of bakery products (brown

  8. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method.

    Science.gov (United States)

    Arcari, Stefany Grützmann; Caliari, Vinicius; Sganzerla, Marla; Godoy, Helena Teixeira

    2017-11-01

    A methodology for the determination of volatile compounds in red wine using headspace solid phase microextraction (HS-SPME) combined with gas chromatography-ion trap/ mass spectrometry (GC-IT/MS) and flame ionization detector (GC -FID) was developed, validated and applied to a sample of Brazilian red wine. The optimization strategy was conducted using the Plackett-Burman design for variable selection and central composite rotational design (CCRD). The response surface methodology showed that the performance of the extraction of the volatile compounds using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is improved with no sample dilution, the addition of 30% NaCl, applying an extraction temperature of 56°C and extraction time of 55min. The qualitative method allowed the extraction and identification of 60 volatile compounds in the sample studied, notably the classes of esters, alcohols, and fatty acids. Furthermore, the method was successfully validated for the quantification of 55 volatile compounds of importance in wines and applied to twelve samples of Merlot red wine from South of Brazil. The calculation of the odor activity value (OAV) showed the most important components of the samples aroma. Ethyl isovalerate, ethyl hexanoate, 1-hexanol, octanoic acid and ethyl cinnamate had the greatest contribution to the aroma of the wines analyzed, which is predominantly fruity with the presence of herbal and fatty odors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits.

    Science.gov (United States)

    Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I

    2014-10-29

    Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.

  10. Agroforestry systems with fine aroma cocoa cultivation: socio-economic and productive environment

    Directory of Open Access Journals (Sweden)

    Deyanira Mata Anchundia

    2018-01-01

    Full Text Available The agroforestry systems with cocoa are good for many purposes and they give many products to a diversity of soil users, among them, to the families of the producers in their environment. The objective of the research was to evaluate the socioeconomic and productive factors in agroforestry systems with fine aroma cocoa of export, in the El Vergel parish of the Valencia canton, county of Los Ríos, Ecuador. A survey to a random sample of 35 farmers of El Vergel parish was carried out, to evaluate socioeconomic and productivevariables. A descriptive analysis was applied to the data of the surveys. Most of the interviewed producers (71,4 % ignore on agroforestry systems. The farmers possess among 0,63 up to 10 hectares. 100 % of them cultivates the fine aroma cocoa, like main cultivation and other secondary cultivations where they stand out the forest species (48,6 %. The families are conformed by 49,5 % males and 50,5 % women. Most of the farmers (males and women are home bosses, with an age that fluctuates among 45 to 54 years. Alone 37 % of the members of the home is devoted to the work in the agriculture. 51 % of the farmers cohabits in free union and 38,3 % are single. The main monthly entrance oscillates from zero to $488. The monthly expenses of the farmers fluctuate among $101,00 up to $500,00. The analyzed social and productive indicators are not in the level required to achieve the sustainable development of these agroforestry systems.

  11. Production and Recovery of Aroma Compounds Produced by Solid-State Fermentation Using Different Adsorbents

    Directory of Open Access Journals (Sweden)

    Adriane B. P. Medeiros

    2006-01-01

    Full Text Available Volatile compounds with fruity characteristics were produced by Ceratocystis fimbriata in two different bioreactors: columns (laboratory scale and horizontal drum (semi-pilot scale. Coffee husk was used as substrate for the production of volatile compounds by solid-state fermentation. The production of volatile compounds was significantly higher when horizontal drum bioreactor was used than when column bioreactors were used. These results showed that this model of bioreactor presents good perspectives for scale-up and application in an industrial production. Headspace analysis of the solid-state culture detected twelve compounds, among them: ethanol, acetaldehyde, ethyl acetate, ethyl propionate, and isoamyl acetate. Ethyl acetate was the predominant product in the headspace (28.55 µmol/L/g of initial dry matter. Activated carbon, Tenax-TA, and Amberlite XAD-2 were tested to perform the recovery of the compounds. The adsorbent columns were connected to the column-type bioreactor. All compounds present in the headspace of the columns were adsorbed in Amberlite XAD-2. With Tenax-TA, acetaldehyde was adsorbed in higher concentrations. However, the recovery found by using the activated carbon was very low.

  12. Characteristic aroma components of rennet casein.

    Science.gov (United States)

    Karagül-Yüceer, Yonca; Vlahovich, Katrina N; Drake, MaryAnne; Cadwallader, Keith R

    2003-11-05

    Rennet casein, produced by enzymatic (rennet) precipitation of casein from pasteurized skim milk, is used in both industrial (technical) and food applications. The flavor of rennet casein powder is an important quality parameter; however, the product often contains an odor described as like that of animal/wet dog. Two commercial rennet casein powders were evaluated to determine the compounds responsible for the typical odor. Aroma extracts were prepared by high-vacuum distillation of direct solvent (ether) extracts and analyzed by gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and GC-mass spectrometry (MS). Odorants detected by GCO were typical of those previously reported in skim milk powders and consisted mainly of short-chain volatile acids, phenolic compounds, lactones, and furanones. Results of AEDA indicated o-aminoacetophenone to be a potent odorant; however, sensory descriptive sensory analysis of model aroma systems revealed that the typical odor of rennet casein was principally caused by hexanoic acid, indole, guaiacol, and p-cresol.

  13. Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation.

    Science.gov (United States)

    Tokitomo, Yukiko; Steinhaus, Martin; Büttner, Andrea; Schieberle, Peter

    2005-07-01

    By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.

  14. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    OpenAIRE

    Samantha Fairbairn; Alexander McKinnon; Hannibal T. Musarurwa; António C. Ferreira; António C. Ferreira; Florian F. Bauer

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth p...

  15. Theoretical and practical aspects of aroma retention in spray drying and freeze drying

    NARCIS (Netherlands)

    Coumans, W.J.; Kerkhof, P.J.A.M.; Bruin, S.

    1994-01-01

    A review with 75 refs. on aroma loss in slab drying, spray drying and freeze drying. For many food products the presence of volatile aroma components is a prime quality feature. Upon drying part of these components may be lost, leading to unbalanced flavor patterns in the reconstituted product. The

  16. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology

    OpenAIRE

    Borislav Miličević; Mara Banović; Srećko Tomas; Sanja Radeka; Đordano Peršurić; Igor Lukić

    2011-01-01

    In order to investigate the composition of secondary aroma compounds of fresh grape marc distillates as a result of variety and production technology, 30 samples (6 varieties×5 samples) were analysed. White grape marc samples from Malvazija istarska, Chardonnay and Muscat Blanc were obtained as by-products in standard white wine production, while red grape marc samples from Teran and Cabernet Sauvignon were obtained after standard red wine production procedures. Marc from red grape variety Mu...

  17. Selective removal of methyl mercaptan in coffee aroma using oxidized microporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, T. [Ajinomoto General Foods Inc., Tokyo (Japan). Central Research Laboratoties; Tamon, H.; Okazaki, M. [Kyoto University, Kyoto (Japan). Dept. of Chemical Engineering

    1999-10-01

    Coffee aroma recovered from the extraction process of roasted coffee beans is used to improve the quality of soluble coffee products. Coffee aroma often has an irritating sulfurous odor. In the present work, it is experimentally elucidated that methyl mercaptan could be selectively removed from the coffee aroma-containing gas by the oxidized microporous carbon. Breakthrough curves of coffee aroma-containing gas on zeolite 5A, microporous carbon (MSC 5A), and MSC 5A oxidized with 13.2N HNO{sub 3} aqueous solution revealed that the adsorption capacity of methyl mercaptan on the oxidized carbon was 4.2 times of that on the zeolite. The loss of desired coffee aroma was decreased using the oxidized carbon in the removal of methyl mercaptan. (author)

  18. Food aroma affects bite size

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-03-01

    Full Text Available Abstract Background To evaluate the effect of food aroma on bite size, a semisolid vanilla custard dessert was delivered repeatedly into the mouth of test subjects using a pump while various concentrations of cream aroma were presented retronasally to the nose. Termination of the pump, which determined bite size, was controlled by the subject via a push button. Over 30 trials with 10 subjects, the custard was presented randomly either without an aroma, or with aromas presented below or near the detection threshold. Results Results for ten subjects (four females and six males, aged between 26 and 50 years, indicated that aroma intensity affected the size of the corresponding bite as well as that of subsequent bites. Higher aroma intensities resulted in significantly smaller sizes. Conclusions These results suggest that bite size control during eating is a highly dynamic process affected by the sensations experienced during the current and previous bites.

  19. Aroma components of American country ham.

    Science.gov (United States)

    Song, H; Cadwallader, K R

    2008-01-01

    The aroma-active compounds of American country ham were investigated by using direct solvent extraction-solvent assisted flavor evaporation (DSE-SAFE), dynamic headspace dilution analysis (DHDA), gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and gas chromatography-mass spectrometry (GC-MS). The results indicated the involvement of numerous volatile constituents in the aroma of country ham. For DHDA, 38 compounds were identified as major odorants, among them, 1-octen-3-one, 2-acetyl-1-pyrroline, 1-nonen-3-one, decanal, and (E)-2-nonenal were the most predominant, having FD-factors >or= 125 in all 3 hams examined, followed by 3-methylbutanal, 1-hexen-3-one, octanal, acetic acid, phenylacetaldehyde, and Furaneol. For the DSE-SAFE method, the neutral/basic fraction was dominated by 1-octen-3-one, methional, guaiacol, (E)-4,5-epoxy-(E)-decenal, p-cresol as well as 3-methylbutanal, hexanal, 2-acetyl-1-pyrroline, phenylacetaldehyde, and gamma-nonalactone. The acidic fraction contained mainly short-chain volatile acids (3-methylbutanoic acid, butanoic acid, hexanoic acid, and acetic acid) and Maillard reaction products (for example, 4-hydroxy-2,5-dimethyl-3(2H)-furanone). The above compounds identified were derived from lipid oxidation, amino acid degradation, and Maillard/Strecker and associated reactions. Both methods revealed the same nature of the aroma components of American country ham.

  20. THEORY DEVELOPMENT OF ENZYMATIC AROMA RECOVERY

    Directory of Open Access Journals (Sweden)

    G. E. Dubova

    2014-01-01

    Full Text Available Summary. The fruit and vegetable pretreatment conditions and subsequent environment in which enzymatic reactions take place can be considered as potential factors in the formation of fresh flavors. The synthesis of aromatic components of fresh grass and green leaves occurs involving vegetable lipoxygenases. The molecules of a precursor-compound can withstand the processing modes, while enzymes and aromatic compounds break down frequently. Vegetable homogenates are potential sources of enzymes which produce natural aromatic substances. Formation of fresh favors is the most perceptible when it occurs as the result of the reaction between poliunsaturated fatty acids of cytoplasmic membranes and lipoxygenases and hydroperoxide lyase of plant material. Pre-treatment of samples positively influences binding energy in the complex of enzyme-substrate. The change of iodine number in treated homogenates, as compared to fresh ones, shows isomerization of flavor precursors. The minimal quantity of homogenates introduced (up to 20 g and the duration of aroma-restoring reaction (from 5 to 7 minutes were defined. Pre-cooling of homogenates activates enzymes, strengthens oxidability of the PUFA, and results in recovery of fresh aroma of plant material. Under conditions of enzyme inactivation, the synthesis of aromas is not possible. Conversely, production of aroma in food glazes and foams is possible in case of interphase activation between a substrate and enzymes.

  1. Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry

    NARCIS (Netherlands)

    Xu, X.Q.; Mo, H.Z.; Yan, M.C.; Yang Zhu, Yang

    2007-01-01

    Fuzhuan brick-tea is a popular fermented Chinese dark tea because of its typical fungal aroma. Fungal growth during the production process is the key step in achieving the unique colour, aroma and taste of Fuzhuan brick-tea. To further understand the generation of the characteristic aroma, changes

  2. Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs

    Directory of Open Access Journals (Sweden)

    Leelaphiwat Pattarin

    2016-01-01

    Full Text Available This study determined the main transport coefficients (diffusion, solubility and permeability of key aroma compounds present in tropical herbs (eucalyptol and estragol through low‒density polyethylene (LDPE, polypropylene (PP, nylon (Nylon, polyethylene terephthalate (PET, metalized‒polyethylene terephthalate (MPET and poly(lactic acid (PLA films at 15 and 25 °C. The concentration of aroma compounds permeating through the films were evaluated at various time intervals using a gas chromatograph flame ionization detector (GC–FID. Results showed that the diffusion coefficients of aroma compounds were highest in LDPE whereas the solubility coefficients were highest in PLA at both temperatures. PLA had the highest permeability coefficients for estragol at both temperatures. PP and LDPE had the highest permeability coefficients for eucalyptol at 15 and 25 °C, respectively. MPET had the lowest permeability for both aroma compounds studied. Aroma barrier properties can be used when selecting polymeric packaging materials to prevent aroma loss in various food and consumer products.

  3. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    Directory of Open Access Journals (Sweden)

    Samantha Fairbairn

    2017-12-01

    Full Text Available Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  4. Analysis of aroma compounds of pitaya fruit wine

    Science.gov (United States)

    Gong, Xiao; Ma, Lina; Li, Liuji; Yuan, Yuan; Peng, Shaodan; Lin, Mao

    2017-12-01

    In order to analyze the volatile components in red pitaya fruit wine, the study using headspace solid phase microextractionand gas chromatography-mass spectrometry technology of pitaya fruit juice and wine aroma composition analysis comparison. Results showed that 55 volatile components were detected in red pitaya fruit wine, including 12 kinds of alcohol (18.16%), 18 kinds of esters (66.17%), 7 kinds of acids (5.94%), 11 kinds of alkanes (4.32%), one kind of aldehyde (0.09%), 2 kinds of olefins (0.09%) and 3 kinds of other volatile substances (0.23%). Relative contents among them bigger have 11 species, such as decanoic acid, ethyl ester (22.92%), respectively, diisoamylene (20.75%), octanoic acid, ethyl ester (17.73%), etc. The red pitaya fruit wine contained a lot of aroma components, which offer the products special aroma like brandy, rose and fruit.

  5. Effect of Food Emulsifiers on Aroma Release

    Directory of Open Access Journals (Sweden)

    Jia-Jia Li

    2016-04-01

    Full Text Available This study aimed to determine the influence of different emulsifiers or xanthan-emulsifier systems on the release of aroma compounds. Solid-phase microextraction (SPME and GC-MS were used to study the effects of varying concentrations of xanthan gum, sucrose fatty acid ester, Tween 80 and soybean lecithin on the release of seven aroma compounds. The effects of the emulsifier systems supplemented with xanthan gum on aroma release were also studied in the same way. The results showed varying degrees of influence of sucrose fatty acid ester, soybean lecithin, Tween 80 and xanthan gum on the release of aroma compounds. Compared with other aroma compounds, ethyl acetate was more likely to be conserved in the solution system, while the amount of limonene released was the highest among these seven aroma compounds. In conclusion, different emulsifiers and complexes showed different surface properties that tend to interact with different aroma molecules. The present studies showed that the composition and structure of emulsifiers and specific interactions between emulsifiers and aroma molecules have significant effects on aroma release.

  6. Adding Flavor to Beverages with Non-Conventional Yeasts

    Directory of Open Access Journals (Sweden)

    Davide Ravasio

    2018-02-01

    Full Text Available Fungi produce a variety of volatile organic compounds (VOCs during their primary and secondary metabolism. In the beverage industry, these volatiles contribute to the the flavor and aroma profile of the final products. We evaluated the fermentation ability and aroma profiles of non-conventional yeasts that have been associated with various food sources. A total of 60 strains were analyzed with regard to their fermentation and flavor profile. Species belonging to the genera Candida, Pichia and Wickerhamomyces separated best from lager yeast strains according to a principal component analysis taking alcohol and ester production into account. The speed of fermentation and sugar utilization were analysed for these strains. Volatile aroma-compound formation was assayed via gas chromatography. Several strains produced substantially higher amounts of aroma alcohols and esters compared to the lager yeast strain Weihenstephan 34/70. Consequently, co-fermentation of this lager yeast strain with a Wickerhamomyces anomalus strain generated an increased fruity-flavour profile. This demonstrates that mixed fermentations utilizing non-Saccharomyces cerevisiae biodiversity can enhance the flavour profiles of fermented beverages.

  7. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    Science.gov (United States)

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Determination of Favorite Wine from Comparison of Wine Aroma Attributes

    Science.gov (United States)

    Koike, Takayuki; Kamimura, Hironobu; Shimada, Kouji; Yamada, Hiroshi; Kaneki, Noriaki

    The decision to choose the appropriate product matching the preference of each individual is based on the psychological impression of the adjective and the alternatives. The preference for a product group and physical condition also affect decision-making. The purpose of this study was to investigate the influence of differences in the preference of wine and changes in hunger level on the psychological and neuro-physiological aspects of decision-making where the subjects were asked to choose their most favorite wine after sniffing the aroma of several wines. The psychological aspects of decision-making while sniffing five different kinds of wine were evaluated by the analytical hierarchal process (AHP) method, while the neuro-physiological aspects were evaluated by measuring the level of oxygenated hemoglobin concentrations (O2Hb) in the process of smelling the wine aromas within three minutes compared to when the non-odor and alcoholic solutions were presented. AHP analysis showed that the adjective “Favorite” was given the highest importance and a white wine with a sweet aroma was the most favored wine, regardless of the wine preference. The normalized mean O2Hb levels in each minute showed that, in the case of the wine lovers, the time course of the O2Hb level, decreased when they sensed the wine aroma compared to when they sensed non-odor solutions, and, in non-wine lovers, the O2Hb levels remained at higher values compared to the smell of the non-odor solution when they sensed the aroma of the alcoholic solution. The results indicate that there are differences with regard to decision-making between the psychological and physiological aspects when people are made to choose their most favorite wine by sniffing wine aromas.

  9. The FRUITY database on AGB stars: past, present and future

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    2016-01-01

    We present and show the features of the FRUITY database, an interactive web- based interface devoted to the nucleosynthesis in AGB stars. We describe the current available set of AGB models (largely expanded with respect to the original one) with masses in the range 1.3≤M/M⊙≤3.0 and metallicities -2.15 ≤[Fe/H]≤+0.15. We illustrate the details of our s-process surface distributions and we compare our results to observations. Moreover, we introduce a new set of models where the effects of rotation are taken into account. Finally, we shortly describe next planned upgrades.

  10. Aroma compounds in sweet whey powder.

    Science.gov (United States)

    Mahajan, S S; Goddik, L; Qian, M C

    2004-12-01

    Aroma compounds in sweet whey powder were investigated in this study. Volatiles were isolated by solvent extraction followed by solvent-assisted flavor evaporation. Fractionation was used to separate acidic from nonacidic volatiles. Gas chromatography/mass spectrometry and gas chromatography/olfactometry were used for the identification of aroma compounds. Osme methodology was applied to assess the relative importance of each aroma compound. The most aroma-intense free fatty acids detected were acetic, propanoic, butanoic, hexanoic, heptanoic, octanoic, decanoic, dodecanoic, and 9-decenoic acids. The most aroma-intense nonacidic compounds detected were hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-one, methional, 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3-dimethylpyrazine, 2,3,5-trimethylpyrazine, furfuryl alcohol, p-cresol, 2-acetylpyrrole, maltol, furaneol, and several lactones. This study suggested that the aroma of whey powder could comprise compounds originating from milk, compounds generated by the starter culture during cheese making, and compounds formed during the manufacturing process of whey powder.

  11. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose

    Science.gov (United States)

    Ralisnawati, D.; Sukartiko, A. C.; Suryandono, A.; Triyana, K.

    2018-03-01

    Indonesia is currently the sixth largest tea producer in the world. However, consumption of the product in the country was considered low. Besides tea, the country also has various local flavor ingredients that are potential to be developed. The addition of local flavored ingredients such as ginger, lemon grass, and lime leaves on green tea products is gaining acceptance from consumers and producers. The aroma of local flavored green tea was suspected to changes during storage, while its sensory testing has some limitations. Therefore, the study aimed to detect aroma changes of local flavors added in green tea using electronic nose (e-nose), an instrument developed to mimic the function of the human nose. The test was performed on a four-gram sample. The data was collected with 120 seconds of sensing time and 60 seconds of blowing time. Principal Component Analysis (PCA) was used to find out the aroma changes of local flavored green tea during storage. We observed that electronic nose could detect aroma changes of ginger flavored green tea from day 0 to day 6 with variance percentage 99.6%. Variance proportion of aroma changes of lemon grass flavored green tea from day 0 to day 6 was 99.3%. Variance proportion of aroma changes of lime leaves flavored green tea from day 0 to day 6 was 99.4%.

  12. Multimodal sensory integration during sequential eating--linking chewing activity, aroma release, and aroma perception over time.

    Science.gov (United States)

    Leclercq, Ségolène; Blancher, Guillaume

    2012-10-01

    The respective effects of chewing activity, aroma release from a gelled candy, and aroma perception were investigated. Specifically, the study aimed at 1) comparing an imposed chewing and swallowing pattern (IP) and free protocol (FP) on panelists for in vivo measurements, 2) investigating carryover effects in sequential eating, and 3) studying the link between instrumental data and their perception counterpart. Chewing activity, in-nose aroma concentration, and aroma perception over time were measured by electromyography, proton transfer reaction-mass spectrometry, and time intensity, respectively. Model gel candies were flavored at 2 intensity levels (low-L and high-H). The panelists evaluated 3 sequences (H then H, H then L, and L then H) in duplicates with both IP and FP. They scored aroma intensity over time while their in-nose aroma concentrations and their chewing activity were measured. Overall, only limited advantages were found in imposing a chewing and swallowing pattern for instrumental and sensory data. In addition, the study highlighted the role of brain integration on perceived intensity and dynamics of perception, in the framework of sequential eating without rinsing. Because of the presence of adaptation phenomena, contrast effect, and potential taste and texture cross-modal interaction with aroma perception, it was concluded that dynamic in-nose concentration data provide only one part of the perception picture and therefore cannot be used alone in prediction models.

  13. Microbial Glycosidases for Wine Production

    Directory of Open Access Journals (Sweden)

    Sergi Maicas

    2016-08-01

    Full Text Available Winemaking is a complex process involving the interaction of different microbes. The two main groups of microorganisms involved are yeasts and bacteria. The yeasts present in spontaneous fermentation may be divided into two groups: the Saccharomyces yeasts, particularly S. cerevisiae; and the non-Saccharomyces yeasts, which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula, and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermentation. They have been used by humans for thousands of years for the production of fermented beverages and foods, including wine. Their enzymes provide interesting organoleptic characteristics in wine. Glycosidases with oenological implications have been widely reported in yeasts, bacteria, and fungi. β-Glucosidase activity is involved in the release of terpenes to wine, thus contributing to varietal aroma. α-Rhamnosidase, α-arabinosidase, or β-apiosidase activities have also been reported to contribute to the wine production process. Oenococcus oeni (a lactic acid bacteria present in wine also has numerous glycosidases, and their activities contribute to the liberation of several aromatic compounds which contribute to floral and fruity wine characteristics.

  14. Taste and aroma of fresh and stored mandarins.

    Science.gov (United States)

    Tietel, Zipora; Plotto, Anne; Fallik, Elazar; Lewinsohn, Efraim; Porat, Ron

    2011-01-15

    During the last decade there has been a continuous rise in consumption of fresh easy-to-peel mandarins. However, mandarins are much more perishable than other citrus fruit, mainly due to rapid deterioration in sensory acceptability after harvest. In the current review we discuss the biochemical components involved in forming the unique flavor of mandarins, and how postharvest storage operations influence taste and aroma and consequently consumer sensory acceptability. What we perceive as mandarin flavor is actually the combination of basic taste, aroma and mouth-feel. The taste of mandarins is principally governed by the levels of sugars and acids in the juice sacs and the relative ratios among them, whereas the aroma of mandarins is derived from a mixture of different aroma volatiles, including alcohols, aldehydes, ketones, terpenes/hydrocarbons and esters. During postharvest storage and marketing there is a gradual decrease in mandarin sensory acceptability, which has been attributed to decreases in acidity and typical mandarin flavor, paralleling an accumulation of off-flavor. Biochemical analysis of volatile and non-volatile constituents in mandarin juice demonstrated that these changes in sensory acceptability were concomitant with decreases in acidity and content of terpenes and aldehydes, which provide green, piney and citrus aroma on the one hand, and increases in ethanol fermentation metabolism products and esters on the other, which are likely to cause 'overripe' and off-flavors. Overall, we demonstrate the vast importance of the genetic background, maturity stage at harvest, commercial postharvest operation treatments, including curing, degreening and waxing, and storage duration on mandarin sensory quality. Copyright © 2010 Society of Chemical Industry.

  15. Characterization and comparison of key aroma compounds in raw and dry porcini mushroom (Boletus edulis) by aroma extract dilution analysis, quantitation and aroma recombination experiments.

    Science.gov (United States)

    Zhang, Huiying; Pu, Dandan; Sun, Baoguo; Ren, Fazheng; Zhang, Yuyu; Chen, Haitao

    2018-08-30

    A study was carried out to determine and compare the key aroma compounds in raw and dry porcini mushroom (Boletus edulis). The volatile fractions were prepared by solvent-assisted flavor evaporation (SAFE), and aroma extract dilution analysis (AEDA) combined with gas chromatography-mass spectrometry (GC-MS) was employed to identify the odorants. Selected aroma compounds were quantitated and odor activity values (OAVs) were calculated revealing OAVs ≥ 1 for 12 compounds in raw porcini, among which 1-octen-3-one showed the highest OAV. In addition to compounds with eight carbon atoms, 3-methylbutanal, (E,E)-2,4-decadienal and (E,E)-2,4-nonadienal were also responsible for the unique aroma profile. In dry mushroom OAVs ≥ 1 were obtained for 20 odorants. Among them, 3-(methylthio)propanal, 1-octen-3-one and pyrazines were determined as predominant odorants. Overall, drying increased complexity of volatile compounds, thus significantly changing the aroma profile of porcini, providing more desirable roasted and seasoning-like flavor and less grass-like and earthy notes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Penerapan Aplikasi Fruity Loops sebagai Media Pembelajaran Penciptaan Komposisi dan Aransemen Tata Suara

    Directory of Open Access Journals (Sweden)

    Yunanto Tri Laksono

    2017-11-01

    Full Text Available The software is one of the essential tools in the learning process used in the modern era today, both for the improvement of technology and as a medium of learning. Fruity Loops is one of the learning media based on digital technology in the form of software used in writing and creating works or arrangements on the art of music in the way of partitions and audio. The structure of the creation of compositions and arrangements is an essential part of the art of music, mostly the value of harmonization created and felt in developing creativity in the art of music. Several things play a crucial role in the planning of the arrangement and composition, namely: (a the form of musical composition, (b primary ideas, (c concepts, (d patterns and methods of arrangement, (e musical works. DIV Computer Multimedia at Stikom Surabaya which is the object of this research is one of the study programs which focus on film, television, and animation, so the purpose of learning through Fruity Loops is to develop the concept of sound in animation and film, and videos are original and do not violate copyright ethics, and serve as an introduction to learning based on Communication Technology.

  17. Wheat bread aroma compounds in crumb and crust: A review.

    Science.gov (United States)

    Pico, Joana; Bernal, José; Gómez, Manuel

    2015-09-01

    Bread is one of the most widely consumed foods in the world. Among the different properties that define its quality, the aroma of bread is considered essential to its approval by consumers. Knowing what the compounds found in bread are, as well as the most important ones in crumb and crust, and understanding their biological sources and how they affect the final aroma of bread, could make it possible to modify the steps of bread manufacturing in order to enhance those with a positive impact and reduce those with a negative impact. The aim of this review is to provide a guideline correlating a great deal of the information now available regarding wheat bread aroma. For this purpose, a total of 326 volatile compounds reported in the literature have been included. The sensorial correlation of these compounds with the final aroma of wheat bread has also been explained, as well as the biological sources that generate them. Finally, it is shown how modifying the production stages of wheat bread could also affect the odour quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    Science.gov (United States)

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino

    2015-01-01

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272

  19. Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil.

    Science.gov (United States)

    Sun, Hao; Ni, Hui; Yang, Yuanfan; Wu, Ling; Cai, Hui-nong; Xiao, An-feng; Chen, Feng

    2014-12-10

    Deterioration of aromas of pummelo essential oil (EO) induced by sunlight was compared to those induced by heat and oxygen exposure using the techniques of sensory evaluation and GC-MS analysis. The sunlight-exposed EO was found to possess an oily off-flavor odor, which was significantly different from its counterparts induced by oxygen and heat. The strong oily note of the sunlight-exposed EO was attributed to the existence of linalool oxides and limonene oxides, as well as the lack of neral and geranial, for which UV sunlight was revealed to be the critical contributor causing the chemical reactions for the aroma changes. The results demonstrated that UV sunlight could significantly affect the aroma of the pummelo EO, providing valuable information that will benefit the production and storage of EO-based aromatic products.

  20. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch

    2015-03-01

    Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.

  1. Flavor perception and aroma release from model dairy desserts.

    Science.gov (United States)

    Lethuaut, Laurent; Weel, Koen G C; Boelrijk, Alexandra E M; Brossard, Chantal D

    2004-06-02

    Six model dairy desserts, with three different textures and two sucrose levels, were equally flavored with a blend of four aroma compounds [ethyl pentanoate, amyl acetate, hexanal, and (E)-2-hexenal] and evaluated by a seven person panel in order to study whether the sensory perception of the flavor and the aroma release during eating varied with the textural characteristics or the sweetness intensity of the desserts. The sensory perception was recorded by the time intensity (TI) method, while the in vivo aroma release was simultaneously measured by the MS-nose. Considering the panel as a whole, averaged flavor intensity increased with sucrose level and varied with the texture of the desserts. Depending on the aroma compound, the averaged profile of in vivo aroma release varied, but for each aroma compound, averaged aroma release showed no difference with the sucrose level and little difference with the texture of the desserts. Perceptual sweetness-aroma interactions were the main factors influencing perception whatever the texture of the desserts.

  2. Aroma: a larger than life experience?

    Directory of Open Access Journals (Sweden)

    Delphine DE SWARDT

    2015-12-01

    Full Text Available Aroma is today an essential part of our diet. Often used to reinforce the initial neutral taste of the food produced on an industrial scale, it is sometimes the main course, at the core of many edible products. First thought as accessory, it now takes the lead. From this observation and through the review of examples of the food industry, this article puts forward the hypothesis that the aroma supplants the food –in the relation of resemblance between the original model and its representation, which falls under the inculcation – and eclipses it. Potentially strong on the palate, it is a promise of intense experience. This is particularly true in the case of flavors without pre-established references. Pure abstract aromatic constructions allow greater freedom of projection, and foster discursive emphasis. In these cases, the taste alone, uncorrelated with prerogatives of nutrition, becomes the support of a hyperesthesic experience.

  3. Production of aromas and fragrances through microbial oxidation of monoterpenes

    Directory of Open Access Journals (Sweden)

    H. F. Rozenbaum

    2006-09-01

    Full Text Available Aromas and fragrances can be obtained through the microbial oxidation of monoterpenes. Many microorganisms can be used to carry out extremely specific conversions using substrates of low commercial value. However, for many species, these substrates are highly toxic, consequently inhibiting their metabolism. In this work, the conversion ability of Aspergillus niger IOC-3913 for terpenic compounds was examined. This species was preselected because of its high resistance to toxic monoterpenic substrates. Though it has been grown in media containing R-limonene (one of the cheapest monoterpenic hydrocarbons, which is widely available on the market, the species has not shown the ability to metabolize it, since biotransformation products were not detected in high resolution gas chromatography analyses. For this reason, other monoterpenes (alpha-pinene, beta-pinene and camphor were used as substrates. These compounds were shown to be metabolized by the selected strain, producing oxidized compounds. Four reaction systems were used: a biotransformation in a liquid medium with cells in growth b with pre-grown cultures c with cells immobilized in a synthetic polymer network and d in a solid medium to which the substrate was added via the gas phase. The main biotransformation products were found in all the reaction systems, although the adoption of previously cultivated cells seemed to favor biotransformation. Cell immobilization seemed to be a feasible strategy for alleviating the toxic effect of the substrate. Through mass spectrometry it was possible to identify verbenone and alpha-terpineol as the biotransformation products of alpha-pinene and beta-pinene, respectively. The structures of the other oxidation products are described.

  4. Preparation of reminiscent aroma mixture of Japanese soy sauce.

    Science.gov (United States)

    Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya

    2016-01-01

    To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.

  5. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

    OpenAIRE

    Belda Aguilar, Ignacio; Ruiz, Javier; Esteban Fernández, Adelaida; Navascués, Eva; Marquina Díaz, Domingo; Santos de la Sen, Antonio; Moreno Arribas, M. Victoria

    2017-01-01

    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer’s preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production ...

  6. Changes in aroma composition of blackberry wine during ...

    African Journals Online (AJOL)

    The study aimed at investigating the influence of fermentation (primary and secondary) on aroma composition of blackberry wine. Gas chromatography-mass spectrometry (GC-MS) was applied to quantify the compounds relevant to sparkling wine aroma. Investigation on this study revealed that a number of aroma ...

  7. Aroma barrier properties of sodium caseinate-based films.

    Science.gov (United States)

    Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée

    2008-05-01

    The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.

  8. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests.

    Science.gov (United States)

    Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming

    2017-01-18

    The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.

  9. Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.

    Science.gov (United States)

    Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga

    2010-01-01

    Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®

  10. Preliminary quantification of the permeability, solubility and diffusion coefficients of major aroma compounds present in herbs through various plastic packaging materials.

    Science.gov (United States)

    Leelaphiwat, Pattarin; Auras, Rafael A; Burgess, Gary J; Harte, Janice B; Chonhenchob, Vanee

    2018-03-01

    Aroma permeation through packaging material is an important factor when designing a package for food products. The masses of aroma compounds permeating through films over time were measured at 25 °C using a quasi-isostatic system. A model was proposed for estimating the permeability coefficients (P) of key aroma compounds present in fresh herbs (i.e. eucalyptol, estragole, linalool and citral) through major plastic films used by the food industry [i.e. low-density polyethylene (LDPE), polypropylene (PP), nylon (Nylon), polyethylene terephthalate (PET), metalised-polyethylene terephthalate (MPET) and poly(lactic acid) (PLA)]. Solubility coefficients (S) were estimated from the amount of aroma compound sorbed in the films. Diffusion coefficients (D) were estimated following from the relation P = D*S. P and D for all four aroma compounds were highest in LDPE, except for eucalyptol, which P was slightly higher in PLA. The solubility coefficients and contact angles were highest in PLA suggesting the highest affinity of PLA to these aroma compounds. The theoretical solubility parameters were correlated with the solubility coefficients for estragole and citral, but not for eucalyptol and linalool. The preliminary P, D and S of eucalyptol, estragole, linalool and citral through LDPE, PP, Nylon, PET, MPET and PLA can be useful in selecting the proper packaging material for preserving these specific aroma compounds in food products and can potentially be used for estimating the shelf life of food products based on aroma loss. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  12. Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3.

    Science.gov (United States)

    Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D

    2011-11-02

    In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

  13. Study of Trehalose Addition on Aroma Retention in Dehydrated Strawberry Puree

    Directory of Open Access Journals (Sweden)

    Draženka Komes

    2003-01-01

    Full Text Available In order to improve the quality of dehydrated fruit products, the influence of the addition of two sugars (sucrose and trehalose on the retention of aroma components during dehydration of strawberry puree was investigated. Manual headspace solid-phase microextraction (SPME, containing polydimethylsiloxane coated fibre (100 μm coupled with gas chromatography (GC-FID and GC-MS was used for the analysis of the aroma of strawberry puree dehydrated by using freeze drying and foam-mat drying. The analytes identified included esters, carbonyl compounds, terpenoids, several alcohols and acids. The results obtained in this study give further insight into the mechanisms concerning the application of trehalose as flavouring additive, due to its ability to retain and preserve the fruit volatiles responsible for the characteristic flavour of fresh fruits during dehydration processes. The best retention of aroma components in dehydrated strawberry puree was obtained by trehalose addition when combined with freeze drying.

  14. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Directory of Open Access Journals (Sweden)

    Rocío eVelázquez

    2015-11-01

    Full Text Available Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by S. cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odour descriptors, including those with the greatest odour activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate, were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odours. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S

  15. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine.

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.

  16. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  17. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Características sensoriais do vinho Bordô Sensory characteristics of Bordô wine

    Directory of Open Access Journals (Sweden)

    Francine Maria Tecchio

    2007-06-01

    Full Text Available Avaliaram-se as características sensoriais dos vinhos Bordô varietalmente puros e elaborados segundo a tecnologia própria a cada vinícola. A avaliação sensorial foi conduzida por um grupo de nove painelistas devidamente treinados. Os resultados revelaram que, dos 26 descritores avaliados, nove caracterizaram o vinho Bordô como sensorialmente marcante. Os descritores analisados foram a cor relativamente intensa e matiz violeta; aromas foxado e frutado; corpo relativamente pouco estruturado, mais ou menos ácido, sabores foxado e frutado predominantes e forte tipicidade.Varietal wines made according to the technology used in each winery were evaluated and their sensory characteristics were determined. A panel of nine experimented painelists performed sensory analysis. The results show that out of the 26 descriptors analyzed, nine markedly characterized this wine, i.e., they presented intense color and violet hue; foxy and fruity aroma; body with a medium structure, somewhat acid, foxy and fruity flavor, and strong tipicity.

  19. [Aroma and perfume allergy: anathema for some epicurean appeal?].

    Science.gov (United States)

    Goffin, V; Nikkels, A F; Cornil, F; Deleixhe-Mauhin, F; Piérard-Franchimont, C; Piérard, G E

    2002-09-01

    Aromas and fragrances are present in many cosmetics, some topical drugs, food and various hygiene, household and industrial products. They can be responsible for contact dermatitis. Multiple sensitizations can even involve in various combinations some fragrance compounds, a given degradation product or a contaminant. The diagnosis relies on clinical examination and oriented anamnesis. A histological examination is sometimes necessary. Specific path testing brings insight on the culprit chemical compounds.

  20. The impact of cold storage and ethylene on volatile ester production and aroma perception in 'Hort16A' kiwifruit.

    Science.gov (United States)

    Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R

    2015-02-15

    Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation into the Aroma of Rosemary using Multi-Channel ...

    African Journals Online (AJOL)

    NICO

    ... or GC-MS analyses. The aroma of different headspace samples was character- ... on the effects of drying herbs such as basil7 and rosemary.8 However, these studies were ... The approach is very simple and cost- effective; no ... Experimental. 2.1. .... true for applications such as cooking where the rosemary products will ...

  2. Aroma therapy and medfly SIT

    Energy Technology Data Exchange (ETDEWEB)

    Shelly, Todd E., E-mail: todd.e.shelly@aphis.usda.go [U.S. Department of Agriculture (USDA-APHIS), HI (United States). Animal and Plant Health Inspection

    2006-07-01

    A summary of the main findings of the research program on the biological competence of mass-reared, sterile males of the Mediterranean fruit fly (med fly), Ceratitis capitata (Wied.) and the development and implementation of the sterile insect technique (SIT) against this pest is presented. The potential application of aroma therapy to improve the mating success of sterile med fly males is studied. The report assumes a loosely chronological framework as it documents progression along two experimental scales: the number of males simultaneously exposed to ginger root oil, starting with small groups of 25 males and ending with rooms with nearly 200 million males; the experimental arena used to test the effects of aroma therapy, progressing from standard field-cages to large field enclosures to the open field. In addition, brief comments are offered regarding the potential negative effects of GRO exposure, the mechanisms underlying GRO-mediated improvement in male mating success, and the financial costs of GRO aroma therapy. (MAC)

  3. Aroma therapy and medfly SIT

    International Nuclear Information System (INIS)

    Shelly, Todd E.

    2006-01-01

    A summary of the main findings of the research program on the biological competence of mass-reared, sterile males of the Mediterranean fruit fly (med fly), Ceratitis capitata (Wied.) and the development and implementation of the sterile insect technique (SIT) against this pest is presented. The potential application of aroma therapy to improve the mating success of sterile med fly males is studied. The report assumes a loosely chronological framework as it documents progression along two experimental scales: the number of males simultaneously exposed to ginger root oil, starting with small groups of 25 males and ending with rooms with nearly 200 million males; the experimental arena used to test the effects of aroma therapy, progressing from standard field-cages to large field enclosures to the open field. In addition, brief comments are offered regarding the potential negative effects of GRO exposure, the mechanisms underlying GRO-mediated improvement in male mating success, and the financial costs of GRO aroma therapy. (MAC)

  4. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried.

    Science.gov (United States)

    Ramírez-Rodrigues, M M; Balaban, M O; Marshall, M R; Rouseff, R L

    2011-03-01

    Calyxes from the Roselle plant (Hibiscus sabdariffa L.) were used to prepare cold (22 °C for 4 h) and hot (98 °C for 16 min) infusions/teas from both fresh and dried forms. Aroma volatiles were extracted using static headspace SPME and analyzed using GC-MS and GC-O with 2 different columns (DB-5 and DB-Wax). Totals of 28, 25, 17, and 16 volatiles were identified using GC-MS in the dried hot extract (DHE), dried cold extract (DCE), fresh hot extract (FHE), and fresh cold extract (FCE) samples, respectively. In terms of total GC-MS peak areas DHE ≫ DCE > FHE ≫ FCE. Nonanal, decanal, octanal, and 1-octen-3-ol were among the major volatiles in all 4 beverage types. Thirteen volatiles were common to all 4 teas. Furfural and 5-methyl furfural were detected only in dried hibiscus beverages whereas linalool and 2-ethyl-1-hexanol were detected only in beverages from fresh hibiscus. In terms of aroma active volatiles, 17, 16, 13, and 10 aroma active volatiles were detected for DHE, DCE, FHE, and FCE samples, respectively. The most intense aroma volatiles were 1-octen-3-one and nonanal with a group of 4 aldehydes and 3 ketones common to all samples. Dried samples contained dramatically higher levels of lipid oxidation products such as hexanal, nonanal, and decanal. In fresh hibiscus extracts, linalool (floral, citrus) and octanal (lemon, citrus) were among the highest intensity aroma compounds but linalool was not detected in any of the dried hibiscus extracts. Hibiscus teas/infusions are one of the highest volume specialty botanical products in international commerce. The beverage is consumed for both sensory pleasure and health attributes and is prepared a number of ways throughout the world. Although color and taste attributes have been examined, little information is known about its aroma volatiles and no other study has compared extractions from both fresh and dried as well as extraction temperature differences. This is also, apparently, the first study to identify

  5. Identification of Ginger (Zingiber officinale Roscoe) Volatiles and Localization of Aroma-Active Constituents by GC-Olfactometry.

    Science.gov (United States)

    Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu

    2017-05-24

    For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.

  6. Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes.

    Science.gov (United States)

    Pozo-Bayón, Maria Angeles; Ruíz-Rodríguez, Alejandro; Pernin, Karine; Cayot, Nathalie

    2007-02-21

    The use of solvent-assisted flavor evaporation extraction (SAFE) and purge and trap in Tenax allowed the identification of more than 100 volatile compounds in a sponge cake (SC-e). Gas chromatography-olfactometry (GC-O) of the SAFE extracts of crumb and crust were achieved in order to determine the most potent odorants of SC-e. The change in the traditional dough formulation of SC-e in which eggs were substituted by baking powder (SC-b) as the leavening agent produced important changes in some key aroma compounds. The release curves of some aroma compounds-some of them generated during baking and others added in the dough-were followed by cumulative headspace analysis. In the flavored SC-b, the aroma release curves showed a plateau after 15 min of purge, while the release increased proportionally with the purge time in the flavored SC-e. In general, except for some of the aroma compounds with the highest log P values, the rate of release of most of the added and generated aroma compounds was significantly influenced by the changes in the cake formulation. The higher rates of release found for the aroma compounds in SC-b could contribute to explain its rapid exhaustion of aroma compounds in the purge and trap experiments and might lead to poorer sensorial characteristics of this cake during storage.

  7. Impact of fruit texture on the release and perception of aroma compounds during in vivo consumption using fresh and processed mango fruits.

    Science.gov (United States)

    Bonneau, Adeline; Boulanger, Renaud; Lebrun, Marc; Maraval, Isabelle; Valette, Jérémy; Guichard, Élisabeth; Gunata, Ziya

    2018-01-15

    Two fresh (fresh cubic pieces, fresh puree) and two dried (dried cubic pieces, dried powder) products were prepared from a homogenous mango fruit batch to obtain four samples differing in texture. The aromatic profiles were determined by SAFE extraction technique and GC-MS analysis. VOCs released during consumption were trapped by a retronasal aroma-trapping device (RATD) and analysed by GC-MS. Twenty-one terpenes and one ester were identified from the exhaled nose-space. They were amongst the major mango volatile compounds, 10 of which were already reported as being potential key flavour compounds in mango. The in vivo release of aroma compounds was affected by the matrix texture. The intact samples (fresh and dried cubic pieces) released significantly more aroma compounds than disintegrated samples (fresh puree, dried powder). The sensory descriptive analysis findings were in close agreement with the in vivo aroma release data regarding fresh products, in contrast to the dried products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Assessment of changes in the aroma and sensory profile of dawadawa due to modification in fermentation conditions

    International Nuclear Information System (INIS)

    Agyei-Baoteng, R.

    2013-07-01

    Dawadawa is the most popular traditional condiment in West Africa and is produced by the fermentation of African locust bean seeds. Though the alkaline fermentation results in the production of a tasty condiment, it has a strong ammoniacal odour which some consumers find unattractive and offensive. This work was carried out to develop procedures for reducing the pungent odour of dawadawa in order to increase its popularity and market value especially amongst non-traditional users. Various treatments were applied to the fermenting locust bean seeds 15 hours into the fermentation which lasted for a total of 96 hours. Some treatments were also tested on the beans after fermentation. Treatments which were applied during fementation were fementation under conditions of limited oxygen, low temperature fermentation, irradiation by gamma radiation and steaming. Post-fermentation treatments were partial frying and roasting after fermentation. Samples were taken during fermentation and analyzed for Bacillus count on Nutrient Agar, pH, percentage titratable acidity, moisture content by the oven dry method, crude protein content by the kjeldhal method and texture by the texture analyzer. The final product was analyzed for aroma profile by GC-MS analysis using the Dynamic Headspace Sampling (DHS) method and also by descriptive sensory analysis by a semi-trained panel. Application of all the treatments applied during fermentation resulted in a ten to a hundredfold lower Bacillus counts compared to the control sample at various stages of fermentation. The reduction in the Bacillus activities resulted in a lower rise in pH giving final pH values of 6.8 to 7.53 compared to 8.37 in the control. The rise in pH was due to the proteolytic activity of the Bacillus species which break down the proteins into peptides and amino acids and subsequently utilize the amino acids to produce ammonia leading to the rise in pH. All the samples recorded a simultaneous increase in titratable acidity

  9. HS-SPME-GC-MS Analysis of onion (Allium cepa L. and shallot (Allium ascalonicum L.

    Directory of Open Access Journals (Sweden)

    D’Auria, M.

    2017-06-01

    Full Text Available The volatile organic compounds of onion and shallot were determined via HS-SPME-GC-MS. The main components were dipropyldisulphide and allylpropyldisulphide. Thiopropanal S-oxide were detected only in onion volatiles. In shallot is interesting the presence of 2-methyl-2-pentenal, a compound with an intense fruity aroma, that can characterize the different aroma between onion and shallot. The SPME-GC-MS analysis of shallot after absorption on the SPME fiber at 50°C showed the presence of new compounds, whose structures have been discussed.

  10. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation

    Science.gov (United States)

    Xiao, Deng-Rong; Liu, Rui-Sang; He, Long; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    The aroma attributes of sulfurous, mushroom and earthy are the most important characteristics of the aroma of Tuber melanosporum. However, these three aroma attributes are absent in the T. melanosporum fermentation system. To improve the quality of the aroma, repeated freeze-thaw treatment (RFTT) was adopted to affect the interplay of volatile organic compounds (VOCs). Using RFTT, not only was the score on the hedonic scale of the aroma increased from the “liked slightly” to the “liked moderately” grade, but the aroma attributes of sulfurous, mushroom and earthy could also be smelled in the T. melanosporum fermentation system for the first time. A total of 29 VOCs were identified, and 9 compounds were identified as the key discriminative volatiles affected by RFTT. Amino acid analysis revealed that methionine, valine, serine, phenylalanine, isoleucine and threonine were the key substrates associated with the biosynthesis of the 9 key discriminative VOCs. This study noted that amino acid metabolism played an important role in the regulation of the aroma of the T. melanosporum fermentation system. PMID:26607288

  11. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  12. Black tea aroma inhibited increase of salivary chromogranin-A after arithmetic tasks.

    Science.gov (United States)

    Yoto, Ai; Fukui, Natsuki; Kaneda, Chisa; Torita, Shoko; Goto, Keiichi; Nanjo, Fumio; Yokogoshi, Hidehiko

    2018-01-24

    Growing attention has been paid to the effects of food flavor components on alleviating negative brain functions caused by stressful lifestyles. In this study, we investigated the alleviating effect of two kinds of black tea aromas on physical and psychological stress induced by the Uchida-Kraepelin test, based on salivary chromogranin-A (CgA) levels as a stress marker and subjective evaluations (Profile of Mood States). Compared with the water exposure control, inhaling black tea aroma (Darjeeling and Assam in this study) induced lower salivary CgA concentration levels after 30 min of mental stress load tasks. This anti-stress effect of black tea aroma did not differ between the two tea types even though the concentration of the anti-stress components in the Darjeeling tea aroma was higher than that in the Assam aroma. However, Darjeeling tea aroma tended to decrease the tension and/or anxiety score immediately after the first exposure. Inhaling black tea aroma may diminish stress levels caused by arithmetic mental stress tasks, and Darjeeling tea aroma tended to improve mood before mental stress load.

  13. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test.

    Science.gov (United States)

    Feng, Yunzi; Su, Guowan; Zhao, Haifeng; Cai, Yu; Cui, Chun; Sun-Waterhouse, Dongxiao; Zhao, Mouming

    2015-01-15

    Twenty-seven commercial soy sauces produced through three different fermentation processes (high-salt liquid-state fermentation soy sauce, HLFSS; low-salt solid-state fermentation soy sauce, LSFSS; Koikuchi soy sauce, KSS) were examined to identify the aroma compounds and the effect of fermentation process on the flavour of the soy sauce was investigated. Results showed that 129 volatiles were identified, of which 41 aroma-active components were quantified. The types of odorants occurring in the three soy sauce groups were similar, although their intensities significantly differed. Many esters and phenols were found at relatively high intensities in KSS, whereas some volatile acids only occurred in LSFSS. Furthermore, 23 aroma compounds had average OAVs>1, among which 3-methylbutanal, ethyl acetate, 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone, 2-methylbutanal and 3-(methylthio)propanal exhibited the highest average OAVs (>100). In addition, omission tests verified the important contribution of the products resulting from amino acid catabolism to the characteristic aroma of soy sauce. Copyright © 2014. Published by Elsevier Ltd.

  14. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    Science.gov (United States)

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-10-01

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  15. Characteristic Changes in the Aroma Profile of Patchouli Depending on Manufacturing Process.

    Science.gov (United States)

    Hasegawa, Toshio; Yoshitome, Kazuma; Fujihara, Takashi; Santoso, Mardi; Aziz, Muhammad Abdul

    2017-08-01

    Patchouli is used as an incense material and essential oil. The characteristic odor of patchouli leaves results from the drying process used in their production; however, there have to date been no reports on the changes in the odor of patchouli leaves during the drying process. We investigated the aroma profile of dried patchouli leaves using the hexane extracts of fresh and dried patchouli leaves. We focused on the presence or absence of the constituents of the fresh and dried extracts, and the differences in the content of the common constituents. Fourteen constituents were identified as characteristic of dried patchouli extract odor by gas chromatography-olfactometry analysis. The structures of seven of the 14 constituents were determined by gas chromatography-mass spectrometry (α-patchoulene, seychellene, humulene, α-bulnesene, isoaromadendrene epoxide, caryophyllene oxide, and patchouli alcohol). The aroma profile of the essential oil obtained from the dried patchouli leaves was clearly different from that of dried patchouli. The aroma profile of the essential oil was investigated by a similar method. We identified 12 compounds as important odor constituents. The structures of nine of the 12 constituents were determined by gas chromatography-mass spectrometry (cis-thujopsene, caryophyllene, α-guaiene, α-patchoulene, seychellene, α-bulnesene, isoaromadendrene epoxide, patchouli alcohol, and corymbolone). Comparing the odors and constituents demonstrated that the aroma profile of patchouli depends on the manufacturing process.

  16. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.

    Science.gov (United States)

    Neiens, Silva D; Steinhaus, Martin

    2018-02-14

    The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.

  17. Recovery of volatile fruit juice aroma compounds by membrane technology

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Pinelo, Manuel

    2011-01-01

    The influence of temperature (10–45°C), feed flow rate (300–500L/h) and sweeping gas flow rate (1.2–2m3/h) on the recovery of berry fruit juice aroma compounds by sweeping gas membrane distillation (SGMD) was examined on an aroma model solution and on black currant juice in a lab scale membrane...... distillation set up. The data were compared to recovery of the aroma compounds by vacuum membrane distillation (VMD). The flux of SGMD increased with an increase in temperature, feed flow rate or sweeping gas flow rate. Increased temperature and feed flow rate also increased the concentration factors...... the degradation of anthocyanins and polyphenolic compounds in the juice. Industrial relevanceHigh temperature evaporation is the most widely used industrial technique for aroma recovery and concentration of juices, but membrane distillation (MD) may provide for gentler aroma stripping and lower energy consumption...

  18. Effects of retro-nasal aroma release on satiation

    NARCIS (Netherlands)

    Ruijschop, R.; Boelrijk, A.E.M.; Ru, de J.A.; Graaf, de C.; Westerterp-Plantenga, M.

    2008-01-01

    It is suggested that the brain response of a food odour sensed retro-nasally is related to satiation. The extent of retro-nasal aroma release during consumption depends on the physical structure of a food, i.e. solid foods generate a longer, more pronounced retro-nasal aroma release than liquid

  19. A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception.

    Science.gov (United States)

    Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia

    2015-04-01

    The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.

  20. Placing of aroma compounds by food sales promotion in chosen services business

    Directory of Open Access Journals (Sweden)

    Jakub Berčík

    2016-12-01

    Full Text Available There are several ways to get higher sale involving human senses too. One of the options is a security of stimulating atmosphere of sale/ business environment. In addition to equipment, design and staff, the lighting, sound (noise, and last ones but not least smell, respectively air quality significantly take part on that. Aroma is the element that inherently belongs to the visual merchandising tools. It can influence not only emotions, memory, but total customers´ satisfaction and preferences as well as spending time in that place. In this context, it is important to find right compromise when choosing the aromatic compounds for various products, in the process of their application (intensity, process of aromatization and security of sufficient air quality, because everybody perceives the odours with different sensitivity. Properly chosen smell and factors of air quality bring for business operators (services trades many advantages; from staff, who more relax and friendly behave to the guests until making of various associations and stimulations of customers, who spend time inside of service. Fragrance or air quality looks like based on of present researches as the most important factor directly on point-of-sale, while aroma acquires the importance in case of memory too. On the one side, the thinks, which are seen or heard by customers, could be memorized by them few days or weeks, so on the second side, the thinks which are smelled, could be memorized by guests many decades. Except this, the Scientifics studies show, that over 75 % of all emotions are generated based on scent´ perception. The main aim of this paper is a research, how aroma influences customer purchasing decision (preferences in chosen service provider through the tracking of daily sales of baked baguettes (Paninis with using of aroma equipment; Aroma Dispenser.

  1. Characterization of the key aroma compounds in beef and pork vegetable gravies á la chef by application of the aroma extract dilution analysis.

    Science.gov (United States)

    Christlbauer, Monika; Schieberle, Peter

    2009-10-14

    By application of the aroma extract dilution analysis (AEDA) on an aroma distillate isolated from a freshly prepared, stewed beef/vegetable gravy, 52 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-4096. On the basis of high FD factors in combination with the results of the identification experiments, 3-(methylthio)propanal (cooked potato), 3-mercapto-2-methylpentan-1-ol (gravy-like), (E,E)-2,4-decadienal (deep-fried, fatty), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (lovage-like), vanillin (vanilla-like), (E,E)-2,4-nonadienal (deep-fried), and (E)-2-undecenal (metallic) are suggested as key contributors to the aroma of the gravy. To get an insight into the role of the vegetables as sources of gravy odorants, a beef gravy was prepared without vegetables. The AEDA results revealed that, in particular, onions and leek are important sources of gravy aroma compounds, adding particularly the very potent, gravy-like smelling 3-mercapto-2-methylpentan-1-ol to the overall aroma profile. Further compounds that were clearly derived from the vegetables and, thus, are important modifiers of the overall aroma were 4-vinyl-2-methoxyphenol, (E)-beta-damascenone, beta-ionone, 2-isopropyl-3-methoxypyrazine, and 2-(sec-butyl)-3-methoxypyrazine. Interestingly, none of the key odorants detected in the gravy can be assumed to be formed from a reaction between beef and vegetable constituents. A comparison of the odorants in the beef/vegetable gravy with a gravy prepared according to the same procedure, but substituting beef by pork meat, indicated that most of the aroma compounds were identical-although different in FD factors-but the tallowy smelling 12-methyltridecanal was detected as key odorant only in the beef/vegetable gravy.

  2. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    Science.gov (United States)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  3. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation.

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S

    2016-09-01

    Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated. Ninety-two healthy adults (mean age, 58.0 years; 79.3% women) were randomly assigned to three aroma groups (lavender, perceptible placebo [coconut], and nonperceptible placebo [water] and to two prime subgroups (primed, with a suggestion of inhaling a powerful stress-reducing aroma, or no prime). Participants' performance on a battery of cognitive tests, physiologic responses, and subjective stress were evaluated at baseline and after exposure to a stress battery during which aromatherapy was present. Participants also rated the intensity and pleasantness of their assigned aroma. Pharmacologic effects of lavender but not placebo aromas significantly benefited post-stress performance on the working memory task (F(2, 86) = 5.41; p = 0.006). Increased expectancy due to positive prime, regardless of aroma type, facilitated post-stress performance on the processing speed task (F(1, 87) = 8.31; p = 0.005). Aroma hedonics (pleasantness and intensity) played a role in the beneficial lavender effect on working memory and physiologic function. The observable aroma effects were produced by a combination of mechanisms involving aroma-specific pharmacologic properties, aroma hedonic properties, and participant expectations. In the future, each of these mechanisms could be manipulated to produce optimal functioning.

  4. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions.

    Science.gov (United States)

    Gamero, Amparo; Belloch, Carmela; Querol, Amparo

    2015-09-04

    Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.

  5. Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce.

    Science.gov (United States)

    Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu

    2013-04-10

    An investigation using the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from a raw Japanese soy sauce and the heated soy sauce revealed 40 key aroma compounds including 7 newly identified compounds. Among them, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone and 3-hydroxy-4,5-dimethyl-2(5H)-furanone exhibited the highest flavor dilution (FD) factor of 2048, followed by 3-(methylthio)propanal, 4-ethyl-2-methoxyphenol, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone having FD factors from 128 to 512 in the raw soy sauce. Furthermore, comparative AEDAs, a quantitative analysis, and a sensory analysis demonstrated that whereas most of the key aroma compounds in the raw soy sauce were common in the heated soy sauce, some of the Strecker aldehydes and 4-vinylphenols contributed less to the raw soy sauce aroma. The model decarboxylation reactions of the phenolic acids during heating of the raw soy sauce revealed that although all reactions resulted in low yields, the hydroxycinnamic acid derivatives were much more reactive than the hydroxybenzoic acid derivatives due to the stable reaction intermediates. Besides the quantitative analyses of the soy sauces, the estimation of the reaction yields of the phenolic compounds in the heated soy sauce revealed that although only the 4-vinylphenols increased during heating of the raw soy sauce, they might not mainly be formed as decarboxylation products from the corresponding hydroxycinnamic acids but from the other proposed precursors, such as lignin, shakuchirin, and esters with arabinoxylan.

  6. Impact of Fruit Piece Structure in Yogurts on the Dynamics of Aroma Release and Sensory Perception

    Directory of Open Access Journals (Sweden)

    Isabelle Souchon

    2013-05-01

    Full Text Available The aim of this work was to gain insight into the effect of food formulation on aroma release and perception, both of which playing an important role in food appreciation. The quality and quantity of retronasal aroma released during food consumption affect the exposure time of olfactory receptors to aroma stimuli, which can influence nutritional and hedonic characteristics, as well as consumption behaviors. In yogurts, fruit preparation formulation can be a key factor to modulate aroma stimulation. In this context, the impact of size and hardness of fruit pieces in fat-free pear yogurts was studied. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was used to allow sensitive and on-line monitoring of volatile odorous compound release in the breath during consumption. In parallel, a trained panel used sensory profile and Temporal Dominance of Sensations (TDS methods to characterize yogurt sensory properties and their dynamic changes during consumption. Results showed that the size of pear pieces had few effects on aroma release and perception of yogurts, whereas fruit hardness significantly influenced them. Despite the fact that yogurts presented short and similar residence times in the mouth, this study showed that fruit preparation could be an interesting formulation factor to enhance exposure time to stimuli and thus modify food consumption behaviors. These results could be taken into account to formulate new products that integrate both nutritional and sensory criteria.

  7. Structural and physical effects of aroma compound binding to native starch granules

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted; Jensen, Susanne L.; Ziegler, Gregory

    2012-01-01

    , potato and pea starches used represent different typical structural and chemical starch characteristics. Retention of the different aroma compounds varied from a few to one hundred percent and starch was found to induce as well as reduce aroma evaporation depending on the aroma compound and the starch...

  8. Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis sonn.) fruit.

    Science.gov (United States)

    Ong, P K; Acree, T E

    1999-02-01

    GC/O analysis of canned lychees indicated that cis-rose oxide, linalool, ethyl isohexanoate, geraniol, furaneol, vanillin, (E)-2-nonenal, beta-damascenone, isovaleric acid, and (E)-furan linalool oxide were the most odor potent compounds detected in the fruit extracts. However, on the basis of calculated odor activity values (OAVs), cis-rose oxide, beta-damascenone, linalool, furaneol, ethyl isobutyrate, (E)-2-nonenal, ethyl isohexanoate, geraniol, and delta-decalactone were determined to be the main contributors of canned lychee aroma. When these results were compared with GC/O results of fresh lychees and Gewürztraminer wine, 12 common odor-active volatile compounds were found in all three products. These included cis-rose oxide, ethyl hexanoate/ethyl isohexanoate, beta-damascenone, linalool, ethyl isobutyrate, geraniol, ethyl 2-methylbutyrate, 2-phenylethanol, furaneol, vanillin, citronellol, and phenethyl acetate. On the basis of OAVs, cis-rose oxide had the highest values among the common odorants in the three products, indicating its importance to the aroma of both lychee fruit and Gewürztraminer wines. Other compounds that had significant OAVs included beta-damascenone, linalool, furaneol, ethyl hexanoate, and geraniol. This indicated that while differences exist in the aroma profile of lychee and Gewürztraminer, the common odorants detected in both fruit and wine, particularly cis-rose oxide, were responsible for the lychee aroma in Gewürztraminer wine. When headspace SPME was used as a rapid analytical tool to detect the levels of selected aroma compounds deemed important to lychee aroma in Gewürztraminer-type wines, cis-rose oxide, linalool, and geraniol were found to be at relatively higher levels in Gewürztraminers. No cis-rose oxide was detected in the control wines (Chardonnay and Riesling), while lower levels were detected in the Gewürztraminer-hybrid wine Traminette. Gewürztraminers produced in the Alsace region showed differences in the

  9. The influence of different types of preparation (espresso and brew) on coffee aroma and main bioactive constituents.

    Science.gov (United States)

    Caprioli, Giovanni; Cortese, Manuela; Sagratini, Gianni; Vittori, Sauro

    2015-01-01

    Coffee is one of the most popular hot drinks in the world; it may be prepared by several methods, but the most common forms are boiled (brew) and pressurized (espresso). Analytical studies on the substances responsible for the pleasant aroma of roasted coffee have been carried out for more than 100 years. Brew coffee and espresso coffee (EC) have a different and peculiar aroma profile, demonstrating the importance of the brewing process on the final product sensorial quality. Concerning bioactive compounds, the extraction mechanism plays a crucial role. The differences in the composition of coffee brew in chlorogenic acids and caffeine content is the result of the different procedures of coffee preparation. The aim of the present review is to detail how the brewing process affects coffee aroma and composition.

  10. PROFIL AROMA DAN MUTU SENSORI CITARASA PASTA KAKAO UNGGULAN DARI BEBERAPA DAERAH DI INDONESIA [Aroma and Flavor Sensory Profiles of Superior Cocoa Liquors from Different Regions in Indonesia

    Directory of Open Access Journals (Sweden)

    Intan Kusumaningrum*

    2014-06-01

    Full Text Available The objective of this research was to compare the aroma profiles and flavor sensory qualities of three cocoa liquors obtained from different regions in Indonesia, namely East Java, South Sulawesi and Bali. The Ghanaian cocoa liquor was used as the reference. The aroma of cocoa liquors was extracted by using a Solid Phase Microextraction (SPME, followed by detection with Gas Chromatography-Mass Spectrometry/Olfactometry (GC-MS/O with the Nassal Impact Frequency (NIF method. A total of 28 aroma active compounds in the cocoa liquors were identified, where in 21, 19, 22 and 18 compounds were detected in East Java, Bali, South Sulawesi and Ghana liquors, respectively. The profiles of these three liquors were not only different from one another but were also different from the reference. East Java liquor had a specific aroma of strong chocolate, enriched with creamy, caramel and coffee bean aroma, whileBali liquor was dominated by creamy, caramel and sweet, and South Sulawesi liquor was specified by its sweet green aroma. The aroma sensory characteristic was evaluated by descriptive test, presenting the aroma of nutty, acid, caramel, earthy and chocolate, while the taste sensory attributes included astringency, bitterness and acidity. The sensory profile analysis was carried out by applying a Quantitative Descriptive Analysis (QDA method. Accompired with preference and ranking tests were also conducted. Among the three cocoa liquors, the sensory profile of South Sulawesi was the most similar to that of Ghanaian cocoa liquor. However, the cocoa liquor from Bali and East Java cocoa were more preferred comparing to the liquor from South Sulawesi.

  11. Hibiscus sabdariffa (Roselle) Extracts and Wine: Phytochemical Profile, Physicochemical Properties, and Carbohydrase Inhibition.

    Science.gov (United States)

    Ifie, Idolo; Marshall, Lisa J; Ho, Peter; Williamson, Gary

    2016-06-22

    Three varieties of Hibiscus sabdariffa were analyzed for their phytochemical content and inhibitory potential on carbohydrate-digesting enzymes as a basis for selecting a variety for wine production. The dark red variety was chosen as it was highest in phenolic content and an aqueous extract partially inhibited α-glucosidase (maltase), with delphinidin 3-O-sambubioside, cyanidin 3-O-sambubioside, and 3-O-caffeoylquinic acid accounting for 65% of this activity. None of the varieties significantly inhibited α-amylase. Regarding Hibiscus sabdariffa wine, the effect of fermentation temperature (20 and 30 °C) on the physicochemical, phytochemical, and aroma composition was monitored over 40 days. The main change in phytochemical composition observed was the hydrolysis of 3-O-caffeolquinic acid and the concomitant increase of caffeic acid irrespective of fermentation temperature. Wine fermented at 20 °C was slightly more active for α-glucosidase inhibition with more fruity aromas (ethyl octanoate), but there were more flowery notes (2-phenylethanol) at 30 °C.

  12. True cooking aroma or artefact. 15N gives the answer

    International Nuclear Information System (INIS)

    Metro, F.; Boudaud, N.; Dumont, J.P.

    1994-01-01

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with 15 N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs

  13. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Gou, W.; Zhang, L.; Chen, F.; Cui, Z.; Zhao, Y.; Zheng, P.; Tian, L.; Zhang, L.; Zhang, C.

    2015-01-01

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  14. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization.

    Science.gov (United States)

    Sánchez-Palomo, E; Trujillo, M; García Ruiz, A; González Viñas, M A

    2017-10-01

    The aroma of La Mancha Malbec red wines over four consecutive vintages was characterized by chemical and sensory analysis. Solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used to isolate and analyze free volatile compounds. Quantitative Descriptive Sensory Analysis (QDA) was carried out to characterize the sensory aroma profile. A total of 79 free volatile compounds were identified and quantified in the wines over these four vintages. Volatile aroma compounds were classified into seven aromatic series and their odour activity values were calculated in order to determine the aroma impact compounds in these wines. The aroma sensory profile of these wines was characterized by red fruit, fresh, prune, liquorice, clove, caramel, leather, tobacco and coffee aromas. This study provides a complete aroma characterization of La Mancha Malbec red wines and it is proposed that these wines can be considered as an alternative to wines from traditional grape varieties of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.

    Science.gov (United States)

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2004-11-17

    The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.

  16. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds.

    Science.gov (United States)

    Erten, Edibe S; Cadwallader, Keith R

    2017-02-15

    Volatile components of raw, dry roasted and oil roasted almonds were isolated by solvent extraction/solvent-assisted flavor evaporation and predominant aroma compounds identified by gas chromatography-olfactometry (GCO) and aroma extract dilutions analysis (AEDA). Selected odorants were quantitated by GC-mass spectrometry and odor-activity values (OAVs) determined. Results of AEDA indicated that 1-octen-3-one and acetic acid were important aroma compounds in raw almonds. Those predominant in dry roasted almonds were methional, 2- and 3-methylbutanal, 2-acetyl-1-pyrroline and 2,3-pentanedione; whereas, in oil roasted almonds 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2,3-pentanedione, methional and 2-acetyl-1-pyrroline were the predominant aroma compounds. Overall, oil roasted almonds contained a greater number and higher abundance of aroma compounds than either raw or dry roasted almonds. The results of this study demonstrate the importance of lipid-derived volatile compounds in raw almond aroma. Meanwhile, in dry and oil roasted almonds, the predominant aroma compounds were derived via the Maillard reaction, lipid degradation/oxidation and sugar degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    Science.gov (United States)

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  18. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Science.gov (United States)

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  19. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  20. KOMPONEN VOTALIT DANKARAKTERISASI KOMPONEN KUNCI AROMA BUAH ANDALIMAN (Zanthoxylum acanthoodium DC. [Colatile Aroma Constituents and Potent Odorant of Andaliman (Zanthoxylum acanthoodium DC. Fruit

    Directory of Open Access Journals (Sweden)

    Anton Apriyantono 1

    2001-08-01

    Full Text Available Andaliman, a wild spice well known in Northem Sumatera, has a fresh citrusy and warm sweet peppery odor. This research was conducted to analyse pontent odorant from andaliman maceration extract using GC-MS, GC/O and aroma extract dilution analysis (AEDA method. Monoterpenes were the main constituens among the 24 identified components by GC-MS. Results od AEDA revealed that citronellal and limonene had the greatest impact on the aroma of andaliman with flavour dilution factor 128 and 32. β-myrcene, 2-β-ocimene, linalool, β-citronellol, neral, geraniol, gerabial, geranyl acetate, an unkwown compound, and a sesquiterpene also contributed to andaliman fresh citrusy and warm sweet peppery aroma.

  1. Development of a Time-Intensity Evaluation System for Consumers: Measuring Bitterness and Retronasal Aroma of Coffee Beverages in 106 Untrained Panelists.

    Science.gov (United States)

    Gotow, Naomi; Moritani, Ami; Hayakawa, Yoshinobu; Akutagawa, Akihito; Hashimoto, Hiroshi; Kobayakawa, Tatsu

    2015-06-01

    In order to develop products that are acceptable to consumers, it is necessary to incorporate consumers' intentions into products' characteristics. Therefore, investigation of consumers' perceptions of the taste or smell of common beverages provides information that should be useful in predicting market responses. In this study, we sought to develop a time-intensity evaluation system for consumer panels. Using our system, we performed time-intensity evaluation of flavor attributes (bitterness and retronasal aroma) that consumers perceived after swallowing a coffee beverage. Additionally, we developed quantitative evaluation methods for determining whether consumer panelists can properly perform time-intensity evaluation. In every trial, we fitted an exponential function to measured intensity data for bitterness and retronasal aroma. The correlation coefficients between measured time-intensity data and the fitted exponential curves were greater than 0.8 in about 90% of trials, indicating that we had successfully developed a time-intensity system for use with consumer panelists, even after just a single training trial using a nontrained consumer. We classified participants into two groups based on their consumption of canned coffee beverages. Significant difference was observed in only AUC of sensory modality (bitterness compared with retronasal aroma) among conventional TI parameters using two-way ANOVA. However, three-way ANOVA including a time course revealed significant difference between bitterness and retronasal aroma in the high-consumption group. Moreover, the high-consumption group more easily discriminated between bitterness and retronasal aroma than the low-consumption group. This finding implied that manufacturers should select consumer panelists who are suitable for their concepts of new products. © 2015 Institute of Food Technologists®

  2. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Shi Feng

    2018-04-01

    Full Text Available Volatile compounds in ‘Sweetheart’ lychee were examined using gas chromatography-olfactometry/mass spectrometry (GC-O/MS. Solvent assisted flavor evaporation (SAFE technique was used to identify the aroma-active compounds in lychee. Further characterization of the most important odorants in ‘Sweetheart’ lychee was achieved using aroma extract dilution analysis (AEDA. Thirty-one key aroma-active odorants were identified in the flavor dilution (FD factor range of 2–1024. Methional (cooked potato and geraniol (sweet, floral exhibited the highest FD factors of 1024 and 512, respectively, these were followed by furaneol (sweet, caramel, nerol (floral, sweet, dimethyl trisulfide (DMTS (preserved vegetable, sulfury, linalool (floral, (E,Z-2,6 nonadienal (cucumber and nerolidol (metalic, sesame oil. Furthermore, the flavor profile of ‘Sweetheart’ lychee was described by sensory analysis. Floral, tropical fruit, peach/apricot and honey were scored with relatively high scores for each aroma attribute. The sweetness rating was the highest score among all the attributes. Keywords: AEDA, Aroma-active compounds, GC-MS/O, SAFE, Sensory analysis

  3. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. [INAF-Osservatorio Astronomico di Collurania, I-64100 Teramo (Italy)

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  4. Characterization of the Volatile Substances and Aroma Components from Traditional Soypaste

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-05-01

    Full Text Available In this study, the flavor substances of soypaste were extracted by a simultaneous distillation method and identified by GC-MS. The characteristic aroma components of soypaste were determined by the GC-O technique and the FD value of the characteristic aroma components was determined by AEDA method. It could be inferred that the aroma of the soypaste should be attributed to the presence of heterocyclic compounds and organic acids, with the heterocyclic compounds playing a prominent role.

  5. Identification of key aromatic compounds in Congou black tea by PLSR with variable importance of projection scores and gas chromatography-mass spectrometry/gas chromatography-olfactometry.

    Science.gov (United States)

    Mao, Shihong; Lu, Changqi; Li, Meifeng; Ye, Yulong; Wei, Xu; Tong, Huarong

    2018-04-13

    Gas chromatography-olfactometry (GC-O) is the most frequently used method to estimate the sensory contribution of single odorant, but disregards the interactions between volatiles. In order to select the key volatiles responsible for the aroma attributes of Congou black tea (Camellia sinensis), instrumental, sensory and multivariate statistical approaches were applied. By sensory analysis, nine panelists developed 8 descriptors, namely, floral, sweet, fruity, green, roasted, oil, spicy, and off-odor. Linalool, (E)-furan linalool oxide, (Z)-pyran linalool oxide, methyl salicylate, β-myrcene, phenylethyl alcohol which identified from the most representative samples by GC-O procedure, were the essential aroma-active compounds in the formation of basic Congou black tea aroma. In addition, 136 volatiles were identified by gas chromatography-mass spectrometry (GC-MS), among which 55 compounds were determined as the key factors for the six sensory attributes by partial least-square regression (PLSR) with variable importance of projection (VIP) scores. Our results demonstrated that HS-SPME/GC-MS/GC-O was a fast approach for isolation and quantification aroma-active compounds. PLSR method was also considered to be a useful tool in selecting important variables for sensory attributes. These two strategies allowed us to comprehensively evaluate the sensorial contribution of single volatile from different perspectives, can be applied to related products for comprehensive quality control. This article is protected by copyright. All rights reserved.

  6. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.

    Science.gov (United States)

    Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong

    2011-05-11

    Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.

  7. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate.

    Science.gov (United States)

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2018-02-19

    Rice bran is a by-product obtained from the rice milling industry. The aims of this research were to add value to rice bran by preparation of enzymatic hydrolyzed rice bran protein concentrate (HRPC) as a flavoring agent and the flavoring which was produced by HRPC has not been investigated. Different drying methods (freeze-drying and spray-drying) and fructose additions were studied for improvement of rice bran protein sensorial aroma characteristics. The most abundant amino acids in liquid HRPC (LH) were glutamic acid, arginine, aspartic acid and leucine. The intensity of desirable aromas, such as cereal-like, nut-like, milk-powder-like, sweet, and cocoa-like aroma, were higher in spray-dried HRPC powder (SHP) than in LH and freeze-dried HRPC. Volatile compounds, such as aldehydes, pyrazines and ketones, were significantly increased in HRPC powders in which fructose was added before spray-drying (SHP-F). Higher amounts of 2-methylbutanal, 3-methylbutanal, phenylacetaldehyde, 2,5-dimethylpyrazine, vanillin, 2-acetylpyrrole and maltol were detected in SHP-F. Moreover, these compounds had high odor active values, which accounted for the cocoa-like, sweet, nut-like, and milk-powder-like characteristics of SHP-F. These findings could lead to the creation of desirable aroma characteristics of rice bran protein concentrate by different preparation methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Co-evolution as Tool for Diversifying Flavor and Aroma Profiles of Wines

    Directory of Open Access Journals (Sweden)

    Peter Morrison-Whittle

    2018-05-01

    Full Text Available The products of microbial metabolism form an integral part of human industry and have been shaped by evolutionary processes, accidentally and deliberately, for thousands of years. In the production of wine, a great many flavor and aroma compounds are produced by yeast species and are the targets of research for commercial breeding programs. Here we demonstrate how co-evolution with multiple species can generate novel interactions through serial co-culture in grape juice. We find that after ~65 generations, co-evolved strains and strains evolved independently show significantly different growth aspects and exhibit significantly different metabolite profiles. We show significant impact of co-evolution of Candida glabrata and Pichia kudriavzevii on the production of metabolites that affect the flavor and aroma of experimental wines. While co-evolved strains do exhibit novel interactions that affect the reproductive success of interacting species, we found no evidence of cross-feeding behavior. Our findings yield promising avenues for developing commercial yeast strains by using co-evolution to diversify the metabolic output of target species without relying on genetic modification or breeding technologies. Such approaches open up exciting new possibilities for harnessing microbial co-evolution in areas of agriculture and food related research generally.

  9. Aluminium and Aroma Compound Concentration in Beer During Storage at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Marija Soldo Gjeldum

    2006-01-01

    Full Text Available Problem of aluminium in beer has been elaborated in several papers over the last decade. However, the effect of aluminium on organoleptic properties of beer has been observed in few papers where it has been stated that aluminium gives beer a »metallic« and bitter flavour without any observations on particular aroma compound changes. Also, the number of reports on precise changes of aroma components throughout different storage conditions is surprisingly scarce. In order to investigate the changes of aluminium concentration along with aroma compound changes, graphite furnace-atomic absorption spectrophotometry (GF-AAS with Zeeman background correction and gas chromatography with static headspace sampler (GC-HSS were used in this work. Analyses were conducted periodically throughout seven months of storage on three different brands of beer from name breweries. Samples were taken before and after filling in aluminium cans. One part of samples was stored in a refrigerator (4 °C and the other in a thermostatic chamber (22 °C. The effects of beer brand and storage conditions on aluminium concentration and level of aroma compounds were measured. To prove the effect of aluminium concentration on the changes of aroma compounds, the adequate level of aluminium sulphate was added to bottled beer samples stored at 28 °C. Although different beer types showed significantly different aluminium concentration, it could be the result of other factors (different batches of identical beer type showed significantly different aluminium concentration as well. Samples that were stored in the refrigerator were protected from aluminium migration from the can to the beer and showed increased aroma stability. Level of aroma constituents of analyzed beer brands was significantly different. Elevated aluminium concentration did not have any noticeable effect on the level of aroma compounds in beer samples stored at 28 °C.

  10. Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia)

    International Nuclear Information System (INIS)

    Salmah Moosa; Seri Chempaka Mohd Yusof; Ruzalina Bahrin; Maizatul Akmam Mohd Nasir

    2014-01-01

    Radiation processing of food materials by gamma-radiation is a well established method for microbial decontamination and insect disinfestation. Irradiation of spices at doses ranging from 10 to 30 kGy has been reported to result in complete elimination of microorganisms with negligible changes in the flavour quality. The effect of gamma-radiation on microflora and vanillin content of cured vanilla beans in the dose range of 5-50 kGy has been investigated, but its effect on other major aroma compounds and vanillin glucoside (vanillin aroma precursor) remaining after curing have not been studied so far. Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one such compound used as a flavouring agent and as a dietary component. It is the major component of natural vanilla, which is one of the most widely used and important flavouring materials throughout the world. Vanillin is an antioxidant capable of protecting membrane against lipid peroxidation and DNA against strand breaks induced by reactive oxygen species. The present work was aimed to study the effect of gamma-radiation processing on the major aroma compounds of cured vanilla beans and also to investigate possible enhancement in vanillin content by the radiolytic breakdown of vanillin glucoside present already. Cured vanilla beans were irradiated (5, 10, 15, 20 and 30 kGy) and the vanillin content of control and irradiated samples were analysed, respectively for a possible enhancement of vanillin content by radiolysis of vanillin glucoside. Radiolytic breakdown of glycosidic precursors of aroma constituents and consequent release of free aroma was shown to result in the enhancement of aroma quality of these products. Since a considerable amount of vanillin exists as its glycosidic precursor in cured vanilla pods, a possible enhancement in yield of vanillin by radiation processing is thus expected. Hence the highly stable oxygen-carbon linkage between vanillin and glucose limits the possible enhancement of aroma

  11. Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-03-01

    Full Text Available Basal defoliation, as one of the most common viticulture management practices to modify fruit zone microclimates, has been widely applied aiming at improving wine quality. Wine aroma contributes greatly to wine quality, yet the effects of basal defoliation on wine aromas show discrepancies according to previous studies. This study is a meta-analysis performed to dissect the factors related to the influence of basal defoliation on volatile compounds in wine. Timing of basal defoliation plays an important role in the concentration of varietal aromas in wine. Pre-veraison defoliation induces an increase in β-damascenone and linalool as well as a reduction in 3-isobutyl-2-methoxypyrazine (IBMP. The effects of basal defoliation on certain volatile compounds relative to fermentation aromas in wine (1-hexanol, β-phenylethanol, 2-phenylethyl acetate, decanoic acid, and ethyl octanoate depend on grape maturity. There are also other factors, such as cultivar and climate conditions, that might be responsible for the effect of basal defoliation on wine aromas. The concentrations of isobutanol, isoamyl alcohol, hexanoic acid, and octanoic acid as well as ethyl isobutyrate, ethyl hexanoate, ethyl isovalerate, and ethyl decanoate in wine are not markedly affected by basal defoliation. Due to limited studies included in this meta-analysis, more trials are needed to confirm the current findings.

  12. Effect of sweet orange aroma on experimental anxiety in humans.

    Science.gov (United States)

    Goes, Tiago Costa; Antunes, Fabrício Dias; Alves, Péricles Barreto; Teixeira-Silva, Flavia

    2012-08-01

    The objective of this study was to evaluate the potential anxiolytic effect of sweet orange (Citrus sinensis) aroma in healthy volunteers submitted to an anxiogenic situation. Forty (40) male volunteers were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma: 2.5, 5, or 10 drops), tea tree essential oil (control aroma: 2.5 drops), or water (nonaromatic control: 2.5 drops). Immediately after inhalation, each volunteer was submitted to a model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated before the inhalation period and before, during, and after the SCWT. Unlike the control groups, the individuals exposed to the test aroma (2.5 and 10 drops) presented a lack of significant alterations (p>0.05) in state-anxiety, subjective tension and tranquillity levels throughout the anxiogenic situation, revealing an anxiolytic activity of sweet orange essential oil. Physiologic alterations along the test were not prevented in any treatment group, as has previously been observed for diazepam. Although more studies are needed to find out the clinical relevance of aromatherapy for anxiety disorders, the present results indicate an acute anxiolytic activity of sweet orange aroma, giving some scientific support to its use as a tranquilizer by aromatherapists.

  13. A deletion of the gene encoding amino aldehyde dehydrogenase enhances the "pandan-like" aroma of winter melon (Benincasa hispida) and is a functional marker for the development of the aroma.

    Science.gov (United States)

    Ruangnam, Saowalak; Wanchana, Samart; Phoka, Nongnat; Saeansuk, Chatree; Mahatheeranont, Sugunya; de Hoop, Simon Jan; Toojinda, Theerayut; Vanavichit, Apichart; Arikit, Siwaret

    2017-12-01

    The gene conferring a "pandan-like" aroma of winter melon was identified. The sequence variation (804-bp deletion) found in the gene was used as the target for functional marker development. Winter melon (Benincasa hispida), a member of the Cucurbitaceae family, is a commonly consumed vegetable in Asian countries that is popular for its nutritional and medicinal value. A "pandan-like" aroma, which is economically important in crops including rice and soybean, is rarely found in most commercial varieties of winter melon, but is present in some landraces. This aroma is a value-added potential trait in breeding winter melon with a higher economic value. In this study, we confirmed that the aroma of winter melon is due to the potent volatile compound 2-acetyl-1-pyrroline (2AP) as previously identified in other plants. Based on an analysis of public transcriptome data, BhAMADH encoding an aminoaldehyde dehydrogenase (AMADH) was identified as a candidate gene conferring aroma of winter melon. A sequence comparison of BhAMADH between the aromatic and non-aromatic accessions revealed an 804-bp deletion encompassing exons 11-13 in the aromatic accession. The deletion caused several premature stop codons and could result in a truncated protein with a length of only 208 amino acids compared with 503 amino acids in the normal protein. A functional marker was successfully developed based on the 804-bp deletion and validated in 237 F 2 progenies. A perfect association of the marker genotypes and aroma phenotypes indicates that BhAMADH is the major gene conferring the aroma. The recently developed functional marker could be efficiently used in breeding programs for the aroma trait in winter melon.

  14. Understanding aroma release from model cheeses by a statistical multiblock approach on oral processing.

    Directory of Open Access Journals (Sweden)

    Gilles Feron

    Full Text Available For human beings, the mouth is the first organ to perceive food and the different signalling events associated to food breakdown. These events are very complex and as such, their description necessitates combining different data sets. This study proposed an integrated approach to understand the relative contribution of main food oral processing events involved in aroma release during cheese consumption. In vivo aroma release was monitored on forty eight subjects who were asked to eat four different model cheeses varying in fat content and firmness and flavoured with ethyl propanoate and nonan-2-one. A multiblock partial least square regression was performed to explain aroma release from the different physiological data sets (masticatory behaviour, bolus rheology, saliva composition and flux, mouth coating and bolus moistening. This statistical approach was relevant to point out that aroma release was mostly explained by masticatory behaviour whatever the cheese and the aroma, with a specific influence of mean amplitude on aroma release after swallowing. Aroma release from the firmer cheeses was explained mainly by bolus rheology. The persistence of hydrophobic compounds in the breath was mainly explained by bolus spreadability, in close relation with bolus moistening. Resting saliva poorly contributed to the analysis whereas the composition of stimulated saliva was negatively correlated with aroma release and mostly for soft cheeses, when significant.

  15. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds.

    Science.gov (United States)

    Barata, André; Campo, Eva; Malfeito-Ferreira, Manuel; Loureiro, Virgílio; Cacho, Juan; Ferreira, Vicente

    2011-03-23

    In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma.

  16. Healing of pain by music and aroma

    International Nuclear Information System (INIS)

    Ueda, Takashi; Ikeda, Yoshitomo

    2007-01-01

    To see the alteration and modification by music and aroma of the brain activity at the moment of pain stimulus, authors studied 3D images by dynamic single photon emission computed tomography (SPECT) with continuous intravenous 99m Tc-HMPAO (hexamethylpropyleneamine oxime) method that they had developed. The radiopharmaceutical was i.v. injected at a constant infusion rate of 1,110 MBq/30 ml/30 min and dynamic SPECT was performed for 30 min at every 2 min interval with the gamma camera GCA 7200A/UI 2-head SPECT system (Toshiba) to make the time-activity curve of regional cerebral blood flow (rCBF). During the infusion, pain stimulus was given by clipping the tip of third finger for 3 sec repeatedly for 2 min. Subjects, healthy normal or with disease, were 18 cases with no healing, 14 with music and 32 with aroma. Pain alone or plus pop music induced rCBF increase in wide regions of the brain while slow-paced music or calm aroma (rose and lavender) suppressed the rCBF increase by pain in the lateral margin of frontal lobe. These changes were thought to be related to healing effects. (T.I.)

  17. Aroma of some plants cultivated in Lithuania : composition, processing and release

    NARCIS (Netherlands)

    Bylaite, E.

    2000-01-01

    In this study, some factors affecting the aroma of some plants of the families Umbelliferae and Asteraceae were evaluated. The composition of the aromas is influenced by several factors: plant family, harvesting time, anatomical part of plant,

  18. Evaluation of the Pivot Profile©, a new method to characterize a large variety of a single product: Case study on honeys from around the world.

    Science.gov (United States)

    Deneulin, Pascale; Reverdy, Caroline; Rébénaque, Pierrick; Danthe, Eve; Mulhauser, Blaise

    2018-04-01

    Honey is a natural product with very diverse sensory attributes that are influenced by the flower source, the bee species, the geographic origin, the treatments and conditions during storage. This study aimed at describing 50 honeys from diverse flower sources in different continents and islands, stored under various conditions. Many articles have been published on the sensory characterization of honeys, thus a common list of attributes has been established, but it appeared to be poorly suited to describe a large number of honeys from around the world. This is why the novel and rapid sensory evaluation method, the Pivot Profile©, was tested, with the participation of 15 panelists during five sessions. The first objective was to obtain a sensory description of the 50 honeys that were tested. From 1152 distinct terms, a list of 29 sensory attributes was established and the attributes divided into three categories: color/texture (8 terms), aroma (16 terms), and taste (5 terms). At first, the honeys have been ranked according to their level of crystallization from fluid/liquid to viscous/hard. Then color was the second assessment factor of the variability. In terms of aroma, honeys from Africa were characterized by smoky, resin, caramel and dried fruit as opposed to floral and fruity, mainly for honeys from South America and Europe. Finally, the honeys were ranked according to their sweetness. The second objective of this study was to test the new sensory method, called Pivot Profile© which is used to describe a large number of products with interpretable results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2018-03-01

    Full Text Available Beer is a complex beverage containing a myriad of flavor- and aroma-active compounds. Brewers strive to achieve an appropriate balance of desired characters, while avoiding off-aromas and flavors. Phenolic compounds are always present in finished beer, as they are extracted from grains and hops during the mashing and brewing process. Some of these compounds have little impact on finished beer, while others may contribute either desirable or undesirable aromas, flavors, and mouthfeel characteristics. They may also contribute to beer stability. The role of simple phenolic compounds on the attributes of wort and beer are discussed.

  20. Recovery of aroma compounds from orange essential oil

    Directory of Open Access Journals (Sweden)

    Haypek E.

    2000-01-01

    Full Text Available The objective of this work was to study the recovery of aroma compounds present in the orange essential oil using experimental data from CUTRALE (a Brazilian Industry of Concentrated Orange Juice. The intention was to reproduce the industrial unit and afterwards to optimize the recovery of aroma compounds from orange essential oil by liquid-liquid extraction. The orange oil deterpenation was simulated using the commercial software PRO/II 4.0 version 1.0. The UNIFAC model was chosen for the calculation of the activity coefficients.

  1. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.).

    Science.gov (United States)

    Feng, Shi; Huang, Mingyang; Crane, Jonathan Henry; Wang, Yu

    2018-04-01

    Volatile compounds in 'Sweetheart' lychee were examined using gas chromatography-olfactometry/mass spectrometry (GC-O/MS). Solvent assisted flavor evaporation (SAFE) technique was used to identify the aroma-active compounds in lychee. Further characterization of the most important odorants in 'Sweetheart' lychee was achieved using aroma extract dilution analysis (AEDA). Thirty-one key aroma-active odorants were identified in the flavor dilution (FD) factor range of 2-1024. Methional (cooked potato) and geraniol (sweet, floral) exhibited the highest FD factors of 1024 and 512, respectively, these were followed by furaneol (sweet, caramel), nerol (floral, sweet), dimethyl trisulfide (DMTS) (preserved vegetable, sulfury), linalool (floral), (E,Z)-2,6 nonadienal (cucumber) and nerolidol (metalic, sesame oil). Furthermore, the flavor profile of 'Sweetheart' lychee was described by sensory analysis. Floral, tropical fruit, peach/apricot and honey were scored with relatively high scores for each aroma attribute. The sweetness rating was the highest score among all the attributes. Copyright © 2017. Published by Elsevier B.V.

  2. Optimization of the HS-SPME-GC/MS technique for determining volatile compounds in red wines made from Isabel grapes (Vitis labrusca

    Directory of Open Access Journals (Sweden)

    Narciza Maria de Oliveira ARCANJO

    2015-01-01

    Full Text Available AbstractBrazilian wine production is characterized by Vitis labrusca grape varieties, especially the economically important Isabel cultivar, with over 80% of its production destined for table wine production. The objective of this study was to optimize and validate the conditions for extracting volatile compounds from wine with the solid-phase microextraction technique, using the response surface method. Based on the response surface analysis, it can be concluded that the central point values maximize the process of extracting volatile compounds from wine, i.e., an equilibrium time of 15 minutes, an extraction time of 35 minutes, and an extraction temperature of 30 °C. Esters were the most numerous compounds found under these extraction conditions, indicating that wines made from Isabel cultivar grapes are characterized by compounds that confer a fruity aroma; this finding corroborates the scientific literature.

  3. Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis.

    Science.gov (United States)

    Munafo, John P; Didzbalis, John; Schnell, Raymond J; Schieberle, Peter; Steinhaus, Martin

    2014-05-21

    The aroma-active compounds present in tree-ripened fruits of the five mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi were isolated by solvent extraction followed by solvent-assisted flavor evaporation (SAFE) and analyzed by gas chromatography-olfactometery (GC-O). Application of a comparative aroma extract dilution analysis (cAEDA) afforded 54 aroma-active compounds in the flavor dilution (FD) factor range from 4 to ≥2048, 16 of which are reported for the first time in mango. The results of the identification experiments in combination with the FD factors revealed 4-hydroxy-2,5-dimethyl-3(2H)-furanone as an important aroma compound in all cultivars analyzed. Twenty-seven aroma-active compounds were present in at least one mango cultivar at an FD factor ≥128. Clear differences in the FD factors of these odorants between each of the mango cultivars suggested that they contributed to the unique sensory profiles of the individual cultivars.

  4. Research of fragranced air, environmental aroma, to human and its application. Kankyo hoko no koka to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S. (Shimizu Construction Co. Ltd., Tokyo (Japan))

    1991-06-01

    The effect of lemon, jasmine and lavender aroma on people was studied through environmental aroma experiments by 270 subjects in a meeting room for two months. As a result, the high percentage of positive responses was obtained on the sense of air cleanliness and efficiency of meetings, and a statistical significance was, in particular, obtained in the case of lemon as smoking was permitted. It was suggested that aroma had physiological and phychological effect even under conditions where the subjects were not necessarily aware of aroma. The effect of the same three aromas was also studied through experiments by 13 subjects in a VDT room for one month. As a result, the number of keypunch errors decreased in every aroma although punching speeds decreased slightly, and lemon showed a significant difference among three aromas. Based on these experimental results, the aroma generator was developed, and more than 30 environmental aroma systems combined with air conditioning ducts have been installed in Japan. 20 refs., 5 figs., 6 tabs.

  5. Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils.

    Science.gov (United States)

    Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A; del-Toro-Sánchez, L

    2009-09-01

    Microbial and aroma attributes are within the most decisive factors limiting safety and sensory appealing of fresh-cut fruits and vegetables. Alternatively, several plant essential oils (EOs) are constituted of several volatile active compounds and most of them present antimicrobial potential and had different aroma profile. Considering these premises, this hypothesis article states that safety and aroma appealing of fresh-cut produce could be improved with EO treatment. EOs could prevent fresh-cut fruit decay; however, their volatile constituents could be sorbed by the produce, and according to the aroma notes of the antimicrobial oil, sensorial appealing of odor, and flavor of the treated produce might be affected positively or negatively. Specifically, garlic oil is a natural antimicrobial constituted by sulfur compounds, which are responsible for its odor and antimicrobial properties. Besides, fresh-cut tomato is a highly perishable product that needs antimicrobial agents to preserve its quality and safety for a longer period of time. From the sensorial point of view, aroma combination of garlic and tomato is a common seasoning practice in Europe and America and well accepted by consumers. Once the right combination of flavors between the EOs and the fresh-cut produce has been selected, safety and quality of the treated fruit could be improved by adding antimicrobial protection and extra aroma. Therefore, other combinations between EOs and fresh-cut produce are discussed. This approximation could reinforce the trends of natural food preservation, accomplishing the demands of the increasing sector of consumers demanding tasty and convenient fresh-cut produce, containing only natural ingredients.

  6. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.

    Science.gov (United States)

    Rollero, Stéphanie; Mouret, Jean-Roch; Sanchez, Isabelle; Camarasa, Carole; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie

    2016-02-09

    Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). An integrated approach to yeast metabolism-combining transcriptomic analyses and online monitoring data-showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.

  7. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics

    Science.gov (United States)

    Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.

    2017-01-01

    Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p counterfeit and defective products.

  8. Aroma behaviour during steam cooking within a potato starch-based model matrix.

    Science.gov (United States)

    Descours, Emilie; Hambleton, Alicia; Kurek, Mia; Debeaufort, Fréderic; Voilley, Andrée; Seuvre, Anne-Marie

    2013-06-05

    To help understand the organoleptic qualities of steam cooked foods, the kinetics of aroma release during cooking in a potato starch based model matrix was studied. Behaviour of components having a major impact in potato flavour were studied using solid phase micro extraction-gas chromatography (SPME-GC). Evolution of microstructure of potato starch model-matrix during steam cooking process was analyzed using environmental scanning electron microscopy (ESEM). Both aroma compounds that are naturally present in starch matrix and those that were added were analyzed. Both the aroma compounds naturally presented and those added had different behaviour depending on their physico-chemical properties (hydrophobicity, saturation vapour pressure, molecular weight, etc.). The physical state of potato starch influences of the retention of aromatized matrix with Starch gelatinization appearing to be the major phenomenon influencing aroma release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  10. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.; Wolkers - Rooijackers, Judith C.M.; Abee, Tjakko; Smid, Eddy J.

    2017-01-01

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers’ yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture

  11. Effects of aroma and taste, independently or in combination, on appetite sensation and subsequent food intake.

    Science.gov (United States)

    Yin, Wenting; Hewson, Louise; Linforth, Robert; Taylor, Moira; Fisk, Ian D

    2017-07-01

    Food flavour is important in appetite control. The effects of aroma and taste, independently or in combination, on appetite sensation and subsequent food intake, were studied. Twenty-six females (24 ± 4 years, 20.9 ± 1.9 kg⋅m -2 ) consumed, over 15 min period, one of four sample drinks as a preload, followed by an ad libitum consumption of a pasta meal (after 65 min). Sample drinks were: water (S1, 0 kcal), water with strawberry aroma (S2, 0 kcal), water with sucrose and citric acid (S3, 48 kcal) and water with strawberry aroma, sucrose and citric acid (S4, 48 kcal). Appetite sensation did not differ between the S1 (water), S2 (aroma) and S3 (taste) conditions. Compared with S1 (water), S2 (aroma) and S3 (taste), S4 (aroma + taste) suppressed hunger sensation over the 15 min sample drink consumption period (satiation) (p < 0.05). S4 (aroma + taste) further reduced hunger sensation (satiety) more than S1 at 5, 20 and 30 min after the drink was consumed (p < 0.05), more than S2 (aroma) at 5 and 20 min after the drink was consumed (p < 0.05), and more than S3 (taste) at 5 min after the drink was consumed (p < 0.05). Subsequent pasta energy intake did not vary between the sample drink conditions. S4 (aroma + taste) had the strongest perceived flavour. This study suggests that the combination of aroma and taste induced greater satiation and short-term satiety than the independent aroma or taste and water, potentially via increasing the perceived flavour intensity or by enhancing the perceived flavour quality and complexity as a result of aroma-taste cross-modal perception. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Study of the effect of H2S, MeSH and DMS on the sensory profile of wine model solutions by Rate-All-That-Apply (RATA).

    Science.gov (United States)

    Franco-Luesma, Ernesto; Sáenz-Navajas, María-Pilar; Valentin, Dominique; Ballester, Jordi; Rodrigues, Heber; Ferreira, Vicente

    2016-09-01

    The effect of hydrogen sulfide (H 2 S), methanethiol (MeSH) and dimethyl sulfide (DMS) on the odor properties of three wine models-WM- (young white, young red and oaked red wines) was studied. Wine models were built by mixing a pool of common wine volatile and non-volatile compounds and further spiked with eight different combinations of the three sulfur compounds present at two levels (level 0: 0μgL -1 and level 1: 40μgL -1 of H 2 S, 12μgL -1 of MeSH; 55μgL -1 of DMS). For each wine matrix eight WMs were produced and further submitted to sensory description by Rate-All-That-Apply (RATA) method. Hydrogen sulfide and methanethiol were clearly involved in the formation of reductive aromas and shared the ability to act as strong suppressors of fruity and floral attributes. Specifically, hydrogen sulfide generated aromas of rotten eggs, while methanethiol generated significant increases in camembert and decreases in citrus, smoky/roasted and oxidation aromas. The simultaneous presence of hydrogen sulfide and methanethiol enhanced the intensity of the unspecific term reduction, while the specific nuances individually imparted by each of the two compounds could not be further identified. DMS did not exert any outstanding effect on the reductive character of wines and its sensory effect was matrix-dependent. It was involved in the formation of fruity notes such as cooked/candied and red/black fruits in young wines, and vegetal notes (canned vegetables) in oaked red WMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Extra virgin olive oil aroma release after interaction with human saliva from individuals with different body mass index.

    Science.gov (United States)

    Genovese, Alessandro; Rispoli, Tiziana; Sacchi, Raffaele

    2018-07-01

    The interindividual variability observed in saliva characteristics raises the question of its relationship with variability in fat sensory perception, particularly in aroma compounds. In the present study, which aimed to measure aroma release from different individuals, eleven key aroma compounds of extra virgin olive oil (EVOO) were monitored and quantified in dynamic headspace after an in vitro interaction between EVOO and human saliva. Therefore, 60 individuals were studied from those who were normal weight (NW), overweight (OW) and obese (O). OW and O demonstrate a higher release of C 6 compounds compared to NW. By contrast, NW have a higher release of C 5 compounds. Pentanal and hexanal also increased after saliva interaction in a refined olive oil that is free from volatiles. Among the saliva samples with a higher release in NW individuals, only pentanal was different. However, the low levels of these lipid oxidation end-products do not appear to be very important with respect to increasing odorous fat sensitivity. The results obtained in the present study demonstrate the important role of saliva in the aroma release of EVOO, indicating that humans can perceive it differently in relation to their body mass index. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.

    Science.gov (United States)

    Mall, Veronika; Schieberle, Peter

    2016-08-24

    Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.

  15. Factors influencing the aroma composition of Chardonnay wines.

    Science.gov (United States)

    Gambetta, Joanna M; Bastian, Susan E P; Cozzolino, Daniel; Jeffery, David W

    2014-07-16

    Chardonnay is one of the oldest and most widely distributed wine grape cultivars and is of commercial importance for the world's wine-producing nations. It is an extremely flexible variety that has adapted to different regions with varied weather and soil characteristics. Somewhat uniquely among white wines, Chardonnay lends itself to a wide variety of production styles, which can be tailored to the target market. Techniques such as skin maceration, barrel and stainless steel fermentation, use of selected or indigenous yeasts, malolactic fermentation, and aging in barrels with or without lees are all applicable and lead to different compositional outcomes. A number of research papers have been published with a view to understanding Chardonnay composition and quality as well as the impact of different enological techniques on the final product. This review summarizes current knowledge, explaining the influence of viticultural and production techniques on aroma composition, and poses directions for further research into Chardonnay wines.

  16. Influence of different yeast/lactic acid bacteria combinations on the aromatic profile of red Bordeaux wine.

    Science.gov (United States)

    Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles

    2017-09-01

    The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.

    Science.gov (United States)

    Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J

    2011-08-01

    Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.

  18. Study on aroma components of osmanthus by absorption wire gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Feng Janyue; Zhao Jing; Huang Qiaoqiao; Feng Lianmei

    2001-01-01

    The aroma components of fresh osmanthus are captured by absorption wires. The fragrant components absorbed in the wires are desorbed immediately at 358 degree C in Curie-point pyrolyzed, and then led into GC/MS to analyze. As a result, 41 aroma compounds such as β-linalool, linalooloxide, β-ocimene etc. in osmanthus are detected qualitatively by gas chromatography/mass spectrometry. This method can be used to analyze the change of aroma compounds of fresh flowers while blossoming

  19. Key Aroma Compounds in Lippia dulcis (Dushi Button).

    Science.gov (United States)

    Schmitt, Rainer; Cappi, Michael; Pollner, Gwendola; Greger, Veronika

    2018-03-14

    An aroma extract dilution analysis (AEDA) applied on aroma extracts prepared from the edible flower Dushi Button ( Lippia dulcis) resulted in the detection of 34 odor-active compounds. The highest flavor dilution (FD) factors were determined for methyl 2-methylbutanoate, ethyl 2-methylbutanoate, 4-mercapto-4-methyl-2-pentanone, an unknown caramel-like compound, and vanillin. Quantitative measurements performed by application of stable isotope dilution assays (SIDA), followed by a calculation of odor activity values (OAVs), resulted in the revelation of 4-mercapto-4-methyl-2-pentanone, linalool, myrcene, ethyl 2-methylbutanoate, methyl 2-methylbutanoate, and ( Z)-3-hexenal as important contributors to the flavor of Dushi Buttons.

  20. Sensory-Analytical Comparison of the Aroma of Different Horseradish Varieties (Armoracia rusticana

    Directory of Open Access Journals (Sweden)

    Eva-Maria Kroener

    2018-05-01

    Full Text Available Horseradish (Armoracia rusticana is consumed and valued for the characteristic spicy aroma of its roots in many countries all over the world. In our present study we compare six different horseradish varieties that were grown under comparable conditions, with regard to their aroma profiles, using combined sensory-analytical methods. Horseradish extracts were analyzed through gas chromatography-olfactometry (GC-O and their aroma-active compounds ranked according to their smell potency using the concept of aroma extract dilution analysis (AEDA. Identification was carried out through comparison of retention indices, odor qualities and mass spectra with those of reference substances. Besides some differences in relative ratios, we observed some main odorants that were common to all varieties such as 3-isopropyl-2-methoxypyrazine and allyl isothiocyanate, but also characteristics for specific varieties such as higher contents for 3-isopropyl-2-methoxypyrazine in variety Nyehemes. Moreover, three odorous compounds were detected that have not been described in horseradish roots before.

  1. Norisoprenoids, sesquiterpenes and terpenoids content of Valpolicella wines during ageing: investigating aroma potential in relationship to evolution of tobacco and balsamic aroma in aged wine

    Science.gov (United States)

    Slaghenaufi, Davide; Ugliano, Maurizio

    2018-03-01

    During wine ageing, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analysed shortly after bottling or following model ageing at 60 °C for 48, 72, and 168 hours. Volatile compounds were analysed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma (β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB) and megastigmatrienones) increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48-72 hours of model ageing. Instead, TPB and megastigmatrienones concentration showed a linear correlation with ageing time. During model ageing, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine ageing, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine.

  2. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine.

    Science.gov (United States)

    Slaghenaufi, Davide; Ugliano, Maurizio

    2018-01-01

    During wine aging, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analyzed shortly after bottling or following model aging at 60°C for 48, 72, and 168 h. Volatile compounds were analyzed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma [β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB), and megastigmatrienones] increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48-72 h of model aging. Instead, TPB and megastigmatrienones concentration showed a linear correlation with aging time. During model aging, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene, and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine aging, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine.

  3. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine

    Science.gov (United States)

    Slaghenaufi, Davide; Ugliano, Maurizio

    2018-01-01

    During wine aging, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analyzed shortly after bottling or following model aging at 60°C for 48, 72, and 168 h. Volatile compounds were analyzed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma [β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB), and megastigmatrienones] increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48–72 h of model aging. Instead, TPB and megastigmatrienones concentration showed a linear correlation with aging time. During model aging, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene, and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine aging, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine. PMID:29616214

  4. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.

    Science.gov (United States)

    Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya

    2017-07-01

    Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of characteristic aroma compounds in raw and thermally processed African giant snail (Achatina fulica).

    Science.gov (United States)

    Lasekan, Ola; Muniady, Megala; Lin, Mee; Dabaj, Fatma

    2018-04-24

    Food flavor appreciation is one of the first signals along with food appearance and texture encountered by consumers during eating of food. Also, it is well known that flavor can strongly influence consumer's acceptability judgment. The increase in the consumption of snail meat across the world calls for the need to research into the aroma compounds responsible for the distinctive aroma notes of processed snail meat. The odorants responsible for the unique aroma notes in thermally processed giant African snail meats were evaluated by means of aroma extract dilution analysis (AEDA), gas chromatography-olfactometry (GC-O) and odor activity values (OAVs) respectively. Results revealed significant differences in the aroma profiles of the raw and thermally processed snail meats. Whilst the aroma profile of the raw snail meat was dominated with the floral-like β-ionone and β-iso-methyl ionone, sweaty/cheesy-like butanoic acid, and the mushroom-like 1-octen-3-one, the boiled and fried samples were dominated with the thermally generated odorants like 2-methylpyrazine, 2,5-dimethylpyrazine, 2-acetylthiazole and 2-acetylpyridine. Finally, results have shown that sotolon, 2-acetyl-1-pyrroline, 2-furanmethanethiol, 2-methylbutanal, 1-octen-3-one, octanal, furanone, 2-methoxyphenol, 2-acetylpyridine, 2-acetylthiazole, and 2-methylpyrazine contributed to the overall aroma of the thermally processed snail meat.

  6. Effect of Thermal Treatments on Quality and Aroma of Watermelon Juice

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2018-01-01

    Full Text Available The effect of thermal treatments on the quality and aroma of watermelon juice was evaluated. Watermelon juice was pasteurized via ultrahigh temperature (UHT, pasteurized at 135°C for 2 s, low temperature long time (LTLT, pasteurized at 60°C for 30 min, and high temperature short time (HTST, pasteurized at 100°C for 5 min, respectively. UHT and LTLT reduced the total flora count and maintained the color of the pasteurized juice, while the HTST led to a significant color difference. A total of 27, 21, 22, and 21 volatiles were identified in the unpasteurized juice, UHT, LTLT, and HTST, respectively. The typical watermelon aroma, including (3Z-3-nonen-1-ol, (E-2-nonen-1-ol, 1-nonanal, (2E-2-nonenal, and (E,Z-2,6-nonadienal, was abundant in the LTLT. Consequently, the aroma of the LTLT was similar to that of unpasteurized juice. Moreover, the shelf life of the LTLT reached 101 and 14 days at 4 and 25°C, respectively. Hence, the LTLT was the best way to maintain the quality and aroma of watermelon juice.

  7. Study of aroma scalping through thermosealable polymers used in food packaging by inverse gas chromatography.

    Science.gov (United States)

    Gavara, R; Catalá, R; Hernández-Muñoz, P

    1997-01-01

    Scalping of aroma components in polymers used for food packaging was determined by solubility experiments. Aromas were selected from different families: esters, alcohols, hydrocarbons and ketones. Polymers were a linear low density polyethylene (LLDPE), an ionomer and a new thermosealable polyester (PET). Polymers were selected from thermosealable materials because of their resistance to fats and oils. Sorption isotherms (low sorbate activity range) for every system aroma (vapour)/polymer were determined by inverse gas chromatography. Isotherms were found to be linear. Hence, solubility coefficients (S) as defined by Henry's law were calculated from the isotherm slopes. According to S values, PET appears to be the best choice to minimize aroma scalping by sorption in the packaging inner layer, Ionomers improve the barrier to aroma when compared with LLDPE except for polar sorbates. Sorption of aroma components was shown to be selective, e.g. limonene was preferentially sorbed in LLDPE. The value of S for the limonene/LLDPE system was 2.5 times the value of S for ethyl caproate/LLDPE. This selectivity may lead to an imbalance in the flavour and may be more important than the prevention of overall scalping.

  8. Extended aroma extract dilution analysis profile of Shiikuwasha (Citrus depressa Hayata pulp essential oil

    Directory of Open Access Journals (Sweden)

    Yonathan Asikin

    2018-01-01

    Full Text Available Shiikuwasha pulp is an important raw material for producing citrus essential oils. The volatile aroma composition of pulp essential oil was evaluated using gas chromatography (GC methods, and its aroma profile was assessed using GC-olfactometry with an extended aroma extract dilution analysis (AEDA technique in regard to alterations of odor strength and sensorial perception throughout serial dilution steps. The essential oil comprised a mixture of 55 aroma compounds, including monoterpene hydrocarbon, sesquiterpene hydrocarbon, alcohol, aldehyde, ester, and oxide compounds. The predominant compounds were limonene [57.36% (4462.80 mg/100 g of pulp] and γ-terpinene [25.14% (1956.21 mg/100 g of pulp]. However, linalool was identified as one of the key aroma components providing the highest flavor dilution factor in AEDA, whilst three sesquiterpene hydrocarbons (δ-elemene, germacrene B, and bicyclosesquiphellandrene and two esters (heptyl acetate and decyl acetate had superior relative flavor activities. The extended AEDA profile identified variations in assessed odor perceptions, intensity, and duration of aroma components over dilution, whereas the 12 most odor-active compounds showed comparable odor strengths.

  9. Biotechnological process for obtaining new fermented products from cashew apple fruit by Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Araújo, Suzane Macêdo; Silva, Cristina Ferraz; Moreira, Jane Jesus Silveira; Narain, Narendra; Souza, Roberto Rodrigues

    2011-09-01

    In Brazil, the use of cashew apple (Anacardium occidentale L.) to obtain new products by biotechnological process represents an important alternative to avoid wastage of a large quantity of this fruit, which reaches about 85% of the annual production of 1 million tons. This work focuses on the development of an alcoholic product obtained by the fermentation of cashew apple juice. The inoculation with two different strains of yeast Saccharomyces cerevisiae viz. SCP and SCT, were standardized to a concentration of 10(7 )cells ml(-1). Each inoculum was added to 1,500 ml of cashew must. Fermentation was performed at 28 ± 3°C and aliquots were withdrawn every 24 h to monitor soluble sugar concentrations, pH, and dry matter contents. The volatile compounds in fermented products were analyzed using the gas chromatography/mass spectrometry (GC/MS) system. After 6 days, the fermentation process was completed, cells removed by filtration and centrifugation, and the products were stabilized under refrigeration for a period of 20 days. The stabilized products were stored in glass bottles and pasteurized at 60 ± 5°C/30 min. Both fermented products contained ethanol concentration above 6% (v v(-1)) while methanol was not detected and total acidity was below 90 mEq l(-1), representing a pH of 3.8-3.9. The volatile compounds were characterized by the presence of aldehyde (butyl aldehyde diethyl acetal, 2,4-dimethyl-hepta-2,4-dienal, and 2-methyl-2-pentenal) and ester (ethyl α-methylbutyrate) representing fruity aroma. The strain SCT was found to be better and efficient and this produced 10% more alcohol over that of strain SCP.

  10. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in “Starkrimson” during the Ripening Period in China

    Directory of Open Access Journals (Sweden)

    Yulian Liu

    2016-06-01

    Full Text Available “Starkrimson” is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of “Starkrimson” fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC and gas chromatography-mass spectrometry (GC-MS. The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal, fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.

  11. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques.

    Science.gov (United States)

    Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara

    2017-01-01

    Blueberry ( Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V . corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids

  12. Effect of cultivation line and peeling on food composition, taste characteristic, aroma profile, and antioxidant activity of Shiikuwasha (Citrus depressa Hayata) juice.

    Science.gov (United States)

    Asikin, Yonathan; Fukunaga, Hibiki; Yamano, Yoshimasa; Hou, De-Xing; Maeda, Goki; Wada, Koji

    2014-09-01

    Shiikuwasha (Citrus depressa Hayata) juice from four main cultivation lines subjected to two peeling practices (with or without peeling) were discriminated in terms of quality attributes, represented by sugar and organic acid composition, taste characteristic, aroma profile, and antioxidant activity. Shiikuwasha juice from these lines had diverse food compositions; 'Izumi kugani' juice had lower acidity but contained more ascorbic acid than that of other cultivation lines. The composition of volatile aroma components was influenced by fruit cultivation line, whereas its content was affected by peeling process (20.26-53.73 mg L(-1) in whole juice versus 0.82-1.58 mg L(-1) in flesh juice). Peeling also caused Shiikuwasha juice to be less astringent and acidic bitter and to lose its antioxidant activity. Moreover, the total phenolic and ascorbic acid content of Shiikuwasha juice positively influenced its antioxidant activity. Each fruit cultivation line had a distinct food composition, taste characteristic, and aroma profile. Peeling in Shiikuwasha juice production might reduce aftertaste, and thus might improve its palatability. Comprehensive information on the effect of cultivation line and peeling on quality attributes will be useful for Shiikuwasha juice production, and can be applied to juice production of similar small citrus fruits. © 2014 Society of Chemical Industry.

  13. Genetic analysis and gene fine mapping of aroma in rice (Oryza sativa L. Cyperales, Poaceae

    Directory of Open Access Journals (Sweden)

    Shu Xia Sun

    2008-01-01

    Full Text Available We investigated inheritance and carried out gene fine mapping of aroma in crosses between the aromatic elite hybrid rice Oryza sativa indica variety Chuanxiang-29B (Ch-29B and the non-aromatic rice O. sativa indica variety R2 and O. sativa japonica Lemont (Le. The F1 grains and leaves were non-aromatic while the F2 non-aroma to aroma segregation pattern was 3:1. The F3 segregation ratio was consistent with the expected 1:2:1 for a single recessive aroma gene in Ch-29B. Linkage analysis between simple sequence repeat (SSR markers and the aroma locus for the aromatic F2 plants mapped the Ch-29B aroma gene to a chromosome 8 region flanked by SSR markers RM23120 at 0.52 cM and RM3459 at 1.23 cM, a replicate F2 population confirming these results. Three bacterial artificial chromosome (BAC clones cover chromosome 8 markers RM23120 and RM3459. Our molecular mapping data from the two populations indicated that the aroma locus occurs in a 142.85 kb interval on BAC clones AP005301 or AP005537, implying that it might be the same gene reported by Bradbury et al (2005a; Plant Biotec J. 3:363-370. The flanking markers Aro7, RM23120 and RM3459 identified by us could greatly accelerate the efficiency and precision of aromatic rice breeding programs.

  14. Study of aroma formation and transformation during the manufacturing process of Biluochun green tea in Yunnan Province by HS-SPME and GC-MS.

    Science.gov (United States)

    Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong

    2016-10-01

    Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Differential effects of exposure to ambient vanilla and citrus aromas on mood, arousal and food choice

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-12-01

    Full Text Available Abstract Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla could be measured with small numbers of subjects, low-cost physiological sensors and semi-real life settings. Tests included physiological (heart rate, physical activity and response times, psychological (emotions and mood and behavioral (food choice measures in a semi-real life environment for 22 participants. Results Exposure to ambient citrus aroma increased physical activity (P P P P P Conclusions The test battery used in this study demonstrated aroma-specific physiological, psychological and behavioral effects of aromas with similar appeal and intensities, and similar food-related origins. These effects could be measured in (semi- real life environments for freely moving subjects using relatively inexpensive commercially available physiological sensors.

  16. Consumer perceptions of strain differences in Cannabis aroma.

    Directory of Open Access Journals (Sweden)

    Avery N Gilbert

    Full Text Available The smell of marijuana (Cannabis sativa L. is of interest to users, growers, plant breeders, law enforcement and, increasingly, to state-licensed retail businesses. The numerous varieties and strains of Cannabis produce strikingly different scents but to date there have been few, if any, attempts to quantify these olfactory profiles directly. Using standard sensory evaluation techniques with untrained consumers we have validated a preliminary olfactory lexicon for dried cannabis flower, and characterized the aroma profile of eleven strains sold in the legal recreational market in Colorado. We show that consumers perceive differences among strains, that the strains form distinct clusters based on odor similarity, and that strain aroma profiles are linked to perceptions of potency, price, and smoking interest.

  17. Consumer perceptions of strain differences in Cannabis aroma

    Science.gov (United States)

    DiVerdi, Joseph A.

    2018-01-01

    The smell of marijuana (Cannabis sativa L.) is of interest to users, growers, plant breeders, law enforcement and, increasingly, to state-licensed retail businesses. The numerous varieties and strains of Cannabis produce strikingly different scents but to date there have been few, if any, attempts to quantify these olfactory profiles directly. Using standard sensory evaluation techniques with untrained consumers we have validated a preliminary olfactory lexicon for dried cannabis flower, and characterized the aroma profile of eleven strains sold in the legal recreational market in Colorado. We show that consumers perceive differences among strains, that the strains form distinct clusters based on odor similarity, and that strain aroma profiles are linked to perceptions of potency, price, and smoking interest. PMID:29401526

  18. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.).

    Science.gov (United States)

    Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-08-23

    The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.

  19. The Effect of Central American Smoke Aerosols on the Air Quality and Climate over the Southeastern United States: First Results from RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J.; Prins, E. M.; Szykman, J.

    2004-12-01

    Observation shows that smoke aerosols from biomass burning activities in Central America can be transported to the Southeastern United States (SEUS). In this study, the Regional Atmospheric Modeling System - Assimilation and Radiation Online Modeling of Aerosols (RAMS-AROMA) is used to investigate the effect of transported smoke aerosols on climate and air quality over the SEUS. AROMA is an aerosol transport model with capabilities of online integration of aerosol radiation effects and online assimilation of satellite-derived aerosol and emission products. It is assembled within the RAMS, so two-way interactions between aerosol fields and other meteorology fields are achieved simultaneously during each model time step. RAMS-AROMA is a unique tool that can be used to examine the aerosol radiative impacts on the surface energy budget and atmospheric heating rate and to investigate how atmospheric thermal and dynamical processes respond to such impacts and consequently affect the aerosol distribution (so called feedbacks). First results regarding air quality effects and radiative forcing of transported smoke aerosols will be presented from RAMS-AROMA based on assimilation of smoke emission products from the Fire Locating and Modeling of Burning Emissions (FLAMBE) project and aerosol optical thickness data derived from the MODIS instrument on the Terra and Aqua satellites. Comparisons with PM2.5 data collected from the EPA observation network and the aerosol optical thickness data from the DOE Atmosphere Radiation Measurements in the Southern Great Plains (ARM SGP) showed that RAMS-AROMA can predict the timing and spatial distribution of smoke events very well, with an accuracy useful for air quality forecasts. The smoke radiative effects on the surface temperature and atmospheric heating rate as well as their feedbacks will also be discussed.

  20. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation

    OpenAIRE

    Chamine, Irina; Oken, Barry S.

    2016-01-01

    Objective: Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated.

  1. Identification of potent odorants in different cultivars of snake fruit [Salacca zalacca (Gaert.) Voss] using gas chromatography-olfactometry.

    Science.gov (United States)

    Wijaya, C H; Ulrich, D; Lestari, R; Schippel, K; Ebert, G

    2005-03-09

    Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.

  2. Analysis of neutral volatile aroma components in Tilsit cheese using a combination of dynamic headspace technique, capillary gas chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Dillinger, K.H.

    2000-03-01

    surface flora during ripening. Therefore the conclusion can be drawn that part of the components are formed by the starter cultures and are homogeneous spread in the cheese body at the beginning of the ripening. On the one hand the metabolism of the read smear bacteria and yeasts leads to a reduction of the components. Hereby the concentration gradient is compensated by diffusion of aroma components from the inside to the surface. On the other hand products of the metabolism of the surface flora diffuse into the cheese body. The quantity of the coefficient of diffusion varies timewise and spatially. The concentration profile is influenced not only by the diffusion but also by the shifting of the composition of the surface flora during the ripening period. (author)

  3. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques

    Science.gov (United States)

    Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara

    2017-01-01

    Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars (“Biloxi,” “Brigitta Blue,” “Centurion,” “Chandler,” and “Ozark Blue”) harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. (“Brigitta,” “Chandler,” “Liberty,” and “Ozark Blue”), V. virgatum Aiton (“Centurion,” “Powder Blue,” and “Sky Blue”), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs

  4. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques

    Directory of Open Access Journals (Sweden)

    Brian Farneti

    2017-04-01

    Full Text Available Blueberry (Vaccinium spp. fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry. The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars (“Biloxi,” “Brigitta Blue,” “Centurion,” “Chandler,” and “Ozark Blue” harvested at four ripening stages (green, pink, ripe, and over-ripe to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. (“Brigitta,” “Chandler,” “Liberty,” and “Ozark Blue”, V. virgatum Aiton (“Centurion,” “Powder Blue,” and “Sky Blue”, V. myrtillus L. (three wild genotypes of different mountain locations, and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide

  5. Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Xing-Chen; Li, Ai-Hua; Dizy, Marta; Ullah, Niamat; Sun, Wei-Xuan; Tao, Yong-Sheng

    2017-08-01

    To improve the aroma profile of Ecolly dry white wine, the simultaneous and sequential inoculations of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae were performed in wine making of this work. The two yeasts were mixed in various ratios for making the mixed inoculum. The amount of volatiles and aroma characteristics were determined the following year. Mixed fermentation improved both the varietal and fermentative aroma compound composition, especially that of (Z)-3-hexene-1-ol, nerol oxide, certain acetates and ethyls group compounds. Citrus, sweet fruit, acid fruit, berry, and floral aroma traits were enhanced by mixed fermentation; however, an animal note was introduced upon using higher amounts of R. mucilaginosa. Aroma traits were regressed with volatiles as observed by the partial least-square regression method. Analysis of correlation coefficients revealed that the aroma traits were the multiple interactions of volatile compounds, with the fermentative volatiles having more impact on aroma than varietal compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aroma Quality of Fruits of Wild and Cultivated Strawberry (FRAGARIA SPP. in Relation to the Flavour-Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Bianchi Giulia

    2014-09-01

    Full Text Available Expression profiles of flavour-related genes and the aroma quality of fruit headspace were investigated in the four strawberry genotypes ‘Reine des Vallées’ (Fragaria vesca, ‘Profumata di Tortona’ (F mos-chata, ‘Onda’ and VR 177 selection (F” x ananassa. Differences in the expression level of genes coding of strawberry alcohol acyltransferase (SAAT, F. x ananassa nerolidol synthase 1 (FaNESl and F vesca monoterpene and sesquiterpene synthases (FvPINS and PINS1, respectively were detected among these genotypes. In fruits of F. x ananassa the terpenoid profile was dominated by nerolidol, whereas wild spe–cies produced mainly monoterpenes. It was correlated with the higher induction of FaNES1 in cultivated and PINS gene in the wild Fragaria species. The flavour biogenesis in ripening fruits was determined by the expression of SAAT gene, especially visible for ‘Profumata di Tortona’ and ‘Onda’ strawberries. The fruit solid-phase microextraction (SPME headspace was analysed using the Gas Chromatography-Olfac–tometry (GC-O, that allows for the chromatographic separation of volatiles together with their olfactomet-ric evaluation. ‘Reine des Vallées’ fruits have a peculiar profile characterized by high concentrations of limonene, linalool and mesifurane that resulted in “spiced”, “citrus, floral” and “sweet, baked” descriptors. The character impact compound in ‘Profumata di Tortona’ fruits was ethyl butanoate, responsible for “sweet” and “fruity, strawberry” descriptors. However, it was detected in lower amount in comparison to the data obtained for F. x ananassa strawberries. The sesquiterpene nerolidol was identified in both culti–vated strawberry genotypes.

  7. Comparison of the performances of Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking

    Directory of Open Access Journals (Sweden)

    Jessica eLleixa

    2016-03-01

    Full Text Available Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts.In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, qPCR, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

  8. Effect of Raw Material, Pressing and Glycosidase on the Volatile Compound Composition of Wine Made From Goji Berries

    Directory of Open Access Journals (Sweden)

    Guanshen Yuan

    2016-10-01

    Full Text Available This study investigated the effect of raw material, pressing, and glycosidase on the aromatic profile of goji berry wine. The free-run and the pressed juice of dried and fresh goji berries were used for wine production, whereas glycosidase was applied to wine after fermentation. Dried goji berry fermented wine exhibited much stronger fruity, floral, caramel, and herbaceous odors due to higher levels of esters, β-ionone and methionol. However, fresh berry fermented wine possessed stronger chemical notes due to higher levels of 4-ethylphenol. Pressing treatment reduced the fruity and caramel odors in these fermented wines, and fresh berry free-run juice fermented wine exhibited the least floral aroma. Glycosidase addition did not alter the aromatic composition of wines. The principal component analysis indicated that goji raw material played a primary role in differentiating the aromatic profiles of the wines due to the difference on the content of 20 esters, nine benzenes, eight aldehydes/ketones, three acids, two alcohols and six other volatiles. The content differences on isopentyl alcohol, styrene, benzyl alcohol, 1-octanol, (E-5-decen-1-ol, 1-hexanol, and β-cyclocitral resulted in the segregation of the wines with and without the pressing treatment, especially for fresh berry fermented wine.

  9. Chemical Composition and Aroma Evaluation of Essential Oils from Skunk Cabbage (Symplocarpus foetidus).

    Science.gov (United States)

    Miyazawa, Mitsuo; Nakahashi, Hiroshi; Kashima, Yusei; Motooka, Ryota; Hara, Nobuyuki; Nakagawa, Hiroki; Yoshii, Takashi; Usami, Atsushi; Marumoto, Shinsuke

    2015-01-01

    Two sample preparation methods, namely hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE), have been used to investigate the essential oils of the aerial parts (leaves and stems) of Symplocarpus foetidus, a plant with a characteristic odor, by gas chromatography mass spectrometry (GC-MS). Characteristic aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O) and aroma extract dilution analysis (AEDA). From the HD method, the main compounds in the oil were found to be p-vinyl-guaiacol (15.5%), 2-pentyl-furan (13.4%), and (Z)-ligustilide (9.5%). From the SAFE method, the main compounds were 2-butoxy-ethanol (49.6%), ethyl-pentanoate (4.5%), and mesitylene (4.0%). In HD oil, the most intense aroma-active compounds were 2-pentyl-furan (flavor dilution factor (FD) = 32, odor activity value (OAV) = 57), p-vinyl-guaiacol (FD = 16, OAV = 41), and dimethyl disulfide (FD = 16, OAV = 41). In SAFE oil, the main aroma-active compounds were 2-butoxy ethanol (FD = 32, OAV = 16), and 2-methoxy thiazole (FD = 32, OAV = 25).

  10. Analysis of aroma compounds of Roselle by Dynamic Headspace Sampling using different preparation methods

    DEFF Research Database (Denmark)

    Juhari, Nurul Hanisah Binti; Varming, Camilla; Petersen, Mikael Agerlin

    2015-01-01

    The influence of different methods of sample preparation on the aroma profiles of dried Roselle (Hibiscus sabdariffa) was studied. Least amounts of aroma compounds were recovered by analysis of whole dry calyxes (WD) followed by ground dry (GD), blended together with water (BTW), and ground...

  11. Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry.

    Directory of Open Access Journals (Sweden)

    Arielle J Johnson

    Full Text Available This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R, that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME, separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1. Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue' as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.

  12. Perceptual Characterization and Analysis of Aroma Mixtures Using Gas Chromatography Recomposition-Olfactometry

    Science.gov (United States)

    Johnson, Arielle J.; Hirson, Gregory D.; Ebeler, Susan E.

    2012-01-01

    This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to “cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the “reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola ‘Hidcote Blue’) as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of “lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor. PMID:22912722

  13. Identification of novel aroma-active thiols in pan-roasted white sesame seeds.

    Science.gov (United States)

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2010-06-23

    Screening for aroma-active compounds in an aroma distillate obtained from freshly pan-roasted sesame seeds by aroma extract dilution analysis revealed 32 odorants in the FD factor range of 2-2048, 29 of which could be identified. The highest FD factors were found for the coffee-like smelling 2-furfurylthiol, the caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the coffee-like smelling 2-thenylthiol (thiophen-2-yl-methylthiol), and the clove-like smelling 2-methoxy-4-vinylphenol. In addition, 9 odor-active thiols with sulfurous, meaty, and/or catty, black-currant-like odors were identified for the first time in roasted sesame seeds. Among them, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, and 4-mercapto-3-hexanone were previously unknown as food constituents. Their structures were confirmed by comparing their mass spectra and retention indices as well as their sensory properties with those of synthesized reference compounds. The relatively unstable 1-alkene-1-thiols represent a new class of food odorants and are suggested as the key contributors to the characteristic, but quickly vanishing, aroma of freshly ground roasted sesame seeds.

  14. Aroma compounds of Vitis vinifera L. cv. Emir grown in central Anatolia

    Directory of Open Access Journals (Sweden)

    Turgut Cabaroglu

    2002-12-01

    Full Text Available Free and glycosidically bound aroma compounds of Emir grape juice obtained with or without skincontact were investigated. The aroma compounds were isolated by adsorbtion on Amberlite XAD-2 resin and analysed by gas chromatography-mass spectrometry (GC-MS. 32 free and 37 glycosidically bound compounds were identified. - Shikimate - derived compounds were major components. C13-norisoprenoid compounds usually detected in bound forms in grapes were also present in free forms in Emir grape. Monoterpenes were in lower levels that normally found in floral grape cultivars. The amounts of free and bound aroma compounds of the juice increased by skin-contact treatment. The levels of some compounds were significantly different in control and skin-contact jices. Additionally, skin-contact treatment resulted in an increase in pH, colour intensity, total phenolics, potassium, sodium and calcium.

  15. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Lourdes García-Vico

    2017-01-01

    Full Text Available Virgin olive oil (VOO is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36 which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species (Olea europaea L.. The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV. The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  16. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil.

    Science.gov (United States)

    García-Vico, Lourdes; Belaj, Angjelina; Sánchez-Ortiz, Araceli; Martínez-Rivas, José M; Pérez, Ana G; Sanz, Carlos

    2017-01-14

    Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species ( Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  17. Identification of aroma-active volatiles in banana Terra spirit using multidimensional gas chromatography with simultaneous mass spectrometry and olfactometry detection.

    Science.gov (United States)

    Capobiango, Michely; Mastello, Raíssa Bittar; Chin, Sung-Tong; Oliveira, Evelyn de Souza; Cardeal, Zenilda de Lourdes; Marriott, Philip John

    2015-04-03

    Fruit spirits have been produced and consumed throughout the world for centuries. However, the aroma composition of banana spirits is still poorly characterised. We have investigated the aroma-impact compounds of the banana Terra spirit for the first time, using multidimensional gas chromatography (MDGC and GC × GC) in a multi-hyphenated system - i.e., coupled to flame ionisation detection (FID), mass spectrometry (MS), and olfactometry (O). Solid-phase microextraction (SPME) was used to isolate the headspace aroma compounds of the banana spirit. The detection frequency (DF) technique was applied and aroma regions, detected in the first column separation at >60% Nasal Impact Frequency (NIF), were screened as target potent odour regions in the sample. Using a polar/non-polar phase column set, the potent odour regions were further subjected to MDGC separation with simultaneous O and MS detection for correlation of the aroma perception with MS data for individual resolved aroma-impact compounds. GC-O analysis enabled 18 aroma-impact regions to be located as providing volatiles of interest for further study; for example, those comprising perceptions of flower, whisky, green, amongst others. Compounds were tentatively identified through MS data matching and retention indices in both first and second dimensions. The principal volatile compounds identified in this work, which are responsible for the characteristic aroma of the banana spirit, are 3-methylbutan-1-ol, 3-methylbutan-1-ol acetate, 2-phenylethyl acetate and phenylethyl alcohol. This is the first such study to reveal the major aroma compounds that contribute to banana spirit aroma. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Changes in key aroma compounds of Criollo cocoa beans during roasting.

    Science.gov (United States)

    Frauendorfer, Felix; Schieberle, Peter

    2008-11-12

    Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.

  19. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    Directory of Open Access Journals (Sweden)

    Ahmet Salih Sonmezdag

    2017-02-01

    Full Text Available The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  20. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    Science.gov (United States)

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  1. Fermentative Aroma Compounds and Sensory Descriptors of Traditional Croatian Dessert Wine Prošek from Plavac mali cv.

    Directory of Open Access Journals (Sweden)

    Goran Zdunić

    2010-01-01

    Full Text Available Prošek is a traditional dessert wine from the coastal region of Croatia made from partially dried grapes. There is very little literature data about the chemical composition and sensory properties of Prošek, so an experimental production from the dried grapes of Plavac mali cultivar has been done using native and induced alcoholic fermentations. To determine the volatile compounds, gas chromatography with flame ionisation detector (GC/FID was used on the samples prepared with solid phase microextraction (SPME. Higher alcohols, esters, carbonyl compounds and volatile acids were determined in the wine samples. Wines were grouped according to the production method using principal component analysis (PCA. It was found that Prošek wines produced with native and induced alcoholic fermentation differ in their volatile compounds. Descriptive sensory analysis was applied to show the sensory properties of Prošek wine, whose characteristic aromas include those of dried fruit (raisins, red berries, honey, chocolate and vanilla. A significant difference depending on the type of fermentation was determined in two sensory attributes, strawberry jam aroma and fullness.

  2. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    the large different in permeate flux and concentration factor that was observed for the different MD configurations. This is highly related to the heat and mass transfer resistances in the membrane as well as in the boundary layers adjacent to the membrane surface and how the driving force develops along......Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...

  3. Evaluation of the key aroma compounds in beef and pork vegetable gravies a la chef by stable isotope dilution assays and aroma recombination experiments.

    Science.gov (United States)

    Christlbauer, Monika; Schieberle, Peter

    2011-12-28

    Although the aroma compounds of meat processed as such have been studied previously, data on complete homemade dishes containing beef and pork meat were scarcely studied. Recently, 38 odor-active compounds were characterized in beef and pork vegetable gravies using GC-olfactometry. In the present investigation, the most odor-active compounds were quantitated in a freshly prepared stewed beef vegetable gravy (BVG) as well as a stewed pork vegetable gravy (PVG) by means of stable isotope dilution assays. Calculation of odor activity values (OAVs; ratio of concentration to odor threshold) revealed 3-mercapto-2-methylpentan-1-ol, (E,E)-2,4-decadienal, (E,Z)-2,6-nonadienal, (E)-2-decenal, (E)-2-undecanal, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone as the most potent odorants in both gravies. However, significantly different OAVs were found for 12-methyltridecanal, which was much higher in the BVG, whereas (E,Z)-2,4-decadienal showed a clearly higher OAV in the PVG. Aroma recombination experiments performed on the basis of the actual concentrations of the odorants in both gravies revealed a good similarity of the aromas of both model mixtures containing all odorants with OAVs > 1 with those of the original gravies.

  4. Gas chromatography/sniffing port analysis evaluated for aroma release from rehydrated French beans (Phaseolus vulgaris).

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.; Cozijnsen, J.L.

    1996-01-01

    The technique of gas chromatography/sniffing port analysis was evaluated for studying the release of aroma compounds from rehydrated diced French beans. The aroma compounds 2-—methylbutanal and hexanal were released at a constant rate over time. An identical selection of odour active compounds was

  5. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking.

    Science.gov (United States)

    Sun, Wei-Xuan; Hu, Kai; Zhang, Jun-Xiang; Zhu, Xiao-Lin; Tao, Yong-Sheng

    2018-04-15

    Cabernet Gernischt (CG) is a famous Chinese wine grape cultivar, the red wine of which is known for its green trait, especially when produced from grapes cultivated in regions with monsoon climate. To modify CG wine aroma, three enzyme preparations (H. uvarum extracellular enzyme, AR2000, and pectinase) were introduced in different winemaking stages with Saccharomyces cerevisiae. Free and bound aroma compounds in young wines were detected using headspace solid-phase micro-extraction and gas chromatography-mass spectrometry, and aroma characteristics were quantified by trained panelists. Results showed that simultaneous inoculation of enzymes and yeasts improved wine aroma. Partial least-squares regression revealed that the green trait was due mainly to varietal compounds, especially C 6 compounds, and could be partly weakened by fermentative compounds. Moreover, H. uvarum enzyme treatments enriched the acid fruit note of CG wine by enhancing the synergistic effect of varietal volatiles and certain fermentative compounds, such as esters and phenylethyls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Determination of volatile aroma compounds of Ganoderma lucidum ...

    African Journals Online (AJOL)

    This study was conducted at Horticulture Department of Cukurova University, Adana, Turkey during 2010-2011. Fresh sample of Ganoderma lucidum collected from Mersin province of Turkey was used as material. Volatile aroma compounds were performed by Headspace Gas Chromatography (HS-GC/MS). Alcohols ...

  7. Aroma-related cross-modal interactions for sugar reduction in milk desserts: Influence on consumer perception.

    Science.gov (United States)

    Alcaire, Florencia; Antúnez, Lucía; Vidal, Leticia; Giménez, Ana; Ares, Gastón

    2017-07-01

    Reformulation of industrialized products has been regarded as one of the most cost-effective strategies to reduce sugar intake. Although non-nutritive sweeteners have been extensively used to reduce the added sugar content of these products, increasing evidence about the existence of compensatory energy intake mechanisms makes it necessary to develop alternative strategies to achieve rapid sugar reductions. In this context, the aim of the present work was to evaluate aroma-related cross modal interactions for sugar reduction in vanilla milk desserts. In particular, the influence of increasing vanilla concentration and the joint increase of vanilla and starch concentration on consumer sensory and hedonic perception was assessed. Two studies with 100 consumers each were conducted, in which a total of 15 samples were evaluated. For each sample, consumers rated their overall liking and answered a check-all-that-apply (CATA) question comprising 12 flavour and texture terms. Sugar reduction caused significant changes in the flavour and texture characteristics of the desserts. An increase in vanilla concentration had a minor effect on their sensory characteristics. However, increasing both vanilla and starch concentration led to an increase in vanilla flavour and sweetness perception and reduced changes in consumer hedonic perception. These results showed the potential of aroma-related cross modal interactions for minimizing the sensory changes caused by sugar reduction. These strategies could contribute to product reformulation without the need to use non-nutritive sweeteners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analysis of volatile compounds in breads and related products: Improvement of gluten-free breads aroma

    OpenAIRE

    Pico Carbajo, Joana

    2018-01-01

    Inicialmente se desarrolló una metodología de extracción con disolvente y se comparó con la metodología SAFE. Posteriormente se hicieron estudios del tiempo máximo de congelación de las muestras y de inhibición de la fermentación residual para el aroma de masas de pan. Se continuó con la evolución del perfil aromático desde la masa hasta la miga de panes sin gluten. A continuación se analizaron migas de panes sin gluten por SHS-GC/MS y DHS-GC/MS, concluyéndose que mezclas de harina de quinoa ...

  9. Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the loess plateau region of china.

    Science.gov (United States)

    Jiang, Bao; Zhang, Zhenwen

    2010-12-10

    In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.

  10. Evaluation of Aroma in Oriental Tobaccos as Based On Valeric Acid Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available Levels of valeric acids (isovaleric and 3-methylvaleric in leaves and smoke of different tobacco types were quantified by capillary gas chromatography (GC using flame ionization detector (FID. The aroma characteristics of the smoke were scored by sensory evaluation. It was found that leaves of Oriental and burley tobaccos contain higher amounts of both valeric acid derivatives than Virginia tobaccos containing isovaleric acid but no 3-methylvaleric acid. Strong correlation between the aroma and pleasantness scores of smoke and the content of valeric acids in the leaves of Oriental tobaccos was observed, while it was not the case for leaves of Virginia and burley tobaccos. In all tobacco types no correlation between smoking characteristics and the content of valeric acids in the smoke was established. Regression models involving leaf isovaleric acid were developed that can be used to evaluate aroma and pleasantness of smoke in Oriental tobaccos. The data obtained allow the following conclusions to be drawn: a 3-methylvaleric acid may be a chemical marker to distinguish Virginia tobaccos from Oriental and burley tobaccos; b isovaleric acid content in leaves of Oriental tobaccos may be used for objective aroma evaluation that can be exploited for breeding and market purposes.

  11. Volatile aroma compounds and sensory characteristics of traditional ...

    African Journals Online (AJOL)

    Urwagwa, produced mainly from the fermentation of banana juice, is the oldest and popular Rwandan traditional alcoholic beverage. In the present paper, the aroma profiles of Urwagwa wine samples collected from the districts of Rulindo and Ngoma were investigated. Headspace/ Solid-Phase Micro Extraction (HS- SPME) ...

  12. Electronic aroma detection technology for forensic and law enforcement applications

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.-A.; Griest, W.H.; Vass, A.A.

    1996-12-31

    A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic `fingerprint` pattern representative of the vapor- phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The results to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.

  13. Mitokondriyal Mutantların Bira Aroma Maddeleri Üzerine Etkisi

    Directory of Open Access Journals (Sweden)

    Hasan Tangüler

    2015-02-01

    Full Text Available Biradaki aroma maddeleri üzerine kullanılan bira mayasının önemli bir rolü vardır. Bira mayasının sitoplazmasında çeşitli organeller bulunur ve bu organellerden biri de mitokondridir. Mitokondri, trikarboksilik asit döngüsü ve elektron taşıma zinciri enzimlerini içerir ve böylece hücreye enerji sağlar. Bira mayasında en sık rastlanan ve kendiliğinden ortaya çıkan mutasyon mitokondriyal mutasyondur. Bu mutasyon sonucunda mitokondriyal DNA'sı eksik ya da mitokondriyal DNA'dan tamamen yoksun mutantlar meydana gelir.  Bira mayası mitokondriyal mutasyona uğradığında mayanın fermantasyon hızı, çökelme yeteneği ve aroma maddeleri üretimi ve böylece elde edilen biranın kalitesi önemli derecede etkilenir. Bu nedenle, biracılıkta kullanılacak mayanın mutasyona uğramamış olması tercih edilir. Bu derlemede, mitokondriyal mutasyonun bira aroma maddeleri üzerine etkisi ele alınmıştır.

  14. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  15. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation.

    Science.gov (United States)

    Zhang, R; Wu, Q; Xu, Y

    2013-07-01

    The potential of Bacillus licheniformis as a starter culture for aroma concentration improvement in the fermentation of Chinese Moutai-flavour liquor was elucidated. The volatile compounds produced by B. licheniformis were identified by GC-MS, in which C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds were the main ingredients. The strains B. licheniformis (MT-6 and MT-15) produced more volatile compound concentrations, mainly C4 compounds, than the type strain of B. licheniformis (ATCC 14580) at the fermentation temperature of 55°C. Meanwhile, more volatile compound concentrations were produced by B. licheniformis in solid-state fermentation than in submerged state fermentation. Thus, the strains MT-6 and MT-15 were used as the Bacillus starter culture for investigating Moutai-flavour liquor production. The distilled liquor inoculated with Bacillus starter culture was significantly different from the liquor without inoculum. This was particularly evident in the fore-run part of the distilled sample which was inoculated with Bacillus starter culture, where volatile compounds greatly increased compared to the control. Furthermore, the distilled liquor with Bacillus starter culture showed improved results in sensory appraisals. These results indicated that B. licheniformis was one of the main species influencing the aroma characteristics of Moutai-flavour liquor. This is the first report of an investigation into the effect of Bacillus starter cultures on the flavour features of Moutai-flavour liquor, which verified that Bacillus licheniformis can enhance aroma concentration in Moutai-flavour liquor. Bacillus starter culture brought C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds to the liquor, which gave a better result in sensory appraisals. © 2013 The Society for Applied Microbiology.

  16. Aroma of Wheat Bread Crumb

    DEFF Research Database (Denmark)

    Birch, Anja Niehues

    and the volatile compounds from the bread crumb were extracted by dynamic headspace sampling and analysed by gas chromatography mass spectrometry. A wide range of volatile compounds was identified in bread crumb, mainly originating from the activity of yeast and from oxidation of flour lipids. The dominating...... headspace extraction (Paper II, III and V). The compounds were evaluated according to their odour activity value (OAV). The most aroma active compounds (OAV > 6) identified in bread crumb were; (E)-2-nonanal (green, tallow), 3-methylbutanal (malty), 3-methyl-1-butanol (balsamic, alcoholic), nonanal (citrus...

  17. Differential effects of exposure to ambient vanilla and citris aromas on mood, arousal and food choice

    NARCIS (Netherlands)

    Wijk, de R.A.; Zijlstra, S.

    2012-01-01

    Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla) could be measured with small numbers of subjects, low-cost physiological sensors and

  18. Aroma retention during the drying of liquid foods

    NARCIS (Netherlands)

    Menting, L.C.; Hoogstad, B.; Thijssen, H.A.C.

    1970-01-01

    Factors detg. aroma retention during the drying of food liqs. were investigated by a model system. Slabs of an aq. soln. of partially hydrolyzed starch, contg. a small amt. of acetone, were dried in air and the percentage of acetone retained was measured. Acetone was lost almost exclusively during

  19. Panel training programme for the Protected Designation of Origin “Aceituna Aloreña de Malaga”

    Directory of Open Access Journals (Sweden)

    Galán-Soldevilla, H.

    2012-03-01

    Full Text Available A training programme (52 h was developed for the Protected Designation of Origin (PDO Aceituna Aloreña de Málaga quality certification panel. Recruiting of the panel was done by personal interview with open questions between producers and technicians of the product and seven tests were submitted to potential candidates during the selection step (4h. Training was done in two stages: a basic training period (12h in which the assessors developed their sensory memory and improved their aptitude for detecting, recognizing and describing the sensory stimuli and a specific training period (36 h, in which the sample preparation, test conditions and the sensory profile were established. The specific training finished when the evaluation method and requirements of the Aloreña olives for the PDO were established and the panel work as a whole. 9 positive descriptors were analyzed in order to characterize Aloreña table olives: 4 for odor (fruity, green, seasoning and lactic, 2 for aroma (fruit and seasoning, 2 for basic tastes (acid and bitter and 1 for texture (crunchy. The Aloreña olive from Málaga is characterized by its fruity and seasoning odor and aroma, bitter taste and crunchy texture.

    Se presenta el programa de formación de catadores para la Denominación de Origen Protegida (DOP “Aceituna Aloreña de Málaga”. Este programa, de 52 h de duración, se realiza en 2 etapas: una primera de selección (4 h donde se eligen a los candidatos más adecuados entre industriales y técnicos del sector y una segunda de entrenamiento (48h que consta de 2 fases: una primera general (12h donde los catadores aprenden el vocabulario y desarrollan la memoria sensorial y una segunda específica (36h donde se establece la forma de preparación de la muestra, las condiciones del ensayo, la hoja de perfil y los criterios de aceptación y rechazo para la DOP. Se valoran 9 atributos sensoriales: 4 de olor (frutado, verde/hierba, aliño y láctico, 2 de

  20. Optimisation of the post-harvest conditions to produce chocolate aroma from jackfruit seeds

    OpenAIRE

    Papa Spada, Fernanda; Masson Zerbeto, Lais; Cabreira Ragazi, Gabriel; Roel Gutierrez, Erika; Coelho Souza, Miriam; Parker, Jane K.; Canniatti-Brazaca, Solange

    2017-01-01

    Jackfruit seeds are an under-utilized waste in many tropical countries. In this work, we demonstrate the potential of roasted jackfruit seeds to develop chocolate aroma. Twenty-seven different roasted jackfruit seed flours were produced from local jackfruit by acidifying or fermenting the seeds prior to drying, and roasting under different time/temperature combinations. The chocolate aroma of groups of four flours were ranked by a sensory panel (n=162) and response surface methodology was use...

  1. Analysis of accelerants and fire debris using aroma detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  2. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.

    Science.gov (United States)

    Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David

    2017-09-01

    The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors.

    Science.gov (United States)

    Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M

    2015-11-15

    Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sensorial analysis and electronic aroma detection to compare olive oils produced by different extraction methods

    Directory of Open Access Journals (Sweden)

    Vaz Freire, L. T.

    2011-12-01

    Full Text Available A sensorial analysis and an aroma analysis by electronic sensory devices were used to compare olive oils produced according to two different extraction methods. The extraction methods compared were the press system and two phase decanter. Samples were taken from the harvests of 2002-2004 and the olives were all from the same variety. The variety used was the Portuguese Galega sp. Olives were picked and technologically handled under predetermined and supervised conditions. Olive oils produced were better classified when the sensory analysis by a panel was applied than when an electronic sensory analysis was performed, even after sensor optimization. This observation is in accordance with the fact that olive oil has a low volatility matrix and “flavor”, rather than aroma, can give a clearer characterization than electronic sensory analysis alone, where aroma is the main characteristic evaluated.

    El análisis sensorial y el análisis de aromas por medio de sistemas sensoriales electrónicos han sido utilizado para comparar aceites de oliva producidos a través de dos sistemas de extracción diferentes. Los métodos de extracción comparados han sido el sistema de prensas y el decantador de dos fases. Las muestras fueron producidas durante las cosechas del periodo 2002- 2004, y las aceitunas eran todas de la misma variedad portuguesa Gallega sp. Las aceitunas fueron seleccionadas y tratadas tecnológicamente bajo condiciones predeterminadas y supervisadas. Los aceites producidos resultaron mejor clasificados cuando fue aplicado el análisis sensorial por panel que cuando se utilizó el análisis con detección electrónica de aromas, incluso después de la optimización de los sensores. Esta observación está de acuerdo con el hecho de que los aceites son una matriz poco volátil y que es el “flavour”, más que el aroma, el que junto con el gusto puede proporcionar una caracterización mejor que la detección electrónica, en

  5. Comparison of the efficacy of aroma-acupressure and aromatherapy for the treatment of dementia-associated agitation.

    Science.gov (United States)

    Yang, Man-Hua; Lin, Li-Chan; Wu, Shiao-Chi; Chiu, Jen-Hwey; Wang, Pei-Ning; Lin, Jaung-Geng

    2015-03-29

    One of the most common symptoms observed in patients with dementia is agitation, and several non-pharmacological treatments have been used to control this symptom. However, because of limitations in research design, the benefit of non-pharmacological treatments has only been demonstrated in certain cases. The purpose of this study was to compare aroma-acupressure and aromatherapy with respect to their effects on agitation in patients with dementia. In this experimental study, the participants were randomly assigned to three groups: 56 patients were included in the aroma-acupressure group, 73 patients in the aromatherapy group, and 57 patients in the control group who received daily routine as usual without intervention. The Cohen-Mansfield Agitation Inventory (CMAI) scale and the heart rate variability (HRV) index were used to assess differences in agitation. The CMAI was used in the pre-test, post-test and post-three-week test, and the HRV was used in the pre-test, the post-test and the post-three-week test as well as every week during the four-week interventions. The CMAI scores were significantly lower in the aroma-acupressure and aromatherapy groups compared with the control group in the post-test and post-three-week assessments. Sympathetic nervous activity was significantly lower in the fourth week in the aroma-acupressure group and in the second week in the aromatherapy group, whereas parasympathetic nervous activity increased from the second week to the fourth week in the aroma-acupressure group and in the fourth week in the aromatherapy group. Aroma-acupressure had a greater effect than aromatherapy on agitation in patients with dementia. However, agitation was improved in both of the groups, which allowed the patients with dementia to become more relaxed. Future studies should continue to assess the benefits of aroma-acupressure and aromatherapy for the treatment of agitation in dementia patients. ChiCTR-TRC-14004810; Date of registration: 2014/6/12.

  6. Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation

    Science.gov (United States)

    Laureys, David

    2014-01-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061

  7. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation.

    Science.gov (United States)

    Laureys, David; De Vuyst, Luc

    2014-04-01

    Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product.

  8. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols.

    Science.gov (United States)

    Bailly, Sabine; Jerkovic, Vesna; Marchand-Brynaert, Jacqueline; Collin, Sonia

    2006-09-20

    The aim of the present work was to investigate Sauternes wine aromas. In all wine extracts, polyfunctional thiols were revealed to have a huge impact. A very strong bacon-petroleum odor emerged at RI = 845 from a CP-Sil5-CB column. Two thiols proved to participate in this perception: 3-methyl-3-sulfanylbutanal and 2-methylfuran-3-thiol. A strong synergetic effect was evidenced between the two compounds. The former, never mentioned before in wines, and not found in the musts of this study, is most probably synthesized during fermentation. 3-Methylbut-2-ene-1-thiol, 3-sulfanylpropyl acetate, 3-sulfanylhexan-1-ol, and 3-sulfanylheptanal also contribute to the global aromas of Sauternes wines. Among other key odorants, the presence of a varietal aroma (alpha-terpineol), sotolon, fermentation alcohols (3-methylbutan-1-ol and 2-phenylethanol) and esters (ethyl butyrate, ethyl hexanoate, and ethyl isovalerate), carbonyls (trans-non-2-enal and beta-damascenone), and wood flavors (guaiacol, vanillin, eugenol, beta-methyl-gamma-octalactone, and Furaneol) is worth stressing.

  9. Potential of Glycosidase from Non-Saccharomyces Isolates for Enhancement of Wine Aroma.

    Science.gov (United States)

    Hu, Kai; Qin, Yi; Tao, Yong-Sheng; Zhu, Xiao-Lin; Peng, Chuan-Tao; Ullah, Niamat

    2016-04-01

    The aim of this work was to rapidly screen indigenous yeasts with high levels of β-glucosidase activity and assess the potential of glycosidase extracts for aroma enhancement in winemaking. A semiquantitative colorimetric assay was applied using 96-well plates to screen yeasts from 3 different regions of China. Isolates with high β-glucosidase activity were confirmed by the commonly used pNP assay. Among 493 non-Saccharomyces isolates belonging to 8 generas, 3 isolates were selected for their high levels of β-glucosidase activity and were identified as Hanseniaspora uvarum, Pichia membranifaciens, and Rhodotorula mucilaginosa by sequence analysis of the 26S rDNA D1/D2 domain. β-Glucosidase in the glycosidase extract from H. uvarum strain showed the highest activity in winemaking conditions among the selected isolates. For aroma enhancement in winemaking, the glycosidase extract from H. uvarum strain exhibited catalytic specificity for aromatic glycosides of C13 -norisoprenoids and some terpenes, enhancing fresh floral, sweet, berry, and nutty aroma characteristics in wine. © 2016 Institute of Food Technologists®

  10. Aroma changes of black tea prepared from methyl jasmonate treated tea plants*

    Science.gov (United States)

    Shi, Jiang; Wang, Li; Ma, Cheng-ying; Lv, Hai-peng; Chen, Zong-mao; Lin, Zhi

    2014-01-01

    Methyl jasmonate (MeJA) was widely applied in promoting food quality. Aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (Ptea was clearly improved. PMID:24711352

  11. IMPACT OF THE FERMENTATION PROCESS WITH IMMOBILIZED YEAST CELLS ON THE AROMA PROFILE AND SENSORY QUALITY OF DISTILLATES PRODUCED FROM TWO FIG (Ficus carica L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2017-01-01

    Full Text Available The aim of this research was to investigate the influence of immobilized cell fermentation on aroma and sensory characteristics of distillates produced from two fig varieties commonly grown in Croatia (Petrovača bijela and Petrovača crna. Distillate samples were produced both by classical and immobilized yeast fermentation technology. Aroma profile was determined using GC/FID and sensory analysis was conducted according to German DLG model. Results showed that immobilized cell technique gives distillates with higher ethanol and lower ester contents, but of higher sensory quality. It is a promising technique for production of high quality fruit distillates.

  12. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography-mass spectrometry.

    Science.gov (United States)

    He, Yuqin; Zhang, Haide; Wen, Nana; Hu, Rongsuo; Wu, Guiping; Zeng, Ying; Li, Xiong; Miao, Xiaodan

    2018-01-01

    Arabica coffee is a sub-tropical agricultural product in China. Coffee undergoes a series of thermal reactions to form abundant volatile profiles after roasting, so it loses a lot of reducing sugars and amino acids. Adding carbonyl compounds with amino acids before roasting could ensure the nutrition and flavour of coffee. The technology is versatile for the development of coffee roasting process. This investigation evaluates the effects of combining maltose and lysine (Lys) to modify coffee aroma and the possibly related mechanisms. Arabica coffee was pretreated with a series of solvent ratios of maltose and Lys with an identical concentration (0.25 mol L -1 ) before microwave heating. It was found that the combination of maltose and Lys significantly (P ≤ 0.05) influenced quality indices of coffee (pH and browning degree). Ninety-six aromatic volatiles have been isolated and identified. Twelve volatile profiles revealed the relationship between fragrance difference and compound content in coffee. Moreover, coffee aroma was modified by a large number of volatiles with different chemical classes and character. Thus, our results suggest that the combination of reagents changed overall aroma quality through a series of complex thermal reactions, especially the ratio of Lys/maltose over 2:1. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Metabolomics in melon: A new opportunity for aroma analysis

    NARCIS (Netherlands)

    Allwood, J.W.; Cheung, W.W.L.; Xu, Y.; Mumm, R.; Vos, de C.H.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.; Rolin, D.; Moing, A.; Hall, R.D.; Goodacre, R.

    2014-01-01

    Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting

  14. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  15. Olfactory control, aroma power and organizational smellscapes

    OpenAIRE

    Warren, Samantha

    2017-01-01

    This chapter explores ‘aroma management’ in consumption spaces, workplaces and other institutional settings, reviewing debates in architectural design, sensory marketing and the natural sciences. We argue the biologically deterministic assumptions upon which these developments are premised silences considerations of power and ethics and propose an alternative socio-cultural reading of these phenomena, taking our lead from sensory anthropology. We highlight the role culture plays in the creati...

  16. Sensory methods and electronic nose as innovative tools for the evaluation of the aroma transfer properties of food plastic bags.

    Science.gov (United States)

    Torri, Luisa; Piochi, Maria

    2016-07-01

    Despite the key role of the sensory quality for food acceptance, the aroma transfer properties of food packaging materials have not yet been studied using sensory approaches. This research investigated the suitability of sensory and electronic nose methods to evaluate the aroma transfer properties of plastic materials that come in contact with food. Four (W, X, Y, and Z) commercial freezer bags (polyethylene) for domestic uses were compared. The degree of the aroma transfer through the materials was estimated as the sensory contamination of an odor absorber food (bread) by an odor releaser food (onion), separated by the bags and stored under frozen conditions. Bread samples were analyzed by means of an electronic nose, and 42 assessors used three different sensory methods (triangle, scoring, and partial sorted Napping tests). From the triangle test, none of the plastic bags acted as a complete aroma barrier, showing a sensory contamination of bread stored in all four materials. Partial sorting Napping results clearly described the sensory contamination of bread as "onion flavor", due to the aroma transfer from the odor releaser food to the odor absorber food through the plastic bag. Scoring tests showed significant (pbags, revealing the highest aroma permeation for W (3.1±0.1), the lowest aroma transfer for X and Y (2.0±0.1), and intermediate aroma transfer properties for Z (2.6±0.1). Electronic nose data were in good agreement with the sensory responses, and a high correlation with the scoring data was observed (R 2 =0.988). The presented approaches had suitable results to provide meaningful information on the aroma transfer properties of freezer plastic bags, and could advantageously be applied in the future for analyzing other finished food containers (e.g. plastic trays, boxes, etc.) or packaging materials of a different nature (multilayer plastic films, biodegradable materials, composites, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aroma-active components of nonfat dry milk.

    Science.gov (United States)

    Karagül-Yüceer, Y; Drake, M A; Cadwallader, K R

    2001-06-01

    Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.

  18. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Directory of Open Access Journals (Sweden)

    C. M. Mattana

    2014-01-01

    Full Text Available Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE and ethanolic extract (EE of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.

  19. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile.

    Science.gov (United States)

    Alessandrini, Massimiliano; Gaiotti, Federica; Belfiore, Nicola; Matarese, Fabiola; D'Onofrio, Claudio; Tomasi, Diego

    2017-07-01

    Environmental factors have been acknowledged to greatly influence grape and wine aromas. Among them, the effect of altitude on grape aroma compounds has scarcely been debated in literature available to date. In the present study, we investigated the influence of altitude on grape composition and aroma evolution during ripening of Vitis vinifera L. cultivar Glera grown in Conegliano-Valdobbiadene DOCG area (Italy). The site at highest altitude (380 m above sea level) was warmer than the lowest site (200 m above sea level) and, even with differences in temperature in the range 1.5-2 °C, the impact of the cultivation site on grape ripening and aroma accumulation and preservation was significant. The lowest site demonstrated slower grape ripening, and grapes at harvest accumulated lower amounts of all of the main classes of aroma compounds typical of the Glera variety. Wines produced from the highest site were preferred in tasting trials for their more patent floral notes and elegance. Altitude strongly influences grape ripening evolution and flavour accumulation in the Glera grape, and this result accounts for the different styles in the sparkling wines subsequently produced. Moreover, the present study shows that aroma compound biosynthesis, particularly that of benzenoides, starts before véraison in Glera. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  1. Characterization of the aroma signature of styrian pumpkin seed oil ( Cucurbita pepo subsp. pepo var. Styriaca) by molecular sensory science.

    Science.gov (United States)

    Poehlmann, Susan; Schieberle, Peter

    2013-03-27

    Application of the aroma extract dilution analysis on a distillate prepared from an authentic Styrian pumpkin seed oil followed by identification experiments led to the characterization of 47 odor-active compounds in the flavor dilution (FD) factor range of 8-8192 among which 2-acetyl-1-pyrroline (roasty, popcorn-like), 2-propionyl-1-pyrroline (roasty, popcorn-like), 2-methoxy-4-vinylphenol (clove-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Among the set of key odorants, 2-propionyl-1-pyrroline and another 20 odorants were identified for the first time as constituents of pumpkin seed oil. To evaluate the aroma contribution in more detail, 31 aroma compounds showing the highest FD factors were quantitated by means of stable isotope dilution assays. On the basis of the quantitative data and odor thresholds determined in sunflower oil, odor activity values (OAV; ratio of concentration to odor threshold) were calculated, and 26 aroma compounds were found to have an OAV above 1. Among them, methanethiol (sulfury), 2-methylbutanal (malty), 3-methylbutanal (malty), and 2,3-diethyl-5-methylpyrazine (roasted potato) reached the highest OAVs. Sensory evaluation of an aroma recombinate prepared by mixing the 31 key odorants in the concentrations as determined in the oil revealed that the aroma of Styrian pumpkin seed oil could be closely mimicked. Quantitation of 11 key odorants in three commercial pumpkin seed oil revealed clear differences in the concentrations of distinct odorants, which were correlated with the overall aroma profile of the oils.

  2. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: wine reconstitution strategies and sensory sorting task.

    Science.gov (United States)

    Sáenz-Navajas, María-Pilar; Campo, Eva; Avizcuri, José Miguel; Valentin, Dominique; Fernández-Zurbano, Purificación; Ferreira, Vicente

    2012-06-30

    This work explores to what extent the aroma or the non-volatile fractions of red wines are responsible for the overall flavor differences perceived in-mouth. For this purpose, 14 samples (4 commercial and 10 reconstituted wines), were sorted by a panel of 30 trained assessors according to their sensory in-mouth similarities. Reconstituted wines were prepared by adding the same volatile fraction (coming from a red wine) to the non-volatile fraction of 10 different red wines showing large differences in perceived astringency. Sorting was performed under three different conditions: (a) no aroma perception: nose-close condition (NA), (b) retronasal aroma perception only (RA), and (c) allowing retro- and involuntary orthonasal aroma perception (ROA). Similarity estimates were derived from the sorting and submitted to multidimensional scaling (MDS) followed by hierarchical cluster analysis (HCA). Results have clearly shown that, globally, aroma perception is not the major driver of the in-mouth sensory perception of red wine, which is undoubtedly primarily driven by the perception of astringency and by the chemical compounds causing it, particularly protein precipitable proanthocyanidins (PAs). However, aroma perception plays a significant role on the perception of sweetness and bitterness. The impact of aroma seems to be more important whenever astringency, total polyphenols and protein precipitable PAs levels are smaller. Results also indicate that when a red-black fruit odor nuance is clearly perceived in conditions in which orthonasal odor perception is allowed, a strong reduction in astringency takes place. Such red-black fruit odor nuance seems to be the result of a specific aroma release pattern as a consequence of the interaction between aroma compounds and the non-volatile matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Contribution of 2-methyl-3-furanthiol to the cooked meat-like aroma of fermented soy sauce.

    Science.gov (United States)

    Meng, Qi; Kitagawa, Riho; Imamura, Miho; Katayama, Hiroshi; Obata, Akio; Sugawara, Etsuko

    2017-01-01

    The cooked meat-like aroma compound, 2-methyl-3-furanthiol (2M3F), was detected in fermented soy sauce (FSS) by GC-olfactometry and GC-MS. 2M3F was present in FSS at a concentration considerably greater than the perception threshold, and the 2M3F concentration increased with heating temperature. Sensory analysis indicated that with the addition of only 0.2 μg/L of 2M3F to the soy sauce sample, the cooked meat-like aroma is significantly stronger than that of sample without the addition of 2M3F. Hence, 2M3F contributes to the cooked meat-like aroma of FSS, which constitutes the key aroma component of FSS. In addition, 2M3F was generated from the addition of ribose and cysteine in FSS by heating at 120 °C, but it was not detected in a phosphate buffer under the same condition. Furthermore, 2M3F was not detected in acid-hydrolyzed vegetable-protein-mixed soy sauce (ASS) and heated ASS. These results indicated that fermentation by micro-organisms facilitates the generation of 2M3F in FSS.

  4. Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.

    Science.gov (United States)

    Magalhães, Frederico; Krogerus, Kristoffer; Vidgren, Virve; Sandell, Mari; Gibson, Brian

    2017-08-01

    Yeast cryotolerance may be advantageous for cider making, where low temperatures are usually employed. Here, we crossed the cryotolerant S. eubayanus with a S. cerevisiae wine strain and assessed the suitability of the hybrids for low-temperature cider fermentation. All strains fermented the juice to 5% ABV, but at different rates; hybrid strains outperformed S. cerevisiae, which was sensitive to low temperatures. The best hybrid fermented similarly to S. eubayanus. S. eubayanus produced sulphurous off flavours which masked a high concentration of fruity ester notes. This phenotype was absent in the hybrid strains, resulting in distinctly fruitier ciders. Aroma was assessed by an independent consumer panel, which rated the hybrid ciders as identical to the wine strain cider. Both were significantly more pleasant than the S. eubayanus cider. Interspecific hybridization can apparently be used effectively to improve low-temperature fermentation performance without compromising product quality.

  5. Differentiation of aroma characteristics of pine-mushrooms (Tricholoma matsutake Sing.) of different grades using gas chromatography-olfactometry and sensory analysis.

    Science.gov (United States)

    Cho, In Hee; Lee, Soh Min; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Kwang-Ok; Kim, Young-Suk

    2007-03-21

    Two independent approaches, gas chromatography-olfactometry and sensory analysis, were used to evaluate and compare the aroma characteristics of pine-mushrooms (Tricholoma matsutake Sing.) of four different grades. The aroma-active compounds responsible for the sensory attributes of pine- mushrooms were investigated based on the correlation between instrumental and sensory analyses through partial least-square regression. Piny, meaty, and floral attributes were strongly correlated with each other and were the most important descriptors for defining the pine-mushrooms of the highest grade, and they decreased as the grade decreased. Among 23 aroma-active compounds, (E)-2-decenal, alpha-terpineol, phenylethyl alcohol, and 2-methylbutanoic acid ethyl ester contributed most to these attributes. On the other hand, the major aroma characteristics of the pine-mushrooms of the lowest grade were wet soil-like, alcohol, metallic, moldy, and fermented, and they decreased as the grade increased. These aroma characteristics were strongly associated with 1-octen-3-one, 1-octen-3-ol, 3-octanol, 3-octanone, (E)-2-octen-1-ol, and methional.

  6. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee.

    Science.gov (United States)

    Ochiai, Nobuo; Tsunokawa, Jun; Sasamoto, Kikuo; Hoffmann, Andreas

    2014-12-05

    A novel multi-volatile method (MVM) using sequential dynamic headspace (DHS) sampling for analysis of aroma compounds in aqueous sample was developed. The MVM consists of three different DHS method parameters sets including choice of the replaceable adsorbent trap. The first DHS sampling at 25 °C using a carbon-based adsorbent trap targets very volatile solutes with high vapor pressure (>20 kPa). The second DHS sampling at 25 °C using the same type of carbon-based adsorbent trap targets volatile solutes with moderate vapor pressure (1-20 kPa). The third DHS sampling using a Tenax TA trap at 80 °C targets solutes with low vapor pressure (0.9910) and high sensitivity (limit of detection: 1.0-7.5 ng mL(-1)) even with MS scan mode. The feasibility and benefit of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed coffee. Ten potent aroma compounds from top-note to base-note (acetaldehyde, 2,3-butanedione, 4-ethyl guaiacol, furaneol, guaiacol, 3-methyl butanal, 2,3-pentanedione, 2,3,5-trimethyl pyrazine, vanillin, and 4-vinyl guaiacol) could be identified together with an additional 72 aroma compounds. Thirty compounds including 9 potent aroma compounds were quantified in the range of 74-4300 ng mL(-1) (RSD<10%, n=5). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers.

    Science.gov (United States)

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido; Verstrepen, Kevin J

    2015-12-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis.

    Science.gov (United States)

    Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia

    2017-09-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Psychophysical evaluation of interactive effects between sweeteners and aroma compounds

    NARCIS (Netherlands)

    Nahon, D.F.

    1999-01-01

    The presence of intense sweeteners in a light soft drink influences the preferences for, and the flavour profiles of these drinks to various extents, depending on the aroma and sweeteners present. In this study equisweet mixtures of sweeteners were composed at 10% Sucrose Equivalent Value.

  10. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-01-01

    . 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different......A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed...

  11. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality.

    Science.gov (United States)

    Filipe-Ribeiro, Luís; Milheiro, Juliana; Matos, Carlos C; Cosme, Fernanda; Nunes, Fernando M

    2017-08-15

    Activated carbon (AC) could be a solution to remove 4-ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) off-flavours from Dekkera/Brettanomyces contaminated red wines. The relation between AC physicochemical characteristics and removal efficiency of these compounds is unknown. The impact of ACs characteristics on 4-EP and 4-EG removal, phenolic and headspace aroma composition was studied. All ACs reduced significantly 4-EP and 4-EG levels (maximum 73%). Their efficiency was related to their surface area and micropores volume. A higher surface area of mesopores and total pore volume were detrimental for anthocyanins and colour intensity, while a higher surface area and micropores volume were important for removing phenolic acids. Volatile phenols reduction was more important for the positive fruity attribute perception than the abundance of headspace aroma compounds. With an optimal selection of the AC physicochemical characteristics it was possible to remove efficiently the volatile phenols without impacting negatively on the wine sensory quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Fractionation of acid lime essential oil using ethanol/water mixtures: Effect of the process on the aroma profile

    International Nuclear Information System (INIS)

    Gonçalves, Daniel; Costa, Patrícia; Rodrigues, Christianne E.C.; Rodrigues, Alírio E.

    2017-01-01

    Highlights: • Fractionation of crude acid lime essential oil using ethanol/water mixtures. • Extract phases were enriched in aroma-active components. • Predicted compositions of liquid phases fitted well with the experimental data. • Aroma-active components were separated from terpenes, keeping the original acid lime essential oil odour. • The water content in the solvent did not affect the aroma profile of the phases from the liquid–liquid equilibrium. - Abstract: This study aims to separate aroma-active components of the crude Citrus latifolia essential oil (EO) from the unstable terpene hydrocarbons using ethanol/water mixtures through liquid–liquid equilibrium (LLE) and to evaluate the aroma profiles of the crude EO and the LLE phases. For this purpose, the liquid compositions of the crude EOs and the LLE phases were found by gas chromatography analysis. The compositions of the liquid phases were predicted using the NRTL model and compared to the experimental data. Afterwards, the concentrations of the components in the vapour phases above the liquid mixtures were obtained by headspace analysis and the odour intensity of each component was estimated using the Stevens’ power law concept. Finally, the classification into olfactory families was evaluated through the Perfumery Radar methodology. The solvent extraction technique made it possible to obtain extract phases enriched in citral and poor in monoterpenes, with aromas profiles similar to that of the crude EO and classified as herbaceous and citrus scent, with floral, woody, and oriental nuances. The extract phase obtained from ethanol with 50% water was found to be a promising fraction for industrial applications. Furthermore, the results proved that the NRTL parameters can be efficiently used to predict the compositions of the phases from the LLE.

  14. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Tao, Yong-Sheng; Zhang, Li; Li, Hua

    2011-07-15

    This study compared the influence of different cover crops with clean tillage on wine aroma compounds of 5-year-old Cabernet Sauvignon vines. White clover, alfalfa, and tall fescue were used in the vineyard and compared with clean tillage. Aroma compounds of wine were analysed by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). Forty-seven volatile compounds were identified and quantified. Wines made from grapes grown with various cover crops had higher levels of aroma compounds. Ethyl acetate, isoamyl acetate, ethyl octanoate, ethyl hexanoate, phenylethyl acetate, isoamyl alcohol, linalool, citronellol, β-damascenone, α-ionone, and 5-amyl-dihydro-2(3H)-furan were the impact odorants of sample wines. Wines from cover crop also had higher contents of these impact odorants than the control. For different cover crops, alfalfa sward yielded the highest levels, followed by the tall fescue treatment. According to the data analysis of aroma compounds and sensory assess, permanent cover crop may have the potential to improve wine quality. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor.

    Science.gov (United States)

    Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki

    2008-03-07

    A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.

  16. Retention of aroma compounds: an interlaboratory study on the effect of the composition of food matrices on thermodynamic parameters in comparison with water.

    Science.gov (United States)

    Kopjar, Mirela; Andriot, Isabelle; Saint-Eve, Anne; Souchon, Isabelle; Guichard, Elisabeth

    2010-06-01

    Partition coefficients give an indication of the retention of aroma compounds by the food matrix. Data in the literature are obtained by various methods, under various conditions and expressed in various units, and it is thus difficult to compare the results. The aim of the present study was first to obtain gas/water and gas/matrix partition coefficients of selected aroma compounds, at different temperatures, in order to calculate thermodynamic parameters and second to compare the retention of these aroma compounds in different food matrices. Yogurts containing lipids and proteins induced a higher retention of aroma compounds than model gel matrices. The observed effects strongly depend on hydrophobicity of aroma compounds showing a retention for ethyl hexanoate and a salting out effect for ethyl acetate. A small but noticeable decrease in enthalpy of affinity is observed for ethyl butyrate and ethyl hexanoate between water and food matrices, suggesting that the energy needed for the volatilization is lower in matrices than in water. The composition and complexity of a food matrix influence gas/matrix partition coefficients or aroma compounds in function of their hydrophobicity and to a lower extent enthalpy of vaporization. Copyright (c) 2010 Society of Chemical Industry.

  17. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

    Science.gov (United States)

    Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo

    2016-03-12

    The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The

  18. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents.

    Science.gov (United States)

    Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L

    2008-05-01

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.

  19. PENGARUH AROMA TERAPI LAVENDER TERHADAP KUALITAS TIDUR LANSIA DI WISMA CINTA KASIH

    Directory of Open Access Journals (Sweden)

    Dian Sari

    2018-03-01

    Full Text Available Bad sleep quality causes fatigue, difficulty concentrating, and often drowsiness in the elderly. The purpose of this study was to determine the effect of aroma of lavender therapy on the quality of elderly sleep at Wisma Cinta Kasih Padang. This type of research is quantitative with pre-experimental design using One Group Pretest-Posttest Design design using T-test dependent test. Sampling technique in this research use purposive sampling 30 responden as intervention group. The research to do in Wisma Cinta Kasih Padang. The results of the study found that all elderly (100% had poor sleep quality before lavender aromatherapy and only 40% experienced poor sleep quality after lavender therapy. The statistical test obtained p value = 0.000, where there is influence of lavender therapy to sleep quality of elderly in Wisma Cinta Kasih Padang. The smell of lavender therapy can improve the quality of elderly sleep. Officer Wisma Cinta Kasih Padang in order to provide lavender therapy every 2 times / week at bedtime so as to improve the quality of elderly sleep. Kualitas tidur buruk menyebabkan kelelahan, sulit berkonsentrasi, dan sering mengantuk pada lansia. Tujuan penelitian ini adalah untuk mengetahui pengaruh aroma terapi lavender terhadap kualitas tidur lansia di Wisma Cinta Kasih Padang. Jenis penelitian ini adalah kuantitatif dengan desain preekperimental menggunakan rancangan One Group Pretest-Posttest Design menggunakan uji T-test dependent. Teknik pengambilan sampel dalam penelitian ini menggunakan purposive sampling 30 responden sebagai kelompok intervensi. Penelitian dilakukan di Wisma Cinta Kasih Padang. Hasil penelitian didapatkan seluruh lansia (100% mengalami kualitas tidur yang buruk sebelum diberikan aromaterapi lavender dan hanya 40% yang mengalami kualitas tidur buruk sesudah diberikan aroma terapi lavender. Uji statistik didapatkan nilai p= 0,000, dimana terdapat pengaruh terapi lavender terhadap kualitas tidur lansia di Wisma

  20. Effects of packaging materials on the aroma stability of Thai 'tom yam' seasoning powder as determined by descriptive sensory analysis and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Leelaphiwat, Pattarin; Harte, Janice B; Auras, Rafael A; Ong, Peter Kc; Chonhenchob, Vanee

    2017-04-01

    Changes in the aroma characteristics of Thai 'tom yam' seasoning powder, containing lemongrass, galangal and kaffir lime leaf, as affected by different packaging materials were assessed using quantitative descriptive analysis (QDA) and gas chromatography-mass spectrometry (GC-MS). The descriptive aroma attributes for lemongrass, galangal and kaffir lime leaf powders were developed by the QDA panel. The mixed herb and spice seasoning powder was kept in glass jars closed with different packaging materials (Nylon 6, polyethylene terephthalate (PET) and polylactic acid (PLA)) stored at 38 °C (accelerated storage condition), and evaluated by the trained QDA panel during storage for 49 days. The descriptive words for Thai 'tom yam' seasoning powder developed by the trained panelists were lemongrass, vinegary and leafy for lemongrass, galangal and kaffir lime leaf dried powder, respectively. The aroma intensities significantly (P ≤ 0.05) decreased with increased storage time. However, the intensity scores for aroma attributes were not significantly (P > 0.05) different among the packaging materials studied. The major components in Thai 'tom yam' seasoning powder, quantified by GC-MS, were estragole, bicyclo[3.1.1]heptane, β-bisabolene, benzoic acid and 2-ethylhexyl salicylate. The concentrations of major aroma compounds significantly (P ≤ 0.05) decreased with storage time. Aroma stability of Thai 'tom yam' powder can be determined by descriptive sensory evaluation and GC-MS analysis. Nylon, PET and PLA exhibited similar aroma barrier properties against key aroma compounds in Thai 'tom yam'. This information can be used for prediction of aroma loss through packaging materials during storage of Thai 'tom yam'. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.

    Science.gov (United States)

    Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R

    2013-12-01

    Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Phénologie florale et production fruitière de Syzygium guineense ...

    African Journals Online (AJOL)

    The data collected focused on the identification and characterization of the flowering and fruiting stages, the quantification of fruit production and the dendrometric characteristics of individuals. A total of 85% of trees and shrubs having bloomed during the dry season despite fire stress. These individuals in the state of ...

  3. A question of scent: lavender aroma promotes interpersonal trust

    Science.gov (United States)

    Sellaro, Roberta; van Dijk, Wilco W.; Paccani, Claudia Rossi; Hommel, Bernhard; Colzato, Lorenza S.

    2015-01-01

    A previous study has shown that the degree of trust into others might be biased by inducing either a more “inclusive” or a more “exclusive” cognitive-control mode. Here, we investigated whether the degree of interpersonal trust can be biased by environmental factors, such as odors, that are likely to impact cognitive-control states. Arousing olfactory fragrances (e.g., peppermint) are supposed to induce a more exclusive, and calming olfactory fragrances (e.g., lavender) a more inclusive state. Participants performed the Trust Game, which provides an index of interpersonal trust by assessing the money units one participant (the trustor) transfers to another participant (the trustee), while being exposed to either peppermint or lavender aroma. All participants played the role of trustor. As expected, participants transferred significantly more money to the alleged trustee in the lavender as compared to the peppermint and control (no aroma) conditions. This observation might have various serious implications for a broad range of situations in which interpersonal trust is an essential element, such as cooperation (e.g., mixed-motives situations), bargaining and negotiation, consumer behavior, and group performance. PMID:25628577

  4. Role of sotolon in the aroma of sweet fortified wines. Influence of conservation and ageing conditions

    Directory of Open Access Journals (Sweden)

    Isabelle Cutzach

    1998-12-01

    The molecule responsible for this aroma in sweet fortified wines has been identified to the sotolon. According to its content, this molecule can influence differently the aroma of wines. Less than of 300 µg/1, sotolon takes part of « prune » aroma, whereas between 300 and 600 µg/1, it is responsible for the « dried prickly-pear, dried fruit » aroma. More than of 600 µg/1, the sweet natural wines are characterised by « rancio » character. An oxidising conservation is essential for high content of sotolon. An accidental oxidising during ageing in bottle, according for instance with a poor quality of the cork, may increase the formation of this compound in some sweet fortified wines. With the same âge and for the same level of the oxidation, the red sweet natural wines have always a lower sotolon content than the whites. The presence of polyphenolic compounds, by slowing down oxidising phenomena and by reducing the accumulation of ethanal essential for the sotolon formation, explains the lower content of this molecule in the red wines. The sotolon formation in the sweet natural wines has been studied through many experimentations on wines and model solutions at the laboratory and the winery scales. We show that the formation of sotolon during conservation and oxidising ageing of sweet natural wines essentially depends on chemical phenomena.

  5. Effect of cinnamon powder addition during conching on the flavor of dark chocolate mass.

    Science.gov (United States)

    Albak, F; Tekin, A R

    2015-04-01

    In the present study, refined dark chocolate mix was conched with the addition of finely powdered cinnamon in a laboratory-style conching machine to evaluate its aroma profile both analytically and sensorially. The analytical determinations were carried out by a combination of solid phase micro extraction (SPME)-gas chromatography (GC)-mass spectroscopy (MS) and-olfactometry(O), while the sensory evaluation was made with trained panelists. The optimum conditions for the SPME were found to be CAR/PDMS as the fiber, 60 °C as the temperature, and 60 min as the time. SPME analyses were carried out at 60 °C for 60 min with toluene as an internal standard. 26 compounds were monitored before and after conching. The unconched sample had a significantly higher fruity odor value than the conched sample. This new product was highly acceptable according to the overall inclination test. However some of textural properties, such as coarseness, and hardness were below the general preference.

  6. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    Science.gov (United States)

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  7. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes: effect on wine composition.

    Science.gov (United States)

    López de Lerma, N; Peinado, R A

    2011-01-31

    The must from Tempranillo dried grapes was divided into four batches to produce sweet wine. The first one was fortified with ethanol up to 12% (v/v) to avoid fermentation (traditional way). Other two batches were partially fermented with two osmoethanol tolerant Saccharomyces cerevisiae strains (X4 and X5). The last one was fermented with native yeast by spontaneous fermentation. Wines fermented partially with the strains X4 and X5 show high volatile acidity values (above 2g/L expressed as acetic acid), and a glycerol concentration around 20 g/L. Both strains also produce high amount of carboxylic acids and therefore the wines show a high ethyl ester concentration. Aromatic series were obtained for all the wines by grouping aroma compounds according to their odor descriptors. The series of the fermented wines with higher values in relation with the control wine were fruity, sweet and fatty, emphasizing the fruity series in the samples fermented with the X4 and X5 strains. The sensorial analysis of the wine samples by a tasting panel put in evidence that the musts fermented with the osmoethanol tolerant yeasts were better valued than the rest of the wine samples. The must fermented with the X4 strain obtained the maximum score in terms of aroma and flavour. So, the use of these osmoethanol tolerant S. cerevisiae strains could be a suitable alternative to produce sweet wines from must with high sugar concentration. The wines obtained this way are chemically and organoleptically more complex than those elaborated traditionally. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Aroma release in the oral cavity after wine intake is influenced by wine matrix composition.

    Science.gov (United States)

    Esteban-Fernández, Adelaida; Muñoz-González, Carolina; Jiménez-Girón, Ana; Pérez-Jiménez, María; Pozo-Bayón, María Ángeles

    2018-03-15

    The aim of this study has been to investigate if wine matrix composition might influence the interaction between odorants and oral mucosa in the oral cavity during a "wine intake-like" situation. Aroma released after exposing the oral cavity of three individuals to different wines (n=12) previously spiked with six target aromas was followed by an -in vivo intra-oral SPME approach. Results showed a significant effect of wine matrix composition on the intra-oral aroma release of certain odorants. Among the wine matrix parameters, phenolic compounds showed the largest impact. This effect was dependent on their chemical structure. Some phenolic acids (e.g. hippuric, caffeic) were associated to an increase in the intra-oral release of certain odorants (e.g. linalool, β-ionone), while flavonoids showed the opposite effect, decreasing the intra-oral release of aliphatic esters (ethyl hexanoate). This work shows for the first time, the impact of wine composition on oral-mucosa interactions under physiological conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Affinity and selectivity of plant proteins for red wine components relevant to color and aroma traits.

    Science.gov (United States)

    Granato, Tiziana Mariarita; Ferranti, Pasquale; Iametti, Stefania; Bonomi, Francesco

    2018-08-01

    The effects of fining with various plant proteins were assessed on Aglianico red wine, using both the young wine and wine aged for twelve and twenty-four months, and including wine unfined or fined with gelatin as controls. Color traits and fining efficiency were considered, along with the content of various types of phenolics and of aroma-related compounds of either varietal or fermentative origin. All agents had comparable fining efficiency, although with distinct kinetics, and had similar effects on wine color. Individual plant proteins and enzymatic hydrolyzates differed in their ability to interact with some anthocyanins, with specific proanthocyanidins complexes, and with some aroma components of fermentative origin. Changes in varietal aroma components upon fining were very limited or absent. Effects of all the fining agents tested in this study on the anthocyanidin components were most noticeable in young red wine, and decreased markedly with increasing wine ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Aroma volatile compounds from two fresh pineapple varieties in China.

    Science.gov (United States)

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg(-1) and 380.66 μg·kg(-1) in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  11. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Directory of Open Access Journals (Sweden)

    Chang-Bin Wei

    2012-06-01

    Full Text Available Volatile compounds from two pineapples varieties (Tainong No.4 and No.6 were isolated by headspace solid phase microextraction (HS-SPME and identified and quantified by gas chromatography-mass spectrometry (GC/MS. In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 µg·kg−1 and 380.66 µg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthiopropanoic acid methyl ester, 3-(methylthiopropanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthiopropanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  12. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Science.gov (United States)

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  13. Process Parameters Affecting the Synthesis of Natural Flavors by Shiitake (Lentinula edodes during the Production of a Non-Alcoholic Beverage

    Directory of Open Access Journals (Sweden)

    Sibel Özdemir

    2017-04-01

    Full Text Available A novel alcohol-free beverage with a fruity, slightly sour, sweetish, fresh, and plum-like flavor was produced by incorporating the edible mushroom shiitake (Lentinula edodes into the fermentation process. Shiitake pellets were used as a biocatalyst to promote the synthesis of the fruity esters methyl 2-methylbutanoate and 2-phenylethanol from amino acids and an organic acid present in the wort. We investigated the impact of two critical process parameters (volumetric power input and inoculum concentration on the morphology of, and flavor production by, the shiitake pellets in a 1 L stirred bioreactor. Increasing the volumetric power input and biomass concentration influenced the morphology of the pellets and promoted the production of the most important flavor compound methyl 2-methylbutanoate in the beverage. Furthermore the worty off-flavor methional was degraded during the cultivation in stirred bioreactor by shiitake pellets. These findings provide useful information to facilitate the scale-up of the biotransformation and fermentation process in bioreactors.

  14. Characterization of aroma-active compounds in dry flower of Malva sylvestris L. by GC-MS-O analysis and OAV calculations.

    Science.gov (United States)

    Usami, Atsushi; Kashima, Yusei; Marumoto, Shinsuke; Miyazawa, Mitsuo

    2013-01-01

    In this study, the aroma-active compounds in the dried flower of Malva sylvestris L. were extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) and aroma extraction dilution analysis (AEDA). A light yellow oil with a sweet odor was obtained with a percentage yield of 0.039% (w/w), and 143 volatile compounds (89.86%) were identified by GC-MS. The main compounds were hexadecanoic acid (10.1%), pentacosane (4.8%) and 6,10,14-trimethyl-2-pentadecanone (4.1%). The essential oil consisted mainly of hydrocarbons (25.40%) followed by, alcohols (18.78%), acids (16.66%), ethers (5.01%) ketones (7.28%), esters(12.43%), aldehydes (2.30%) and others (2.00%). Of these compounds, 20 were determined by GC-O and AEDA, to be odor-active (FD (flavor dilution) factor ≥ 1). β-Damascenone (FD = 9, sweet), phenylacetaldehyde (FD = 8, floral, honey-like) and (E)-β-ocimene (FD = 8, spicy) were the most intense aroma-active compounds in M. sylvestris. In order to determine the relative contribution of each of the compounds to the aroma of M. sylvestris, odor activity values (OAVs) were used. β-Damascenone had the highest odor activity values (OAV) (50,700), followed by (E)-β-ionone (15,444) and decanal (3,510). In particular, β-damascenone had a high FD factors, and therefore, this compound was considered to be the main aroma-active components of the essential oil. On the basis of AEDA, OAVs, and sensory evaluation results, β-damascenone is estimated to be the main aroma-active compound of the essential oil.

  15. Functionality of kumquat (Fortunella margarita) in the production of fruity ice cream.

    Science.gov (United States)

    Çakmakçı, Songül; Topdaş, Elif Feyza; Çakır, Yusuf; Kalın, Pınar

    2016-03-30

    The aim of this study was to investigate the effect of kumquat (Fortunella margarita) on the quality characteristics of ice cream. Kumquat paste (KP) was added to an ice cream mix at four concentrations, 0 (control), 5, 10 and 15% (w/w), for ice cream production. The increment of KP level caused an increase in acidity, vitamin C content, b* value and overrun value compared with the control ice cream. The apparent viscosity of samples decreased with the addition of KP at concentrations of 5 and 10% compared with the control. Results indicated that lyophilized water extract of KP (LKE) contained remarkable phenolic compounds. It was observed that LKE exhibited moderate in vitro antioxidant capacity. KP enhanced the color, flavor, vitamin C content and Mg and K contents of the ice cream. The addition of KP positively affected the sensory properties. KP may be used as a suitable source of natural color and flavor agent in ice cream production. KP enhanced the vitamin C content and Mg and K contents of ice cream and improved its sensory properties. © 2015 Society of Chemical Industry.

  16. Influence of radiation processing of grapes on wine quality

    International Nuclear Information System (INIS)

    Gupta, Sumit; Padole, Rupali; Variyar, Prasad S.; Sharma, Arun

    2015-01-01

    Grapes (Var. Shiraz and Cabernet) were subjected to radiation processing (up to 2 kGy) and wines were prepared and matured (4 months, 15 °C). The wines were analyzed for chromatic characteristics, total anthocyanin (TA), phenolic (TP) and total antioxidant (TAC) content. Aroma of wines was analyzed by GC/MS and sensory analysis was carried out using descriptive analysis. TA, TP and TAC were 77, 31 and 37 percent higher for irradiated (1500 Gy) Cabernet wines, while irradiated Shiraz wines demonstrated 47, 18 and 19 percent higher TA, TP and TAC, respectively. HPLC-DAD analysis revealed that radiation processing of grapes resulted in increased extraction of phenolic constituents in wine with no qualitative changes. No major radiation induced changes were observed in aroma constituents of wine. Sensory analysis revealed that 1500 Gy irradiated samples had higher fruity and berry notes. Thus, radiation processing of grapes resulted in wines with improved organoleptic and antioxidant properties. - Highlights: • Grapes were subjected to radiation processing before wine making. • Wines from irradiated grapes had higher antioxidant and phenolics compared to control. • HPLC analysis confirmed improved extraction of phenolics due to radiation processing. • Aroma profile and sensory quality of control and irradiated wines were similar

  17. Sensory profiles of breast meat from broilers reared in an organic niche production system and conventional standard broilers

    DEFF Research Database (Denmark)

    Horsted, Klaus; Allesen-Holm, Bodil Helene; Hermansen, John E.

    2012-01-01

    BACKGROUND: Breast meat from broilers produced in very different production systems may vary considerable in sensory profile, which may affect consumer interests. In this study the aim was to evaluate differences in the sensory profiles of breast meat from five broiler products: two conventional...... standard products (A and B) and three organic niche genotypes (I657, L40 and K8) reared in an apple orchard. RESULTS: Thirteen out of 22 sensory attributes differed significantly between the products. The aroma attributes `chicken', `bouillon' and `fat' scored highest and the `iron/liver' aroma lowest...... of `sweet/maize' than the standard products. The `overall liking' score was significantly higher for the `K 8' product than for the `Standard A' and `L 40' products. The `overall liking' score was significantly correlated with the scores for aroma and taste of `chicken', `umami/bouillon', `iron...

  18. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality.

    Science.gov (United States)

    Mishra, Prashant K; Tripathi, Jyoti; Gupta, Sumit; Variyar, Prasad S

    2017-01-15

    Volatile aroma compounds of three varieties of red kidney beans (Phaseolus vulgaris) namely Kashmiri red, Sharmili and Chitra were extracted in raw state using solid-phase microextraction (SPME) and cooked state using simultaneous distillation extraction (SDE). During cooking a significant (palcohols and terpene hydrocarbons while an increase in content of various sulfurous compounds, terpene alcohols, ketones and pyrazines was noted. Descriptive sensory analysis showed that the maximum intensity of 'kidney bean', 'earthy' and 'smoky' odour was observed in Kashmiri red while Sharmili variety was characterised by 'sulfurous' odour. Correlation of volatile profile data with descriptive sensory analysis and odour activity values clearly established the role of compounds, such as methanethiol, diethyl sulfide, dimethyl disulfide, methional and dimethyl trisulfide, in contributing to 'cooked kidney bean' aroma, while dimethyl sulfoxide, dimethyl sulfone and ethyl methyl sulfone were responsible for 'sulfurous' aroma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The effect of aroma stimulation during isotonic exercise on the rating of perceived exertion and blood fatigue factors of athletes with patellofemoral pain syndrome.

    Science.gov (United States)

    Kim, Sangsoo; Choo, JongHoo; Ju, Sungbum

    2018-02-01

    [Purpose] The purpose of this study is to examine the effect of aroma stimulation during isotonic exercise on the rating of perceived exertion (RPE) and the blood fatigue factors of athletes who have patellofemoral pain syndrome (PFPS). [Subjects and Methods] The research subjects were seven athletes in their twenties who suffer from PFPS. They were divided into a control group and an aroma stimulation group and performed isotonic exercises repeatedly. After exercising, the RPE and blood fatigue factors, including creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and ammonia, were measured through blood sampling. [Results] The aroma stimulus group showed significantly lower RPE than the control group immediately after exercising, which included leg presses, leg curls, bicep curls, and leg extensions. Among the blood fatigue factors, the change in LDH indicated the effect of aroma stimulation. [Conclusion] We confirmed that aroma stimulation during isotonic exercise has the positive effect of reducing the RPE and blood fatigue factors, such as blood LDH, of the athletes with PFPS.

  20. Breeding new improved clones for strawberry production in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves Galvão

    2017-04-01

    Full Text Available Breeding different strawberry genotypes and plant selection in Brazil could result in new cultivars with better environmental adaptations. The aim was to develop and select new F1 strawberry plants with higher potential yields. Twelve hybrid populations were obtained from breeding the cultivars Aromas, Camarosa, Dover, Festival, Oso Grande, Sweet Charlie and Tudla, and 42 F1 hybrids were obtained from each population. An augmented randomized block design was used. Productive traits were measured and heterosis was calculated for all traits. The breedings Dover x Aromas and Camarosa x Aromas both showed 28.6% of their hybrids with a total fruit mass that was higher than that of cv. Aromas, and 9.5 and 14.3% were higher than that of cv. Camarosa, respectively. The breeding of Camarosa x Aromas produced hybrids with high potential yields and a large average fruit mass that reached the commercial standard. Hybrids MCA12-93, MFA12-443 and MCA12-89 showed high potential yields and can be used as parents in strawberry breeding programs.

  1. Effect of rootstocks on fruit quality and aroma characteristics of watermelon (Citrullus lanatus

    Directory of Open Access Journals (Sweden)

    Onur Karaağaç

    2018-06-01

    Full Text Available In recent years, grafted watermelon seedling use has been rapidly increasing due to providing tolerance to stress conditions and positively affecting on yield potential. Fruit quality was varied depending on the rootstock used positively or negatively in grafted vegetables. The number of research is limited in this topic. The effect of the rootstocks on fruit quality has not been fully revealed in grafted watermelon production. In this study, the using of the inbred lines (one Cucurbita moschata and four Cucurbita maxima and interspecific cross (five C. maxima × C. moschata rootstocks were investigated for fruit quality and aroma characteristics on the watermelon. Non-grafted Crisby F1 watermelon cultivar, one bottle gourd (Argentario F1 and two interspecific rootstock cultivars (Obez F1, Shintosa F1 were used as control commercial cultivars. In all grafted watermelon, the fruit flesh firmness was higher than non-grafted watermelon (10.73 N. According to the rootstock x scion combinations, the fruit firmness was varied between 13.75 N (K6/C and 22.53 N (M6/C. The rind thickness was changed between 16.05 (K9/C - 18.24 mm (Argentario/C. In the most of the grafted combinations, the rind thickness increased. Rootstocks did not effect on fruit shape. Higher total soluble solids were determined in all graft combinations than non-grafted watermelon. The highest soluble solids contents were determined in the combination of M6/C (12.87%, M3/C (12.53% and B1/C (12.50%. The vitamin C contents were significantly affected by rootstocks. These values in grafted watermelons increased by 30.30% (M3/C and 17.09% (Argentario/C reduction was observed compared to non-grafted watermelon. The lycopene content of eight combinations were found higher and four of them less than non-grafted watermelon. As a result of degustation panel tests, it was determined that M2/C (4.87, M3/C (4.53, B1/C (4.35 Argentario/C (29.4 and Obez/C (4.14 combinations scores were higher than

  2. Identification, quantification and comparison between the chemical substances responsible for the irradiated pot still cachaca and commercial rum aromas; Identificacao, quantificacao e comparacao das substancias quimicas responsaveis pelos aromas da cachaca de alambique e do rum comercial tratados pelo processo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Djiliah Camargo Alvarenga de

    2006-07-01

    The irradiation process has being presented as an alternative technique in food preservation. When applied on beverages, radiation is mainly used for malt decontamination or sterilization of musts and had been proposed also to accelerate aging. Some confusion over rum and cachaca identities has arisen due to the internationalization of cachaca. This research aims to identify, quantify and compare the effect of gamma radiation on the aroma of the Brazilian spirit with rum, irradiated and non irradiated, by instrumental and sensory analysis. Results showed that the content of volatile compounds presented strong correlation with the radiation dose (0,150 and 300 Gy) for all the samples. According to Triangle Test for aroma, all the judges could distinguish among non irradiated and irradiated samples (300 Gy), aged cachaca from rum and non aged cachaca from rum, but they could not distinguish aged cachaca from non aged cachaca. Analysis of variance (ANOVA) of the results from the quantitative descriptive analysis showed that non irradiated non aged cachaca and rum were different in their alcohol, vinegar, vanilla, citrus, melon, spice, vegetal and grass except caramel and apple aroma attributes. Non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) were different in their apple, caramel, vinegar, vanilla, citrus, melon, spice, vegetal and grass except alcohol aroma attributes. According to the gas chromatography/olfactometry results, significant difference was found among non irradiated cachaca and rum; non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) when their aromas were compared. (author)

  3. Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines.

    Science.gov (United States)

    Añón, Ana; López, Jorge F; Hernando, Diego; Orriols, Ignacio; Revilla, Eugenio; Losada, Manuel M

    2014-04-01

    The effects of five technological procedures and of the contents of total anthocyanins and condensed tannins on 19 fermentation-related aroma compounds of young red Mencia wines were studied. Multifactor ANOVA revealed that levels of those volatiles changed significantly over the length of storage in bottles and, to a lesser extent, due to other technological factors considered; total anthocyanins and condensed tannins also changed significantly as a result of the five practices assayed. Five aroma compounds possessed an odour activity value >1 in all wines, and another four in some wines. Linear correlation among volatile compounds and general phenolic composition revealed that total anthocyanins were highly related to 14 different aroma compounds. Multifactor ANOVA, considering the content of total anthocyanins as a sixth random factor, revealed that this parameter affected significantly the contents of ethyl lactate, ethyl isovalerate, 1-pentanol and ethyl octanoate. Thus, the aroma of young red Mencia wines may be affected by levels of total anthocyanins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  5. Aroma components from dried sausages fermented with Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1994-01-01

    Sausages with and without Staphylococcus xylosus were manufactured with four replicates. Antibiotics and a fungicide to inhibit growth of naturally occuring microorganisms were added to the control sausages. The volatile compounds from the sausages were collected and identified by gas chromatogra...... amounts of free fatty acids, it seemed to be of no importance to aroma development. It is therefore questionable whether lipolytic activity of starter cultures has an influence on sausage flavour....

  6. Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage.

    Science.gov (United States)

    Ramírez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2012-10-01

    The effect of dense phase carbon dioxide (DPCD) processing (34.5 MPa, 8% CO₂, 6.5 min, and 40 °C) on phytochemical, sensory and aroma compounds of hibiscus beverage was compared to a conventional thermal process (HTST) (75 °C for 15 s) and a control (untreated beverage) during refrigerated storage (4 °C). The overall likeability of the hibiscus beverage for all treatments was not affected by storage up to week 5. DPCD process retained more aroma volatiles as compared to HTST. Aroma profiles in the beverages were mainly composed of alcohols and aldehydes with 1-octen-3-ol, decanal, octanal, 1-hexanol, and nonanal as the compounds with the highest relative percentage peak areas. A loss of only 9% anthocyanins was observed for the DPCD processed hibiscus beverage. Phytochemical profiles in the hibiscus beverage included caffeoylquinic acids, anthocyanins, and flavonols. No major changes in total phenolics and antioxidant capacity occurred during the 14 weeks of storage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification, quantification and comparison between the chemical substances responsible for the irradiated pot still cachaca and commercial rum aromas

    International Nuclear Information System (INIS)

    Souza, Maria Djiliah Camargo Alvarenga de

    2006-01-01

    The irradiation process has being presented as an alternative technique in food preservation. When applied on beverages, radiation is mainly used for malt decontamination or sterilization of musts and had been proposed also to accelerate aging. Some confusion over rum and cachaca identities has arisen due to the internationalization of cachaca. This research aims to identify, quantify and compare the effect of gamma radiation on the aroma of the Brazilian spirit with rum, irradiated and non irradiated, by instrumental and sensory analysis. Results showed that the content of volatile compounds presented strong correlation with the radiation dose (0,150 and 300 Gy) for all the samples. According to Triangle Test for aroma, all the judges could distinguish among non irradiated and irradiated samples (300 Gy), aged cachaca from rum and non aged cachaca from rum, but they could not distinguish aged cachaca from non aged cachaca. Analysis of variance (ANOVA) of the results from the quantitative descriptive analysis showed that non irradiated non aged cachaca and rum were different in their alcohol, vinegar, vanilla, citrus, melon, spice, vegetal and grass except caramel and apple aroma attributes. Non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) were different in their apple, caramel, vinegar, vanilla, citrus, melon, spice, vegetal and grass except alcohol aroma attributes. According to the gas chromatography/olfactometry results, significant difference was found among non irradiated cachaca and rum; non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) when their aromas were compared. (author)

  8. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  9. Characterization of the interaction between two food aroma components, alpha-pinene and ethyl butyrate, and ethylene-vinyl alcohol copolymer (EVOH) packaging films as a function of environmental humidity.

    Science.gov (United States)

    López-Carballo, Gracia; Cava, David; Lagarón, Jose M; Catalá, Ramón; Gavara, Rafael

    2005-09-07

    The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold.

  10. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    Science.gov (United States)

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  11. Gas chromatography/sniffing port analysis of aroma compounds released under mouth conditions

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.

    2000-01-01

    The release of aroma compounds from rehydrated French beans in an artificial mouth system and in the mouths of 12 assessors was studied by gas chromatography combined with flame ionisation detection and sniffing port detection. In an artificial mouth system, volatile compounds were isolated under

  12. The Effects of Aroma Foot Massage on Blood Pressure and Anxiety in Japanese Community-Dwelling Men and Women: A Crossover Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Eri Eguchi

    Full Text Available The aim of this study was to investigate the effects of aroma foot massage on blood pressure, anxiety, and health-related quality of life (QOL in Japanese community-dwelling men and women using a crossover randomized controlled trial.Fifty-seven eligible participants (5 men and 52 women aged 27 to 72 were randomly divided into 2 intervention groups (group A: n = 29; group B: n = 28 to participate in aroma foot massages 12 times during the 4-week intervention period. Systolic and diastolic blood pressure (SBP and DBP, respectively, heart rate, state anxiety, and health-related QOL were measured at the baseline, 4-week follow-up, and 8-week follow-up. The effects of the aroma foot massage intervention on these factors and the proportion of participants with anxiety were analyzed using a linear mixed-effect model for a crossover design adjusted for participant and period effects. Furthermore, the relationship between the changes in SBP and state anxiety among participants with relieved anxiety was assessed using a linear regression model.Aroma foot massage significantly decreased the mean SBP (p = 0.02, DBP (p = 0.006, and state anxiety (p = 0.003 as well as the proportion of participants with anxiety (p = 0.003. Although it was not statistically significant (p = 0.088, aroma foot massage also increased the score of mental health-related QOL. The change in SBP had a significant and positive correlation with the change in state anxiety (p = 0.01 among participants with relieved anxiety.The self-administered aroma foot massage intervention significantly decreased the mean SBP and DBP as well as the state anxiety score, and tended to increase the mental health-related QOL scores. The results suggest that aroma foot massage may be an easy and effective way to improve mental health and blood pressure.University Hospital Medical Information Network 000014260.

  13. Reconstitution of the flavor signature of Dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds.

    Science.gov (United States)

    Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas

    2011-08-24

    By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.

  14. Identification of a powerful aroma compound in munster and camembert cheeses: ethyl 3-mercaptopropionate.

    Science.gov (United States)

    Sourabié, Alain M; Spinnler, Henry-Eric; Bonnarme, Pascal; Saint-Eve, Anne; Landaud, Sophie

    2008-06-25

    With the view to investigate the presence of thiols in cheese, the use of different methods of preparation and extraction with an organomercuric compound ( p-hydroxymercuribenzoate) enabled the isolation of a new compound. The analysis of cheese extracts by gas chromatography coupled with pulse flame photometry, mass spectrometry, and olfactometry detections led to the identification of ethyl 3-mercaptopropionate in Munster and Camembert cheeses. This compound, described at low concentrations as having pleasant, fruity, grapy, rhubarb, and empyreumatic characters, has previously been reported in wine and Concord grape but was never mentioned before in cheese. A possible route for the formation of this compound in relation with the catabolism of sulfur amino acids is proposed.

  15. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  16. Sensory profile and contribution of major components of aroma in dry red wine quality

    Directory of Open Access Journals (Sweden)

    Luisa Costa de Oliveira

    2012-11-01

    Full Text Available This study aimed to determine the sensory profile and main volatile compounds of a set of commercial wines from two major wine regions in Brazil. A total of 28 descriptors were selected by quantitative descriptive analysis, and “red”, “violet”, “pungent aroma”, “vinegary aroma” and “softness” were the most important descriptors in sample discrimination (p<=0.05. 42 volatile aroma compounds were considered relevant for the evaluation of red wine samples. Several acetates and esters that contribute to the pleasant aroma in wines were found in the samples, but other undesirable compounds were also identified: acetic acid and octanoic acid may have contributed to the vinegary and sulphur odors perceived by a trained team.

  17. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    Directory of Open Access Journals (Sweden)

    Yiming Feng

    2015-11-01

    Full Text Available Background: Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods: The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs and relative odor contributions (ROCs were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. Results: In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54% and mulberry wines (2.08% were higher than those of strawberry wine (0.78%, and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. Conclusion: The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was

  18. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances.

    Science.gov (United States)

    Ferreira, Vicente; Sáenz-Navajas, María-Pilar; Campo, Eva; Herrero, Paula; de la Fuente, Arancha; Fernández-Zurbano, Purificación

    2016-05-15

    This work aims at assessing the aromatic sensory dimensions linked to 6 common wine aroma vectors (N, norisoprenoids; A, branched acids; F, enolones; E, branched ethyl esters; L, fusel alcohols, M, wood compounds) varying in their natural range of occurrence. Wine models were built by adding the vectors at two levels (fractional factorial design 2(VI)) to a de-aromatised aged red wine. Twenty other different models were evaluated by descriptive analysis. Red, black and dried fruits and woody notes were satisfactorily reproduced. Individual vectors explained just 15% of the sensory space, mostly dependent on perceptual interactions. N influences dried and black fruits and suppresses red fruits. A suppresses black fruits and enhances red and dried fruits. F exerts a major role on red fruits. E suppresses dried fruits and modulates black fruits. L is revealed as a strong suppressor of red fruits and particularly of woody notes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Retro-Nasal Aroma Release Is Correlated with Variations in the In-Mouth Air Cavity Volume after Empty Deglutition

    Science.gov (United States)

    Mishellany-Dutour, Anne; Woda, Alain; Labouré, Hélène; Bourdiol, Pierre; Lachaze, Pauline; Guichard, Elisabeth; Feron, Gilles

    2012-01-01

    We hypothesized that interindividual differences in motor activities during chewing and/or swallowing were determining factors for the transfer of volatile aroma from the in-mouth air cavity (IMAC) toward the olfactory mucosa. In our first experiment, we looked for changes in IMAC volume after saliva deglutition in 12 healthy subjects. The mean IMAC volume was measured after empty deglutition using an acoustic pharyngometer device. Based on the time course of the IMAC volume after swallowing, we discerned two groups of subjects. The first group displayed a small, constant IMAC volume (2.26 mL ±0.62) that corresponded to a high tongue position. The second group displayed a progressive increase in IMAC (from 6.82 mL ±2.37 to 22.82 mL ±3.04) that corresponded to a progressive lowering of the tongue to its resting position. In our second experiment, we investigated the relationship between IMAC volume changes after deglutition and the level of aroma release at the nostril. For this purpose, the release of menthone was measured at the nostril level in 25 subjects who consumed similar amounts of a mint tablet. The subjects were separated into two groups corresponding to two levels of menthone release: high (H) and low (L). The mean volume of IMAC was measured during and after empty deglutition. Group H displayed a small, constant amplitude of IMAC volume change after deglutition, while Group L displayed a progressive increase in IMAC. It is likely that Group H continuously released the aroma through the veloglossal isthmus as the mint was consumed, while Group L trapped the aroma in the oral cavity and then released it into the nasal cavity upon swallowing. These results show that the in vivo aroma release profile in humans depends closely on the different motor patterns at work during empty deglutition. PMID:22815986

  20. Retro-nasal aroma release is correlated with variations in the in-mouth air cavity volume after empty deglutition.

    Directory of Open Access Journals (Sweden)

    Anne Mishellany-Dutour

    Full Text Available We hypothesized that interindividual differences in motor activities during chewing and/or swallowing were determining factors for the transfer of volatile aroma from the in-mouth air cavity (IMAC toward the olfactory mucosa. In our first experiment, we looked for changes in IMAC volume after saliva deglutition in 12 healthy subjects. The mean IMAC volume was measured after empty deglutition using an acoustic pharyngometer device. Based on the time course of the IMAC volume after swallowing, we discerned two groups of subjects. The first group displayed a small, constant IMAC volume (2.26 mL ±0.62 that corresponded to a high tongue position. The second group displayed a progressive increase in IMAC (from 6.82 mL ±2.37 to 22.82 mL ±3.04 that corresponded to a progressive lowering of the tongue to its resting position. In our second experiment, we investigated the relationship between IMAC volume changes after deglutition and the level of aroma release at the nostril. For this purpose, the release of menthone was measured at the nostril level in 25 subjects who consumed similar amounts of a mint tablet. The subjects were separated into two groups corresponding to two levels of menthone release: high (H and low (L. The mean volume of IMAC was measured during and after empty deglutition. Group H displayed a small, constant amplitude of IMAC volume change after deglutition, while Group L displayed a progressive increase in IMAC. It is likely that Group H continuously released the aroma through the veloglossal isthmus as the mint was consumed, while Group L trapped the aroma in the oral cavity and then released it into the nasal cavity upon swallowing. These results show that the in vivo aroma release profile in humans depends closely on the different motor patterns at work during empty deglutition.

  1. Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women123

    Science.gov (United States)

    Eiler, William JA; Dzemidzic, Mario; Case, K Rose; Armstrong, Cheryl LH; Mattes, Richard D; Cyders, Melissa A; Considine, Robert V; Kareken, David A

    2014-01-01

    Background: Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Objective: Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Design: Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Results: Normal-weight subjects showed significant blood oxygen level–dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Conclusions: Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. This trial was registered at clinicaltrials.gov as NCT02041039. PMID:24695888

  2. Pollen aroma fingerprint of two sunflower (Helianthus annuus L.) genotypes characterized by different pollen colors.

    Science.gov (United States)

    Bertoli, Alessandra; Fambrini, Marco; Doveri, Silvia; Leonardi, Michele; Pugliesi, Claudio; Pistelli, Luisa

    2011-09-01

    Samples of fresh pollen grains, collected from capitula in full bloom from two genotypes of sunflower (Helianthus annuus L.) and characterized by a different color, i.e., white-cream (WC) and orange (O), were analyzed by the HS-SPME (headspacesolid phase microextraction)/GC/MS technique. This study defined for the first time the fingerprint of the sunflower pollen, separated from the disc flowers, to define its contribution to the inflorescence aroma. In the GC/MS fingerprints of the WC and O genotypes, 61 and 62 volatile compounds were identified, respectively. Monoterpene hydrocarbons (34% in O vs. 28% in WC) and sesquiterpene hydrocarbons (37% in O vs. 31% in WC) were ubiquitous in all samples analyzed and represented the main chemical classes. α-Pinene (21% in O vs. 20% in WC) and sabinene (11% in O vs. 6% in WC) were the dominant volatiles, but also a full range of aliphatic hydrocarbons and their oxygenated derivatives gave a decisive contribution to the aroma composition (10% in O vs. 12% in WC). In addition, dendrolasin (3% in O vs. 4% in WC) and some minor constituents such as (E)-hex-2-en-1-ol (0.4% in O vs. 0.1% in WC) were pointed out not only for their contribution to the pollen scent, but also for their well-known role in the plant ecological relationships. Having evaluated two pollen morphs with different carotenoid-based colors, the study sought to highlight also the presence of some volatile precursors or derivatives of these pigments in the aroma. However, the pollen aroma of the two selected genotypes made a specific chemical contribution to the sunflower inflorescence scent without any influence on carotenoid derivatives. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  3. VOLATILE COMPOUNDS IDENTIFIED IN BARBADOS CHERRY ‘BRS-366 JABURÚ’

    Directory of Open Access Journals (Sweden)

    Y. M. Garcia

    2016-07-01

    Full Text Available In foods, the flavor and aroma are very important attributes, thus the main objective of this study was to identify the volatile compounds (VC of the "BRS-366 Jaburú" acerola variety, for which we used the solid phase microextraction method (SPE. The separation and identification of volatile compounds was made using gas chromatography-mass spectrometry (GC-MS. Three fibers were evaluated, Polydimethylsiloxane / Divinylbenzene (PDMS / DVB, 65 micrometres Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB / CAR / PDMS 50/30 m and polyacrylate (PA 85 uM to compare the extraction of its components. Thirty-three volatile compounds were identified and classified into eight chemical classes: carboxylic acids, alcohols, aldehydes, ketones, esters, hydrocarbons, phenylpropanoids and terpenoids. The peak areas of each of the extracted compounds were expressed as percentages to indicate the relative concentration of each, of which ethyl acetate is distinguished by being responsible for the fruity aroma notes. Thus, the fiber PDMS / DVB was the best as it enabled to extract a greater amount of volatile compounds

  4. Çeşitli Sake Örneklerinde Aroma Maddeleri Üzerine Araştırmalar

    Directory of Open Access Journals (Sweden)

    İsmail Yavaş

    2015-02-01

    Full Text Available Çeşitli sake örneklerinin aroma maddeleri yönünden zenginleştirilmesinden sonra gazkromatografik ve masspektrometrik araştırmalarda çok sayıda uçucu aroma komponentleri ayrılabilmiş ve bazıları tanımlanmıştır. 45 komponentin kantitatif değerlendirilmesinde olduğu gibi aromagramların karşılaştırılması, kantitatif olarak aroma maddeleri yönünden çeşitli örnekler arasında çok açık farklılıklar olduğunu göstermektedir. Bazı komponentlerde orijinal (Japonya’da üretilmiş sake örneği ile Türk sake örnekleri arasında belirgin farklılıklar bulunmaktadır. Japon sakesinin Türk sake örneklerine oranla göze batan bir şekilde az miktarda Dietilsüksinat ve fazla miktarda 3-Hidroksibutirikasit etilesteri ile 3-Metil-1-butil asetat içerdiği açıkça görülmektedir.

  5. Aroma changes in fresh bell peppers (Capsicum annuum) after hot-air drying.

    NARCIS (Netherlands)

    Luning, P.A.; Yuksel, D.; Vuurst de Vries, van R.; Roozen, J.P.

    1995-01-01

    The aroma of fresh and hot-air dried bell peppers (Capsicum annuum) was evaluated by sensory and instrumental methods. Hot-air drying decreased levels of the odor compounds (Z)-3-hexenal, 2-heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol, and linalool, which have

  6. Combinatory Effects of Texture and Aroma Modification on Taste Perception of Model Gels

    NARCIS (Netherlands)

    Knoop, J.E.; Sala, G.; Smit, G.; Stieger, M.A.

    2013-01-01

    In this study, the effects of texture modification and aroma-induced sweetness enhancement were systematically investigated in apple-flavored semi-solid Na-caseinate gels. Gels containing apple juice as a basic flavor were developed differing in stiffness, brittleness and serum release (texture

  7. Molecular structural differences between low methoxy pectins induced by pectin methyl esterase II: effects on texture, release and perception of aroma in gels of similar modulus of elasticity.

    Science.gov (United States)

    Kim, Yang; Kim, Young-Suk; Yoo, Sang-Ho; Kim, Kwang-Ok

    2014-02-15

    Six low-methoxy pectins with different degrees of methylesterification and amidation, and molecular weights were used to prepare gels with similar moduli of elasticity by varying the concentrations of pectin and calcium phosphate. Five aroma compounds were added to the gels and their sensory textural properties, release and perception of aromas were investigated. Sensory firmness, springiness, adhesiveness, chewiness and cohesiveness differed according to the gel type, even though the moduli of elasticity were not significantly different (ppectin exhibited the lowest release and perception for all the aroma compounds, while pectin-methylesterase-treated pectin gels exhibited relatively higher aroma release and perception. These results showed that the structural properties of pectins and gelling factors that increase the non-polar character of the gel matrices could decrease the release and perception of aromas in pectin gel systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gas Chromatography-Mass Spectrometry-Olfactometry To Control the Aroma Fingerprint of Extra Virgin Olive Oil from Three Tunisian Cultivars at Three Harvest Times.

    Science.gov (United States)

    Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed

    2018-03-21

    Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.

  9. AROMA-AIRWICK: a CHLOE/CDC-3600 system for the automatic identification of spark images and their association into tracks

    International Nuclear Information System (INIS)

    Clark, R.K.

    The AROMA-AIRWICK System for CHLOE, an automatic film scanning equipment built at Argonne by Donald Hodges, and the CDC-3600 computer is a system for the automatic identification of spark images and their association into tracks. AROMA-AIRWICK has been an outgrowth of the generally recognized need for the automatic processing of high energy physics data and the fact that the Argonne National Laboratory has been a center of serious spark chamber development in recent years

  10. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species.

    Science.gov (United States)

    Sun, Qun; Gates, Matthew J; Lavin, Edward H; Acree, Terry E; Sacks, Gavin L

    2011-10-12

    Native American grape (Vitis) species have many desirable properties for winegrape breeding, but hybrids of these non-vinifera wild grapes with Vitis vinifera often have undesirable aromas. Other than the foxy-smelling compounds in Vitis labrusca and Vitis rotundifolia , the aromas inherent to American Vitis species are not well characterized. In this paper, the key odorants in wine produced from the American grape species Vitis riparia and Vitis cinerea were characterized in comparison to wine produced from European winegrapes (V. vinifera). Volatile compounds were extracted by solid-phase microextraction (SPME) and identified by gas chromatography-olfactometry/mass spectrometry (GC-O/MS). On the basis of flavor dilution values, most grape-derived compounds with fruity and floral aromas were at similar potency, but non-vinifera wines had higher concentrations of odorants with vegetative and earthy aromas: eugenol, cis-3-hexenol, 1,8-cineole, 3-isobutyl-2-methoxypyrazine (IBMP), and 3-isopropyl-2-methoxypyrazine (IPMP). Elevated concentrations of these compounds in non-vinifera wines were confirmed by quantitative GC-MS. Concentrations of IBMP and IPMP were well above sensory threshold in both non-vinifera wines. In a follow-up study, IBMP and IPMP were surveyed in 31 accessions of V. riparia, V. rupestris, and V. cinerea. Some accessions had concentrations of >350 pg/g IBMP or >30 pg/g IPMP, well above concentrations reported in previous studies of harvest-ripe vinifera grapes. Methyl anthranilate and 2-aminoacetophenone, key odorants responsible for the foxiness of V. labrusca grapes, were undetectable in both the V. riparia and V. cinerea wines (<10 μg/L).

  11. Influence of Starter Cultures, Fermentation Techniques, and Acetic Acid on the Volatile Aroma and Sensory Profile of Cocoa Liquor and Chocolate

    DEFF Research Database (Denmark)

    Crafack, Michael

    The majority of the World’s cocoa production originates from the West African countries of Ivory Coast, Ghana and Nigeria. In these countries, cocoa is a crop of great socio-economic importance as it is often the main source of income for families in the rural cocoa growing regions. Being...... the principal raw material for chocolate production, good quality cocoa beans are in high demand on the World market as a prerequisite for the production of high quality chocolates and other confectionary products. To produce good quality cocoa suitable for chocolate production, it is essential that the beans...... undergo fermentation and drying processes, during which biochemical reactions lead to the formation of cocoa specific flavour precursors. During subsequent roasting, these precursors are transformed into a wide array of aroma compounds as a result of complex Maillard and Strecker degradation reactions...

  12. Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation

    Science.gov (United States)

    Although a total of 150 volatiles were detected by GC-MS, only 49 aroma active peaks were found in a consensus by the three panelists. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, ·-myrcene, (E,E)-2,4-nonadienal, hexa...

  13. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction

    Directory of Open Access Journals (Sweden)

    Juan Pablo Fernández-Trujillo

    2013-08-01

    Full Text Available A climacteric aromatic near-isogenic line (NIL of melon (Cucumis melo L. SC3-5-1 contained an introgression of the non-climacteric Korean cultivar “Shongwan Charmi” accession PI 161375 (SC in the genetic background of the non-climacteric cultivar “Piel de Sapo” (PS. The aroma production was monitored during ripening at 21 °C in intact fruit using headspace sorptive bar extraction (HSSE. Bars were composed of polydimethylsiloxane (PDMS and aromas were desorbed and analyzed by gas-chromatography mass-spectrometry. The aromatic profile was composed of 70 aromatic compounds plus 21 alkanes with a predominance of esters, particularly acetate (2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, and phenylmethyl acetate. Some compounds were severely affected by postharvest time. The acetate esters (3-methylbutyl acetate, butan-2-yl acetate and phenylmethyl acetate decreased with ripening and sulfur-derived compounds (S-methyl butanethioate and S-methyl 3-methylbutanethioate increased gradually with ripening. A few compounds increased at the senescence phase (propyl ethanoate. Other compounds such as hexadecanoic acid showed a marked decrease after harvest, some decreasing from a relative maximum at harvest (2-methylpropyl hexanoate; n-hexanoic acid; nonanoic acid.

  14. Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family

    Science.gov (United States)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.

    2013-11-01

    Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.

  15. Recuperação e concentração de componentes do aroma de caju (Anacardium occidentale L. por pervaporação Recovery of aroma compounds of cashew apple fruit (Anacardium occidentale L. by pervaporation

    Directory of Open Access Journals (Sweden)

    André von Randow de Assis

    2007-06-01

    Full Text Available A pervaporação é um processo de separação por membranas, no qual misturas líquidas são fracionadas devido à sua vaporização parcial através de uma membrana densa de permeabilidade seletiva. Este processo pode ser utilizado na recuperação e concentração de componentes de aromas. O objetivo deste trabalho foi avaliar a pervaporação para obtenção de um extrato natural de aroma de caju, que poderá ser utilizado como aditivo na indústria de alimentos. Polpa de caju foi a matéria-prima utilizada no trabalho. O processo de pervaporação foi conduzido a 25 e 35 °C em membranas de polidimetilsiloxano. Foram recolhidas amostras do suco de caju, no início e ao final do processo, e do permeado para a caracterização do perfil aromático através de CG-EM. O processo de pervaporação apresentou um alto fluxo de permeado para o suco de caju, 0,11 e 0,17 kg.hm-2 a 25 e 35 °C, respectivamente. Os cromatogramas revelaram um grande aumento no número de picos nas amostras de permeado em relação aos cromatogramas das amostras do suco de caju original, sendo que cerca de 50% dos componentes identificados no permeado apresentaram um acréscimo em suas áreas em relação aos do suco original, indicando a potencialidade deste processo para a concentração do aroma de caju.Pervaporation is a membrane separation process in which components from liquid mixtures are fractionated due to their partial vaporisation through a dense selective membrane. This process can be used to recover aroma compounds. The objective of this work was to evaluate the pervaporation to obtain a natural aroma extract from cashew apple fruit, which can be used as an additive in the food industry. Cashew pulp was used as raw material. Pervaporation was carried out at 25 and 35 °C using polymethylsiloxane membranes. Samples of the cashew juice in the beginning and at the end of the pervaporation and from the permeate were picked to characterise the aromatic profile

  16. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    Science.gov (United States)

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Studies on the aroma of different species and strains of Pleurotus measured by GC/MS, sensory analysis and electronic nose

    OpenAIRE

    Renata Zawirska-Wojtasiak; Marek Siwulski; Sylwia Mildner-Szkudlarz; Erwin Wąsowicz

    2009-01-01

    The aroma of several strains of Pleurotus ostreatus, Pleurotus citrinopileatus and Pleurotus djamor was studied by GC/MS. Three main mushrooms aroma constituents: 3-octanol, 3-octanone and 1-octen-3-ol were taken into account for quantitative measurements. The highest amount of 1-octen-3-ol was recorded in P. ostreatus, while considerably lower amounts in P. citrinopileatus. Sensory profile analysis as well as the electronic nose also varied between the three species of Pleurotus. Chiral gas ...

  18. Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.

    Science.gov (United States)

    Lasekan, Ola; Abbas, Kassim A

    2012-01-01

    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.

  19. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  20. Process optimization, physicochemical characterization and antioxidant potential of novel wine from an underutilized fruit Carissa spinarum L. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Abhishek MUNDARAGI

    2017-10-01

    Full Text Available Abstract Carissa spinarum L., is a tropical underutilized fruit abundantly available during summer season, which is delicious to taste with an astringency flavor and fruity aroma. Hence, the present investigation was aimed at optimizing fermentation conditions for the production of wine and to assess its physiochemical composition and antioxidant activity. Response surface methodology coupled with central composite design was employed for the optimization studies. It was determined that fermentation temperature of 25°C, pH of 3.5 and inoculum size of 10% (v/v resulted in quality wine with 8.3% (v/v of ethanol content. Further, physicochemical composition and antioxidant activity of the optimized wine was found to be significantly higher or on par with other tropical fruit wines reported previously. Sensory analysis indicated that wine was good in terms of overall acceptability. Thus, availability of C. spinarum fruits during their glut season can be utilized for winemaking and could generate revenue among rural households further adding significant input to the economy of fruit wine market.

  1. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process.

    Science.gov (United States)

    Rodríguez-Bencomo, Juan José; Kelebek, Hasim; Sonmezdag, Ahmet Salih; Rodríguez-Alcalá, Luis Miguel; Fontecha, Javier; Selli, Serkan

    2015-09-09

    The pistachio (Pistacia vera L.) nut is one of the most widely consumed edible nuts in the world. However, it is the roasting process that makes the pistachio commercially viable and valuable as it serves as the key step to improving the nut's hallmark sensory characteristics including flavor, color, and texture. Consequently, the present study explores the effects of the single-roasting and double-roasting process on the pistachio's chemical composition, specifically aroma-active compounds, polyphenols, and lipids. Results showed the total polyphenol content of increased with the roasting treatment; however, not all phenolic compounds demonstrated this behavior. With regard to the aroma and aroma-active compounds, the results indicated that roasting process results in the development of characteristics and pleasant aroma of pistachio samples due to the Maillard reaction. With regard to lipids, the pistachio roasting treatment reduced the concentration of CN38 diacylglycerides while increasing the amount of elaidic acid.

  2. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Warming, C.

    2004-01-01

    This study evaluated the recovery of seven characteristic black currant aroma compounds by vacuum membrane distillation (VMD) carried out at low temperatures (10-45 degreesC) and at varying feed flow rates (100-500 l/h) in a lab scale membrane distillation set tip. VMD at feed flow from 100 to 500...

  3. The effect of high power ultrasound on phenolic composition, chromatic characteristics, and aroma compounds of red wines

    Directory of Open Access Journals (Sweden)

    Natka Ćurko

    2017-01-01

    Full Text Available High power ultrasound (HPU is a novel, non-thermal technology the application of which has been primarily evaluated in managing food quality. The application of high power ultrasound in wine technology is therefore directed at modulating microbial activity during fermentation, extraction of phenolic and aroma compounds from grapes to must, as well as at accelerating aging reactions in wine. The main aim of this article was to evaluate the effect of different HPU process parameters on sustaining the phenolic and aroma composition of red wine and its colour characteristics. Three different red wines, including Cabernet Sauvignon, Merlot, and Plavac mali, were treated with high power ultrasound (20kHz, considering the variations in ultrasound probe diameter size (12.7 and 19 mm, amplitude level (20, 30, and 40 %, and processing time (2, 4, and 6 minutes. Total polyphenol content, total anthocyanin concentration, and chromatic characteristics were analyzed by spectrophotometry, free anthocyanins were analysed by high performance liquid chromatography, and wine aroma compounds were analyzed by gas chromatography combined with solid-phase microextraction. The obtained results show that ultrasonic irradiation induces chemical changes in phenolic composition, chromatic characteristics, and aroma compounds concentration, and accelerates chemical reactions responsible for wine aging. The intensity of the mentioned chemical changes depends on the selected processing parameters and on the treated variety. Among three different parameters, the selection of the probe diameter was showed to be most significant factor influencing chemical composition, followed by the amplitude level and processing time. The smaller diameter probe size (12.7 mm, lowest amplitude (20%, and a shorter processing time (2 minutes showed a more favourable and lighter effect on the chemical composition of the treated red wines.

  4. Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis.

    Science.gov (United States)

    Kotseridis, Y; Razungles, A; Bertrand, A; Baumes, R

    2000-11-01

    The aromas of six Merlot and three Cabernet Sauvignon wines of the 1996 vintage from the Bordeaux region were evaluated by sensory analysis. A panel of selected enology students was trained to assess 20 attributes previously generated for these wines by enologists of Bordeaux. Using statistical methods, this 20-attribute list was reduced to a 12-attribute list. The aroma profiles of the wines of Merlot and Cabernet Sauvignon were very close. Differentiation of the wines of these two varieties was significant only for the caramel descriptor, which was rated higher in the Merlot wines. Gas chromatography/olfactometry (GC/O) and GC/MS analyses were used to detect and identify the potent odorants with the caramel odor in the two most differentiated samples for this attribute, a Merlot wine and a Cabernet Sauvignon wine. Two odorant zones with this odor resulted in identification of 4-hydroxy-2,5-dimethylfuran-3(2H)-one (HDMF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methylfuran-3(2H)-one (HEMF). Aroma extract dilution analysis (AEDA) method showed a higher dilution factor (FD) for HDMF in the Merlot wine extract than in the Cabernet Sauvignon extract. The HDMF levels determined in the wines studied using a stable isotope dilution assay (SIDA) method were consistent with the results found by sensory analysis and GC/O; i.e., higher HDMF levels were present in the Merlot wines than in the Cabernet Sauvignon wines.

  5. Method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material

    NARCIS (Netherlands)

    Kattenberg, H.R.; Willemsen, J.H.A.; Starmans, D.A.J.; Hoving, H.D.; Winters, M.G.M.

    2002-01-01

    Described is a method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material, such as coffee or tea, and in particular cocoa, at least comprising the steps of: introducing the food base material into an aqueous extractant and incubating the food base material

  6. Real-Time Emulation of Heterogeneous Wireless Networks with End-to-Edge Quality of Service Guarantees: The AROMA Testbed

    Directory of Open Access Journals (Sweden)

    Anna Umbert

    2010-01-01

    Full Text Available This work presents and describes the real-time testbed for all-IP Beyond 3G (B3G heterogeneous wireless networks that has been developed in the framework of the European IST AROMA project. The main objective of the AROMA testbed is to provide a highly accurate and realistic framework where the performance of algorithms, policies, protocols, services, and applications for a complete heterogeneous wireless network can be fully assessed and evaluated before bringing them to a real system. The complexity of the interaction between all-IP B3G systems and user applications, while dealing with the Quality of Service (QoS concept, motivates the development of this kind of emulation platform where different solutions can be tested in realistic conditions that could not be achieved by means of simple offline simulations. This work provides an in-depth description of the AROMA testbed, emphasizing many interesting implementation details and lessons learned during the development of the tool that may result helpful to other researchers and system engineers in the development of similar emulation platforms. Several case studies are also presented in order to illustrate the full potential and capabilities of the presented emulation platform.

  7. Natürel Zeytinyağındaki Uçucu Aroma Bileşenleri ve Duyusal Kalite Üzerine Etkileri

    Directory of Open Access Journals (Sweden)

    Dilşat Bozdoğan Konuşkan

    2015-02-01

    Full Text Available Natürel zeytinyağında bulunan uçucu aroma bileşenlerinin, zeytinyağının lezzet ve aroması üzerine etkisi oldukça önemlidir. Zeytinyağında 280’e yakın uçucu bileşen tespit edilmiş olup, bunlardan 70 kadarının aromaya direkt etkisi olduğu belirlenmiş ve zeytinyağında lezzetten sorumlu grup olarak tanımlanmıştır. Zeytinyağındaki uçucu aroma bileşenlerinin kompozisyonu, başta enzimatik reaksiyonlar olmak üzere, çevresel ve teknolojik faktörlere bağlı olarak değişmektedir. Yüksek kalitedeki zeytinyağlarında bulunan 5 ve 6 karbonlu bileşenler ile özellikle 6 karbonlu uçucu bileşenler, toplam uçucu bileşenlerin % 60-80’ini oluşturmaktadır. Natürel zeytinyağında algılanan meyvemsi, acı-yakıcı (bitter ve keskin-buruk tatlar, duyusal kaliteyi olumlu yönde etkileyerek, tüketici beğenisini sağlamaktadır. Bu çalışmada, natürel zeytinyağında bulunan uçucu aroma bileşenleri ve oluşumları üzerinde etkili olan faktörler ile bunların yağın duyusal kalitesi üzerine olan etkileri üzerinde durulmuştur.

  8. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS.

    Science.gov (United States)

    Hansen, Anne-Mette S; Frandsen, Henrik L; Fromberg, Arvid

    2016-05-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers, the naturalness of a raspberry flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. Twenty-seven food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry jam, dried raspberries, and sodas declared to contain natural aroma all contained almost only R-(E)-α-ionone supporting the content of natural raspberry aroma. Six out of eight sweets tested did not indicate a content of natural aroma on the labeling which was in agreement with the almost equal distribution of the R and S isomer. Two products were labeled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products that were labeled to contain both raspberry juice and flavor showed equal amounts of both enantiomers, indicating the presence of synthetic flavor.

  9. Improvement of production performance of functional fermented whey-based beverage

    Directory of Open Access Journals (Sweden)

    Bulatović Maja Lj.

    2014-01-01

    Full Text Available The aim of this study was improvement of the performances for the production of whey-based beverages with highly productive strains of Lactobacillus. Individual or mixed culture containing Lactobacillus helveticus ATCC 15009, Lactobacillus delbrueckii ssp. lactis NRRL B-4525 and Streptococcus thermophilus S3 were studied. The scientific hypothesis was that production performances, especially aroma and viable cell count, are positively affected by the strains combination and temperature. Based on the results, beverages obtained by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 had higher aroma values than beverages obtained by individual strains. The symbiosis of tested strains has positive impact on the aroma of produced beverage. In addition, the temperature has significant influence on cell viability during the storage and fermentation dynamic. The beverages produced by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 at 42 oC achieved higher storage stability (19 to 22 days than beverages produced at 37°C and 45°C (13 to 19 days. Subsequently, at 42 °C fermentation time for both mixed cultures was 1.5 h shorter, compared to the time achieved at 37°C.

  10. [Effects of special mouth care with an aroma solution on oral status and oral cavity microorganism growth in elderly stroke patients].

    Science.gov (United States)

    Lee, Eun-Hye; Park, Hyojung

    2015-02-01

    This study was conducted to examine the effect of oral care with an aroma solution on oral status and oral cavity microorganism growth in elderly patients with stroke. A non-equivalent control group, with a pretest-posttest design was used in this study. The participants were assigned to the experimental group (n=30) that received oral care with an aroma solution or the control group (n=31) that received 0.9% saline solution. To identify the effect of the experimental treatments, objective/subjective assessments of oral status and oral cavity microorganism growth were performed using the oral assessment guide, oral perception guide, and oral swab culture. Data were analyzed using Chi-square test, Fisher's exact test, and t-test with the SPSS version 21.0 program. The objective oral status was significantly lower in the experimental group than in the control group (t= -3.64, pspecial mouth care using an aroma solution could be an effective oral health nursing intervention for elderly patients with stroke.

  11. Capsicum--production, technology, chemistry, and quality. Part IV. Evaluation of quality.

    Science.gov (United States)

    Govindarajan, V S; Rajalakshmi, D; Chand, N

    1987-01-01

    Capsicum fruits are popular worldwide and are used in the cuisines of both the developing and the developed countries. With its different varieties, forms, and uses, the spice capsicum contributes to the entire gamut of sensory experience--color as finely ground paprika powder or extract in sausages, goulash, cheese, and snacks; both pungency and color as the many varieties of chillies used in Mexican, African, Indian, and southeast Asian cuisines; color, aroma, and mild pungency as the fresh green chillies used in many of the growing countries; and appearance, color, aroma, and texture as fresh fruit in salads and as a pickled and canned product. In three earlier parts in this series, the varieties, cultivation, and primary processing; the processed products, world production, and trade; and the chemistry of the color, aroma, and pungency stimuli have been reviewed. In this part, the evaluation of quality through instrumental determination of the causal components and the sensory evaluation of color, aroma, and pungency are discussed. Several methods for quantitative determination of the stimuli and the sensory evaluation of the responses to the stimuli are reviewed. The problems of sensory evaluation of color, aroma, and pungency, the dominant attributes for validation of the instrumentally determined values for carotenoids, volatiles, or particular fractions, and total and individual capsaicinoids are specifically discussed. Summarized details of selected instrumental methods for evaluating the stimuli, which are either validated by correlation to sensorily perceived responses or to adopted standards, are given along with representative data obtained for discussing the adequacy and reliability of the methods. Pungency as a specific gustatory perception and the many methods proposed to evaluate this quality are discussed. A recommended objective procedure for obtaining reproducible values is discussed, and a method for relating different panel results is shown

  12. Plan integral de servicio al cliente para la marca aromas y recuerdos

    OpenAIRE

    Vera Villegas, Verónica; Aguirre Carpio, Luis

    2010-01-01

    The project described above will apply advanced techniques of marketing services to implement customer service improvements from the 5 major local in Guayaquil as: Torre Azul, Policentro, Riocentro Ceibos, Riocentro Sur and Riocentro Entreríos, being Policentro the establishment of higher volume sales nationwide of the trademark Aromas y Recuerdos. Where potential customers were analyzed according to the data obtained from repeat customers of perfumery in the different locations, ...

  13. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines.

    Science.gov (United States)

    Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco

    2016-06-08

    Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

  14. The analysis of aroma/flavor compounds in green tea using ice concentration linked with extractive stirrer.

    Science.gov (United States)

    Alluhayb, Abdullah H; Logue, Brian A

    2017-10-06

    Worldwide, green tea is one of the most popular beverages. It promotes blood circulation, liver function, and lowers the risk of cancer and cardiovascular diseases. This drink is characterized by the distinctive odors and flavors produced by its constituent compounds, with its value predicated on the amount and type of constituents extracted from the tea leaves during brewing. Ice concentration linked with extractive stirrer (ICECLES) is a novel sample preparation technique, especially applicable for the extraction of relatively polar compounds while retaining excellent extraction efficiencies for non-polar compounds. In this study, ICECLES was used to prepare green tea for analysis of aroma/flavor compounds by gas chromatography-mass spectrometry (GC-MS). ICECLES performed very well, revealing 301 constituents as compared to 245 for SBSE (i.e., 56 more constituents were detected via ICECLES). Moreover, ICECLES produced stronger signal to noise ratios for all except 4 of 301 constituents, with a maximum signal enhancement of 19. Of the constituents which were only detectable using ICECLES, some very important aroma/flavor and/or medicinal compounds were easily identified, including furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-dimethoxyphenol, and α-terpineol. Overall, we confirmed that ICECLES sample preparation followed by GC-MS consistently allowed more complete green tea aroma/flavor analysis, especially for relatively polar compounds, some of which are critical for flavor quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Approaches of aroma extraction dilution analysis (AEDA) for headspace solid phase microextraction and gas chromatography-olfactometry (HS-SPME-GC-O): Altering sample amount, diluting the sample or adjusting split ratio?

    Science.gov (United States)

    Feng, Yunzi; Cai, Yu; Sun-Waterhouse, Dongxiao; Cui, Chun; Su, Guowan; Lin, Lianzhu; Zhao, Mouming

    2015-11-15

    Aroma extract dilution analysis (AEDA) is widely used for the screening of aroma-active compounds in gas chromatography-olfactometry (GC-O). In this study, three aroma dilution methods, (I) using different test sample volumes, (II) diluting samples, and (III) adjusting the GC injector split ratio, were compared for the analysis of volatiles by using HS-SPME-AEDA. Results showed that adjusting the GC injector split ratio (III) was the most desirable approach, based on the linearity relationships between Ln (normalised peak area) and Ln (normalised flavour dilution factors). Thereafter this dilution method was applied in the analysis of aroma-active compounds in Japanese soy sauce and 36 key odorants were found in this study. The most intense aroma-active components in Japanese soy sauce were: ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl 4-methylpentanoate, 3-(methylthio)propanal, 1-octen-3-ol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol, 2-phenylethanol, and 4-hydroxy-5-ethyl-2-methyl-3(2H)-furanone. Copyright © 2015. Published by Elsevier Ltd.

  16. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    Science.gov (United States)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  17. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    Directory of Open Access Journals (Sweden)

    M. Fatih Adak

    2016-02-01

    Full Text Available Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC, which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  18. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    Science.gov (United States)

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  19. Differential Contribution of Jasmine Floral Volatiles to the Aroma of Scented Green Tea

    Directory of Open Access Journals (Sweden)

    Jian-Xia Shen

    2017-01-01

    Full Text Available Tea volatiles’ generation and retention over manufacturing processes are crucial for tea quality. In this study, floral volatile adsorption and retention in green tea scented with Jasminum sambac flowers were examined over the scenting process. Out of 34 enhanced volatiles in the scented tea, β-ionone, β-linalool, indole, and methyl anthranilate were the most potent odorants with 5.1–45.2-fold higher odor activity values than the corresponding controls in the nonscented tea. Scenting efficiencies for the floral volatiles retained in the scented tea (the percentage of volatile abundance over its corresponding amount in jasmine flowers ranged from 0.22% for α-farnesene to 75.5% for β-myrcene. Moreover, due to additional rounds of heat treatment for scented green tea manufacturing, some volatiles such as carotenoid-derived geraniol and β-ionone and lipid-derived (Z-jasmone were heat-enhanced and others such as nonanal were heat-desorbed in the scented green tea. Our study revealed that dynamic volatile absorption and desorption collectively determined tea volatile retention and tea aroma. Our findings may have a great potential for practical improvement of tea aroma.

  20. Optimization of Malaxation Process using Major Aroma Compounds in Virgin Olive Oil

    OpenAIRE

    Cevik,Serife; Ozkan,Gulcan; Kıralan,Mustafa

    2016-01-01

    ABSTRACT Optimization of major aroma compounds in olive oils produced from fruits at three maturity stages wasstudied. A central composite design was used for the optimization of malaxation conditions of temperature and times, each at five levels with 13 runs including five central points. The responses of interest were trans-2-hexenal and hexanal, which were investigated and their contents were optimized. A full quadratic second order regression model including the linear, quadratic, and two...

  1. Data on changes in red wine phenolic compounds and headspace aroma compounds after treatment of red wines with chitosans with different structures

    Directory of Open Access Journals (Sweden)

    Luís Filipe-Ribeiro

    2018-04-01

    Full Text Available Data in this article presents the changes on phenolic compounds and headspace aroma abundance of a red wine spiked with 4-ethylphenol and 4-ethylguaiacol and treated with a commercial crustacean chitin (CHTN, two commercial crustacean chitosans (CHTB, CHTD, one fungal chitosan (CHTF, one additional chitin (CHTNA and one additional chitosan (CHTC produced by alkaline deacetylation of CHTN and CHTB, respectively. Chitin and chitosans presented different structural features, namely deacetylation degree (DD, average molecular weight (MW, sugar and mineral composition (“Reducing the negative sensory impact of volatile phenols in red wine with different chitosan: effect of structure on efficiency” (Filipe-Ribeiro et al., 2018 [1]. Statistical data is also shown, which correlates the changes in headspace aroma abundance of red wines with the chitosans structural features at 10 g/h L application dose. Keywords: Red wine, 4-Ethylphenol, 4-Ethylguaiacol, Chitosan, Chitin, Chromatic characteristics, Phenolic compounds, Headspace aroma abundance

  2. Effects of skin maceration time on the phenolic and sensory characteristics of Bombino Nero rosé wines

    Directory of Open Access Journals (Sweden)

    Serafino Suriano

    2015-03-01

    Full Text Available Rosé wines consumption has reached the highest level in present years and it is still an ongoing trend in several countries. Therefore, the production of rosé wines with improved sensory qualities and colour stability would be greatly appreciated. Today, although rosé wines are no longer considered to be less valuable than red and white ones, anyway, because of the past rosé’s reputation the scientific state of art lacks of specific studies concerning the effects of pre-fermentation maceration times on rosé wines. In this study, different pre fermentation maceration times (3, 6 and 8 h during production of original location certified and guaranteed rosé wine from Bombino Nero variety (Vitis vinifera L. were investigated. In all wines standard and specific wine chemical parameters, such as polyphenols, anthocyanins, flavonoids, hydroxycinnamoyl tartaric acids, volatile compounds and colour parameters were determined. A sensory descriptive analysis together with chemical analyses performed revealed that the maceration time significantly affected the aroma, the flavour and the colour of wines. The results showed that, although a longer maceration time is positively correlated to the colour stability of wine over time, however, a lengthener of the maceration is not favourable to enrich the wine with pleasant fruity and flowery aroma compounds, as both the gas chromatography and the sensory analyses showed. It was decided to perform the experimental winemaking processes in an actual winery instead of a laboratory in order to develop a practical winemaking management procedure directly usable for wine producers. The results obtained contribute to improve the knowledge about the importance of selecting the winemaking technique in order to elaborate high quality rosé wines.

  3. Sexual Differences in Chemical Composition and Aroma-active Compounds of Essential Oil from Flower Buds of Eurya japonica.

    Science.gov (United States)

    Miyazawa, Mitsuo; Usami, Atsushi; Tanaka, Takio; Tsuji, Kaoru; Takehara, Manami; Hori, Yuki

    2016-01-01

    This study was conducted to determine the composition of essential oil from buds of male and female Eurya japonica flowers and to determine the aroma-active compounds of this plant by gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and odor activity values (OAV). The oils contained eighty-five compounds. We identified for the first time forty-four compounds in E. japonica. Through sensory evaluation, nineteen aroma-active compounds were identified by gas chromatography-olfactometry (GC-O). Because the chemical composition can affect the interaction between plants and herbivorous insects, our results suggest that essential oils from male and female flower buds of E. japonica differently affect herbivores. Sexual differences in essential oils deserve further investigations in this plant-insect system.

  4. Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein.

    Science.gov (United States)

    Wu, Yi-Fang G; Cadwallader, Keith R

    2002-05-08

    Defatted soybean meal was converted into enzyme-hydrolyzed vegetable protein (E-HVP) using the proteolytic enzyme Flavorzyme. Total free amino acids increased by 40-fold after enzyme hydrolysis, with leucine being the most abundant, followed by phenylalanine, lysine, glutamine/glutamic acid, and alanine. Volatile components from a meatlike process flavoring made from E-HVP were isolated by direct solvent extraction (DSE)-high vacuum transfer (HVT), dynamic headspace sampling and static headspace sampling and analyzed by gas chromatography (GC)-mass spectrometry and GC-olfactometry. Aroma extract dilution analysis was used to establish a flavor dilution chromatogram of the DSE-HVT extract. Results of these complementary techniques indicated the importance of odorants of high (hydrogen sulfide and methanethiol), intermediate (2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-furanmethanethiol, and 3-(methylthiol)propanal) and low volatility (maltol and Furaneol) in the overall aroma of the meatlike process flavoring.

  5. A novel method for beef potentiator preparation and identification of its characteristic aroma compounds.

    Science.gov (United States)

    Gao, Xianli; Yan, Shuang; Yang, Bao; Lu, Jian; Jin, Zhao

    2014-06-01

    Beef potentiator (BP) is the most popular savoury flavour and regarded as the soul of the modern food industry. In this work, BP was prepared by a novel method with Aspergillus oryzae and Aspergillus niger (BPSF). Three other BPs prepared using commercial enzymes (Protamex, Flavourzyme and papain; BPCEs) were used as controls to investigate its aroma characteristics and related compounds. Sensory evaluation showed that BPSF possessed more favourable and distinctive sauce-like, meat-like, roast and alcoholic attributes when compared with BPCEs. Significantly higher contents (peak areas) and proportions of pyrazines, pyrroles, sulfurous compounds and alcohols in BPSF were responsible for its sensory characteristics, and most of these aroma compounds were derived from microbial metabolism during beef koji preparation and the Maillard reaction. BP prepared by synergistic fermentation with A. oryzae and A. niger is a potential alternative for BP preparation. © 2013 Society of Chemical Industry.

  6. Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora.

    Science.gov (United States)

    Dellacassa, Eduardo; Trenchs, Oriol; Fariña, Laura; Debernardis, Florencia; Perez, Gabriel; Boido, Eduardo; Carrau, Francisco

    2017-01-16

    A pineapple vinification process was conducted through inoculated and spontaneous fermentation to develop a process suitable for a quality beverage during two successive vintages in Huambo, Angola. Wines obtained with the conventional Saccharomyces cerevisiae strain, were analysed by gas chromatography, and a total of 61 volatile constituents were detected in the volatile fraction and 18 as glycosidically bound aroma compounds. Concentration levels of carbonyl and sulphur compounds were in agreement with the limited information reported about pineapple fruits of other regions. We report, for the first time in pineapple wines, the presence of significant concentrations of lactones, ketones, terpenes, norisoprenoids and a variety of volatile phenols. Eight native yeast strains were isolated from spontaneous batches. Further single-strain fermentations allowed us to characterise their suitability for commercial fermentation. Three native strains (Hanseniaspora opuntiae, H. uvarum and Meyerozyma guilliermondii) were selected with sensory potential to ferment pineapple fruits with increased flavour diversity. Results obtained here contribute to a better understanding of quality fermentation alternatives of this tropical fruit in subtropical regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of the aroma profile of Madeira wine by sorptive extraction techniques.

    Science.gov (United States)

    Alves, R F; Nascimento, A M D; Nogueira, J M F

    2005-08-01

    The characterization of the aroma profile of 33 samples of Madeira wine from five monovarieties (Sercial, Verdelho, Boal, Malvasia and Tinta Negra Mole) having different type and categories is presented, using solid phase microextraction and stir bar sorptive extraction techniques (SPME and SBSE) followed by capillary gas chromatography and mass spectrometry detection (GC-MS). Headspace SPME/GC-MS provided effectiveness to identify the major constituents of the aroma profile of Madeira wine, where no remarkable differences occur among the samples studied. The volatile compounds are mainly constituted by ethyl octanoate (11.3-256.9μgL -1 ), ethyl decanoate (21.5-210.5μgL -1 ), ethyl decenoate (0.1-112.8μgL -1 ), diethyl succinate (0.9-65.6μgL -1 ), ethyl dodecanoate (1.2-6.5μgL -1 ), ethyl nonanoate (0.6-5.2μgL -1 ), ethyl hexanoate (0.2-3.7μgL -1 ) and isoamyl octanoate (0-2.2μgL -1 ). C 13 norisoprenoids such as vitispirane (0.9-7.0μgL -1 ) and 1,1,6-trimethyl 1,2-dihydro naphthalene (0.7-12.5μgL -1 ), as well as phenyl ethanol (0-8.1μgL -1 ), were also found in Madeira wine samples. The powerful capabilities of SBSE followed thermal desorption and GC-MS analysis allowed higher ability for profiling traces and ultra traces of compounds in Madeira wine samples, including esters (80.7-89.7%), carboxylic acids (1.6-4.2%), alcohols (3.5-8.2%), aldehydes (0.9-3.7%), pyrans (0.2-1.7%), lactones (sensorial threshold limits. Excellent correlation between Madeira wine ageing and the abundance of cis-oak lactone was attained showing to be an important chemical descriptor to characterize reserves and Vintages as well as a contributor to wine flavour. The differentiation between reserves, dry/medium dry and sweet/medium sweet young wines could be well established by means of chemometric analysis, using particular aroma compounds such as diethyl succinate, cis-oak lactone and ethyl octanoate as discriminating variables.

  8. [Effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals].

    Science.gov (United States)

    Roh, So Young; Kim, Kye Ha

    2013-12-01

    The purpose of this study was to examine the effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals. The participants were elders over 65 years old admitted to long-term care. They were assigned to the experimental group (26) or control group (28). Data were collected from May to August, 2012. Visual Analogue Scale and Verran and Snyder-Halpern Sleep scale were used to identify levels of pruritus and sleep. A skin-pH meter and moisture checker were used to measure skin pH and skin hydration. Aroma massage was performed three times a week for 4 weeks for elders in the experimental group. The data were analyzed using the SPSS Win 17.0 program. There were significant differences in pruritus, skin pH and skin hydration between the two groups. However there was no significant difference in sleep. The results indicate that aroma massage is effective in reducing pruritus, skin pH and increasing skin hydration in elders. Therefore, this intervention can be utilized in clinical practice as an effective nursing intervention to reduce pruritus in elders in long-term care hospitals.

  9. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  10. Effects of cooking method and final core-temperature on cooking loss, lipid oxidation, nucleotide-related compounds and aroma volatiles of Hanwoo brisket

    Directory of Open Access Journals (Sweden)

    Dicky Tri Utama

    2018-02-01

    Full Text Available Objective This study observed the effects of cooking method and final core temperature on cooking loss, lipid oxidation, aroma volatiles, nucleotide-related compounds and aroma volatiles of Hanwoo brisket (deep pectoralis. Methods Deep pectoralis muscles (8.65% of crude fat were obtained from three Hanwoo steer carcasses with 1+ quality grade. Samples were either oven-roasted at 180°C (dry heat or cooked in boiling water (moist heat to final core temperature of 70°C (medium or 77°C (well-done. Results Boiling method reduced more fat but retained more moisture than did the oven roasting method (p<0.001, thus no significant differences were found on cooking loss. However, samples lost more weight as final core temperature increased (p<0.01. Further, total saturated fatty acid increased (p = 0.02 while total monounsaturated fatty acid decreased (p = 0.03 as final core temperature increased. Regardless the method used for cooking, malondialdehyde (p<0.01 and free iron contents (p<0.001 were observed higher in samples cooked to 77°C. Oven roasting retained more inosinic acid, inosine and hypoxanthine in samples than did the boiling method (p<0.001, of which the concentration decreased as final core temperature increased except for hypoxanthine. Samples cooked to 77°C using oven roasting method released more intense aroma than did the others and the aroma pattern was discriminated based on the intensity. Most of aldehydes and pyrazines were more abundant in oven-roasted samples than in boiled samples. Among identified volatiles, hexanal had the highest area unit in both boiled and oven-roasted samples, of which the abundance increased as the final core temperature increased. Conclusion The boiling method extracted inosinic acid and rendered fat from beef brisket, whereas oven roasting intensified aroma derived from aldehydes and pyrazines and prevented the extreme loss of inosinic acid.

  11. Optimization of Malaxation Process using Major Aroma Compounds in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Serife Cevik

    Full Text Available ABSTRACT Optimization of major aroma compounds in olive oils produced from fruits at three maturity stages wasstudied. A central composite design was used for the optimization of malaxation conditions of temperature and times, each at five levels with 13 runs including five central points. The responses of interest were trans-2-hexenal and hexanal, which were investigated and their contents were optimized. A full quadratic second order regression model including the linear, quadratic, and two factor interaction effects was proposed to explain the variation in the contents of target compounds depending on the malaxation conditions. Adequacies of models were evaluated by checking regression coefficients for each model. Models were found to work with high success for trans-2-hexenal prediction for oils from fruits at both purple and black stages, whereas the model for hexanalwas only in black stage oil. Their regression coefficients were higher than 0.86. Influences of time and temperature for the malaxation process were found to be significant for the transition of major aroma compounds from the fruit matrix to olive oil. The optimum conditions of temperature and time pairs to maximize trans-2-hexenal and hexanal was found to be 23°C/31 minutes for black olive and to maximize only trans-2-hexenal was also 29°C/41 minutes for purple olive.

  12. Eating behaviour and retro-nasal aroma release in normal-weight and overweight adults: A pilot study

    NARCIS (Netherlands)

    Zijlstra, N.; Bukman, A.J.; Mars, M.; Stafleu, A.; Ruijschop, R.M.A.J.; Graaf, C. de

    2011-01-01

    Eating rate and bite size are important factors affecting food intake, and we hypothesise the underlying role of oral sensory exposure in this. However, the latter currently lacks objective measuring parameters, but an interesting measure could be the extent of in vivo retro-nasal aroma release.

  13. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing

    2018-06-01

    Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Characterization and differentiation of monovarietal grape marc distillates on the basis of varietal aroma compound composition.

    Science.gov (United States)

    Lukić, Igor; Milicević, Borislav; Banović, Mara; Tomas, Srećko; Radeka, Sanja; Persurić, Dordano

    2010-06-23

    To investigate the varietal aroma compound composition of monovarietal grape marc distillates made from six different varieties (Vitis vinifera L.) in the region of Istria (Croatia), 30 samples were subjected to GC/MS and GC/FID analysis. A total of 73 compounds were identified: 45 monoterpenes, 20 sesquiterpenes, 3 diterpenes, and 5 C(13)-norisoprenoids. The largest number and the highest concentration of monoterpenes were found in Muscat Blanc, followed by Rose Muscat of Porec (Muskat ruza porecki) distillates, which were both characterized as highly aromatic. Lower, but still significant monoterpenol content was determined in distillates made from Istrian Malvasia (Malvazija istarska) grape marc. Chardonnay, Cabernet Sauvignon, and Teran distillates exhibited poorer monoterpene profiles, while Teran distillates contained elevated sesquiterpene concentrations. It was concluded that investigated monovarietal grape marc distillates significantly differ in varietal aroma compound composition. Stepwise linear discriminant analysis provided efficient discrimination models, and extracted various monoterpenes, sesquiterpenes and C(13)-norisoprenoids as important differentiators of distillates according to varietal origin.

  15. Phenolic and Aroma Composition of White Wines Produced by Prolonged Maceration and Maturation in Wooden Barrels

    Directory of Open Access Journals (Sweden)

    Nikolina Jedrejčić

    2015-01-01

    Full Text Available To investigate the phenolic and aroma composition of Malvazija istarska (Vitis vinifera L. white wines produced by an unconventional technology comprising prolonged maceration followed by maturation in wooden barrels, representative samples were subjected to analysis by UV/Vis spectrometry, high-performance liquid chromatography, and gas chromatography-mass spectrometry. When compared to standard wines, the investigated samples contained higher levels of dry extract, volatile acidity, lactic acid, phenols, colour intensity, antioxidant activity, majority of monoterpenes, C13-norisoprenoids, methanol, higher alcohols, ethyl acetate, branched-chain esters and esters of hydroxy and dicarboxylic acids, ethylphenols, furans, and acetals, as well as lower levels of malic acid, β-damascenone, straight-chain fatty acids, ethyl and acetate esters. It was estimated that maceration had a stronger influence on phenols, and maturation on volatile aromas. Despite different vintages and technological details, the investigated wines showed a relative homogeneity in the composition, representing a clear and distinctive type.

  16. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle.

    Science.gov (United States)

    Martínez-García, Rafael; García-Martínez, Teresa; Puig-Pujol, Anna; Mauricio, Juan Carlos; Moreno, Juan

    2017-12-15

    High quality sparkling wine made by the traditional method requires a second alcoholic fermentation of a base wine in sealed bottles, followed by an aging time in contact with yeast lees. The CO 2 overpressure released during this second fermentation has an important effect on the yeast metabolism and therefore on the wine aroma composition. This study focuses on the changes in chemical composition and 43 aroma compounds released by yeast during this fermentation carried out under two pressure conditions. The data were subjected to statistical analysis allowing differentiating between the base wine and the wine samples taken in the middle and at the end of fermentation. The differentiation among wines obtained to the end of fermentation with or without CO 2 pressure is only achieved by a principal component analysis of 15 selected minor compounds (mainly ethyl dodecanoate, ethyl tetradecanoate, hexyl acetate, ethyl butanoate and ethyl isobutanoate). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study on Healing Environment Using Green, Blue and Red LED and Aroma

    Science.gov (United States)

    Miyaho, Noriharu; Konno, Noriko; Shimada, Takamasa

    In this paper we evaluated the effects of 1/f fluctuation of Green LED light emitted from the specific object by using psychological and physiological experimental tests of spectral electroencephalogram (EEG) topography. In addition, we also verified that the combination of appropriate aroma, blue LED light irradiation and music such as “Mozart: Serenade in Eine Kleine Nacht Musik” has improved mental healing conditions. We confirmed the possibility that the effect of “Healing” would be improved by the above mentioned environments.

  18. Effects of sugar concentration processes in grapes and wine aging on aroma compounds of sweet wines—a review.

    Science.gov (United States)

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Rial-Otero, Raquel; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2015-01-01

    Dessert sweet wines from Europe and North America are described in this review from two points of view: both their aroma profile and also their sensorial description. There are growing literature data about the chemical composition and sensory properties of these wines. Wines were grouped according to the production method (concentration of sugars in grapes) and to the aging process of wine (oxidative, biological, or a combination of both and aging in the bottle). It was found that wines natively sweets and wines fortified with liquors differ in their volatile compounds. Sensory properties of these wines include those of dried fruit (raisins), red berries, honey, chocolate and vanilla, which is contributing to their growing sales. However, there is still a need for scientific research on the understanding of the mechanisms for wine flavor enhancement.

  19. Use of Microencapsulated Ingredients in Bakery Products: Technological and Nutritional Aspects - Chapter 15

    NARCIS (Netherlands)

    Vitaglione, P.; Troise, A.D.; Chiara De Prisco, A.; Mauriello, G.L.; Gokmen, V.; Fogliano, V.

    2015-01-01

    he quality of bakery products is driven by technological issues influencing sensory, safety, and nutritional features such as food aroma pattern, texture, color, chemical composition, toxicant formation, and shelf life. The use of encapsulated ingredients in bakery product formulation is a smart

  20. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae).

    Science.gov (United States)

    Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan

    2018-01-01

    The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.

  1. Modelamiento y simulación de la recuperación de aroma de frutas por evaporación flash en la industria alimentaria

    OpenAIRE

    Díaz Cama, Ali Epifanio

    2008-01-01

    El presente trabajado de investigación intitulado '"MODELAMIENTO Y SIMULACIÓN DE LA RECUPERACIÓN DE AROMA DE FRUTAS POR EVAPORACIÓN FLASH EN LA INDUSTRIA ALIMENTARlA', esta orientado a Ia simulación de procesos en la industria Alimentaria, cuyo objetivo fundamental fue desarrollar un programa para simular el proceso de recuperación de aromas por Evaporación flash, el cuál permita a los investigadores y empresarios conoeer las. condiciones optímas de operación de esta tecnología. El software s...

  2. Aroma analysis and quality control of food using highly sensitive analytical methods

    International Nuclear Information System (INIS)

    Mayr, D.

    2003-02-01

    This thesis deals with the development of quality control methods for food based on headspace measurements by Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) and with aroma analysis of food using PTR-MS and Gas Chromatography-Olfactometry (GC-O). An objective method was developed for the determination of a herb extract's quality; this quality was checked by a sensory analysis until now. The concentrations of the volatile organic compounds (VOCs) in the headspace of 81 different batches were measured by PTR-MS. Based on the sensory judgment of the customer, characteristic differences in the emissions of 'good' and 'bad' quality samples were identified and a method for the quality control of this herb extract was developed. This novel method enables the producing company to check and ensure that they are only selling high-quality products and therefore avoid complaints of the customer. Furthermore this method can be used for controlling, optimizing and automating the production process. VOCs emitted by meat were investigated using PTR-MS to develop a rapid, non-destructive and quantitative technique for determination of the microbial contamination of meat. Meat samples (beef, pork and poultry) that were wrapped into different kinds of packages (air and vacuum) were stored in at 4 o C for up to 13 days. The emitted VOCs were measured as a function of storage time and identified partly. The concentration of many of the measured VOCs, e.g. sulfur compounds like methanethiol, dimethylsulfide and dimethyldisulfide, largely increased over the storage time. There were big differences in the emissions of normal air- and vacuum-packed meat. VOCs typically emitted by air-packaged meat were methanethiol, dimethylsulfide and dimethyldisulfide, while ethanol and methanol were found in vacuum-packaged meat. A comparison of the PTR-MS results with those obtained by a bacteriological examination performed at the same time showed strong correlations (up to 99 %) between the

  3. Electrodialytic removal of nitrate from pineapple juice: effect on selected physicochemical properties, amino acids, and aroma components of the juice.

    Science.gov (United States)

    Ackarabanpojoue, Yuwadee; Chindapan, Nathamol; Yoovidhya, Tipaporn; Devahastin, Sakamon

    2015-05-01

    This study aimed at investigating the effect of nitrate removal from pineapple juice by electrodialysis (ED) on selected properties of the ED-treated juice. Single-strength pineapple juice with reduced pulp content was treated by ED to reduce the nitrate concentration to 15, 10, or 5 ppm. After ED, the removed pulp was added to the ED-treated juice and its properties, including electrical conductivity, acidity, pH, total soluble solids (TSS), color, amino acids, and selected aroma compounds, were determined and compared with those of the untreated juice. ED could reduce the nitrate content of 1 L of pineapple juice from an initial value of 50 ppm to less than 5 ppm within 30 min. A significant decrease in the electrical conductivity, acidity, pH, TSS, and yellowness, but a significant increase in the lightness, of the juice was observed upon ED. Concentrations of almost all amino acids of the ED-treated juice significantly decreased. The concentrations of 8 major compound contributors to the pineapple aroma also significantly decreased. Adding the pulp back to the ED-treated juice increased the amino acids concentrations; however, it led to a significant decrease in the concentrations of the aroma compounds. © 2015 Institute of Food Technologists®

  4. Identification of Aroma-active Compounds in Essential Oil from Uncaria Hook by Gas Chromatography- Mass Spectrometry and Gas Chromatography-Olfactometry.

    Science.gov (United States)

    Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields.

  5. Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.).

    Science.gov (United States)

    Ong; Acree; Lavin

    1998-02-16

    The volatile compounds from the red-skinned cultivar of rambutan, Jitlee (Nephelium lappaceumL.), a tropical fruit native to Southeast Asia, were extracted using both Freon 113 and ethyl acetate solvents. Isolation and characterization of odor-active compounds present in the fruit were mediated by gas chromatography/olfactory (GC/O), chromatography, and spectrometry. Authentic standards were used to determine mass spectral, retention index, and odor match. Of over 100 volatiles detected by GC/MS, twice as many polar volatiles were detected in the ethyl acetate extract as in the nonpolar Freon extract. GC/O analysis also detected more odor-active compounds in the polar extracts. Over 60 compounds in the extracts had some odor activity. The 20 most potent odorants included beta-damascenone, (E)-4,5-epoxy-(E)-2-decenal, vanillin, (E)-2-nonenal, phenylacetic acid, cinnamic acid, unknown 1 (sweaty), ethyl 2-methylbutyrate, and delta-decalactone. On the basis of calculated odor activity values, beta-damascenone, ethyl 2-methylbutyrate, 2,6-nonadienal, (E)-2-nonenal, and nonanal were determined to be the main contributors to the fruit aroma. Taken together, these results indicate that the exotic aroma character of rambutan is the interaction of fruity-sweet and fatty-green odors, with the possible contribution of "civet-like"-sweaty, spicy, and woody notes.

  6. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  7. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine

    Directory of Open Access Journals (Sweden)

    Shao-Yang Wang

    2016-12-01

    Full Text Available A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  8. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    International Nuclear Information System (INIS)

    Cristallo, S.; Domínguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-01-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10 –3 ≤ Z ≤ 2 × 10 –2 , is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  9. Growth regulators and essential oil production

    OpenAIRE

    Prins, Cláudia L; Vieira, Ivo J. C; Freitas, Silvério P

    2010-01-01

    The aroma and fragrance industry is a billion-dollar world market which grows annually. Essential oils comprise the majority of compounds used by these industries. These sets of metabolites are formed mainly by monoterpenes, which are products of the plants' secondary metabolism. Biosynthesized from mevalonate and methylerythitol phosphate, the essential oil production depends not only on genetic factors and the developmental stage of plants, but also on environmental factors which could resu...

  10. A novel extracellular β-glucosidase from Trichosporon asahii: yield prediction, evaluation and application for aroma enhancement of Cabernet Sauvignon.

    Science.gov (United States)

    Wang, Yuxia; Xu, Yan; Li, Jiming

    2012-08-01

    The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®

  11. KAJIAN CIDER SEBAGAI ALTERNATIF PENGANEKARAGAMAN PRODUK KOPI Study of Cider as Alternative Product Diversivication from Coffee

    Directory of Open Access Journals (Sweden)

    Suharyono Apno Sugito

    2012-05-01

    Full Text Available Coffee is an important export commodity from Indonesia. There are not many processed product from coffee, and sincecoffee is a delightful refreshing beverage, it is interesting to make product diversivication from coffee. An alternative processing could be a cider. Coffee used in this research were decaffeinated, Robusta and Arabica coffee. The amount of added sugar were 15 %, 20 %, and 25 %. Natural cultures, combination of Sacharomyces cerevisiae and Acetobacter xylinum, combination of Sacharomyces ludwigii and Acetobacter xylinum, combination of  S. cerevisiae, S. ludwigii, and A. xylinum were used as starters. The parameters observed included: reducing sugar content, alcohol, total tertitrasi acid, pH and Organoleptic Test (color, aroma, taste, clarity, and general acceptance. Coffee cider with the highest overall acceptance score was made from decaffeinated coffee, with 20 % sugar addition and combination of S. ludwigii and A. xylinum as starter.The result of correlation analysis showed a negative significant correlation between reducing sugar content and aroma of coffee cider. Positive significant correlation were found between total titrable acidity and aroma, taste and overall acceptance of coffee cider. ABSTRAK Kopi merupakan komoditas ekspor penting   Indonesia. Tidak banyak produk olahan dari kopi, yang lebih dikenalsebagai minuman menyegarkan dan menyenangkan, sehingga menarik untuk membuat diversifikasi produk kopi. Salah satu alternatif adalah pengolahan cider. Kopi yang digunakan dalam penelitian ini adalah kopi tanpa kafein, Robusta dan Arabika. Jumlah gula yang ditambahkan adalah 15 %, 20 %, dan 25 %. Kultur alami, kombinasi Sacharomyces cerevisea dan Acetobacter xylinum, kombinasi Sacharomyces Ludwigii dan Acetobacter xylinum, kombinasi S. cerevisiae, S.Ludwigii , dan A.xylinum digunakan sebagai starter. Parameter yang diamati meliputi: kadar gula pereduksi, alkohol, total asam tertitrasi, pH dan Uji Organoleptik (warna

  12. Microbiological Spoilage of Cereal Products

    Science.gov (United States)

    Cook, Frederick K.; Johnson, Billie L.

    A wide range of cereal products, including bakery items, refrigerated dough, fresh pasta products, dried cereal products, snack foods, and bakery mixes, are manufactured for food consumption. These products are subject to physical, chemical, and microbiological spoilage that affects the taste, aroma, leavening, appearance, and overall quality of the end consumer product. Microorganisms are ubiquitous in nature and have the potential for causing food spoilage and foodborne disease. However, compared to other categories of food products, bakery products rarely cause food poisoning. The heat that is applied during baking or frying usually eliminates pathogenic and spoilage microorganisms, and low moisture contributes to product stability. Nevertheless, microbiological spoilage of these products occurs, resulting in substantial economic losses.

  13. Technological approaches to the vinification of Dornfelder grape variety cultivated in Romania

    Directory of Open Access Journals (Sweden)

    Antoce Arina Oana

    2015-01-01

    Full Text Available In Romania, Dornfelder is a rare grape variety which started to become popular among some wine producers due to the intense colour of its wines. However, it is mostly used in blends and therefore varietal wines of Dornfelder are not found too often. In this paper we present some technological approaches suitable for the production of varietal wines of Dornfelder, some of them novel for the Romanian wine industry. The experimental samples include a classical red wine made by the usual technol- ogy using freshly harvested grapes (DW = Dornfelder wine and two variants made with dried grapes (DR and DWDR. The DR variant (Dornfelder raisin wine is produced by a straw-wine type technology, by fermenting a must obtained from grapes dried for 7 weeks. The DWDR is a variant obtained by fermenting a mixture of crushed dried grapes and new Dornfelder wine, the ratio of crushed raisins to wine being 1:1 in weight. The wines were analysed both physico-chemically and sensorially. After one year of aging in bottles, the variant DWDR of wine, produced by fermenting dried berries in already finished wine, proved to be the most balanced in taste, with an intense and complex aroma of berries and red fruit, also displaying good aging potential and stability. The variant DR appeared dense and intense, but with a less complex fruity aroma, with a dominant note of blueberries and black currants. Both straw wines are preferable to the classic varietal wine, which is vinous, but lacks structure and displays a dissociated acidity and a simple aromatic profile, with dominant sour cherry, mineral and vegetal notes.

  14. Halfway to Scarborough Fair? The Cognitive and Mood Effects of Rosemary and Sage Aromas

    OpenAIRE

    Moss, Mark

    2014-01-01

    The application of aromas as therapeutic treatments and mood stabilisers/enhancers is widely recognised and practised. The possibility of their use as cognitive enhancers is less well known or researched. Received wisdom assumed that our cognitive functioning was optimal for the environment in which we have evolved. However, research has demonstrated that natural nutritional interventions can augment cognition. My research has investigated the possibility that natural aromatic compounds absor...

  15. Characterization of Fish Sauce Aroma Impact Compounds Using GC-MS, SPME-Osme-GCO, and Stevens' Power Law Exponents

    Science.gov (United States)

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) couple...

  16. Desalination of fish sauce by electrodialysis: effect on selected aroma compounds and amino acid compositions.

    Science.gov (United States)

    Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S

    2011-09-01

    Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®

  17. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago

    2018-02-01

    Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Retención de aroma durante el secado de extracto de café en un sistema cerrado

    Directory of Open Access Journals (Sweden)

    J.F. Vílchez

    2006-01-01

    Full Text Available Durante el secado de alimentos líquidos, componentes volátiles presentes en baja concentración que contribuyen al aroma y sabor del producto final son removidos junto con el agua. En consecuencia la calidad del producto final es considerablemente afectada por la cantidad de substancias volátiles que son retenidas durante el proceso de secado. En el extracto de café, por ejemplo, existen cientos de tales compuestos, la mayoría de ellos altamente volátiles por lo que se pierden cuando el extracto es transformado en polvo seco. Independientemente del método utilizado, parece ser imposible evitar completamente la perdida de compuestos volátiles durante el secado. Un método potencial para mejorar la retención del aroma durante el secado es utilizar un sistema que trabaje a ciclo cerrado. Con el propósito de estudiar este proceso una planta piloto que consiste de un secador por aspersión, un secador de lecho fluidizado vibratorio, un sistema de recuperación de vapores e intercambiadores de calor para recalentar el aire reciclado ha sido diseñada y esta en la fase final de instalación en la Facultad de Ingeniería Química de la Universidad Nacional de Ingeniería, en Managua, para hacer un estudio del método potencial de recuperación de aroma del extracto de café. Este estudio tendrá como resultado no solo un café soluble de mejor calidad sino que además un método capaz de mejorar el procesamiento de muchos otros alimentos líquidos.

  19. Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers' products.

    Science.gov (United States)

    Dueñas-Sánchez, Rafael; Pérez, Ana G; Codón, Antonio C; Benítez, Tahía; Rincón, Ana María

    2014-06-16

    2-Phenylethanol (PEA), an important alcohol derived from phenylalanine, is involved in aroma and flavour of bakers' products. Four spontaneous mutants of an industrial bakers' yeast, V1 strain, were isolated for their resistance to p-fluoro-DL-phenylalanine (PFP), a toxic analogue of L-phenylalanine. Mutants overproduced this amino acid and showed variations in their internal pool for several other amino acids. Moreover, a rise in PEA production after growth in industrial medium (MAB) was observed in three of the mutants, although their growth and fermentative capacities were slightly impaired. However, concentration of PEA remained higher during dough fermentation and also after baking, thus improving taste and aroma in bread. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  1. Influence of aging conditions on the quality of red Sangiovese wine.

    Science.gov (United States)

    Castellari, M; Piermattei, B; Arfelli, G; Amati, A

    2001-08-01

    A red Sangiovese wine was stored in barrels of different woods (oak and chestnut) and types (225-L "barriques" and 1000-L barrels) at 12 and 22 degrees C for 320 days to evaluate the effects of different aging conditions on wine quality. Chestnut barrels led to wines richer in phenolics, and which were more tannic, colored, and fruity. Oak barrels gave wines with more monomeric phenolics, but less astringent, with higher vanilla smell, and more harmonious. The type of barrel could be used as a parameter to regulate the extraction of wood components and the polymerization of monomeric phenolics. Storage at 22 degrees C favored the formation of polymerized phenolics and the increase of color density and color hue. The temperature produced less pronounced effects on aroma and taste, even if wines stored at 12 degrees C showed more harmony.

  2. Development of Lubeg (Syzygiumlineatum (Roxb. Merr.& Perry Processed Products

    Directory of Open Access Journals (Sweden)

    Ronald O. Ocampo

    2015-11-01

    Full Text Available Lubeg(Syzygiumlineatum(Roxb. Merr.& Perry is a lesser known fruit in the province of Apayao, Philippines. It is a highly perishable fruit and belongs to family Myrtaceae. The primary object of this study is to develop processed products from lubeg fruits. The experimental method of research was conducted. From the result of the study, the following are concluded: Lubeg wine is preferred over other locally produced wine namely bignay and duhat. However, no significant differences were observed in their taste, appearance and aroma. On the other hand, strawberry jam is preferred over lubegandbignay jam. No significant differences were observed in their taste, appearance and aroma. Lubeg fruit preserves, Jam and jelly can be best used as fillers to baked products when mixed with pineapple jam; lubeg juice can be improved when mixed with lemongrass in 1:2, 1:1 and 2:1 ratio. In the light of the findings and conclusion, the following are forwarded as recommendations: mass production of lubeg products should be done; promotion of the developed technology through trainings and attendance to trade fairs should be done; and similar research should be conducted using other flavors fruits or herbs to improve the quality of lubeg products.

  3. The ap?ritif effect: alcohol's effects on the brain's response to food aromas in women

    OpenAIRE

    Eiler, William J.A.; D?emid?i?, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L.H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.

    2015-01-01

    Objective Consuming alcohol prior to a meal (an ap?ritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. Methods BOLD activation to foo...

  4. Aromas florales y su interacción con los insectos polinizadores Floral scents and their interaction with insect pollinators

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2011-12-01

    Full Text Available Las plantas emplean diversas señales visuales y olfativas con la finalidad de atraer a los polinizadores que en su mayoría son insectos. Algunas plantas han desarrollado mecanismos, basándose en mensajes olfativos que los hacen únicos para sus polinizadores específicos. Estos mecanismos, así como las variaciones intra- e interespecíficas en el perfil de los aromas florales han evolucionado para determinadas especies. Los aromas florales son un conjunto de compuestos volátiles orgánicos y para su estudio hay varios métodos que requieren de técnicas que cada vez son más eficientes. El uso de estos aromas podría ser una opción en determinados sistemas de polinización, utilizándolos como atrayente de polinizadores o de depredadores y/o herbívoro para incrementar la producción y disminuir los daños por plagas. En este trabajo se revisan las distintas interacciones de los insectos y los aromas florales, los sistemas específicos planta-polinizador, los métodos de análisis, así como algunos patrones o tendencias de estas interacciones y su aplicación e importancia.Plants use visual and olfactory cues to attract pollinators and to allow them to detect the presence of flowers, which most of them are insects. Some plants have evolved with their pollinators, based on the olfactory messages, which make them unique for their specific pollinators. These mechanisms have evolved in certain plants in relation to their pollinators, and there are also inter and intra-specific variation in fragrance cues which show specific chemical profile for each plant species, so insects attracted are specific to them. Most of the floral scents are organic compounds identified with techniques and methodologies which become more specific and efficient along the time. The application of floral scent could be used as a tool in pollination and pest management. In these studies, insect interaction with floral scent is reviewed and specificity of plant

  5. Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers

    NARCIS (Netherlands)

    Ruth, van S.M.; Boscaini, E.; Mayr, D.; Pugh, J.; Posthumus, M.A.

    2003-01-01

    Three gas chromatography methods and two direct mass spectrometry techniques were compared for the analysis of the aroma of rehydrated diced red bell peppers. Gas chromatography methods included systems with olfactometry detection (GC-O), flame ionisation detection (GC-FID) and mass spectrometry

  6. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines.

    Science.gov (United States)

    Mayr, Christine M; Capone, Dimitra L; Pardon, Kevin H; Black, Cory A; Pomeroy, Damian; Francis, I Leigh

    2015-04-08

    A quantitation method for 18 aroma compounds reported to contribute to "oxidative" flavor in wines was developed. The method allows quantitation of the (E)-2-alkenals ((E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal), various Strecker aldehydes (methional, 2-phenylacetaldehyde, 3-methylbutanal, and 2-methylpropanal), aldehydes (furfural, 5-methylfurfural, hexanal, and benzaldehyde), furans (sotolon, furaneol, and homofuraneol), as well as alcohols (methionol, eugenol, and maltol) in the same analysis. The aldehydes were determined after derivatization directly in the wine with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; the formed oximes along with the underivatized aroma compounds were isolated by solid-phase extraction and analyzed by means of GC-MS/MS. The method was used to investigate the effect of different closures (synthetic closures, natural corks, and screw cap) on the formation of oxidation-related compounds in 14 year old white wine. Results showed a significant increase in the concentration of some of the monitored compounds in the wine, particularly methional, 2-phenylacetaldehyde, and 3-methylbutanal.

  7. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (beer aroma.

  8. Diseño de un dispositivo difusor de aromas para espacios comerciales cerrados

    OpenAIRE

    Mejía Franco, Santiago; Lema Suárez, Daniel

    2008-01-01

    El proyecto presenta el desarrollo de diseño de un producto flexible a mercados emergentes, con el fin de brindar a las empresas un medio innovador para entrar en la mente de los consumidores y quedar plasmado dentro de estas, de manera positiva y permanente -- Este proyecto está establecido por el desarrollo y el diseño de un difusor de aromas, para ambientar espacios comerciales cerrados, con el cual se pretende conquistar nichos de mercado con muy poca oferta, así como crear una herramient...

  9. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.

    Science.gov (United States)

    Pardo, Ester; Rico, Juan; Gil, José Vicente; Orejas, Margarita

    2015-09-16

    Monoterpenes are important contributors to grape and wine aroma. Moreover, certain monoterpenes have been shown to display health benefits with antimicrobial, anti-inflammatory, anticancer or hypotensive properties amongst others. The aim of this study was to construct self-aromatizing wine yeasts to overproduce de novo these plant metabolites in wines. Expression of the Ocimum basilicum (sweet basil) geraniol synthase (GES) gene in a Saccharomyces cerevisiae wine strain substantially changed the terpene profile of wine produced from a non-aromatic grape variety. Under microvinification conditions, and without compromising other fermentative traits, the recombinant yeast excreted geraniol de novo at an amount (~750 μg/L) well exceeding (>10-fold) its threshold for olfactory perception and also exceeding the quantities present in wines obtained from highly aromatic Muscat grapes. Interestingly, geraniol was further metabolized by yeast enzymes to additional monoterpenes and esters: citronellol, linalool, nerol, citronellyl acetate and geranyl acetate, resulting in a total monoterpene concentration (~1,558 μg/L) 230-fold greater than that of the control. We also found that monoterpene profiles of wines derived from mixed fermentations were found to be determined by the composition of the initial yeast inocula suggesting the feasibility of producing 'à la carte' wines having predetermined monoterpene contents. Geraniol synthase-engineered yeasts demonstrate potential in the development of monoterpene enhanced wines.

  10. SYNTHESIS OF AROMA COMPOUNDS BY Pleurotus ostreatus (Jacq.:Fr. Kumm. CULTURED ON VARIOUS SUBSTRATES E. N. Vlasenko, J. V. Stepnevskaya, O. V.

    Directory of Open Access Journals (Sweden)

    E. N. Vlasenko

    2017-08-01

    Full Text Available The aim of the study was to determine the intensity of synthesis of volatile aroma compounds by Pleurotus ostreatus (oyster mushroom on sunflower husks and barley straw using sensory profile analysis and UV spectroscopy. The main cultural and morphological characteristics of the mycelial growth and development of fruiting bodies are determined: the period of mycelial development on the substrate, the time of primordial formation, the number of mushroom bunches per unit volume of substrate, the morphology of carpophores. Characteristic attributes of the aroma of dried fruiting bodies (mushroom, woody, sweet, herbaceous, fish, meat, floral, earthy, acidic, putrescent are established and their aroma profiles are built. Sensory profile analysis of flavor of dried samples showed that the mushroom flavor of fungi cultivated on the sunflower husk is more pronounced than of those grown on barley straw. The light absorption maxima are recorded in the ranges 204–210 and 250–290 nm according to UV absorption spectra. Optimal conditions for extracting aromatics from dried fungi samples are the extraction time of 20–35 min at the boiling point of the solvent. Analysis of the UV spectra of fungal alcohol and hexane extracts showed that the intensity of the synthesis of volatile compounds is higher for strains cultivated on sunflower husks than for samples obtained on barley straw.

  11. Use of solid phase microextraction to identify volatile organic compounds in brazilian wines from different grape varieties

    Directory of Open Access Journals (Sweden)

    Natália Cristina Morais Fernandes

    Full Text Available Abstract The Brazilian wine industry has shown significant growth in recent years and the insertion of new concepts, such as geographical indications as signs of quality, has placed Brazil in tune with the tendencies of world wine production. The aim of this work was to apply the Solid Phase Microextraction technique in combination with Gas Chromatography-Mass Spectrometry to study Brazilian wines made from different grape varieties, in order to separate and identify their volatile organic compounds. These substances were identified by comparisons between the spectra obtained with those presented in the NIST library database, and by comparisons with linear retention indices and literature data. The amounts of the compounds were calculated based on the total peak areas of the chromatograms. Forty-seven volatile compounds were identified and grouped into alcohols, aldehydes, fatty acids, esters, hydrocarbons, ketones and terpenes. Most of them belonged to the ester function, conferring a fruity aroma on the wines. The alcohols may have originated from the yeast metabolism, contributing to the alcoholic and floral aromas. Ethyl lactate, 1-hexanol and diethyl maleate were identified in all the varieties, except Merlot. Decanal, methyl citronellate, (E-2-hexenyl-3-methylbutyrate were only found in Merlot, while 2,3-butanediol was only present in the Tannat wines. 2-Phenylethanol was present in all varieties and is recognized as giving pleasant rose and honey attributes to wines. This study showed that the volatile profile of red wines is mainly characterized by esters and higher alcohols. The statistical analysis of the comparison of averages showed a greater amount of averages significantly different in the relative areas of Merlot wine. The Principal Component Analysis showed one grouping composed only of the Merlot wine samples, and this was probably related to the existence of the volatile organic compounds that were specifically identified in

  12. Flavour Compounds in Fungi

    DEFF Research Database (Denmark)

    Ravasio, Davide Antonio

    . This selection of strains was used in fermentations with the aim of identifying new interesting flavour producers. Fermentation profiles, volatile analyses, off-flavour identification and resistance to osmotic/oxidative stress have been addressed to highlight new candidates to use for industrial applications....... This resulted in the identification of Wickerhamomyces anomalus and Pichia kluyveri as high producers of esters fruity compounds, which contribute to enhance the complexity of wine and beer product. In addition the strain Debaromyces subglobosus showed high yields of aldehydes and fruity ketones, which...

  13. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    Science.gov (United States)

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  14. Natural sparkling guava wine: volatile and physicochemical characterization

    Directory of Open Access Journals (Sweden)

    Silvana Maria Michelin Bertagnolli

    Full Text Available ABSTRACT: Although different tropical fruit species have been used in the development of fermented beverages, there are only few references in the literature to the production of natural sparkling wines from fruits other than grapes. In this sense, the objective of the present research was the development and physicochemical and volatile characterization of a natural sparkling guava wine produced by the champenoise method. Volatile compounds were identified by gas chromatography coupled to mass spectrometry using the headspace solid-phase microextraction (HS-SPME technique on samples. Eighty-nine volatile compounds were detected, of which 51 were identified. Esters were the predominant class of volatile compounds (a total of 26, followed by alcohols (10, terpenes (9, ketones (3, and acids (3. Volatile compounds with possible odoriferous activity were reported in the beverage, including ethyl octanoate, ethyl 5-hexenoate, phenethyl acetate, (E-β-damascenone, (E-ethyl cinnamate, 2-methyl butyl acetate, 3-methylbutanol, ethyl 3-(E-hexenoate, and methyl 5-hexenoate. Natural sparkling guava wine produced showed a complex composition of fruity and floral aromas. Furthermore, the use of the champenoise method, traditionally applied to grapes, enabled the manufacture of a natural sparkling guava wine with physicochemical characteristics equivalent to those of sparkling wines made from grapes.

  15. Effect of chard powder on colour and aroma formation in cooked sausages

    Science.gov (United States)

    Nasonova, V. V.; Tunieva, E. K.

    2017-09-01

    The use of nitrate-containing vegetable powders instead of sodium nitrite in meat products requires changes in technological production parameters in order to obtain traditional organoleptic characteristics in the finished products. The aim of this work was to study the effect of chard powder on colour and aroma formation in cooked sausages. Cooked sausage samples were: control with nitrite curing mixture; type 1 sausages with chard powder and ascorbic acid; type 2 sausages with chard powder and sodium ascorbate. To transform nitrate ions contained in the vegetable chard powder to nitrite ions using a denitrifying culture, preliminary thermal treatments were used: 30 and 60 min at 40±2°C, after which the sausages were cooked until a temperature of 72±2°C was achieved. The sausages were stored for 40 days at 0-6°C. When sausage meat was initially held at 40°C for 60 min, a homogenous pink colour formed in the sausages with the vegetable powder. The indicators of lightness, redness and yellowness in cooked sausages as well as the indicators of instrumental odour assessment did not differ significantly (p>0.05). The indicators of colour stability during storage were 1.1-3.0% higher in the sausages with the chard powder compared to the control. The mass fraction of sodium nitrite in the experimental sausages was 2.0-2.2 higher than in the control (p>0.05). As a result of cooked sausage storage, the differences in the sodium nitrite content in the control and types 1 and 2 sausages were similar. During storage, the mass fraction of sodium nitrite decreased in types 1 and 2 sausages by 55.6 and 54.8%, respectively (p<0.05). Cooked sausages with the chard powder contained 2.1-2.4 times more sodium nitrate than did control sausages (p<0.05). However, all tested sausage samples complied with legislative requirements in terms of their sodium nitrite and nitrate levels.

  16. Selected Ion Flow Tube-Mass Spectrometry for Absolute Quantification of Aroma Compounds in the Headspace of Dry Fermented Sausages

    Czech Academy of Sciences Publication Activity Database

    Olivares, A.; Dryahina, Kseniya; Navarro, J. L.; Flores, M.; Smith, D.; Španěl, Patrik

    2010-01-01

    Roč. 82, č. 13 (2010), s. 5819-5829 ISSN 0003-2700 R&D Projects: GA ČR GA203/09/0256 Institutional research plan: CEZ:AV0Z40400503 Keywords : mass spectrometry * aroma compounds * dry fermented sausages Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.874, year: 2010

  17. VPPD Lab - The Chemical Product Simulator

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Hussain, Rehan; Elbashir, Nimir

    2015-01-01

    , detergent, etc.). It has interface to identify workflow/data-flow for the inter-related activities between knowledge-based system and model-based calculation procedures to systematically, efficiently and robustly solve various types of product design-analysis problems. The application of the software......In this paper, the development of a systematic model-based framework for product design, implemented in the new product design software called VPPD-Lab is presented. This framework employs its in-house knowledge-based system to design and evaluate chemical products. The built-in libraries...... of product performance models and product-chemical property models are used to evaluate different classes of product. The product classes are single molecular structure chemicals (lipids, solvents, aroma, etc.), blended products (gasoline, jet-fuels, lubricants, etc.), and emulsified product (hand wash...

  18. Polyphenolic and aroma profile of Vranec wines fermented with isolated yeasts from Tikveš wine area

    OpenAIRE

    Ivanova, Violeta; Mitrev, Sasa; Karov, Ilija; Dimovska, Violeta; Ilieva, Fidanka; Balabanova, Biljana; Kovacevik, Biljana

    2013-01-01

    Wine contains a number of polyphenolic constituents classified as flavonoids and non-flavonoids that play a major role in enology. They contribute to wine sensory characteristics, especially colour, flavor and astringency and therefore, to the differences between red and white wines. On the other hand, wine aroma is a one of its most important characteristics produced by a complex balance of different groups of volatile compounds, belonging to alcohols, esters, aldehydes, lactones, terpenes, ...

  19. Exploration of consumer perception of Sauvignon Blanc wines with enhanced aroma properties using two different descriptive methods.

    Science.gov (United States)

    Lezaeta, Alvaro; Bordeu, Edmundo; Næs, Tormod; Varela, Paula

    2017-09-01

    The aim of this study was to evaluate consumers' perception of a complex set of stimuli as aromatically enriched wines. For that, two consumer based profiling methods were compared, concurrently run with overall liking measurements: projective mapping based on choice or preference (PM-C), a newly proposed method, and check-all-that-apply (CATA) questions with an ideal sample, a more established, consumer-based method for product optimization. Reserve bottling and regular bottling of Sauvignon Blanc wines from three wineries were aromatically enriched with natural aromas collected by condensation during wine fermentation. A total of 144 consumers were enrolled in the study. The results revealed that both consumer-based highlighted the positive effect of aromatic enrichment on consumer perception and acceptance. However, PM-C generated a very detailed description, in which consumers focused less on the sensory aspects and more on the usage, attitudes, and reasons behind their choices. Providing a deeper understanding of the drivers of liking/disliking of enriched Sauvignon Blanc wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Karakteristik Asap Cair yang Ditambahkan Ekstrak Aroma Daun Pandan Wangi (Pandanus Amaryllifolius Roxb.)

    OpenAIRE

    Nasruddin

    2015-01-01

    This research aims to study the characteristics of liquid smoke coconut shell pyrolysis results were added aroma extract fragrant pandan leaves. Coconut shell with ± 2.5 cm size for each treatment with a weight of 10 kg to the pyrolysis temperature (T1) 300 oC, (T2) 350 oC (T3) 400 oC and (T4) 450 oC with pyrolysis time (t1) 3 hours; (t2) 4 hours; (t3) 5 hours; and (t4) 6 hours. Liquid smoke highest yield of 18.644% of all treatment is obtained from the pyrolysis at temperatures of 400 oC for...

  1. Relationship between potentiometric measurements, sensorial analysis, and some substances responsible for aroma degradation of white wines.

    Science.gov (United States)

    Silva Ferreira, A C; Oliveira, Carla; Hogg, T; Guedes de Pinho, P

    2003-07-30

    Oxidative degradation of white wines can be described sensorially as developing from a loss at positive aroma characteristics, through the development of negative aromas to a linel stage of chromatic alterations. This work attempts to relate the oxidation "status" evaluate by potentiometric titrations, with sensorial degradation and the levels of substances responsible for "off-flavors", such as methional and phenylacetaldehyde. The potentiometric titration employed measures the most powerful antioxidants of white wines (e.g., those which more rapidly consume oxygen). Considering that aromatic precedes chromatic degradation, resistance to oxidation (ROX) constitutes a useful indicator of resistance to oxidation. Sensorial degradation (ID), potentiometric measures, and volatiles were determined both in samples submitted to a "forced aging" protocol and normal aged white wines. High correlation values were observed between ROX and the ID, in both sets (r > 0.87). ID is better explained by ROX values than by the indicated wine age or by the "degree of browning" (Abs = 420 nm). It was also observed that in samples with ROX values higher than 10, the concentration of methional and phenylacetaldehyde were above their respective odor threshold. Finally, it was observed that there is a relationship between oxygen consumption and the respective ROX. Although these results seem very promising, they needed to be further complemented in order to estimate the shelf life of a white wine using potentiometric titrations.

  2. [Effects of aroma self-foot reflexology massage on stress and immune responses and fatigue in middle-aged women in rural areas].

    Science.gov (United States)

    Kim, Ja Ok; Kim, In Sook

    2012-10-01

    This study was done to examine the effects of aroma self-foot reflexology massage on stress and immune responses and fatigue in middle-aged women in rural areas. The study was a nonequivalent control group pre-post test design. The participants were 52 middle-aged women from rural areas of which 26 were assigned to the experimental group and 26 to the control group. Data were collected from July to September, 2011 and analyzed using SPSS Win 17.0 version program. The intervention was conducted 3 times a week for six weeks. There were significant differences in reported perceived stress, systolic blood pressure, diastolic blood pressure and fatigue between the two groups. However, the issue of salivary cortisol and immune response were not significant. Aroma self-foot reflexology massage can be utilized as an effective intervention for perceived stress, systolic blood pressure, diastolic blood pressure and fatigue in middle-aged woman in rural areas.

  3. Rheological and sensory properties and aroma compounds formed during ripening of soft brined cheese made from camel milk

    DEFF Research Database (Denmark)

    Hailu, Yonas; Hansen, Egon Bech; Seifu, Eyassu

    2018-01-01

    over a ripening period of 60 d. Casein degradation in soft brined camel milk cheese significantly (p fracture significantly (p ... during ripening. However, cheese made with 85 IMCU L−1 coagulant resulted in softening of cheese texture and higher salt uptake. Using descriptive sensory analysis, the experimental cheeses were described as salty, sour and firm. The volatile aroma compounds formed in soft ripened camel milk cheese...

  4. Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species.

    Science.gov (United States)

    Lasekan, Ola; See, Ng Siew

    2015-02-01

    Nineteen odour-active compounds were quantified in three black velvet tamarind fruit species. Calculation of the odour activity values (OAVs) of the odorants showed that differences in odour profiles of the tamarinds were mainly caused by linalool, limonene, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, nonanal, and (Z)-3-hexenal. On the basis of their high OAVs, cis-linalool oxide (furanoid), geranyl acetone, and cinnamyl acetate were identified as other potent odorants in the three tamarinds. Sensory studies revealed very distinct aroma profiles, which are characteristic of these types of fruits. While the Dialiumguineense elicited floral, flowery, caramel-like notes, the other two species were dominated by leaf-like, caramel, and green notes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Alcohol-flavoured tobacco products.

    Science.gov (United States)

    Jackler, Robert K; VanWinkle, Callie K; Bumanlag, Isabela M; Ramamurthi, Divya

    2018-05-01

    In 2009, the Food and Drug Administration (FDA) banned characterising flavours in cigarettes (except for menthol) due to their appeal to teen starter smokers. In August 2016, the agency deemed all tobacco products to be under its authority and a more comprehensive flavour ban is under consideration. To determine the scope and scale of alcohol-flavoured tobacco products among cigars & cigarillos, hookahs and electronic cigarettes (e-cigarettes). Alcohol-flavoured tobacco products were identified by online search of tobacco purveyors' product lines and via Google search cross-referencing the various tobacco product types versus a list of alcoholic beverage flavours (eg, wine, beer, appletini, margarita). 48 types of alcohol-flavoured tobacco products marketed by 409 tobacco brands were identified. Alcohol flavours included mixed drinks (n=25), spirits (11), liqueurs (7) and wine/beer (5). Sweet and fruity tropical mixed drink flavours were marketed by the most brands: piña colada (96), mojito (66) and margarita (50). Wine flavours were common with 104 brands. Among the tobacco product categories, brands offering alcohol-flavoured e-cigarettes (280) were most numerous, but alcohol-flavoured products were also marketed by cigars & cigarillos (88) and hookah brands (41). Brands by major tobacco companies (eg, Philip Morris, Imperial Tobacco) were well represented among alcohol-flavoured cigars & cigarillos with five companies offering a total of 17 brands. The widespread availability of alcohol-flavoured tobacco products illustrates the need to regulate characterising flavours on all tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. PAISAJE NATURAL Y CULTURAL DEL CACAO FINO DE AROMA COMO OFERTA AGROTURÍSTICA EN MANABÍ

    OpenAIRE

    Luis Dionicio Andrade Alcívar; Henry Xavier Mendoza Ponce

    2015-01-01

    El objetivo de la investigación fue diagnosticar los recursos turísticos que conforman los paisajes naturales y culturales asociados al circuito cacao fino de aroma en Manabí. Se desarrolló una propuesta metodológica para la obtención de los resultados, y para la determinación del potencial de esos componentes en el diseño de ofertas agroturísticas en la misma provincia. El diagnóstico situacional como primera fase para el diseño de ofertas agroturísticas, considera antecedentes de estudio...

  7. Influence of wood barrels classified by NIRS on the ellagitannin content/composition and on the organoleptic properties of wine.

    Science.gov (United States)

    Michel, Julien; Jourdes, Michael; Le Floch, Alexandra; Giordanengo, Thomas; Mourey, Nicolas; Teissedre, Pierre-Louis

    2013-11-20

    Ellagitannins are extracted from oak wood during wine aging in oak barrels. This research is based on the NIRS (Oakscan) oak wood classification according to their index polyphenolic (IP) (between 21.07 and 70.15). Their level in wood is very variable (between 5.95 and 32.91 mg/g dry wood) and influenced their concentration in red wine (between 2.30 and 32.56 mg/L after 24 months of aging) and thus their impact on wine organoleptic properties. The results show a good correlation between the NIRS classification and the chemical analysis (HPLC-UV-MS and acidic hydrolysis procedure) and with the wood ellagitannin level, the ellagitannin extraction kinetic, and the ellagitannins evolution in red wine (Cabernet Sauvignon). Moreover, a correlation between the NIRS classification and the increasing intensity of some wood aromas (woody, spicy, vanilla, and smoked/toasted), flavors (bitterness and astringency), and a decreasing intensity of fruitiness was also observed.

  8. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine.

    Science.gov (United States)

    Larcher, Roberto; Tonidandel, Loris; Román Villegas, Tomás; Nardin, Tiziana; Fedrizzi, Bruno; Nicolini, Giorgio

    2015-01-01

    The recent finding that grape tannin may contain significant amount of S-glutathionylated (GSH-3MH) and S-cysteinylated (Cys-3MH) precursors of the varietal thiols 3-mercapto-1-hexanol and 3-mercaptohexyl acetate, characteristic of Sauvignon blanc wines, offers new opportunities for enhancing the tropical aroma in fermented beverages. In this study this new hypothesis was investigated: Müller Thurgau (17 samples) and Sauvignon blanc (15 samples) grapes were fermented with and without addition of a selected grape tannin. As expected, the tannin-added juices were higher in precursors, and they produced wines with increased free thiols. Preliminary informal sensory tests confirmed that in particular the Sauvignon wines produced with the tannin addition were often richer with increased "fruity/green" notes than the corresponding reference wines. This outcome confirms that grape tannin addition prior to fermentation can fortify the level of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization.

    Science.gov (United States)

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Grauwet, Tara; Van Loey, Ann; Hendrickx, Marc

    2018-05-30

    Cloud loss, enzymatic browning, and flavor changes are important quality defects of cloudy fruit juices determining consumer acceptability. The development of clean label options to overcome such quality problems is currently of high interest. Therefore, this study investigated the effect of kiwifruit puree (clean label ingredient) and high pressure homogenization on quality changes of cloudy apple juice using a multivariate approach. The use of kiwifruit puree addition and high pressure homogenization resulted in a juice with improved uniformity and cloud stability by reducing particle size and increasing viscosity and yield stress (p < 0.01). Furthermore, kiwifruit puree addition reduced enzymatic browning (ΔE ∗  < 3), due to the increased ascorbic acid and contributed to a more saturated and bright yellow color, a better taste balance, and a more fruity aroma of juice. This work demonstrates that clean label options to control quality degradation of cloudy fruit juice might offer new opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. IDENTIFIKASI CHARACTER IMPACT ODORANTS BUAH KAWISTA (Feronia Limonia [Identification of Character Impact Odorants of Wood Apple Fruit (Feronia Limonia

    Directory of Open Access Journals (Sweden)

    Anton Apriyantono1

    2004-04-01

    Full Text Available The volatiles of the kawista fruit (wood apple were analyzed by gas chromatography (GC and a combined gas chromatography-mass spectrometer (GC-MS. Character impact odorants of the fruits were systematically characterized by aroma extract dilution analysis (AEDA with GC-Olfactometry (GC-O. A total of 75 compounds were identified, including 28 esters, 11 alcohols, 10 aldehydes, 1 acetal, 10 ketones, 4 lactones, 1 heterocyclic, 4 aliphatic hydrocarbons, 1 furan and 5 acids. However, only 44 volatiles were detected by GC-O. Among these, compounds with the most impact were ethyl butyrate (fruity, sweet, banan-likeand methyl butyrate (fruit, sour with a flavor dilution factor of 256 and 64, respectively. Based on AEDA results, butyric acid, 3-mathyl valeric acid, 1-octen-3-ol, pentyl isobutyrate, 2-ethyl hexanoic acid, ethyl octanoate, gamma-decalactone, 2,3-pentanedione, 3-octanone, 5-methyl-3-heptanone, 9-methyl-5-undecene and (E-2-hexenyl butyrate seem to contribute to kawista fruit flavor

  11. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography-mass spectrometry, multivariate data analysis, and descriptive sensory analysis.

    Science.gov (United States)

    Wang, Chao; Zhang, Chenxia; Kong, Yawen; Peng, Xiaopei; Li, Changwen; Liu, Shunhang; Du, Liping; Xiao, Dongguang; Xu, Yongquan

    2017-10-01

    Dianhong teas produced from fresh leaves of different tea cultivars (YK is Yunkang No. 10, XY is Xueya 100, CY is Changyebaihao, SS is Shishengmiao), were compared in terms of volatile compounds and descriptive sensory analysis. A total of 73 volatile compounds in 16 tea samples were tentatively identified. YK, XY, CY, and SS contained 55, 53, 49, and 51 volatile compounds, respectively. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were used to classify the samples, and 40 key components were selected based on variable importance in the projection. Moreover, 11 flavor attributes, namely, floral, fruity, grass/green, woody, sweet, roasty, caramel, mellow and thick, bitter, astringent, and sweet aftertaste were identified through descriptive sensory analysis (DSA). In generally, innate differences among the tea varieties significantly affected the intensities of most of the key sensory attributes of Dianhong teas possibly because of the different amounts of aroma-active and taste components in Dianhong teas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Changes in color and odorant compounds during oxidative aging of Pedro Ximenez sweet wines.

    Science.gov (United States)

    Chaves, Margarita; Zea, Luis; Moyano, Lourdes; Medina, Manuel

    2007-05-02

    Pedro Ximenez sweet wines obtained following the typical criaderas and solera method for sherry wines and subjected to oxidative aging for 0, 1.3, 4.2, 7.0, or 11.5 years were studied in terms of color and aroma fraction by using the CIELab method and gas chromatography, respectively. The parameters defining the CIELab color space (a*, b*, and L*) were subjected to a multiple-range test (p 1 that enriched the wines with fruity, fatty, floral, and balsamic notes during the aging process. The changes in color parameters and active odorants were not linearly related to aging time, being especially marked during the first 1.3 years and then less substantial up to the 7 years, the oldest wines exhibiting sensorial properties markedly departing from all others. For the wines aged over 1.3 years (minimum aging), 2,3-butanedione, linalool, and decanal can be used as reliable fingerprints of the older wines' quality.

  13. Rosé wine volatile composition and the preferences of Chinese wine professionals.

    Science.gov (United States)

    Wang, Jiaming; Capone, Dimitra L; Wilkinson, Kerry L; Jeffery, David W

    2016-07-01

    Rosé wine aromas range from fruity and floral, to more developed, savoury characters. Lighter than red wines, rosé wines tend to match well with Asian cuisines, yet little is known about the factors driving desirability of rosé wines in emerging markets such as China. This study involved Chinese wine professionals participating in blind rosé wine tastings comprising 23 rosé wines from Australia, China and France in three major cities in China. According to the sensory results, a link between the preference, quality and expected retail price of the wines was observed, and assessors preferred wines with prominent red fruit, floral, confectionery and honey characters, and without developed attributes or too much sweetness. Basic wine chemical parameters and 47 volatile compounds, including 5 potent thiols, were determined. Correlations between chemical components, sensory attributes and preference/quality/expected price were visualised by network analysis, revealing relationships that are worthy of further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  15. The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures

    DEFF Research Database (Denmark)

    Malherbe, Sulette; Menichelli, Elena; du Toit, Maret

    2013-01-01

    BackgroundMalolactic fermentation (MLF) mediated by lactic acid bacteria (LAB) has been shown to modulate chemical and sensory attributes of wine. This study investigated the relation between consumer liking, chemical and sensory attributes of Vitis vinifera L. cv. Pinotage wines that were made o...... attributes can influence consumer liking. Selection of an MLF starter culture can thus potentially be used to develop specific wine styles. (c) 2013 Society of Chemical Industry......BackgroundMalolactic fermentation (MLF) mediated by lactic acid bacteria (LAB) has been shown to modulate chemical and sensory attributes of wine. This study investigated the relation between consumer liking, chemical and sensory attributes of Vitis vinifera L. cv. Pinotage wines that were made...... over two vintages by four different lactic acid Oenococcus oeni starter cultures as well as a control treatment where MLF was prevented. ResultsDescriptive analysis showed that the sensory attributes buttery, caramel, vegetative flavour, fruity and nutty aroma differed significantly between the wines...

  16. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  17. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    Science.gov (United States)

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.

    Science.gov (United States)

    Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-10-01

    In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  20. Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification.

    Science.gov (United States)

    Devi, Apramita; Archana, Kodira Muthanna; Bhavya, Panikuttria Kuttappa; Anu-Appaiah, Konerira Aiyappaa

    2018-02-01

    Co-inoculation has been adapted by many wine-producing countries because it enhances the success of malolactic fermentation and reduces the fermentation cost, as well as time. However, wine phenolics have been sparsely highlighted during co-inoculation, even though polyphenols are an important parameter affecting wine colour, astringency and aroma. In the present study, we investigated the impact of co-inoculation on non-anthocyanin polyphenol profile for two different grape varieties. Co-inoculation of native yeast strain (AAV2) along with Oenococcus oeni was adapted for Cabernet Sauvignon and Shiraz wine. It was observed that the co-inoculation had minimal yet significant impact on the phenolic composition of wines for both the grape varieties. Color loss, as well as fruity aroma development, was observed in co-inoculated wines. The wines were on a par with the commercial wine, as well as wines without malolactic fermentation, in terms of phenolic compounds and overall organoleptic acceptance. Principal component analysis and hierarchical cluster analysis further suggested that the varietal influence on phenolic composition was dominating compared to inoculation strategies. Among the varieties, the inoculation strategies have significantly influenced the Cabernet wines compared to Shiraz wines. The results of the present study demonstrate that the phenolic compounds are not drastically affected by metabolic activities of malolactic bacteria during co-inoculation and, hence, are equally suitable for wine fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Chemical Studies of Yellow Tamarillo (Solanum betaceum Cav. Fruit Flavor by Using a Molecular Sensory Approach

    Directory of Open Access Journals (Sweden)

    Juliana María García

    2016-12-01

    Full Text Available The odor-active volatile compounds of yellow tamarillo fruit (S. betaceum Cav. were identified and quantified by using a sensomics approach, combining a gentle volatile extraction (solvent-assisted flavor evaporation (SAFE, gas chromatography-mass spectrometry (GC-MS, and sensory analyses (gas chromatography-olfactometry (GC-O and aroma extract dilution analysis (AEDA. The medium-term purpose of this work is to evaluate the change of odor-active volatiles during processing. Thus, (Z-3-hexenal, hexanal, and ethyl butanoate were identified as key aroma compounds of yellow tamarillo. The C6-aliphatic compounds, aliphatic esters, and terpenols were characterized as the volatiles responsible for the herbal-green, fruity, and fresh-mint odor notes of this variety, respectively. Additionally, one non-volatile compound contributing to the residual bitter taste of this fruit was isolated by a bioguided (taste sensory analyses fractionation. The freeze-dried fruit was sequentially liquid-liquid partitioned with solvents of different polarity, and then the ethyl acetate fraction was submitted to size exclusion chromatography. Then, its structure was elucidated as rosmarinic acid, by using common spectroscopic methods (mass spectrometry (MS and nuclear magnetic resonance (NMR. The amount of rosmarinic acid was quantified as 46.17 ± 1.20 mg/100 g of dried fruit, by the external standard method. Its bitter taste threshold value was determined by using the 3AFC (alternative forced choice method to be 37.00 ± 1.25 mg/L.

  2. Role of Glycosidic Aroma Precursors on the odorant profiles of Grenache noir and Syrah Wines from the Rhone valley. Part 1: sensory study

    Directory of Open Access Journals (Sweden)

    Marie A. Segurel

    2009-12-01

    Significance and impact of study: This study showed the impact of the glycosidic fraction of the grapes on the varietal aroma of wines. Furthermore, comparisons of the results obtained by both aging techniques highlight the experimental interest of the aging model but also its limits.

  3. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  4. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis

    NARCIS (Netherlands)

    Cardoso Ferreira Pinhancos de Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; Ruth, van Saskia

    2017-01-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were

  5. Determinação do perfil de compostos voláteis e avaliação do sabor e aroma de bebidas produzidas a partir da erva-mate (Ilex paraguariensis Volatile compounds profile and flavor analysis of yerba mate (Ilex paraguariensis beverages

    Directory of Open Access Journals (Sweden)

    Carla Carolina Batista Machado

    2007-06-01

    Full Text Available Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.

  6. Effect of Inhalation of Aroma of Geranium Essence on Anxiety and Physiological Parameters during First Stage of Labor in Nulliparous Women: a Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Fahimeh Rashidi Fakari

    2015-06-01

    Full Text Available Introduction: Anxiety increases significantly during labor, especially among nulliparous women. Such anxiety may affect the progress of labor and physiological parameters. The use of essential oils of aromatic plants, or aromatherapy, is a non-invasive procedure that can decrease childbirth anxiety. This study examined the effect of inhalation of the aroma of geranium essential oil on the level of anxiety and physiological parameters of nulliparous women in the first stage of labor. Methods: In study, was carried out on 100 nulliparous women admitted to Bent al-Hoda Hospital in the city of Bojnord in North Khorasan province of Iran during 2012-2013. The women were randomly assigned to two groups of equal size, one experimental group (geranium essential oil and one control (placebo group. Anxiety levels were measured using Spielberger’s questionnaire before and after intervention. Physiological parameters (systolic and diastolic blood pressure, respiratory rate, pulse rate were also measured before and after intervention in both groups. Data analysis was conducted using the x2 test, paired t-test, Mann-Whitney U test, and Wilcox on test on SPSS 11.5. Results: The mean anxiety score decreased significantly after inhalation of the aroma of geranium essential oil. There was also a significant decrease in diastolic blood pressure.Conclusion: Aroma of essential oil of geraniums can effectively reduce anxiety during labor and can be recommended as a non-invasive anti-anxiety aid during childbirth.

  7. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception.

    Science.gov (United States)

    Schwieterman, Michael L; Colquhoun, Thomas A; Jaworski, Elizabeth A; Bartoshuk, Linda M; Gilbert, Jessica L; Tieman, Denise M; Odabasi, Asli Z; Moskowitz, Howard R; Folta, Kevin M; Klee, Harry J; Sims, Charles A; Whitaker, Vance M; Clark, David G

    2014-01-01

    Fresh strawberries (Fragaria x ananassa) are valued for their characteristic red color, juicy texture, distinct aroma, and sweet fruity flavor. In this study, genetic and environmentally induced variation is exploited to capture biochemically diverse strawberry fruit for metabolite profiling and consumer rating. Analyses identify fruit attributes influencing hedonics and sensory perception of strawberry fruit using a psychophysics approach. Sweetness intensity, flavor intensity, and texture liking are dependent on sugar concentrations, specific volatile compounds, and fruit firmness, respectively. Overall liking is most greatly influenced by sweetness and strawberry flavor intensity, which are undermined by environmental pressures that reduce sucrose and total volatile content. The volatile profiles among commercial strawberry varieties are complex and distinct, but a list of perceptually impactful compounds from the larger mixture is better defined. Particular esters, terpenes, and furans have the most significant fits to strawberry flavor intensity. In total, thirty-one volatile compounds are found to be significantly correlated to strawberry flavor intensity, only one of them negatively. Further analysis identifies individual volatile compounds that have an enhancing effect on perceived sweetness intensity of fruit independent of sugar content. These findings allow for consumer influence in the breeding of more desirable fruits and vegetables. Also, this approach garners insights into fruit metabolomics, flavor chemistry, and a paradigm for enhancing liking of natural or processed products.

  8. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception.

    Directory of Open Access Journals (Sweden)

    Michael L Schwieterman

    Full Text Available Fresh strawberries (Fragaria x ananassa are valued for their characteristic red color, juicy texture, distinct aroma, and sweet fruity flavor. In this study, genetic and environmentally induced variation is exploited to capture biochemically diverse strawberry fruit for metabolite profiling and consumer rating. Analyses identify fruit attributes influencing hedonics and sensory perception of strawberry fruit using a psychophysics approach. Sweetness intensity, flavor intensity, and texture liking are dependent on sugar concentrations, specific volatile compounds, and fruit firmness, respectively. Overall liking is most greatly influenced by sweetness and strawberry flavor intensity, which are undermined by environmental pressures that reduce sucrose and total volatile content. The volatile profiles among commercial strawberry varieties are complex and distinct, but a list of perceptually impactful compounds from the larger mixture is better defined. Particular esters, terpenes, and furans have the most significant fits to strawberry flavor intensity. In total, thirty-one volatile compounds are found to be significantly correlated to strawberry flavor intensity, only one of them negatively. Further analysis identifies individual volatile compounds that have an enhancing effect on perceived sweetness intensity of fruit independent of sugar content. These findings allow for consumer influence in the breeding of more desirable fruits and vegetables. Also, this approach garners insights into fruit metabolomics, flavor chemistry, and a paradigm for enhancing liking of natural or processed products.

  9. A S-cysteine conjugate, precursor of aroma of White Sauvignon

    Directory of Open Access Journals (Sweden)

    Takatoshi Tominaga

    1995-12-01

    Full Text Available 4-mercapto-4-methylpentan-2-one (4-MMP, a strongly odorant compound responsible for the « boxtree » or « broom plant » odour of the Sauvignon wines, can be enzymaticaly released in vitro from an odourless must extract. The enzyme source used is a cell-free extract of the gastrointestinal bacterium Eubacterium limosum. This crude preparation exhibits a cysteine β-lyase activity which requires the presence of pyridoxal phosphate. The release of 4-MMP is inhibited when the substrate is previously treated with N-hydroxysuccimide acetate which reacts with a primary amine. The same bacterial extract is also able to release 4-MMP, pyruvic acid and ammonium, from S-(4-méthylpentan-2-one-L-cysteine. On the other hand, the cleavage of S-(4-méthylpentan-2-oneD,L-homocysteine and S-(4-méthylpentan-2-one- glutathione is very limited. These results suggest that the precursor of 4-MMP in Sauvignon must is a S-cysteine conjugate. Such an aroma precursor in grapes or in other fruits has never been round berore.

  10. Modeling of an integrated fermentation/membrane extraction process for the production of 2-phenylethanol and 2-phenylethylacetate.

    Science.gov (United States)

    Adler, Philipp; Hugen, Thorsten; Wiewiora, Marzena; Kunz, Benno

    2011-03-07

    An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup

    Energy Technology Data Exchange (ETDEWEB)

    Sabbah, Hassan; Bonnamy, Anthony; Joblin, Christine [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, 9 avenue du Colonel Roche, 31028 Toulouse Cedex 4 (France); Papanastasiou, Dimitris [Fasmatech Science + Technology, Athens, GR (Greece); Cernicharo, Jose; Martín-Gago, Jose-Angel, E-mail: christine.joblin@irap.omp.eu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz, 3, Cantoblanco, E-28049 Madrid (Spain)

    2017-07-01

    We developed a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) that combines laser desorption/ionization techniques with ion trap mass spectrometry. We report here on the ability of the apparatus to detect aromatic species in complex materials of astrophysical interest and characterize their structures. A limit of detection of 100 femto-grams has been achieved using pure polycyclic aromatic hydrocarbon (PAH) samples, which corresponds to 2 × 10{sup 8} molecules in the case of coronene (C{sub 24}H{sub 12}). We detected the PAH distribution in the Murchison meteorite, which is made of a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene and its methylated derivatives in this sample.

  12. AROMAS E SABORES: UMA ABORDAGEM GEOGRÁFICA NA EDUCAÇÃO AMBIENTAL

    Directory of Open Access Journals (Sweden)

    Leonardo Pinto dos Santos

    2013-04-01

    Full Text Available O presente trabalho visa explorar as possiblidades presentes nos sentidos paladar, olfato e/ou tato dentro do ensino da ciência geográfica com abordagem para a Educação Ambiental, levando discentes e educadores a (re inventar saberes e fazeres na educação básica. Dentro da oficina intitulada de “geografia dos aromas e sabores” os alunos participantes do Programa Institucional de Bolsa de Iniciação à Docência explorarão a sensibilidade propiciada por parte dos sentidos humanos na compreensão da ampla interdependência global a qual estamos vivendo, levando-os a percepção do quando se torna importante pensarmos em uma conscientização coletiva sobre o meio ambiente e sobre nossas práticas cotidianas.

  13. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Lopez, Javiera; Essus, Karen; Kim, Il-Kwon

    2015-01-01

    cells. The additional integration of the carotenoid cleavage dioxygenase gene from the plant Petunia hybrida (PhCCD1) let to the production of low amounts of beta-ionone (0.073 ± 0.01 mg/g DCW) and changed the color of the strain from orange to yellow. The expression of the crtYB gene from a high copy......, the carotenogenic crtYB, crtI genes and the plant PhCCD1 gene-the highest β-ionone concentration reported to date by a cell factory was achieved. This microbial cell factory represents a starting point for flavor production by a sustainable and efficient process that could replace current methods.......Background: Apocarotenoids, like the C13-norisoprenoids, are natural compounds that contribute to the flavor and/or aroma of flowers and foods. They are produced in aromatic plants-like raspberries and roses-by the enzymatic cleavage of carotenes. Due to their pleasant aroma and flavour...

  14. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates.

    Science.gov (United States)

    Lilly, Mariska; Bauer, Florian F; Styger, Gustav; Lambrechts, Marius G; Pretorius, Isak S

    2006-08-01

    In Saccharomyces cerevisiae, branched-chain amino acid transaminases (BCAATases) are encoded by the BAT1 and BAT2 genes. BCAATases catalyse the transfer of amino groups between those amino acids and alpha-keto-acids. alpha-Keto-acids are precursors for the biosynthesis of higher alcohols, which significantly influence the aroma and flavour of yeast-derived fermentation products. The objective of this study was to investigate the influence of BAT-gene expression on general yeast physiology, on aroma and flavour compound formation and on the sensory characteristics of wines and distillates. For this purpose, the genes were overexpressed and deleted in a laboratory strain, BY4742, and overexpressed in an industrial wine yeast strain, VIN13. The data show that, with the exception of a slow growth phenotype observed for the BAT1 deletion strain, the fermentation behaviour of the strains was unaffected by the modifications. The chemical and sensory analysis of fermentation products revealed a strong correction between BAT gene expression and the formation of many aroma compounds. The data suggest that the adjustment of BAT gene expression could play an important role in assisting winemakers in their endeavour to produce wines with specific flavour profiles.

  15. Preliminary Studies Regarding the Production of Jam from Organic Rose Petal

    Directory of Open Access Journals (Sweden)

    Ana Cornelia BUTCARU

    2017-11-01

    The final products, seventeen variants of rose jam, were analyzed and tasted. Sensorial analysis was made by consumers of different ages and gender. Jam appearance, general taste, aroma, and the overall impression were noticed. V4 variant - Brother Cadfael with sea buckthorn was the most appreciated variant. For each of these top variants, target group by gender and age was analyzed. The results showed that the customers’ preferences are influenced by age and gender and the organic rose jam is a highly appreciated product.

  16. The impact of kitchen and food service preparation practices on the volatile aroma profile in ripe tomatoes: Effects of refrigeration and blanching

    Science.gov (United States)

    Both refrigeration and blanching of red stage tomatoes are common practices in Japan home kitchens and in food service operations. However, little is reported on the impact of such practices on aroma profiles in tomato fruits. In this study, ‘FL 47’ tomatoes at red stage were dipped in 50 °C hot wat...

  17. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars.

    Science.gov (United States)

    San, Anh T; Joyce, Daryl C; Hofman, Peter J; Macnish, Andrew J; Webb, Richard I; Matovic, Nicolas J; Williams, Craig M; De Voss, James J; Wong, Siew H; Smyth, Heather E

    2017-04-15

    Reported herein is a high throughput method to quantify in a single analysis the key volatiles that contribute to the aroma of commercially significant mango cultivars grown in Australia. The method constitutes stable isotope dilution analysis (SIDA) in conjunction with headspace (HS) solid-phase microextraction (SPME) coupled with gas-chromatography mass spectrometry (GCMS). Deuterium labelled analogues of the target analytes were either purchased commercially or synthesised for use as internal standards. Seven volatiles, hexanal, 3-carene, α-terpinene, p-cymene, limonene, α-terpinolene and ethyl octanoate, were targeted. The resulting calibration functions had determination coefficients (R 2 ) ranging from 0.93775 to 0.99741. High recovery efficiencies for spiked mango samples were also achieved. The method was applied to identify the key aroma volatile compounds produced by 'Kensington Pride' and 'B74' mango fruit and by 'Honey Gold' mango sap. This method represents a marked improvement over current methods for detecting and measuring concentrations of mango fruit and sap volatiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characterization of the Major Odor-Active Compounds in the Leaves of the Curry Tree Bergera koenigii L. by Aroma Extract Dilution Analysis.

    Science.gov (United States)

    Steinhaus, Martin

    2015-04-29

    Curry leaves are a popular seasoning herb with a pronounced sulfury and burnt odor, the molecular background of which was yet unclear. Application of an aroma extract dilution analysis to the volatile fraction of curry leaves isolated by solvent extraction and solvent-assisted flavor evaporation afforded 23 odor-active compounds with flavor dilution (FD) factors ranging from 1 to 8192. On the basis of the comparison of their retention indices, mass spectra, and odor properties with data of reference compounds, the structures of 22 odorants could be assigned, 15 of which had not been reported in curry leaves before. Odorants with high FD factors included 1-phenylethanethiol (FD factor 8192), linalool (4096), α-pinene (2048), 1,8-cineole (1024), (3Z)-hex-3-enal (256), 3-(methylsulfanyl)propanal (128), myrcene (64), (3Z)-hex-3-en-1-ol (32), and (2E,6Z)-nona-2,6-dienal (32). The unique sulfury and burnt odor exhibited by 1-phenylethanethiol in combination with its high FD factor suggested that it constitutes the character impact compound of fresh curry leaf aroma.

  19. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea.

    Science.gov (United States)

    Deng, Wei-Wei; Wang, Rongxiu; Yang, Tianyuan; Jiang, Li'na; Zhang, Zheng-Zhu

    2017-12-20

    Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.

  20. Physicochemical properties of meat of ducks of mulberries in modern technologies of meat products

    Directory of Open Access Journals (Sweden)

    R. F. Galin

    2017-01-01

    Full Text Available The article presents the results of studying the chemical composition of mullards duck meat in comparison with the ducks of the Beijingg white breed and musk ducks. The chemical analysis results allow us to note the high moisture content for mullard duck meat. The low fat content for white and red mullard duck meat opens up wide opportunities for the development of an assortment of meat products with a functional orientation. The limited amino acids are determined. The total number of essential amino acids in the mullard duck meat is higher than in musk (by 1.02 g / 100 g protein and Beijingg (by 0.86 g / 100 g protein, which indicates a higher biological value. The limiting amino acid is methionine and cysteine. The article presents the results of the raw material aroma assessment using the "MAG 8" - "electronic nose" analyzer. The content of easily volatile compounds in the equilibrium gas phase for samples of muscle and fat tissue from ducks of different breeding was compared and evaluated. The most informative in the matrix are sensors with films of polydiethylene glycol succinate, polyvinylpyrrolidone, polyethylene glycol PEG-2000, 18-crown-6, trioctylphosphine oxidase, which show maximum sensitivity to polar and nitrogen-containing compounds, aromatic hydrocarbons. This is explained by the fact that the easily volatile fraction of both meat and fat of the samples under study is represented by a variety of organic compounds of different concentrations. Such a variety of substances can be perceived by tasters as "a noticeable smell, difficult". In accordance with the results obtained, we concluded that the aroma of muscle and fat tissue of mulard ducks is more intense, more saturated than the Beijingg duck. The obtained data on the chemical composition indicate possible dietary properties of meat of ducks of mullards. The rich, pronounced aroma of muscle and fatty tissue causes high organoleptic parameters of the finished product, which is

  1. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  2. 852-IJBCS-Article-Dr Sinzogan Antonio A C

    African Journals Online (AJOL)

    DR GATSING

    1CIRAD-Persyst, UPR Production Fruitière, IITA, 08 BP 0932, Cotonou, Benin. Tél. (229) ... 8.74%). These results are significant for the decision-making process for effective monitoring and management ...... Inventory of the fruit fly species.

  3. COMPONENTES VOLÁTILES LIBRES Y GLICOSÍDICAMENTE ENLAZADOS DEL AROMA DE LA PIÑA (Ananas comosus L.) VARIEDAD PEROLERA

    OpenAIRE

    Diana C. Sinuco; Alicia L. Morales; Carmenza Duque

    2008-01-01

    Los componentes volátiles del aroma de la piña perolera fueron obtenidos mediante extracción L-L y analizados por CGAR, CGAR-EM (IE, IQP) y CGAR-O. En esta forma se identificaron 67 compuestos, siendo 2-metilbutanoato de metilo, hexanoatode metilo, 4- acetoxi-hexanoato de metilo, 5-acetoxi-hexanoato de metilo y 3-metiltiopropanoato de metilo los componentesmayoritarios. Mediante el análisis por CGAR-O no se detectaron compuestos impacto.La fracción glicos&ia...

  4. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Chua, Jian-Yong; Lu, Yuyun; Liu, Shao-Quan

    2017-12-04

    Soy whey is a liquid waste stream generated from tofu and soy protein manufacturing, and is commonly disposed of into the drainage system in food industry. Instead of disposing of soy whey as a waste, it could be used to produce alcoholic beverages. This study investigated the feasibility of converting soy whey into soy alcoholic beverage using four commercial Saccharomyces cerevisiae strains as a zero-waste approach to tackle the soy whey disposal issue. The four Saccharomyces yeasts grew by approximately 2logCFU/mL and produced approximately 7-8% (v/v) of ethanol. Isoflavone glucosides were hydrolyzed and transformed into isoflavone aglycones, increasing the antioxidant capacity. New aroma-active volatiles, especially esters and higher alcohols, were produced and imparted fruity and floral notes to the soy alcoholic beverage. Therefore, alcoholic fermentation would serve as a solution toward zero-waste manufacturing by biotransforming soy whey into a world's first novel functional alcoholic beverage naturally enriched with free isoflavones. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying.

    Science.gov (United States)

    Steinhaus, Martin

    2017-03-15

    The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.

  6. Flavor enhancement as a tool for increasing pleasantness and intake of a snack product among the elderly.

    Science.gov (United States)

    Koskinen, S; Kälviäinen, N; Tuorila, H

    2003-08-01

    A yogurt-like fermented oat bran product, flavored with regular and heightened concentrations of red currant aroma, was tested in two tasting sessions (side-by-side) and, between these, in a six-day home-use (monadic testing daily, 3+3 packages of the snack) by the elderly (n=50, mean age 73.7, range 63-85 years) and the young (n=58, mean age 23.1, range 18-34 years). The subjects rated the odor and flavor intensity and pleasantness and also conducted an odor detection and identification test. In home-use, the subjects reported the quantity consumed, willingness to eat, buy or recommend the snack. The young outperformed the elderly in the olfactory test. The heightened aroma samples were initially rated as less pleasant by both age groups, but among the elderly, the ratings given to the two samples merged during exposure. For the young, the large difference in perceived odor and flavor intensities reflected marked differences in pleasantness, while the elderly were less responsive to intensity differences in their pleasantness ratings. Overall, both age groups ate less of the heightened aroma sample. Despite the impaired olfactory capabilities of the elderly, no clear indication of benefit of the enhanced flavor was found for either pleasantness or intake.

  7. Use of simulated annealing in standardization and optimization of the acerola wine production

    Directory of Open Access Journals (Sweden)

    Sheyla dos Santos Almeida

    2014-06-01

    Full Text Available In this study, seven wine samples were prepared varying the amount of pulp of acerola fruits and the sugar content using the simulated annealing technique to obtain the optimal sensory qualities and cost for the wine produced. S. cerevisiae yeast was used in the fermentation process and the sensory attributes were evaluated using a hedonic scale. Acerola wines were classified as sweet, with 11°GL of alcohol concentration and with aroma, taste, and color characteristics of the acerola fruit. The simulated annealing experiments showed that the best conditions were found at mass ratio between 1/7.5-1/6 and total soluble solids between 28.6-29.0 °Brix, from which the sensory acceptance scores of 6.9, 6.8, and 8.8 were obtained for color, aroma, and flavor, respectively, with a production cost 43-45% lower than the cost of traditional wines commercialized in Brazil.

  8. Phénologie florale et production fruitière de Syzygium guineense ...

    African Journals Online (AJOL)

    Université. Polytechnique de BOBO-DIOULASSO. (UPB) / Burkina - Faso. p.110. Diallo BO, McKey D, Chevallier M-H, Joly. HI, Hossaert-McKey M. 2008. Breeding system and pollination biology of the semi domesticated fruit tree, Tamarindus.

  9. Flavoring Production in Kamut®, Quinoa and Wheat Doughs Fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: A SPME-GC/MS Study.

    Science.gov (United States)

    Di Renzo, Tiziana; Reale, Anna; Boscaino, Floriana; Messia, Maria C

    2018-01-01

    This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of

  10. Australian wine consumers’ acceptance of and attitudes toward the use of additives in wine and food production

    OpenAIRE

    Saltman Y; Johnson TE; Wilkinson KL; Bastian SEP

    2015-01-01

    Yaelle Saltman, Trent E Johnson, Kerry L Wilkinson, Susan EP Bastian Department of Wine and Food, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, Australia. Abstract: Additives are routinely used in food and wine production to enhance product quality and/or prevent spoilage. Compared with other industries, the wine industry is only permitted to use a limited number of additives. Whereas flavor additives are often used to intensify the aroma and f...

  11. Exportación de nibs de cacao nativo de fino aroma con niveles de cadmio <= 0.5 mg/kg

    OpenAIRE

    Santa Cruz Muñoz, Iris Magaly

    2016-01-01

    La tesis expone un plan de negocios que surge a raíz de la demanda creciente internacional del cacao debido a una demanda de un chocolate con mayor contenido de cacao, la cual debe satisfacer normas sociales, saludables, ecológicas y éticas del cual el Perú es reconocido como país productor de Cacao de Fino Aroma. Asimismo, existe la amenaza que tienen los productores latinoamericanos de cacao por haberse encontrado altos niveles de cadmio en granos de cacao, siendo este perjudicial para la s...

  12. Characterisation of Saccharomyces cerevisiae hybrids selected for ...

    African Journals Online (AJOL)

    HartR

    2016-09-21

    Sep 21, 2016 ... hybrids for the production of Sauvignon blanc wine with enhanced fruity and .... 2013) with the principal components (PC's) as factors (that is, F1 .... Cluster VI: NH 8, NH 50, NH 71, NH 42, NH 53; Cluster VII: FERMICRU 4F9,.

  13. Galactomyces geotrichum – moulds from dairy products with high biotechnological potential

    OpenAIRE

    Anna Grygier; Kamila Myszka; Magdalena Rudzińska

    2017-01-01

    The article reviews the properties of the Galactomyces geotrichum species, the mould that is most important for the dairy industry. G. geotrichum mould has been isolated from milk, cheeses and alcoholic beverage. Its presence in food products makes it possible to obtain a characteristic aroma and taste, which corresponds to the needs and preferences of consumers. G. geotrichum plays an important role in ecology, where the mould is employed for the degradation of various hazardous substances a...

  14. Assessment of chemical and sensory quality of sugarcane alcoholic fermented beverage.

    Science.gov (United States)

    Resende Oliveira, Érica; Caliari, Márcio; Soares Soares Júnior, Manoel; Ribeiro Oliveira, Aryane; Cristina Marques Duarte, Renata; Valério de Barros Vilas Boas, Eduardo

    2018-01-01

    This study aimed to verify the technological feasibility, chemical quality and sensory acceptance of alcoholic fermented beverage obtained from sugarcane juice. A completely randomized design was applied. Sugar and alcohol content, phenolic (HPLC-MS) and volatile (GS-MS) compounds, pH, density, dry matter and acidity of the fermented beverage of sugarcane were quantified, as well as the acceptance of the product was carried out. The complete fermentation of sugarcane lasted 7 days, and it was obtained an alcohol content of 8.0% v/v. Titrable acidity of the beverage was of 67.31 meq L -1 , pH 4.03, soluble solids of 5 °Brix, reducing sugar of 0.07 g glucose 100 g -1 , density of 0.991 g cm -3 , reduced dry matter of 14.15 g L -1 , sulfates lower than 0.7 g K 2 SO 4  L -1 . Various phenolic compounds, among which, gallic acid (10.97%), catechin (1.73%), chlorogenic acid (3.52%), caffeic acid (1.49%), vanillic acid (0.28%), p -coumaric acid (0.24%), ferulic acid (6.63%), m -coumaric acid (0.36%), and o -coumaric acid (0.04%). Amongst aromatic compounds, were found mainly esters with fruity aromas (ethyl ester hexanoic acid and ethyl ester octanoic acid). The sugarcane juice can be commercialized as an alternative wine, as it presented adequate features to an alcoholic fermented beverage and was sensory accepted by consumers.

  15. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  16. Galactomyces geotrichum - moulds from dairy products with high biotechnological potential.

    Science.gov (United States)

    Grygier, Anna; Myszka, Kamila; Rudzińska, Magdalena

    2017-01-01

    The article reviews the properties of the Galactomyces geotrichum species, the mould that is most important for the dairy industry. G. geotrichum mould has been isolated from milk, cheeses and alcoholic beverage. Its presence in food products makes it possible to obtain a characteristic aroma and taste, which corresponds to the needs and preferences of consumers. G. geotrichum plays an important role in ecology, where the mould is employed for the degradation of various hazardous substances and wastewater treatment. It has also been found to have potential for biofuel production. In addition to this, G. geotrichum can be applicable in two further major areas: agriculture and health protection.

  17. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    Science.gov (United States)

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  18. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.

    Science.gov (United States)

    Nakaya, Satoshi; Usami, Atsushi; Yorimoto, Tomohito; Miyazawa, Mitsuo

    2015-01-01

    Ranunculus nipponicus var. submersus is an aquatic macrophyte; it is known as a wild edible plant in Japan for a long time. In this study, the essential oils from the fresh and dried aerial parts of R. nipponicus var. submersus were extracted by hydrodistillation and analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). Moreover, important aroma-active compounds were also detected in the oil using GC-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Thus, 98 compounds (accounting for 93.86%) of the oil were identified. The major compounds in fresh plant oil were phytol (41.94%), heptadecane (5.92%), and geranyl propionate (5.76%), while those of. Dried plant oil were β-ionone (23.54%), 2-hexenal (8.75%), and dihydrobovolide (4.81%). The fresh and dried oils had the green-floral and citrus-floral odor, respectively. The GC-O and AEDA results show that phenylacetaldehyde (green, floral odor, FD-factor = 8) and β-ionone (violet-floral odor, FD-factor = 8) were the most characteristic odor compounds of the fresh oils. β-Cyclocitral (citrus odor, FD-factor = 64) and β-ionone (violet-floral odor, FD-factor = 64) were the most characteristic odor compounds of the dried oil. These compounds are thought to contribute to the flavor of R. nipponicus var. submersus.

  19. Fragrance contact allergens in 5588 cosmetic products identified through a novel smartphone application.

    Science.gov (United States)

    Bennike, N H; Oturai, N B; Müller, S; Kirkeby, C S; Jørgensen, C; Christensen, A B; Zachariae, C; Johansen, J D

    2018-01-01

    More than 25% of the adult European population suffers from contact allergy, with fragrance substances recognized as one of the main causes. Since 2005, 26 fragrance contact allergens have been mandatory to label in cosmetic products within the EU if present at 10 ppm or above in leave-on and 100 ppm or above in wash-off cosmetics. To examine exposure, based on ingredient labelling, to the 26 fragrances in a sample of 5588 fragranced cosmetic products. The investigated products were identified through a novel, non-profit smartphone application (app), designed to provide information to consumers about chemical substances in cosmetic products. Products registered through the app between December 2015 and October 2016 were label checked according to International Nomenclature of Cosmetic Ingredients (INCI) for the presence of the 26 fragrance substances or the wording 'fragrance/parfum/aroma'. The largest product categories investigated were 'cream, lotion and oil' (n = 1192), 'shampoo and conditioner' (n = 968) and 'deodorants' (n = 632). Among cosmetic products labelled to contain at least one of the 26 fragrances, 85.5% and 73.9% contained at least two and at least three of the 26 fragrances, respectively. Linalool (49.5%) and limonene (48.5%) were labelled most often among all investigated products. Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC/Lyral ® ) was found in 13.5% of deodorants. Six of the 26 fragrance substances were labelled on less than one per cent of all products, including the natural extracts Evernia furfuracea (tree moss) and Evernia prunastri (oak moss). A total of 329 (5.9%) products had one or more of the 26 fragrance substances labelled but did not have 'parfum/fragrance/aroma' listed on the label. Consumers are widely exposed to, often multiple, well-established fragrance contact allergens through various cosmetic products intended for daily use. Several fragrance substances that are common causes of contact allergy were rarely

  20. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    Science.gov (United States)

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.