Geometry-specific scaling of detonation parameters from front curvature
International Nuclear Information System (INIS)
Jackson, Scott I.; Short, Mark
2011-01-01
It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.
International Nuclear Information System (INIS)
Huang, Yifan; Zhou, Wenxing
2015-01-01
Three-dimensional (3D) finite element analyses (FEA) of clamped single-edge tension (SE(T)) specimens are performed to investigate the impact of the crack front curvature on the elastic compliance, compliance rotation correction factor and average J-integral evaluated over the crack front. Specimens with six average crack lengths (i.e. a_a_v_e/W = 0.2–0.7) and three thickness-to-width ratios (i.e. B/W = 0.5, 1 and 2) are analyzed. The curved crack front is assumed to be bowed symmetrically and characterized by a power-law expression with a wide range of curvatures. Several crack front straightness requirements for SE(B) and C(T) specimens specified in BS7448, ISO and ASTM E1820 standards are reviewed. Based on results of the numerical investigation, new crack front straightness criteria for the SE(T) specimen are proposed in the context of the nine-point measurement by using as a criterion that the errors in the estimated compliance and average J values should be no more than five percent. The proposed criteria depend on both a_a_v_e/W and B/W, and are more advantageous than those specified in the BS, ISO and ASTM standards in terms of controlling the differences in J and compliance between the specimens with curved and straight crack fronts. - Highlights: • Investigate the impacts of crack front curvature on the compliance, rotation correction factor and J for SE(T) specimens. • Validate the applicabilities of crack front straightness criteria specified in the seven test standards on SE(T) specimens. • Recommend new crack front straightness criteria for the SE(T) specimen.
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui
2016-08-01
The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
On $L_p$ Affine Surface Area and Curvature Measures
Zhao, Yiming
2015-01-01
The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
An Improved Method to Measure the Cosmic Curvature
Energy Technology Data Exchange (ETDEWEB)
Wei, Jun-Jie; Wu, Xue-Feng, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2017-04-01
In this paper, we propose an improved model-independent method to constrain the cosmic curvature by combining the most recent Hubble parameter H ( z ) and supernovae Ia (SNe Ia) data. Based on the H ( z ) data, we first use the model-independent smoothing technique, Gaussian processes, to construct a distance modulus μ {sub H} ( z ), which is susceptible to the cosmic curvature parameter Ω{sub k}. In contrary to previous studies, the light-curve-fitting parameters, which account for the distance estimation of SN (μ {sub SN}( z )), are set free to investigate whether Ω {sub k} has a dependence on them. By comparing μ {sub H} ( z ) to μ {sub SN}(z), we put limits on Ω {sub k}. Our results confirm that Ω {sub k} is independent of the SN light-curve parameters. Moreover, we show that the measured Ω {sub k} is in good agreement with zero cosmic curvature, implying that there is no significant deviation from a flat universe at the current observational data level. We also test the influence of different H(z) samples and different Hubble constant H {sub 0} values, finding that different H(z) samples do not have a significant impact on the constraints. However, different H {sub 0} priors can affect the constraints of Ω {sub k} to some degree. The prior of H {sub 0} = 73.24 ± 1.74 km s{sup −1} Mpc{sup −1} gives a value of Ω {sub k}, a little bit above the 1 σ confidence level away from 0, but H{sub 0} = 69.6 ± 0.7 km s{sup −1} Mpc{sup −1} gives it below 1 σ .
Directory of Open Access Journals (Sweden)
Carlo Ciulla
2015-11-01
Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.
Measurement of curvature and twist of a deformed object using digital holography
International Nuclear Information System (INIS)
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-01-01
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method
Generalization of the swelling method to measure the intrinsic curvature of lipids
Barragán Vidal, I. A.; Müller, M.
2017-12-01
Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).
Temperature in subsonic and supersonic radiation fronts measured at OMEGA
Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John
2017-10-01
Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.
Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk
2010-06-01
In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.
FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements
Energy Technology Data Exchange (ETDEWEB)
Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-08-01
This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX
3D Facial Similarity Measure Based on Geodesic Network and Curvatures
Directory of Open Access Journals (Sweden)
Junli Zhao
2014-01-01
Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.
Principal Curvature Measures Estimation and Application to 3D Face Recognition
Tang, Yinhang
2017-04-06
This paper presents an effective 3D face keypoint detection, description and matching framework based on three principle curvature measures. These measures give a unified definition of principle curvatures for both smooth and discrete surfaces. They can be reasonably computed based on the normal cycle theory and the geometric measure theory. The strong theoretical basis of these measures provides us a solid discrete estimation method on real 3D face scans represented as triangle meshes. Based on these estimated measures, the proposed method can automatically detect a set of sparse and discriminating 3D facial feature points. The local facial shape around each 3D feature point is comprehensively described by histograms of these principal curvature measures. To guarantee the pose invariance of these descriptors, three principle curvature vectors of these principle curvature measures are employed to assign the canonical directions. Similarity comparison between faces is accomplished by matching all these curvature-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature measures contain strong complementarity for 3D facial shape description, and their fusion can largely improve the recognition performance. Our approach achieves rank-one recognition rates of 99.6, 95.7, and 97.9% on the neutral subset, expression subset, and the whole FRGC v2.0 databases, respectively. This indicates that our method is robust to moderate facial expression variations. Moreover, it also achieves very competitive performance on the pose subset (over 98.6% except Yaw 90°) and the occlusion subset (98.4%) of the Bosphorus database. Even in the case of extreme pose variations like profiles, it also significantly outperforms the state-of-the-art approaches with a recognition rate of 57.1%. The
de Haan, Seraphine; Reis, Cláudia; Ndlovu, Junior; Serrenho, Catarina; Akhtar, Ifrah; Garcia, José Antonio; Linde, Daniël; Thorskog, Martine; Franco, Loris; Hogg, Peter
2015-01-01
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed,
Electric field measurements in moving ionization fronts during plasma breakdown
Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.
2006-01-01
We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma
An optomechatronic curvature measurement array based on fiber Bragg gratings
International Nuclear Information System (INIS)
Chang, Hsing-Cheng; Lin, Shyan-Lung; Hung, San-Shan; Chang, I-Nan; Chen, Ya-Hui; Lin, Jung-Chih; Liu, Wen-Fung
2014-01-01
This study investigated an optomechatronic array-integrated signal processing module and a human–machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from −20.15 to +27.09 m −1 , the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m −1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process. (paper)
Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew
1996-09-01
Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The
Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature
Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.
2018-05-01
A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.
Laser confocal measurement system for curvature radius of lenses based on grating ruler
Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian
2015-02-01
In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.
Precision of anterior and posterior corneal curvature measurements taken with the Oculus Pentacam
Directory of Open Access Journals (Sweden)
Elizabeth Chetty
2016-06-01
Full Text Available In the era of rapid advances in technology, new ophthalmic instruments are constantly influencing health sciences and necessitating investigations of the accuracy and precision of the new technology. The Oculus Pentacam (70700 has been available for some time now and numerous studies have investigated the precision of some of the parameters that the Pentacam is capable of measuring. Unfortunately some of these studies fall short in confusing the meaning of accuracy and precision and in not being able to analyse the data correctly or completely. The aim of this study was to investigate the precision of the anterior and posterior corneal curvature measurements taken with the Oculus Pentacam (70700 holistically with sound multivariate statistical methods. Twenty successive Pentacam measurements were taken over three different measuring sessions on one subject. Keratometric data for both the anterior and posterior corneal surfaces were analysed using multivariate statistics to determine the precision of the Oculus Pentacam. This instrument was found to have good precision both clinically and statistically for anterior corneal measurements but only good clinical precision for the posterior corneal surface. Key words: Oculus Pentacam; keratometric variation; corneal curvature; multivariate statistics
Directory of Open Access Journals (Sweden)
Ameer Mariam Abdul-Moneem
2017-12-01
Full Text Available Purpose. Increasing anthropometric measures bring considerable spinal loads during sports practice, which inversely affects the adaptation abilities of the spinal structures; this in turn influences the spinal curvatures. The study was conducted to explore the relationship between anthropometric measures and sagittal spinal curvatures in handball players. Method. The total of 83 male handball players were divided into 2 groups, depending on their body height: group 1 (age, 23.62 ± 2.07 years consisted of 40 handball players with height above average, group 2 (age, 24.63 ± 2.58 years consisted of 43 handball players with height below average. The thoracic and lumbar curvatures and trunk height were measured with the Formetric III 4D spine and posture analysis system. Results. The thoracic kyphosis of group 1 was significantly higher than that of group 2 (p = 0.038, without a significant difference in lumbar lordosis (p = 0.312, and significant difference in the coefficient of compensation between thoracic kyphosis and lumbar lordosis (p = 0.026. Group 1 showed strong positive correlation between body height and kyphotic angle (r = 0.897, and moderate positive correlation with lordosis angle (r = 0.496. In group 2, there was weak positive correlation with kyphotic angle (r = 0.381, and weak negative correlation with lumbar lordosis angle (r = -0.355. Conclusions. Increasing body height of handball players is associated with bigger kyphotic and lordotic angles. Owing to frequent sagittal asymmetric overloading of the spine during handball training, exercises that help maintain good posture and correct the thoracic kyphosis are required, especially for taller players.
Directory of Open Access Journals (Sweden)
Katja Thömmes
2018-06-01
Full Text Available “3,058 people like this.” In the digital age, people very commonly indicate their preferences by clicking a Like button. The data generated on the photo-sharing platform Instagram potentially represents a vast, freely accessible resource for research in the field of visual experimental aesthetics. Therefore, we compiled a photo database using images of five different Instagram accounts that fullfil several criteria (e.g., large followership, consistent content. The final database consists of about 700 architectural photographs with the corresponding liking data generated by the Instagram community. First, we aimed at validating Instagram Likes as a potential measure of aesthetic appeal. Second, we checked whether previously studied low-level features of “good” image composition also account for the number of Instagram Likes that architectural photographs received. We considered two measures of visual balance and the preference for curvature over angularity. In addition, differences between images with “2D” vs. “3D” appearance became obvious. Our findings show that visual balance predicts Instagram Likes in more complex “3D” photographs, with more balance meaning more Likes. In the less complex “2D” photographs the relation is reversed, more balance led to fewer Likes. Moreover, there was a general preference for curvature in the Instagram database. Together, our study illustrates the potential of using Instagram Likes as a measure of aesthetic appeal and provides a fruitful methodological basis for future research.
The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing
Directory of Open Access Journals (Sweden)
Kniat Aleksander
2014-04-01
Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.
International Nuclear Information System (INIS)
Oikawa, Koudai; Kim, Hyonchol; Watanabe, Naoya; Shigeno, Masatsugu; Shirakawabe, Yoshiharu; Yasuda, Kenji
2007-01-01
One of the advantages of atomic force microscopy (AFM) is that it can accurately measure the heights of targets on flat substrates. It is difficult, however, to determine the shape of nanoparticles on rough surfaces. We therefore propose a curvature-reconstruction method that estimates the sizes of particles by fitting sphere curvatures acquired from raw AFM data. We evaluated this fitting estimation using 15-, 30-, and 50-nm gold nanoparticles on mica and confirmed that particle sizes could be estimated within 5% from 20% of their curvature measured using a carbon nanotube (CNT) tip. We also estimated the sizes of nanoparticles on the rough surface of dried cells and found we also can estimate the size of those particles within 5%, which is difficult when we only used the height information. The results indicate the size of nanoparticles even on rough surfaces can be measured by using our method and a CNT tip
Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries
DEFF Research Database (Denmark)
Zhang, Yubin; Godfrey, A.; Juul Jensen, Dorte
2009-01-01
Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction...
International Nuclear Information System (INIS)
Choi, Hyeon Chang; Park, Jun Hyub
2005-01-01
In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film
Principal Curvature Measures Estimation and Application to 3D Face Recognition
Tang, Yinhang; Li, Huibin; Sun, Xiang; Morvan, Jean-Marie; Chen, Liming
2017-01-01
-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
Energy Technology Data Exchange (ETDEWEB)
Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)
2014-11-21
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
International Nuclear Information System (INIS)
Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.
2014-01-01
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated
International Nuclear Information System (INIS)
Breiland, W.G.; Lee, S.R.; Koleske, D.D.
2004-01-01
When optical measurements of wafer curvature are used to determine thin-film stress, the laser beams that probe the sample are usually assumed to reflect specularly from the curved surface of the film and substrate. Yet, real films are not uniformly thick, and unintended thickness gradients produce optical diffraction effects that steer the laser away from the ideal specular condition. As a result, the deflection of the laser in wafer-curvature measurements is actually sensitive to both the film stress and the film-thickness gradient. We present a Fresnel-Kirchhoff optical diffraction model of wafer-curvature measurements that provides a unified description of these combined effects. The model accurately simulates real-time wafer-curvature measurements of nonuniform GaN films grown on sapphire substrates by vapor-phase epitaxy. During thin-film growth, thickness gradients cause the reflected beam to oscillate asymmetrically about the ideal position defined by the stress-induced wafer curvature. This oscillating deflection has the same periodicity as the reflectance of the growing film, and the deflection amplitude is a function of the film-thickness gradient, the mean film thickness, the wavelength distribution of the light source, the illuminated spot size, and the refractive indices of the film and substrate. For typical GaN films grown on sapphire, misinterpretation of these gradient-induced oscillations can cause stress-measurement errors that approach 10% of the stress-thickness product; much greater errors occur in highly nonuniform films. Only transparent films can exhibit substantial gradient-induced deflections; strongly absorbing films are immune
International Nuclear Information System (INIS)
Doerner, M.F.; Gardner, D.S.; Nix, W.D.
1986-01-01
Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness
Directory of Open Access Journals (Sweden)
Kristoffer Petersson
2017-07-01
Full Text Available We present a clinical distance measure for Pareto front evaluation studies in radiotherapy, which we show strongly correlates (r = 0.74 and 0.90 with clinical plan quality evaluation. For five prostate cases, sub-optimal treatment plans located at a clinical distance value of >0.32 (0.28–0.35 from fronts of Pareto optimal plans, were assessed to be of lower plan quality by our (12 observers (p < .05. In conclusion, the clinical distance measure can be used to determine if the difference between a front and a given plan (or between different fronts corresponds to a clinically significant plan quality difference.
International Nuclear Information System (INIS)
Smith, E.; Conrad, R.; Morris, S.; Ramuhalli, P.; Sheen, D.; Schanfein, M.; Ianakiev, K.; Browne, M.; Svoboda, J.
2015-01-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. A collaboration between Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), and Los Alamos National Laboratory (LANL) is working to advance the IAEA's capabilities in these areas. The first objective of the project is to perform a comprehensive evaluation of a prototype front-end electronics package, as specified by the IAEA and procured from a commercial vendor. This evaluation begins with an assessment against the IAEA's original technical specifications and expands to consider the strengths and limitations over a broad range of important parameters that include: sensor types, cable types, and the spectrum of industrial electromagnetic noise that can degrade signals from remotely located detectors. A second objective of the collaboration is to explore advanced tamper-indicating (TI) measures that could help to address some of the long-standing data authentication challenges with IAEA's unattended systems. The collaboration has defined high-priority tampering scenarios to consider (e.g., replacement of sensor, intrusion into cable), and drafted preliminary requirements for advanced TI measures. The collaborators are performing independent TI investigations of different candidate approaches: active time-domain reflectometry (PNNL), passive noise analysis (INL), and pulse-by-pulse analysis and correction (LANL). The initial investigations focus on scenarios where new TI measures are retrofitted into existing IAEA UMS deployments; subsequent work will consider the integration of advanced TI methods into new IAEA UMS deployments where the detector is separated from the front-end electronics. In this paper, project progress
Interferometric measurements of a dendritic growth front solutal diffusion layer
Hopkins, John A.; Mccay, T. D.; Mccay, Mary H.
1991-01-01
An experimental study was undertaken to measure solutal distributions in the diffusion layer produced during the vertical directional solidification (VDS) of an ammonium chloride - water (NH4Cl-H2O) solution. Interferometry was used to obtain concentration measurements in the 1-2 millimeter region defining the diffusion layer. These measurements were fitted to an exponential form to extract the characteristic diffusion parameter for various times after the start of solidification. The diffusion parameters are within the limits predicted by steady state theory and suggest that the effective solutal diffusivity is increasing as solidification progresses.
Direct measurement of the wetting front capillary pressure in a clay brick ceramic
Energy Technology Data Exchange (ETDEWEB)
Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)
2003-12-21
The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.
Direct measurement of the wetting front capillary pressure in a clay brick ceramic
International Nuclear Information System (INIS)
Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A
2003-01-01
The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials
Matsumoto, T; Makino, H; Uozato, H; Saishin, M; Miyamoto, S
2000-05-01
The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with a non-contact tonometer (NCT) and those with a Goldmann applanation tonometer (GAT) was studied. The corneal thickness and curvature were obtained in 230 eyes of 115 subjects. The correlation between them and ratios of measurement with NCT to that with GAT ([NCT/GAT]) were examined. [NCT/GAT] and corneal thickness showed a significant positive correlation (r = 0.556, p < 0.01), but, the correlation between [NCT/GAT] and the radius of corneal curvature was not statistically significant (r = -0.035, p = 0.30). The thick cornea has more influence on the measurement with NCT than GAT, because IOP is measured with NCT over a wider applanation area. The corneas with steeper curvature also cause higher corneal rigidity and produce more overestimation of NCT measurement, while they have stronger capillary attraction of the precorneal tear film for the GAT tip and also produce overestimation of GAT measurement. As a result, [NCT/GAT] was believed to be not influenced by the corneal curvature.
Matsumoto; Makino; Uozato; Saishin; Miyamoto
2000-11-01
Purpose: The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with a non-contact tonometer (NCT) and those with a Goldmann applanation tonometer (GAT) was studied.Methods: The corneal thickness and curvature were obtained in 230 eyes of 115 subjects. The correlation between them and ratios of measurement with NCT to that with GAT ([NCT/GAT]) were examined.Results: [NCT/GAT] and corneal thickness showed a significant positive correlation (r = 0.556, P <.01), but, the correlation between [NCT/GAT] and the radius of corneal curvature was not statistically significant (r = -0.035, P =.30).Conclusion: The thick cornea has more influence on the measurement with NCT than GAT, because IOP is measured with NCT over a wider applanation area. The corneas with steeper curvature also cause higher corneal rigidity and produce more overestimation of NCT measurement, while they have stronger capillary attraction of the precorneal tear film for the GAT tip and also produce overestimation of GAT measurement. As a result, [NCT/GAT] was believed to be not influenced by the corneal curvature.
Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan
Energy Technology Data Exchange (ETDEWEB)
Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.
2015-09-16
The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.
Measuring the iron spectral opacity in solar conditions using a double ablation front scheme
Energy Technology Data Exchange (ETDEWEB)
Colaitis, A. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Ducret, J. E. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Turck-Chieze, S [CEA/DRF/IRFU/DAp, CEA Saclay (France); Pennec, M L [CEA/DRF/IRFU/DAp, CEA Saclay (France); CEA/DIF, Arpajon (France); Blancard, C [CEA/DIF, Arpajon (France)
2018-01-22
We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.
Parameters-adjustable front-end controller in digital nuclear measurement system
International Nuclear Information System (INIS)
Hao Dejian; Zhang Ruanyu; Yan Yangyang; Wang Peng; Tang Changjian
2013-01-01
Background: One digitizer is used to implement a digital nuclear measurement for the acquisition of nuclear information. Purpose: A principle and method of a parameter-adjustable front-end controller is presented for the sake of reducing the quantitative errors while getting the maximum ENOB (effective number of bits) of ADC (analog-to-digital converter) during waveform digitizing, as well as reducing the losing counts. Methods: First of all, the quantitative relationship among the radiation count rate (n), the amplitude of input signal (V in ), the conversion scale of ADC (±V) and the amplification factor (A) was derived. Secondly, the hardware and software of the front-end controller were designed to fulfill matching the output of different detectors, adjusting the amplification linearly through the control of channel switching, and setting of digital potentiometer by CPLD (Complex Programmable Logic Device). Results: (1) Through the measurement of γ-ray of Am-241 under our digital nuclear measurement set-up with CZT detector, it was validated that the amplitude of output signal of detectors of RC feedback type could be amplified linearly with adjustable amplification by the front-end controller. (2) Through the measurement of X-ray spectrum of Fe-5.5 under our digital nuclear measurement set-up with Si-PIN detector, it was validated that the front-end controller was suitable for the switch resetting type detectors, by which high precision measurement under various count rates could be fulfilled. Conclusion: The principle and method of the parameter-adjustable front-end controller presented in this paper is correct and feasible. (authors)
Energy Technology Data Exchange (ETDEWEB)
Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)
2017-01-15
Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing
Cosmic curvature tested directly from observations
Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman
2018-03-01
Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.
Sparse aperture differential piston measurements using the pyramid wave-front sensor
Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-07-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Front-end electronics for accurate energy measurement of double beta decays
International Nuclear Information System (INIS)
Gil, A.; Díaz, J.; Gómez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzó, J.M.; Monrabal, F.; Yahlali, N.
2012-01-01
NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-β decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.
Energy Technology Data Exchange (ETDEWEB)
Krivonosov, R.I.; Karabel' nikova, G.N.; Khatuntsev, V.G.; Salov, Ye.A.
1979-01-01
Questions are examined of the accuracy of determining elements for occurrence of beds and curvature of wells using data of measurement by apparatus of a bed tiltmeter NID-1. Calculated formulas and graphs are presented for different conditions of occurrence of a bed, angle of inclination of the well and its diameter. The presented data make it possible to have a differentiated approach to evaluating the results of incline measurement.
Measurement of the wave-front aberration of the eye by a fast psychophysical procedure
International Nuclear Information System (INIS)
He, J.C.; Marcos, S.; Webb, R.H.; Burns, S.A.
1998-01-01
We used a fast psychophysical procedure to determine the wave-front aberrations of the human eye in vivo. We measured the angular deviation of light rays entering the eye at different pupillary locations by aligning an image of a point source entering the pupil at different locations to the image of a fixation cross entering the pupil at a fixed location. We fitted the data to a Zernike series to reconstruct the wave-front aberrations of the pupil. With this technique the repeatability of the measurement of the individual coefficients was 0.019 μm. The standard deviation of the overall wave-height estimation across the pupil is less than 0.3 μm. Since this technique does not require the administration of pharmacological agents to dilate the pupil, we were able to measure the changes in the aberrations of the eye during accommodation. We found that administration of even a mild dilating agent causes a change in the aberration structure of the eye. copyright 1998 Optical Society of America
Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit
Directory of Open Access Journals (Sweden)
Kamiar Aminian
2012-09-01
Full Text Available Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer’s natural technique.
Ground based mobile isotopic methane measurements in the Front Range, Colorado
Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.
2014-12-01
Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.
de Haan, Seraphine; Reis, Cláudia; Ndlovu, Junior; Serrenho, Catarina; Akhtar, Ifrah; Garcia, José Antonio; Linde, Daniël; Thorskog, Martine; Franco, Loris; Hogg, Peter
2015-01-01
Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom. Methods: Images were acquired by varying a set of parameters:
A 3D vision system for the measurement of the rate of spread and the height of fire fronts
International Nuclear Information System (INIS)
Rossi, L; Molinier, T; Tison, Y; Pieri, A; Akhloufi, M
2010-01-01
This paper presents a three-dimensional (3D) vision-based instrumentation system for the measurement of the rate of spread and height of complex fire fronts. The proposed 3D imaging system is simple, does not require calibration, is easily deployable in indoor and outdoor environments and can handle complex fire fronts. New approaches for measuring the position, the rate of spread and the height of a fire front during its propagation are introduced. Experiments were conducted in indoor and outdoor conditions with fires of different scales. Linear and curvilinear fire front spreading were studied. The obtained results are promising and show the interesting performance of the proposed system in operational and complex fire scenarios
Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation
Energy Technology Data Exchange (ETDEWEB)
Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, a technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.
Estimating back to front ratio of wire screen for measurement of thoron decay products
International Nuclear Information System (INIS)
Koli, Amruta; Khandare, Pallavi; Joshi, Manish; Mariam; Khan, Arshad; Sapra, B.K.
2016-01-01
Wire screens are widely used for measuring the fine fraction of radon/thoron decay products. Their capture efficiencies are generally defined at low aerosol concentration conditions as well as at low sampling flow rates. Effect of changes in sampling flow rate and aerosol concentration on wire screen capture efficiencies and counting correction factor has been studied in this work. Controlled experiments have been conducted using two different mesh sizes at two different aerosol concentration conditions. Experimental results were compared with the existing theories for capture efficiencies of wire screens given by Cheng and Yeh (1980) and Alonso et al. (2001); and semi empirical relation for the front to total ratio given by Solomon and Ren (1992). Theoretical predictions have been found to be relatively close to the experimental findings for moderate aerosol conditions but disagreement was observed in case of high aerosol concentration. The possible reasons for these differences have been discussed in this work. - Highlights: • Effect of Fiber Reynolds number on capture efficiency and back to front ratio of wire screen. • Experiments with Thoron decay products at moderate and elevated aerosol concentrations. • Comparison with theoretical estimates. • Fair agreement observed for moderate aerosol concentration.
Prediction of the Critical Curvature for LX-17 with the Time of Arrival Data from DNS
Energy Technology Data Exchange (ETDEWEB)
Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moss, William C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-01-10
We extract the detonation shock front velocity, curvature and acceleration from time of arrival data measured at grid points from direct numerical simulations of a 50mm rate-stick lit by a disk-source, with the ignition and growth reaction model and a JWL equation of state calibrated for LX-17. We compute the quasi-steady (D, κ) relation based on the extracted properties and predicted the critical curvatures of LX-17. We also proposed an explicit formula that contains the failure turning point, obtained from optimization for the (D, κ) relation of LX-17.
Curvature collineations for the field of gravitational waves
International Nuclear Information System (INIS)
Singh, K.P.; Singh, Gulab
1981-01-01
It has been shown that the space-times formed from a plane-fronted gravity wave and from a plane sandwich wave with constant polarisation admit proper curvature collineation in general. The curvature collineation vectors have been determined explicitly. (author)
The curvature coordinate system
DEFF Research Database (Denmark)
Almegaard, Henrik
2007-01-01
The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Zhang, Yang; Zhao, Jia-liang; Bian, Ai-ling; Liu, Xiao-li; Jin, Yu-mei
2009-08-01
To investigate the effects of central corneal thickness (CCT) and corneal curvature (CC) on intraocular pressure (IOP) measurements by the Goldmann applanation tonometer (GAT) and the non-contact tonometer (NCT). One hundred and twenty patients were recruited from the clinic of Peking Union Medical College Hospital. The CCT was measured by ultrasound pachymetry and the mean radius of CC by using Canon PK-5 refractometer. The IOP of each eye was measured by both GAT and NCT. Linear regression was used to compare the measurements of GAT and NCT; multi regression was used to analyze the relationships between CCT, CC and the measurements of GAT and NCT. Bland-Altman method was used to compare the effect of NCT and GAT on the IOP measurements. The results of the right eyes were reported in this paper. The mean and standard deviation of IOP measured by GAT and NCT was (18.4 + or - 4.0) mm Hg (1 mm Hg = 0.133 kPa) and (17.0 + or - 4.6) mm Hg, respectively, the difference was statistically significant (r = 0.835, P = 0.000). IOP measured using GAT increased by 0.039 mm Hg per microm increase in CCT. IOP measured using NCT increased by 0.064 mm Hg per microm increase in CCT. For an increase of 1 mm of mean corneal curvature there was decrease in IOP of 2.648 mm Hg measured by the GAT and of 3.190 mm Hg measured by the NCT. Compared to the GAT, NCT underestimated at low IOP level and overestimated at higher IOP level. The IOP measurement obtained with both GAT and NCT varied with CCT and CC. CCT affected IOP measurements by NCT more than that by GAT.
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Measuring Kinematic Variables in Front Crawl Swimming Using Accelerometers: A Validation Study
Directory of Open Access Journals (Sweden)
Andrew J. Callaway
2015-05-01
Full Text Available Objective data on swimming performance is needed to meet the demands of the swimming coach and athlete. The purpose of this study is to use a multiple inertial measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke Rate and Phases of the Stroke (Entry, Pull, Push, Recovery in front crawl swimming. Using multiple units on the body, an algorithm was developed to calculate the phases of the stroke based on the relative position of the body roll. Twelve swimmers, equipped with these devices on the body, performed fatiguing trials. The calculated factors were compared to the same data derived to video data showing strong positive results for all factors. Four swimmers required individual adaptation to the stroke phase calculation method. The developed algorithm was developed using a search window relative to the body roll (peak/trough. This customization requirement demonstrates that single based devices will not be able to determine these phases of the stroke with sufficient accuracy.
Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.
2015-06-01
Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.
Implementing quantum Ricci curvature
Klitgaard, N.; Loll, R.
2018-05-01
Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.
Surface meshing with curvature convergence
Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid
2014-01-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Surface meshing with curvature convergence
Li, Huibin
2014-06-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range
Directory of Open Access Journals (Sweden)
B. C. Baier
2017-09-01
Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone
Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle
International Nuclear Information System (INIS)
Carlsen, Brett; Tavrides, Emily; Schneider, Erich
2010-01-01
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.
Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle
Energy Technology Data Exchange (ETDEWEB)
Brett Carlsen; Emily Tavrides; Erich Schneider
2010-08-01
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.
Measurement of Design Process Front-End – Radical Innovation Approach
DEFF Research Database (Denmark)
Berg, Pekka; Pihlajamaa, Jussi; Hansen, Poul H. Kyvsgård
2014-01-01
The overall structure and the main characteristics of the future product are all decided in the front-end phase, which then strongly affects subsequent new product development activities. Recent studies indicate that these early front-end activities represent the most troublesome phase...... of the innovation process, and at the same time one of the greatest opportunities to improve the overall innovation capability of a company. In this paper dealing with the criteria we concentrate only for the objectives viewpoint and leave the attributes discussion to the future research. Two most crucial questions...... the innovation activities front end contains five assessment viewpoints as follows; input, process, output (including impacts), social environment and structural environment. Based on the results from our first managerial implications in three Finnish manufacturing companies we argue, that the developed model...
Szafner, G.; Bicanic, D.D.; Kulcsár, R.; Doka, O.
2014-01-01
Thermophysical properties of foods are of considerable relevance to food industry. The One among less explored thermophysical quantities is the thermal effusivity. In this paper the front variant of the photopyroelectric method was applied to determine thermal effusivity of both, fresh hen egg¿s
Fluctuation of shower front structure: measurements, Esub(p) approximately 1018 eV
International Nuclear Information System (INIS)
Barrett, M.L.; Watson, A.A.; Wild, P.; Wilson, J.G.
1975-01-01
The work of Watson and Wilson (1974) on the introduction of a parameter of shower-front development fluctuations has been extended using a purpose-built recording system yielding results over an increased distance range from the shower axis. An exhaustive study of possible spurious sources of the observed features has been undertaken, and none of significance have been identified. The values of the fluctuation parameter now given are considered well-established. (orig.) [de
Introducing quantum Ricci curvature
Klitgaard, N.; Loll, R.
2018-02-01
Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behavior for short lattices distances and compare its large-scale behavior with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.
Right thoracic curvature in the normal spine
Directory of Open Access Journals (Sweden)
Masuda Keigo
2011-01-01
Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.
Maillot, C; Ferrero, E; Fort, D; Heyberger, C; Le Huec, J-C
2015-07-01
The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops(®) and to determine the bias between the software and the standard paper measurement. Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland-Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops(®) for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops(®) measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops(®)). The mean difference calculated between the two methods was minimal at -0, 4° ± 3.41° [-7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [-6.7; 6.8] for sagittal measurement. Keops(®) has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p rc = 0.9981 vs. 0.9953; p plane and that the use of this software can be recommended for clinical application. Diagnostic, level III.
International Nuclear Information System (INIS)
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia
2010-01-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d A (z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d A (z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω k degeneracy
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Front lighted optical tooling method and apparatus
International Nuclear Information System (INIS)
Stone, W. J.
1985-01-01
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature
International Nuclear Information System (INIS)
Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.
1993-01-01
This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab
Hernández-Gómez, Geovanni; Malacara-Hernández, Zacarías; Malacara-Hernández, Daniel
2014-02-20
The measurement of astigmatic lenses, optical surfaces or wavefronts are a highly studied problem and many different instruments have been commercially fabricated to perform this task. Many of them use a Hartmann arrangement to obtain the result. In this paper, we analyze with detail the algorithms that can be used to make the necessary calculations and propose several alternatives with different advantages and disadvantages. Different mathematical algorithms that are involved in the calculation process have been given whereas any description of the instrument itself is not proposed, but only the different mathematical algorithms that are involved in the calculation process.
Advanced Curvature Deformable Mirrors
2010-09-01
ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii
A new front-end ASIC for GEM detectors with time and charge measurement capabilities
Ciciriello, F.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Marzocca, C.; Matarrese, G.; Ranieri, A.
2016-07-01
A 32 channel CMOS front-end ASIC has been designed to read out the GEM detectors intended to be used for beam monitoring in a new proton-therapy facility currently under construction. In order to improve the spatial resolution by exploiting charge centroid algorithms, the analog channels, based on the classic CSA+shaper architecture, are equipped with a peak detector (PD) which works as an analog memory during the read-out phase. The outputs of the PDs are multiplexed towards an integrated 8-bit subranging ADC. An accurate trigger signal marks the arrival of a valid event and is generated by fast-ORing the outputs of 32 voltage discriminators which compare the shaper outputs with a programmable threshold. The digital part of the ASIC manages the read-out of the channels, the A/D conversion and the configuration of the ASIC. A 100 Mbit/s LVDS serial link is used for data communication. The sensitivity of the analog channel is 15 mV/fC and the dynamic range is 80 fC. The simulated ENC is about 650 e- for a detector capacitance of 10 pF.
A new front-end ASIC for GEM detectors with time and charge measurement capabilities
Energy Technology Data Exchange (ETDEWEB)
Ciciriello, F., E-mail: fabio.ciciriello@poliba.it [DEI-Politecnico di Bari, Via Orabona 4, I-70125 Bari (Italy); INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy); Corsi, F. [DEI-Politecnico di Bari, Via Orabona 4, I-70125 Bari (Italy); INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy); De Robertis, G. [INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy); Felici, G. [INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Loddo, F. [INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy); Marzocca, C.; Matarrese, G. [DEI-Politecnico di Bari, Via Orabona 4, I-70125 Bari (Italy); INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy); Ranieri, A. [INFN, Sezione di Bari, Via Orabona 4, I-70125 Bari (Italy)
2016-07-11
A 32 channel CMOS front-end ASIC has been designed to read out the GEM detectors intended to be used for beam monitoring in a new proton-therapy facility currently under construction. In order to improve the spatial resolution by exploiting charge centroid algorithms, the analog channels, based on the classic CSA+shaper architecture, are equipped with a peak detector (PD) which works as an analog memory during the read-out phase. The outputs of the PDs are multiplexed towards an integrated 8-bit subranging ADC. An accurate trigger signal marks the arrival of a valid event and is generated by fast-ORing the outputs of 32 voltage discriminators which compare the shaper outputs with a programmable threshold. The digital part of the ASIC manages the read-out of the channels, the A/D conversion and the configuration of the ASIC. A 100 Mbit/s LVDS serial link is used for data communication. The sensitivity of the analog channel is 15 mV/fC and the dynamic range is 80 fC. The simulated ENC is about 650 e{sup −} for a detector capacitance of 10 pF. © 2001 Elsevier Science. All rights reserved.
International Nuclear Information System (INIS)
Cotrino, J.; Gamero, A.; Sola, A.; Lao, C.
1989-01-01
During the first instant, previous to steady-state in a surface-wave-produced plasma, an ionization front advance front the launcher to the plasma column end. The velocity of the ionization front is much slower than the group velocity of the surface wave, this give a reflection of the incident signal on the moving ionization front. In this paper, the authors use this effect to calculate the surface wave group velocity
Gryczynski, Z; Bucci, E
1993-11-01
Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.
The front end electronics of the NA62 Gigatracker: challenges, design and experimental measurements
Noy, M.; Aglieri Rinella, G.; Ceccucci, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Mazza, G.; Martoiu, S.; Morel, M.; Perktold, L.; Rivetti, A.; Tiuraniemi, S.
2011-06-01
The beam spectrometer of the NA62 experiment consists of 3 Gigatracker (GTK) stations. Each station comprises a pixel detector of 16 cm active area made of an assembly of 10 readout ASICs bump bonded to a 200 μm thick pixel silicon sensor, comprising 18000 pixels of 300 μm×300 μm. The main challenge of the NA62 pixel GTK station is the combination of an extremely high kaon/pion beam rate, where the intensity in the center of the beam reaches up to 1.5 Mhit s mm together with an extreme time resolution of 100 ps. To date, it is the first silicon tracking system with this time resolution. To face this challenge, the pixel analogue front end has been designed with a peaking time of 4 ns, with a planar silicon sensor operating up to 300 V over depletion. Moreover, the radiation level is severe, 2×10 1 MeV n cm per year of operation. Easy replacement of the GTK stations is foreseen as a design requirement. The amount of material of a single station should also be less than 0.5% X to minimize the background, which imposes strong constraints on the mechanics and the cooling system. We report upon the design and architecture of the 2 prototype demonstrator chips both designed in 130 nm CMOS technology, one with a constant fraction discriminator and the time stamp digitisation in each pixel (In-Pixel), and the other with a time-over-threshold discriminator and the processing of the time stamp located in the End of Column (EoC) region at the chip periphery. Some preliminary results are presented.
Directory of Open Access Journals (Sweden)
R. Bahreini
2018-06-01
Full Text Available The evolution of organic aerosols (OAs and their precursors in the boundary layer (BL of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014 was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA, with enhancement ratio of OA with respect to carbon monoxide (CO reaching 0.085±0.003 µg m−3 ppbv−1. At background mixing ratios of CO, up to ∼ 1.8 µg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G emissions was ∼ 40 % higher than in urban-influenced plumes. Positive matrix factorization (PMF confirmed a dominant contribution of secondary, oxygenated OA (OOA in the boundary layer instead of fresh, hydrocarbon-like OA (HOA. Combinations of primary OA (POA volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high-O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to < 5 % of total OA, but up to 38 % of anthropogenic SOA (aSOA in the region. The best agreement between the measured and simulated median OA was achieved by limiting the extent of biogenic hydrocarbon aging and consequently biogenic SOA (bSOA production. Despite a lower production of bSOA in
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Kim, J.; Simon, T. W.
1987-01-01
The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.
Brane cosmology with curvature corrections
International Nuclear Information System (INIS)
Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios
2003-01-01
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)
Feasibility of borehole radar measurements to monitor water/steam fronts in EOR applications
Miorali, M.; Slob, E.C.; Arts, R.J.
2009-01-01
A technique capable of capturing the dynamic of the reservoir fluids in the proximity of production wells would provide enormous benefit to the reservoir management; in fact, monitoring can be used to develop a feedback loop between measurements and control technologies to optimize the production.
A circuit design for front-end read-out electronics of beam homogeneity measurement
International Nuclear Information System (INIS)
She Qianshun; Su Hong; Xu Zhiguo; Ma Xiaoli; Hu Zhengguo; Mao Ruishi; Xu Hushan
2011-01-01
It introduces a circuit design of beam homogeneity measurement for heavy ion beam in the monitoring needs, which convert multichannel weak current from 10 pA to 100 nA of the output of parallel plate avalanche counter (PPAC) for large area with sensitive two-dimensional position to voltage signal from -2 V to -20 mV by current-voltage-converter (IVC) circuit which composed of T-feedback resistor networks, combined with data acquisition and processing system realized the beam homogeneity measurement in heavy ion tumor therapy of the Institute of Modern Physics. Experiments have shown that the circuit with speed and high precision. This circuit can be used for read-out of the beam for the Multiwire Proportional Chamber, Faraday Cup and other weak current sources. (authors)
International Nuclear Information System (INIS)
Andre, G.; Licht, A.
2009-01-01
Exploration studies in the South-eastern Mongolia revealed uranium mineralisation associated with a roll-front development in sands and clays of the Sainshand formation (late Cretaceous). The authors report a field measurement campaign performed with a portable X-ray fluorescence apparatus which allows on-site analysis of 30 species including uranium. This on-site analysis of uranium contents quickly characterizes the equilibrium state of new sectors. Visualization of disequilibria informs on the genesis and on the evolution of the deposit. The tracking of elements like selenium, vanadium and molybdenum helps the understanding of uranium trap or release mechanisms
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
International Nuclear Information System (INIS)
Pech-May, Nelson Wilbur; Cifuentes, Ángel; Mendioroz, Arantza; Oleaga, Alberto; Salazar, Agustín
2015-01-01
Both thermal diffusivity and effusivity (or conductivity) are necessary to characterize the thermal transport properties of a material. The flash method is the most recognized procedure to measure the thermal diffusivity of free-standing opaque plates. However, it fails to simultaneously obtain the thermal effusivity (or conductivity). This is due to the difficulty of knowing the total energy absorbed by the sample surface after the light pulse. In this work, we propose using the flash method in the front-face configuration on a two-layer system made of the unknown plate and a fluid of known thermal properties. We demonstrate that the surface temperature is sensitive to the thermal mismatch between the plate and the fluid, which is governed by their thermal effusivity ratio. In order to verify the validity of the method and to establish its application limits we have performed flash measurements, using a pulsed laser and an infrared camera, on a set of calibrated materials (metals, alloys, ceramics and polymers) covering a wide range of thermal transport properties. These results confirm the ability of the flash method to simultaneously retrieve thermal diffusivity and effusivity in a fast manner in samples whose effusivities are lower than three times the effusivity of the liquid used as backing fluid. (paper)
Directory of Open Access Journals (Sweden)
Mohammed Larbi Labbi
2007-12-01
Full Text Available The $(2k$-th Gauss-Bonnet curvature is a generalization to higher dimensions of the $(2k$-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for $k = 1$. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.
Energy Technology Data Exchange (ETDEWEB)
Suyu, S.H.; /Argelander Inst. Astron.; Marshall, P.J.; /KIPAC, Menlo Park /UC, Santa Barbara; Auger, M.W.; /UC, Santa Barbara /UC, Davis; Hilbert, S.; /Argelander Inst. Astron. /Garching, Max Planck Inst.; Blandford, R.D.; /KIPAC, Menlo Park; Koopmans, L.V.E.; /Kapteyn Astron. Inst., Groningen; Fassnacht, C.D.; /UC, Davis; Treu, T.; /UC, Santa Barbara
2009-12-11
Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy
Manifolds of positive scalar curvature
Energy Technology Data Exchange (ETDEWEB)
Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)
2002-08-15
This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.
Robust modal curvature features for identifying multiple damage in beams
Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen
2014-03-01
Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.
Some Inequalities for the -Curvature Image
Directory of Open Access Journals (Sweden)
Daijun Wei
2009-01-01
Full Text Available Lutwak introduced the notion of -curvature image and proved an inequality for the volumes of convex body and its -curvature image. In this paper, we first give an monotonic property of -curvature image. Further, we establish two inequalities for the -curvature image and its polar, respectively. Finally, an inequality for the volumes of -projection body and -curvature image is obtained.
INSPIRE-00357120; Archilli, F.; Auriemma, G.; Baldini, W.; Bencivenni, G.; Bizzeti, A.; Bocci, V.; Bondar, N.; Bonivento, W.; Bochin, B.; Bozzi, C.; Brundu, D.; Cadeddu, S.; Campana, P.; Carboni, G.; Cardini, A.; Carletti, M.; Casu, L.; Chubykin, A.; Ciambrone, P.; Dané, E.; De Simone, P.; Falabella, A.; Felici, G.; Fiore, M.; Fontana, M.; Fresch, P.; Furfaro, E.; Graziani, G.; Kashchuk, A.; Kotriakhova, S.; Lai, A.; Lanfranchi, G.; Loi, A.; Maev, O.; Manca, G.; Martellotti, G.; Neustroev, P.; Oldeman, R.G.C.; Palutan, M.; Passaleva, G.; Penso, G.; Pinci, D.; Polycarpo, E.; Saitta, B.; Santacesaria, R.; Santimaria, M.; Santovetti, E.; Saputi, A.; Sarti, A.; Satriano, C.; Satta, A.; Schmidt, B.; Schneider, T.; Sciascia, B.; Sciubba, A.; Siddi, B.G.; Tellarini, G.; Vacca, C.; Vazquez-Gomez, R.; Vecchi, S.; Veltri, M.; Vorobyev, A.
2016-04-06
A method is described which allows to deduce the dead-time of the front-end electronics of the LHCb muon detector from a series of measurements performed at different luminosities at a bunch-crossing rate of 20 MHz. The measured values of the dead-time range from 70 ns to 100 ns. These results allow to estimate the performance of the muon detector at the future bunch-crossing rate of 40 MHz and at higher luminosity.
Lectures on mean curvature flows
Zhu, Xi-Ping
2002-01-01
"Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...
Environmental influences on DNA curvature
DEFF Research Database (Denmark)
Ussery, David; Higgins, C.F.; Bolshoy, A.
1999-01-01
DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most......, whilst spermine enhanced theanomalous migration of a different set of sequences. Sequences with a GGC motif exhibitedgreater curvature than predicted by the presently-used angles for the nearest-neighbour wedgemodel and are especially sensitive to Mg2+. The data have implications for models...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....
Curvature force and dark energy
International Nuclear Information System (INIS)
Balakin, Alexander B; Pavon, Diego; Schwarz, Dominik J; Zimdahl, Winfried
2003-01-01
A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces and curvature forces, which represent a non-minimal coupling of gravity to matter, are established
Huynh, Uyen T D; Chambin, Odile; du Poset, Aline Maire; Assifaoui, Ali
2018-06-15
Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X 2+ ) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg 2+ , Ca 2+ , Zn 2+ and Ba 2+ ) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (D app ) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X 2+ ]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.
2007-01-01
Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme
Public and private space curvature in Robertson-Walker universes.
Rindler, W.
1981-05-01
The question is asked: what space curvature would a fundamental observer in an ideal Robertson-Walker universe obtain by direct local spatial measurements, i.e., without reference to the motion pattern of the other galaxies? The answer is that he obtains the curvatureK of his “private” space generated by all the geodesics orthogonal to his world line at the moment in question, and that ˜K is related to the usual curvatureK=k/R 2 of the “public” space of galaxies byK=K+H 2/c2, whereH is Hubble's parameter.
Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W
2017-08-04
Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.
1998-11-01
A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.
A prescribing geodesic curvature problem
International Nuclear Information System (INIS)
Chang, K.C.; Liu, J.Q.
1993-09-01
Let D be the unit disk and k be a function on S 1 = δD. Find a flat metric which is pointwise conformal to the standard metric and has k as the geodesic curvature of S 1 . A sufficient condition for the existence of such a metric is that the harmonic extension of k in D has saddle points. (author). 11 refs
Substrate Curvature Regulates Cell Migration -A Computational Study
He, Xiuxiu; Jiang, Yi
Cell migration in host microenvironment is essential to cancer etiology, progression and metastasis. Cellular processes of adhesion, cytoskeletal polymerization, contraction, and matrix remodeling act in concert to regulate cell migration, while local extracellular matrix architecture modulate these processes. In this work we study how stromal microenvironment with native and cell-derived curvature at micron-meter scale regulate cell motility pattern. We developed a 3D model of single cell migration on a curved substrate. Mathematical analysis of cell morphological adaption to the cell-substrate interface shows that cell migration on convex surfaces deforms more than on concave surfaces. Both analytical and simulation results show that curved surfaces regulate the cell motile force for cell's protruding front through force balance with focal adhesion and cell contraction. We also found that cell migration on concave substrates is more persistent. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration. NIH 1U01CA143069.
The geometry of plane waves in spaces of constant curvature
International Nuclear Information System (INIS)
Tran, H.V.
1988-01-01
We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect
Curvature Entropy for Curved Profile Generation
Ujiie, Yoshiki; Kato, Takeo; Sato, Koichiro; Matsuoka, Yoshiyuki
2012-01-01
In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribu...
A remark about the mean curvature
International Nuclear Information System (INIS)
Zhang Weitao.
1992-11-01
In this paper, we give an integral identity about the mean curvature in Sobolev space H 0 1 (Ω) intersection H 2 (Ω). Suppose the mean curvature on Γ=δΩ is positive, we prove some inequalities of the positive mean curvature and propose some open problems. (author). 4 refs
Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Koopmans, L. V. E.; Fassnacht, C. D.; Treu, T.
2010-01-01
Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the "time-delay distance" to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep
Thermal conductivity of molten KNO3-NaNO2 mixtures measured with wave-front shearing interferometry
International Nuclear Information System (INIS)
Iwadate, Yasuhiko; Kawamura, Kazutaka; Okada, Isao.
1982-01-01
The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO 3 -NaNO 2 mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO 3 to NaNO 2 . They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO 3 -NaNO 2 system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO 3 -NaNO 2 mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity. (author)
International Nuclear Information System (INIS)
Han Yue; Cai Guo-Biao; Xu Xu; Bruno Renou; Abdelkrim Boukhalfa
2014-01-01
A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimization appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block-division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl-stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the magnitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT). (interdisciplinary physics and related areas of science and technology)
Spinal curvature and characteristics of postural change in pregnant women.
Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako
2012-07-01
Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Curvature Entropy for Curved Profile Generation
Directory of Open Access Journals (Sweden)
Koichiro Sato
2012-03-01
Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.
Sharp fronts within geochemical transport problems
International Nuclear Information System (INIS)
Grindrod, P.
1995-01-01
The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems
Novel tilt-curvature coupling in lipid membranes
Terzi, M. Mert; Deserno, Markus
2017-08-01
On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.
Dynamic Double Curvature Mould System
DEFF Research Database (Denmark)
Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning
2011-01-01
The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...
Curvature-Controlled Topological Defects
Directory of Open Access Journals (Sweden)
Luka Mesarec
2017-05-01
Full Text Available Effectively, two-dimensional (2D closed films exhibiting in-plane orientational ordering (ordered shells might be instrumental for the realization of scaled crystals. In them, ordered shells are expected to play the role of atoms. Furthermore, topological defects (TDs within them would determine their valence. Namely, bonding among shells within an isotropic liquid matrix could be established via appropriate nano-binders (i.e., linkers which tend to be attached to the cores of TDs exploiting the defect core replacement mechanism. Consequently, by varying configurations of TDs one could nucleate growth of scaled crystals displaying different symmetries. For this purpose, it is of interest to develop a simple and robust mechanism via which one could control the position and number of TDs in such atoms. In this paper, we use a minimal mesoscopic model, where variational parameters are the 2D curvature tensor and the 2D orientational tensor order parameter. We demonstrate numerically the efficiency of the effective topological defect cancellation mechanism to predict positional assembling of TDs in ordered films characterized by spatially nonhomogeneous Gaussian curvature. Furthermore, we show how one could efficiently switch among qualitatively different structures by using a relative volume v of ordered shells, which represents a relatively simple naturally accessible control parameter.
Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors
Energy Technology Data Exchange (ETDEWEB)
Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann [School of Computer Science and Technology, Northwestern Polytechnical University, Xi' an (China)
2015-07-01
Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a
Model-independent Constraints on Cosmic Curvature and Opacity
Energy Technology Data Exchange (ETDEWEB)
Wang, Guo-Jian; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wei, Jun-Jie, E-mail: gjwang@mail.bnu.edu.cn, E-mail: zxli918@bnu.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: zhuzh@bnu.edu.cn, E-mail: jjwei@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2017-09-20
In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H ( z ), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H ( z ) from opacity-free expansion rate measurements. Then, we integrate the H ( z ) to obtain distance modulus μ {sub H}, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ {sub H} with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate ( H {sub 0}: global estimation, 67.74 ± 0.46 km s{sup −1} Mpc{sup −1}, and local measurement, 73.24 ± 1.74 km s{sup −1} Mpc{sup −1}) exert influence on the reconstructed H ( z ) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H {sub 0} matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.
Energy Technology Data Exchange (ETDEWEB)
Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States); Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Stefanko, D. B. [Savannah River Site (SRS), Aiken, SC (United States); Spencer, W. A. [Savannah River Site (SRS), Aiken, SC (United States); Hatfield, A. [Clemson University, Clemson, SC (United States); Arai, Y. [Clemson University, Clemson, SC (United States)
2012-08-23
The objective of this work was to develop and evaluate a series of methods and validate their capability to measure differences in oxidized versus reduced saltstone. Validated methods were then applied to samples cured under field conditions to simulate Performance Assessment (PA) needs for the Saltstone Disposal Facility (SDF). Four analytical approaches were evaluated using laboratory-cured saltstone samples. These methods were X-ray absorption spectroscopy (XAS), diffuse reflectance spectroscopy (DRS), chemical redox indicators, and thin-section leaching methods. XAS and thin-section leaching methods were validated as viable methods for studying oxidation movement in saltstone. Each method used samples that were spiked with chromium (Cr) as a tracer for oxidation of the saltstone. The two methods were subsequently applied to field-cured samples containing chromium to characterize the oxidation state of chromium as a function of distance from the exposed air/cementitious material surface.
Measuring Intrinsic Curvature of Space with Electromagnetism
Mabin, Mason; Becker, Maria; Batelaan, Herman
2016-01-01
The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface,…
Discrimination of curvature from motion during smooth pursuit eye movements and fixation.
Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R
2017-09-01
Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found
Higher curvature supergravity and cosmology
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [Th-Ph Department, CERN, Geneva (Switzerland); U.C.L.A., Los Angeles, CA (United States); INFN - LNF, Frascati (Italy); Sagnotti, Augusto [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)
2016-04-15
In this contribution we describe dual higher-derivative formulations of some cosmological models based on supergravity. Work in this direction started with the R + R{sup 2} Starobinsky model, whose supersymmetric extension was derived in the late 80's and was recently revived in view of new CMB data. Models dual to higher-derivative theories are subject to more restrictions than their bosonic counterparts or standard supergravity. The three sections are devoted to a brief description of R + R{sup 2} supergravity, to a scale invariant R{sup 2} supergravity and to theories with a nilpotent curvature, whose duals describe non-linear realizations (in the form of a Volkov-Akulov constrained superfield) coupled to supergravity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
SLED phenomenology: curvature vs. volume
International Nuclear Information System (INIS)
Niedermann, Florian; Schneider, Robert
2016-01-01
We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program. In addition, to quantify its potential with respect to the cosmological constant problem, we infer the amount of tuning on model parameters required to obtain a sufficiently small 4D curvature. A first answer was recently given in http://dx.doi.org/10.1007/JHEP02(2016)025, showing that 4D flat solutions are only ensured in the SI case by imposing a tuning relation, even if a brane-localized flux is included. In this companion paper, we find that the tuning can in fact be avoided for certain SI breaking brane-dilaton couplings, but only at the price of worsening the phenomenological problem. Our results are obtained by solving the full coupled Einstein-dilaton system in a completely consistent way. The brane width is implemented using a well-known ring regularization. In passing, we note that for the couplings considered here the results of http://dx.doi.org/10.1007/JHEP02(2016)025 (which only treated infinitely thin branes) are all consistently recovered in the thin brane limit, and how this can be reconciled with the concerns about their correctness, recently brought up in http://dx.doi.org/10.1007/JHEP01(2016)017.
Gigli, Nicola
2018-01-01
The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
International Nuclear Information System (INIS)
Asakura, N.; Tsuji-Iio, S.; Ikeda, Y.; Neyatani, Y.; Seki, M.
1995-01-01
A fast reciprocating probe system with a long drive shaft was incorporated into a multi-junction lower hybrid (LH) wave launcher on JT-60U in order to investigate an improved coupling mechanism of the radio frequency wave to the core plasma. The system has been operated reliably over a horizontal scan of 25 cm in 1.5 s using a compact pneumatic cylinder drive and springs. A double probe measurement provided the scrape-off layer plasma profile between the last closed flux surface and the first wall with the spatial resolution of 1-2 mm measured with a laser displacement gauge. The profiles of the electron density n e and temperature T e were in good agreement with those obtained with a triple probe method. During the LH wave injection with good coupling to the core plasma, an increase in the local T e was observed in front of the LH launcher mouth. The local n e was (7-10)x10 16 m -3 , consistent values needed for the good coupling. copyright 1995 American Institute of Physics
Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature
Directory of Open Access Journals (Sweden)
Philip P. Cheney
2017-03-01
Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.
Weyl tensors for asymmetric complex curvatures
International Nuclear Information System (INIS)
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
The curvature function in general relativity
International Nuclear Information System (INIS)
Hall, G S; MacNay, Lucy
2006-01-01
A function, here called the curvature function, is defined and which is constructed explicitly from the type (0, 4) curvature tensor. Although such a function may be defined for any manifold admitting a metric, attention is here concentrated on this function on a spacetime. Some properties of this function are explored and compared with a previous discussion of it given by Petrov
Energy Technology Data Exchange (ETDEWEB)
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Curvature function and coarse graining
International Nuclear Information System (INIS)
Diaz-Marin, Homero; Zapata, Jose A.
2010-01-01
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to ''local details'' ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F S (A) defined below. It covers the holonomy function in the sense that expF S (A)=Hol(l=∂S,A).
Curvature and torsion in growing actin networks
International Nuclear Information System (INIS)
Shaevitz, Joshua W; Fletcher, Daniel A
2008-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque
Forelimb bone curvature in terrestrial and arboreal mammals
Directory of Open Access Journals (Sweden)
Keith Henderson
2017-04-01
Full Text Available It has recently been proposed that the caudal curvature (concave caudal side observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side. The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side, and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus.
International Nuclear Information System (INIS)
Igor Kaganovich
2000-01-01
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas
AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Martino, Michele
2015-01-01
An improved analogue front-end for measuring the high state of trapezoidal voltage pulses with transition duration of 3 μs is presented. A new measurement system, composed by a front-end and the state-of-the-art acquisition board NI PXI-5922, has been realized with improved Common Mode Rejection Ratio (CMRR) of more than 87 dB at DC and 3-sigma stability of }0.65 ppm over 1 day. After highlighting the main design enhancements with respect to state-of-the-art solutions, the CMRR measurement is reported. The output drift due to temperature and humidity is assessed to be negligible. Finally, the worst-case repeatability is measured both with shorted-to-ground inputs and with an applied common-mode voltage of 10 V, which represents the nominal working condition.
Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran
2006-10-01
In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-01-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads
Higher Curvature Supergravity, Supersymmetry Breaking and Inflation
Ferrara, Sergio
2017-01-01
In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.
Curvature of Indoor Sensor Network: Clustering Coefficient
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.
The spinning particle with extrinsic curvature
International Nuclear Information System (INIS)
Dhar, A.
1988-01-01
We construct and analyse an action for the spinning particle which contains an extrinsic curvature term. A possible generalization of this construction to the case of the spinning string is also discussed. (orig.)
GDP growth and the yield curvature
DEFF Research Database (Denmark)
Møller, Stig Vinther
2014-01-01
This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....
Straight-line string with curvature
International Nuclear Information System (INIS)
Solov'ev, L.D.
1995-01-01
Classical and quantum solutions for the relativistic straight-line string with arbitrary dependence on the world surface curvature are obtained. They differ from the case of the usual Nambu-Goto interaction by the behaviour of the Regge trajectory which in general can be non-linear. A regularization of the action is considered and a comparison with relativistic point with curvature is made. 5 refs
Magnetic vortices in nanocaps induced by curvature
Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.
2018-05-01
Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.
Curvature-Induced Instabilities of Shells
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
A non-differential elastomer curvature sensor for softer-than-skin electronics
International Nuclear Information System (INIS)
Majidi, C; Kramer, R; Wood, R J
2011-01-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1–1 MPa) and stretchable (100–1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex ® ) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law
A non-differential elastomer curvature sensor for softer-than-skin electronics
Majidi, C.; Kramer, R.; Wood, R. J.
2011-10-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.
Curvature distribution within hillslopes and catchments and its effect on the hydrological response
Bogaart, P.W.; Troch, P.A.A.
2006-01-01
Topographic convergence and divergence are first order controls on the hillslope and catchment hydrological response, as evidenced by similarity parameter analyses. Hydrological models often do not take convergence as measured by contour curvature directly into account; instead they use comparable
Lee, J. S.; Evans, M. L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Factors affecting root curvature of mandibular first molar
International Nuclear Information System (INIS)
Choi, Hang Moon; Yi, Won Jin; Heo, Min Suk; Kim, Jung Hwa; Choi, Soon Chul; Park, Tae Won
2006-01-01
To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Twenty six 1st graders whose mandibular 1st molars just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal place angle, gonial angle, and gonion-gnathion distance(Go-Gn distance) were measured. In panoramic radiograph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. The pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p 1 +0.745X 2 (Y: root angle, X 1 : variation of occlusal plane-tooth axis angle, X 2 : variation of ramus-occlusal plane angle). It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane
Influence of firing time and framework thickness on veneered Y-TZP discs curvature.
Jakubowicz-Kohen, Boris D; Sadoun, Michaël J; Douillard, Thierry; Mainjot, Amélie K
2014-02-01
The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
ON THE CURVATURE OF DUST LANES IN GALACTIC BARS
International Nuclear Information System (INIS)
Comeron, Sebastien; MartInez-Valpuesta, Inma; Knapen, Johan H.; Beckman, John E.
2009-01-01
We test the theoretical prediction that the straightest dust lanes in bars are found in strongly barred galaxies, or more specifically, that the degree of curvature of the dust lanes is inversely proportional to the strength of the bar. The test uses archival images of barred galaxies for which a reliable nonaxisymmetric torque parameter (Q b ) and the radius at which Q b has been measured (r(Q b )) have been published in the literature. Our results confirm the theoretical prediction but show a large spread that cannot be accounted for by measurement errors. We simulate 238 galaxies with different bar and bulge parameters in order to investigate the origin of the spread in the dust lane curvature versus Q b relation. From these simulations, we conclude that the spread is greatly reduced when describing the bar strength as a linear combination of the bar parameters Q b and the quotient of the major and minor axes of the bar, a/b. Thus, we conclude that the dust lane curvature is predominantly determined by the parameters of the bar.
Curvature constraints from the causal entropic principle
International Nuclear Information System (INIS)
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-01-01
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Influence of implant rod curvature on sagittal correction of scoliosis deformity.
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2014-08-01
Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.
2004-11-30
In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.
International Nuclear Information System (INIS)
Reiser, M.
1982-01-01
An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed
Some Inequalities for the Lp-Curvature Image
Directory of Open Access Journals (Sweden)
Xiang Yu
2009-01-01
Full Text Available Lutwak introduced the notion of Lp-curvature image and proved an inequality for the volumes of convex body and its Lp-curvature image. In this paper, we first give an monotonic property of Lp-curvature image. Further, we establish two inequalities for the Lp-curvature image and its polar, respectively. Finally, an inequality for the volumes of Lp-projection body and Lp-curvature image is obtained.
Directory of Open Access Journals (Sweden)
Donghoon Kang
2013-01-01
Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.
Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian
2017-09-01
We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.
Extrinsic and intrinsic curvatures in thermodynamic geometry
Energy Technology Data Exchange (ETDEWEB)
Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-08-10
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Extrinsic and intrinsic curvatures in thermodynamic geometry
International Nuclear Information System (INIS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-01-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Substrate curvature gradient drives rapid droplet motion.
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-11
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
Radion stabilization in higher curvature warped spacetime
Energy Technology Data Exchange (ETDEWEB)
Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2018-02-15
We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)
Longitudinal surface curvature effect in magnetohydrodynamics
International Nuclear Information System (INIS)
Bodas, N.G.
1975-01-01
The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)
ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update
Energy Technology Data Exchange (ETDEWEB)
Wang, Jy-An John [ORNL; Wang, Hong [ORNL
2016-10-10
Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.
Connections and curvatures on complex Riemannian manifolds
International Nuclear Information System (INIS)
Ganchev, G.; Ivanov, S.
1991-05-01
Characteristic connection and characteristic holomorphic sectional curvatures are introduced on a complex Riemannian manifold (not necessarily with holomorphic metric). For the class of complex Riemannian manifolds with holomorphic characteristic connection a classification of the manifolds with (pointwise) constant holomorphic characteristic curvature is given. It is shown that the conformal geometry of complex analytic Riemannian manifolds can be naturally developed on the class of locally conformal holomorphic Riemannian manifolds. Complex Riemannian manifolds locally conformal to the complex Euclidean space are characterized with zero conformal fundamental tensor and zero conformal characteristic tensor. (author). 12 refs
Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene
Directory of Open Access Journals (Sweden)
Jie Pan
2017-09-01
Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.
Investigating undergraduate students’ ideas about the curvature of the Universe
Directory of Open Access Journals (Sweden)
Kim Coble
2018-06-01
Full Text Available [This paper is part of the Focused Collection on Astronomy Education Research.] As part of a larger project studying undergraduate students’ understanding of cosmology, we explored students’ ideas about the curvature of the Universe. We investigated preinstruction ideas held by introductory astronomy (ASTRO 101 students at three participating universities and postinstruction ideas at one. Through thematic analysis of responses to questions on three survey forms and preinstruction interviews, we found that prior to instruction a significant fraction of students said the Universe is round. Students’ reasoning for this included that the Universe contains round objects, therefore it must also be round, or an incorrect idea that the big bang theory describes an explosion from a central point. We also found that a majority of students think that astronomers use the term curvature to describe properties, such as dimensions, angles, or size, of the Universe or objects in the Universe, or that astronomers use the term curvature to describe the bending of space due to gravity. Students are skeptical that the curvature of the Universe can be measured, to a greater or lesser degree depending on question framing. Postinstruction responses to a multiple-choice exam question and interviews at one university indicate that students are more likely to correctly respond that the Universe as a whole is not curved postinstruction, though the idea that the Universe is round still persists for some students. While we see no evidence that priming with an elliptical or rectangular map of the cosmic microwave background on a postinstruction exam affects responses, students do cite visualizations such as diagrams among the reasons for their responses in preinstruction surveys.
Curvature computation in volume-of-fluid method based on point-cloud sampling
Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.
2018-01-01
This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.
On the curvature of transmitted intensity plots in broad beam studies
International Nuclear Information System (INIS)
El-Kateb, A.H.
2000-01-01
Transmission of a broad beam of gamma rays of 81- and 356-keV energies from 133 Ba is studied singly and dually. This study is the first to deal with the curvatures of the intensity plots. The targets are dextrose solutions of percentage concentrations up to 0.125 and soil containing water with concentrations up to 0.319. The logarithmic intensity plots are expressed in terms of a polynomial in the concentration. The curvatures of the plots are measured and calculated on the basis of the theoretical mass attenuation coefficients. The results are discussed in conjunction with buildup factors and the probability of photoelectric and Compton interactions. The curvatures show maxima when incoherent interaction prevails. This is evidently proved in case of the single 356-keV and of the dual 81- and 356-keV applied energies. Comparison is performed between the measured and calculated curvatures. The concept of curvature is applied and discussed for published results of narrow beam geometry. Correspondingly, this is the first search to introduce curvature instead of buildup as a measure for transmitted collided photons
Zero curvature conditions and conformal covariance
International Nuclear Information System (INIS)
Akemann, G.; Grimm, R.
1992-05-01
Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs
Norm of the Riemannian Curvature Tensor
Indian Academy of Sciences (India)
We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...
Constraining inverse curvature gravity with supernovae
Energy Technology Data Exchange (ETDEWEB)
Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab
2005-10-01
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.
On Mass, Spacetime Curvature, and Gravity
Janis, Allen I.
2018-01-01
The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.
Curvature tensor copies in affine geometry
International Nuclear Information System (INIS)
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Gaussian curvature on hyperelliptic Riemann surfaces
Indian Academy of Sciences (India)
Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.
Resolving curvature singularities in holomorphic gravity
Mantz, C.L.M.; Prokopec, T.
2011-01-01
We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature
Curvature driven instabilities in toroidal plasmas
International Nuclear Information System (INIS)
Andersson, P.
1986-11-01
The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)
Random paths with curvature dependent action
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1986-11-01
We study discretized random paths with a curvature dependent action. The scaling limits of the corresponding statistical mechanical models can be constructed explicitly and are either usual Brownian motion or a theory where the correlations of tangents are nonzero and described by diffusion on the unit sphere. In the latter case the two point function has an anomalous dimension η = 1. (orig.)
A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump
Energy Technology Data Exchange (ETDEWEB)
Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-07-15
This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).
Pelce, Pierre
1989-01-01
In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.
Radiative thermal conduction fronts
International Nuclear Information System (INIS)
Borkowski, K.J.; Balbus, S.A.; Fristrom, C.C.
1990-01-01
The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence
Conversion of radius of curvature to power (and vice versa)
Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.
2015-09-01
Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.
2010-03-01
CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.
A curvature theory for discrete surfaces based on mesh parallelity
Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes
2009-01-01
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable
A geometric construction of the Riemann scalar curvature in Regge calculus
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
A geometric construction of the Riemann scalar curvature in Regge calculus
International Nuclear Information System (INIS)
McDonald, Jonathan R; Miller, Warner A
2008-01-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas
Directory of Open Access Journals (Sweden)
Fabiana O. Chaise
2011-12-01
Full Text Available BACKGROUND: The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. OBJECTIVE: To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. METHODS: 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1 X-ray examination from which the Cobb angles (CA of both curvatures were obtained, and (2 measuring the angles with the arcometer (AA. Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. RESULTS: There was a very strong and significant correlation between AA and CA (r=0.94; pCONTEXTUALIZAÇÃO: A necessidade de identificação precoce de alterações posturais, sem expor as pessoas à radiação constante, tem estimulado a construção de instrumentos para medir as curvaturas da coluna vertebral. OBJETIVO: Verificar a validade, repetibilidade e reprodutibilidade dos ângulos das curvaturas sagitais da coluna vertebral, obtidos por meio de um arcômetro adaptado, comparando-os com os ângulos de Cobb (AC das respectivas curvaturas, obtidos por meio de exames radiográficos. MÉTODOS: Cinquenta e dois indivíduos foram submetidos a dois procedimentos destinados a avaliar as curvaturas torácica e lombar: (1 exame de raios-X, a partir do qual os AC de ambas as curvaturas foram obtidos e (2 medição dos ângulos das curvaturas com o arcômetro (AA. Dois avaliadores coletaram os dados usando o arcômetro com as hastes sobre os processos espinhosos T1, T12, L1 e L5, de modo a permitir medidas que, com auxílio de
Improving Polyp Detection Algorithms for CT Colonography: Pareto Front Approach.
Huang, Adam; Li, Jiang; Summers, Ronald M; Petrick, Nicholas; Hara, Amy K
2010-03-21
We investigated a Pareto front approach to improving polyp detection algorithms for CT colonography (CTC). A dataset of 56 CTC colon surfaces with 87 proven positive detections of 53 polyps sized 4 to 60 mm was used to evaluate the performance of a one-step and a two-step curvature-based region growing algorithm. The algorithmic performance was statistically evaluated and compared based on the Pareto optimal solutions from 20 experiments by evolutionary algorithms. The false positive rate was lower (pPareto optimization process can effectively help in fine-tuning and redesigning polyp detection algorithms.
2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY
International Nuclear Information System (INIS)
Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Song, S.-J.; Kim, H.-J.; Spies, M.; Lupien, V.
2009-01-01
In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.
Collineations of the curvature tensor in general relativity
Indian Academy of Sciences (India)
Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.
Translating solitons to symplectic and Lagrangian mean curvature flows
International Nuclear Information System (INIS)
Han Xiaoli; Li Jiayu
2007-05-01
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)
Integration of length and curvature in haptic perception
Panday, V.; Bergmann Tiest, W.M.; Kappers, A.M.L.
2014-01-01
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle,
Weyl curvature tensor in static spherical sources
International Nuclear Information System (INIS)
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
On a curvature-statistics theorem
International Nuclear Information System (INIS)
Calixto, M; Aldaya, V
2008-01-01
The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.
On a curvature-statistics theorem
Energy Technology Data Exchange (ETDEWEB)
Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es
2008-08-15
The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.
Cosmological signatures of anisotropic spatial curvature
International Nuclear Information System (INIS)
Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo
2015-01-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature
Cosmological signatures of anisotropic spatial curvature
Energy Technology Data Exchange (ETDEWEB)
Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
The Riemann-Lovelock curvature tensor
International Nuclear Information System (INIS)
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)
Harmonic curvatures and generalized helices in En
International Nuclear Information System (INIS)
Camci, Cetin; Ilarslan, Kazim; Kula, Levent; Hacisalihoglu, H. Hilmi
2009-01-01
In n-dimensional Euclidean space E n , harmonic curvatures of a non-degenerate curve defined by Ozdamar and Hacisalihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve α to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve α in n-dimensional Euclidean space E n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve α is a generalized helix in the sense of Hayden.
International Nuclear Information System (INIS)
Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.
2012-01-01
Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.
Directory of Open Access Journals (Sweden)
Reinhold Steinacker
2016-12-01
Full Text Available In 1906, the Austrian scientist Max Margules published a paper on temperature stratification in resting and non-accelerated moving air. The paper derives conditions for stationary slopes of air mass boundaries and was an important forerunner of frontal theories. Its formulation of relations between changes in density and geostrophic wind across the front is basically a discrete version of the thermal wind balance equation. The paper was highly influential and is still being cited to the present day. This paper accompanies an English translation of Margules’ seminal paper. We conclude here our “Classic Papers” series of the Meteorologische Zeitschrift.
Gravitational curvature an introduction to Einstein's theory
Frankel, Theodore Thomas
1979-01-01
This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence, replacing the often-tedious analytical computations with geometric arguments. Clearly presented and physically motivated derivations express the deflection of light, Schwarzchild's exterior and interior solutions, and the Oppenheimer-Volkoff equations. A perfect choice for advanced students of mathematics, this volume will also appeal to mathematicians interested in physics. It stresses
Curvature controlled wetting in two dimensions
DEFF Research Database (Denmark)
Gil, Tamir; Mikheev, Lev V.
1995-01-01
. As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...
The Riemann-Lovelock Curvature Tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D
Inflationary scenario from higher curvature warped spacetime
International Nuclear Information System (INIS)
Banerjee, Narayan; Paul, Tanmoy
2017-01-01
We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)
Inflationary scenario from higher curvature warped spacetime
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2017-10-15
We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)
Codimension two branes and distributional curvature
International Nuclear Information System (INIS)
Traschen, Jennie
2009-01-01
In general relativity, there is a well-developed formalism for working with the approximation that a gravitational source is concentrated on a shell, or codimension one surface. In contrast, there are obstacles to concentrating sources on surfaces that have a higher codimension, for example, a string in a spacetime with a dimension greater than or equal to four. Here it is shown that, by giving up some of the generality of the codimension one case, curvature can be concentrated on submanifolds that have codimension two. A class of metrics is identified such that (1) the scalar curvature and Ricci densities exist as distributions with support on a codimension two submanifold, and (2) using the Einstein equation, the distributional curvature corresponds to a concentrated stress-energy with equation of state p = -ρ, where p is the isotropic pressure tangent to the submanifold, and ρ is the energy density. This is the appropriate stress-energy to describe a self-gravitating brane that is governed by an area action, or a braneworld deSitter cosmology. The possibility of having a different equation of state arise from a wider class of metrics is discussed.
Distributed mean curvature on a discrete manifold for Regge calculus
International Nuclear Information System (INIS)
Conboye, Rory; Miller, Warner A; Ray, Shannon
2015-01-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)
Distributed mean curvature on a discrete manifold for Regge calculus
Conboye, Rory; Miller, Warner A.; Ray, Shannon
2015-09-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.
A curvature theory for discrete surfaces based on mesh parallelity
Bobenko, Alexander Ivanovich
2009-12-18
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
International Nuclear Information System (INIS)
Brodsky, Stanley J.; de Teramond, Guy F.
2011-01-01
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.
Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji
2017-08-01
Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.
Integration of length and curvature in haptic perception.
Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L
2014-01-24
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.
Energy Technology Data Exchange (ETDEWEB)
Iwadate, Yasuhiko; Kawamura, Kazutaka [Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor; Okada, Isao
1982-06-01
The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO/sub 3/-NaNO/sub 2/ mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO/sub 3/ to NaNO/sub 2/. They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO/sub 3/-NaNO/sub 2/ system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO/sub 3/-NaNO/sub 2/ mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity.
Statistical Physics and Light-Front Quantization
Energy Technology Data Exchange (ETDEWEB)
Raufeisen, J
2004-08-12
Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper the authors develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. They construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. They then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. The approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, the authors introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, they explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problems.
Front propagation in flipping processes
International Nuclear Information System (INIS)
Antal, T; Ben-Avraham, D; Ben-Naim, E; Krapivsky, P L
2008-01-01
We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess Δ k increases logarithmically, Δ k ≅ ln k, with the distance k from the front. Third, the front exhibits ageing-young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations
Directory of Open Access Journals (Sweden)
Dongying Han
2017-01-01
Full Text Available For the damage identification of derrick steel structures, traditional methods often require high-order vibration information of structures to identify damage accurately. However, the high-order vibration information of structures is difficult to acquire. Based on the technology of signal feature extraction, only using the low-order vibration information, taking the right front leg as an example, we analyzed the selection of HHT marginal spectrum amplitude and the calculation process of its curvature in practical application, designed the damage conditions of a derrick steel structure, used the index and intrinsic mode function (IMF instantaneous energy curvature method to perform the damage simulation calculation and comparison, and verified the effect of identifying the damage location in a noisy environment. The results show that the index can accurately determine the location of the damage element and weak damage element and can be used to qualitatively analyze the damage degree of the element; under the impact load, the noise hardly affects the identification of the damage location. Finally, this method was applied to the ZJ70 derrick steel structure laboratory model and compared with the IMF instantaneous energy curvature method. We verified the feasibility of this method in the damage location simulation experiment.
Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S
2015-09-01
The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.
Lim, Ik Soo; Leek, E Charles
2012-07-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately, Feldman and Singh (2005, Psychological Review, 112, 243-252) proposed a mathematical derivation to yield information content as a function of curvature along a contour. Here, we highlight several fundamental errors in their derivation and in its associated implementation, which are problematic in both mathematical and psychological senses. Instead, we propose an alternative mathematical formulation for information measure of contour curvature that addresses these issues. Additionally, unlike in previous work, we extend this approach to 3-dimensional (3D) shape by providing a formal measure of information content for surface curvature and outline a modified version of the minima rule relating to part segmentation using curvature in 3D shape. Copyright 2012 APA, all rights reserved.
Photoionization effects in ionization fronts
International Nuclear Information System (INIS)
Arrayas, Manuel; Fontelos, Marco A; Trueba, Jose L
2006-01-01
In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work
Photoionization effects in ionization fronts
Energy Technology Data Exchange (ETDEWEB)
Arrayas, Manuel [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain); Trueba, Jose L [Departamento de Electromagnetismo, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)
2006-12-21
In this paper we study the effects of photoionization processes on the propagation of both negative and positive ionization fronts in streamer discharge. We show that negative fronts accelerate in the presence of photoionization events. The appearance and propagation of positive ionization fronts travelling with constant velocity is explained as the result of the combined effects of photoionization and electron diffusion. The photoionization range plays an important role in the selection of the velocity of the ionization front as we show in this work.
Zero curvature-surface driven small objects
Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin
2017-08-01
In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07baryonic matter component.
Amplification of curvature perturbations in cyclic cosmology
International Nuclear Information System (INIS)
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-01-01
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
Curvature, zero modes and quantum statistics
Energy Technology Data Exchange (ETDEWEB)
Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)
2006-08-18
We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)
Differential geometry bundles, connections, metrics and curvature
Taubes, Clifford Henry
2011-01-01
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Memory for curvature of objects: haptic touch vs. vision.
Ittyerah, Miriam; Marks, Lawrence E
2007-11-01
The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic-haptic (T-T) and haptic-visual (T-V) discrimination of curvature in a short-term memory paradigm, using 30-second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial-motor representation. Experiment 2 compared visual-visual (V-V) and visual-haptic (V-T) short-term memory, again using 30-second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra-modal visual performance and cross-modal performance were similar. Comparing the four modality conditions (inter-modal V-T, T-V; intra-modal V-V, T-T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2).
Limited capacity for contour curvature in iconic memory.
Sakai, Koji
2006-06-01
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.
MMIC tuned front-end for a coherent optical receiver
DEFF Research Database (Denmark)
Petersen, Anders Kongstad; Jagd, A. M.; Ebskamp, F.
1993-01-01
A low-noise transformer tuned optical front-end for a coherent optical receiver is described. The front-end is based on a GaInAs/InP p-i-n photodiode and a full custom designed GaAs monolithic microwave integrated circuit (MMIC). The measured equivalent input noise current density is between 5-16 p...
Polarized curvature radiation in pulsar magnetosphere
Wang, P. F.; Wang, C.; Han, J. L.
2014-07-01
The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.
Emergent gravity in spaces of constant curvature
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)
2017-03-07
In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.
Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit
2018-01-01
Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
PIV tracer behavior on propagating shock fronts
International Nuclear Information System (INIS)
Glazyrin, Fyodor N; Mursenkova, Irina V; Znamenskaya, Irina A
2016-01-01
The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48 × 24 mm) was used. The flat shock wave with Mach numbers M = 1.4–2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M = 1.2–1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03 ± 0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves. (paper)
Observational constraints on dark energy and cosmic curvature
International Nuclear Information System (INIS)
Wang Yun; Mukherjee, Pia
2007-01-01
Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z
Lecture notes on mean curvature flow, barriers and singular perturbations
Bellettini, Giovanni
2013-01-01
The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.
The curvature calculation mechanism based on simple cell model.
Yu, Haiyang; Fan, Xingyu; Song, Aiqi
2017-07-20
A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.
Active learning of Pareto fronts.
Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto
2014-03-01
This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.
Geochemistry of Natural Redox Fronts
International Nuclear Information System (INIS)
Hofmann, B.A.
1999-05-01
Redox fronts are important geochemical boundaries which need to be considered in safety assessment of deep repositories for radioactive waste. In most cases, selected host-rock formations will be reducing due to the presence of ferrous minerals, sulphides, etc. During construction and operation of the repository, air will be introduced into the formation. After repository closure, oxidising conditions may persist locally until all oxygen is consumed. In the case of high-level waste, radiolysis of water may provide an additional source of oxidants. Oxidising conditions within a repository are thus possible and potentially have a strong influence on the mobility of many elements. The rate of movement of redox fronts, the boundary between oxidising and reducing environments, and their influence on migrating radionuclides are thus important factors influencing repository performance. The present report is a review of elemental behaviour at natural redox fronts, based on published information and work of the author. Redox fronts are geochemically and geometrically variable manifestations of a global interface between generally oxidising geochemical milieux in contact with the atmosphere and generally reducing milieux in contact with rocks containing ferrous iron, sulphide and/or organic carbon. A classification of redox fronts based on a subdivision into continental near-surface, marine near-surface, and deep environments is proposed. The global redox interface is often located close to the surface of rocks and sediments and, sometimes, within bodies of water. Temperature conditions are close to ambient. A deeper penetration of the global redox front to depths of several kilometres is found in basins containing oxidised sediments (red beds) and in some hydrothermal circulation systems. Temperatures at such deep redox fronts may reach 200 o C. Both near-surface and deep redox fronts are sites of formation of economic deposits of redox-sensitive elements, particularly of
International Nuclear Information System (INIS)
Chrystie, R S M; Burns, I S; Hult, J; Kaminski, C F
2008-01-01
Measurement of curvature of the flamefront of premixed turbulent flames is important for the validation of numerical models for combustion. In this work, curvature is measured from contours that outline the flamefront, which are generated from laser-induced fluorescence images. The contours are inherently digitized, resulting in pixelation effects that lead to difficulties in computing curvature of the flamefront accurately. A common approach is to fit functions locally to short sections along the flame contour, and this approach is also followed in this work; the method helps smoothen the pixelation before curvature is measured. However, the length and degree of the polynomial, and hence the amount of smoothing, must be correctly set in order to maximize the precision and accuracy of the curvature measurements. Other researchers have applied polynomials of different orders and over different segment lengths to circles of known curvature as a test to determine the appropriate choice of polynomial; it is shown here that this method results in a sub-optimal choice of polynomial function. Here, we determine more suitable polynomial functions through use of a circle whose radius is sinusoidally modulated. We show that this leads to a more consistent and reliable choice for the local polynomial functions fitted to experimental data. A polynomial function thus determined is then applied to flame contour data to measure curvature of experimentally acquired flame contours. The results show that there is an enhancement in local flame speed at sections of the flamefront with a non-zero curvature, and this agrees with numerical models
Inﬂuence of implant rod curvature on sagittal correction of scoliosis deformity
DEFF Research Database (Denmark)
Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro
2014-01-01
of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...
Curvature vector smart sensing with a long-period fibre grating probed by artificial intelligence
International Nuclear Information System (INIS)
Costa, R Z V; Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L
2010-01-01
This work shows a curvature vector sensing device based on a single long-period grating written in a commercial photosensitive optical fibre. The sensing approach uses an artificial neural network based on multilayer perceptrons for data analysis. Curvatures from 0.00 to 3.13 m −1 and angular orientations from 0 to 180° were measured with the device, with combined standard uncertainties of 0.05 m −1 and 1.5°, respectively. The root mean square errors for curvature and angular orientation were 0.0008 m −1 and 0.3° in the training stage and 0.002 m −1 and 0.9° in the test stage, respectively
On Riemannian manifolds (Mn, g) of quasi-constant curvature
International Nuclear Information System (INIS)
Rahman, M.S.
1995-07-01
A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs
Statistical mechanics of paths with curvature dependent action
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1987-01-01
We analyze the scaling limit of discretized random paths with curvature dependent action. For finite values of the curvature coupling constant the theory belongs to the universality class of simple random walk. It is possible to define a non-trivial scaling limit if the curvature coupling tends to infinity. We compute exactly the two point function in this limit and discuss the relevance of our results for random surfaces and string theories. (orig.)
Evolution of the curvature perturbations during warm inflation
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2009-01-01
This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming
2015-01-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Robust estimation of adaptive tensors of curvature by tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung
2005-03-01
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang
2015-05-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Cholera toxin B subunit induces local curvature on lipid bilayers
DEFF Research Database (Denmark)
Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.
2017-01-01
B induces a local membrane curvature that is essential for its clathrin-independent uptake. Using all-atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding...... alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors....
Hair curvature: a natural dialectic and review.
Nissimov, Joseph N; Das Chaudhuri, Asit Baran
2014-08-01
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways
Hawking temperature of constant curvature black holes
International Nuclear Information System (INIS)
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Differential geometry connections, curvature, and characteristic classes
Tu, Loring W
2017-01-01
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...
Curvature radiation by bunches of particles
International Nuclear Information System (INIS)
Saggion, A.
1975-01-01
A bunch of relativistic particles moving on a curved trajectory is considered. The coherent emission of curvature radiation is described with particular regard to the role played by the 'shape' of the bunch as a function of its dimensions. It is found that the length of the bunch strongly affects the spectrum of the radiation emitted, with no effect on its polarization. For wavelengths shorter than the length of the bunch, the emitted intensity as a function of frequency shows recurrent maxima and minima, the height of the maxima being proportional to νsup(-5/3). The bunch dimensions perpendicular to the plane of the orbit affect both the spectral intensity and the polarization of the radiation. (orig./BJ) [de
Natural curvature for manifest T-duality
International Nuclear Information System (INIS)
Poláček, Martin; Siegel, Warren
2014-01-01
We reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincaré/Lorentz. This construction initially doubles not only the (spacetime) coordinates for translations but also those for Lorentz transformations (and their “dual”). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced ad hoc to the covariant derivative as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections)
Nonminimal coupling of perfect fluids to curvature
International Nuclear Information System (INIS)
Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge
2008-01-01
In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f 2 (R)]L m , where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L m =p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L m do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.
Topological photonic crystals with zero Berry curvature
Liu, Feng; Deng, Hai-Yao; Wakabayashi, Katsunori
2018-02-01
Topological photonic crystals are designed based on the concept of Zak's phase rather than the topological invariants such as the Chern number and spin Chern number, which rely on the existence of a nonvanishing Berry curvature. Our photonic crystals (PCs) are made of pure dielectrics and sit on a square lattice obeying the C4 v point-group symmetry. Two varieties of PCs are considered: one closely resembles the electronic two-dimensional Su-Schrieffer-Heeger model, and the other continues as an extension of this analogy. In both cases, the topological transitions are induced by adjusting the lattice constants. Topological edge modes (TEMs) are shown to exist within the nontrivial photonic band gaps on the termination of those PCs. The high efficiency of these TEMs transferring electromagnetic energy against several types of disorders has been demonstrated using the finite-element method.
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury
Directory of Open Access Journals (Sweden)
Jace B. King
2016-01-01
Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.
Spectral combination of spherical gravitational curvature boundary-value problems
PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel
2018-04-01
Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error
"Front" hotshet izvinitsja / Aleksandr Ikonnikov
Ikonnikov, Aleksandr
2003-01-01
Põhiliselt vene rahvusest noori ühendava liikumise "Front" esindajad kavatsevad kohtuda USA suursaadikuga Eestis ja vabandada kevadel suursaatkonna ees vägivallatsemisega lõppenud meeleavalduse pärast
Energy conversion at dipolarization fronts
Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.
2017-02-01
We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.
On harmonic curvatures of a Frenet curve in Lorentzian space
International Nuclear Information System (INIS)
Kuelahci, Mihriban; Bektas, Mehmet; Erguet, Mahmut
2009-01-01
In this paper, we consider curves of AW(k)-type, 1 ≤ k ≤ 3, in Lorentzian space. We give curvature conditions of these kind of curves. Furthermore, we study harmonic curvatures of curves of AW(k)-type. We investigate that under what conditions AW(k)-type curves are helix. Some related theorems and corollaries are also proved.
The scalar curvature problem on the four dimensional half sphere
Ben-Ayed, M; El-Mehdi, K
2003-01-01
In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.
Statistical mechanics of surfaces with curvature dependent action
International Nuclear Information System (INIS)
Jonsson, T.
1987-01-01
We review recent results about discretized random surfaces whose action (energy) depends on the extrinsic curvature. The surface tension scales to zero at an appropriate critical point if the coupling constant of the curvature term is taken to infinity. At this critical point one expects to be able to construct a continuum theory of smooth surfaces. (orig.)
Curvature of random walks and random polygons in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2013-01-01
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)
QCD Phenomenology and Light-Front Wavefunctions
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2001-01-01
A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions
QCD and Light-Front Holography
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.
2010-10-27
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
DEFF Research Database (Denmark)
Brodsky, S. J.; de Teramond, G. F.
2012-01-01
Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic...... projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions Psi(n)/H(x(i), k(perpendicular to i), lambda(i)) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark...
INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE
Directory of Open Access Journals (Sweden)
S. A. Ustenko
2014-03-01
Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear
Haptic perception of object curvature in Parkinson's disease.
Directory of Open Access Journals (Sweden)
Jürgen Konczak
2008-07-01
Full Text Available The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD.Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82% showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace, haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group.Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease.
Quantifying the quality of hand movement in stroke patients through three-dimensional curvature
Directory of Open Access Journals (Sweden)
Osu Rieko
2011-10-01
Full Text Available Abstract Background To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test scores ranging from 2 (incomplete performance to 4 (mild clumsiness were recruited. Nine healthy participant with a SIAS score of 5 (normal also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable
5-D interpolation with wave-front attributes
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that
Surface Curvature in Island Groups and Discontinuous Cratonic Structures
McDowell, M. S.
2002-05-01
distance separations, perhaps related to geologic time scale. What could this mean? 1) Two-dimensional expansion of an original Precambrian craton can be justified as rupture in some non explosive way (apparently not volcanic or quake action) with resulting cracks subsequently filled in from below. The cause of the initial cracking is problematic - consider an eggshell: a good whack on the outside, or a good chick on the inside, could make it happen. But 2) the tightened arc? The propensity to "curl up"? Is there something freaky about connecting flat map projections to make this happen, or has it really been there all along and we never realized it? If this is applied in reverse, curvature flattening further with time, the significance could be interesting. For idle speculation, the Atlantic mid-ocean ridge is calculated opening at 3cms/year. That's 3 km in 100,000 years. At that rate it would have taken 2.2 x 109 to open the Canadian archipelago this far. Which puts it almost into the Archean, matching Slave Province, not Wopmay, associated with the Huronian. So what WAS the early sea floor spreading rate? Monster speculations. Scientific research has created a fortress of opinion on Archean land masses and how they grew. This study proposes a phenomenon that has the advantage of measurability, one we can literally get our hands on, in our effort to know.
Observational constraints on the primordial curvature power spectrum
Emami, Razieh; Smoot, George F.
2018-01-01
CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would
Ozkuvanci, Ünsal; Ziylan, Orhan; Dönmez, M Irfan; Yucel, Omer Baris; Oktar, Tayfun; Ander, Haluk; Nane, Ismet
2017-01-01
The aim of this study is to analyze post pubertal results of pre pubertal tunica albuginea plication with non-absorbable sutures in the correction of CPC. The files of patients who underwent tunica albuginea plication without incision (dorsal/lateral) were retrospectively reviewed. Patients younger than 13 years of age at the time of operation and older than 14 years of age in November 2015 were included. Patients with a penile curvature of less than 30 degrees & more than 45 degrees and penile/urethral anomalies were excluded. All of the patients underwent surgery followed by circumcision. The mean age of patients at the time of the operation was 9.7 years (range, 6-13 years). The mean degree of ventral penile curvature measured during the operation was 39 degrees while it was 41 degrees in the lateral curvatures. All of the patients were curvature-free at the end of the operation. At the time of the follow-up examination, the mean age was 16.7 years (range, 14-25 years). Six patients had a straight (0-10 degrees) penis during erection and seven patients had recurrent penile curvatures ranging from 30 to 50 degrees. Pre pubertal tunica albuginea plication of congenital penile curvature (30-45 degrees) with non-absorbable sutures performed without incision is a minimal invasive method especially when performed during circumcision. However, recurrence might be observed in half of the patients after puberty. Copyright® by the International Brazilian Journal of Urology.
Directory of Open Access Journals (Sweden)
Ünsal Ozkuvanci
Full Text Available ABSTRACT Objective: The aim of this study is to analyze post pubertal results of pre pubertal tunica albuginea plication with non-absorbable sutures in the correction of CPC. Materials and Methods: The files of patients who underwent tunica albuginea plication without incision (dorsal/lateral were retrospectively reviewed. Patients younger than 13 years of age at the time of operation and older than 14 years of age in November 2015 were included. Patients with a penile curvature of less than 30 degrees & more than 45 degrees and penile/urethral anomalies were excluded. All of the patients underwent surgery followed by circumcision. Results: The mean age of patients at the time of the operation was 9.7 years (range, 6-13 years. The mean degree of ventral penile curvature measured during the operation was 39 degrees while it was 41 degrees in the lateral curvatures. All of the patients were curvature-free at the end of the operation. At the time of the follow-up examination, the mean age was 16.7 years (range, 14-25 years. Six patients had a straight (0-10 degrees penis during erection and seven patients had recurrent penile curvatures ranging from 30 to 50 degrees. Conclusion: Pre pubertal tunica albuginea plication of congenital penile curvature (30-45 degrees with non-absorbable sutures performed without incision is a minimal invasive method especially when performed during circumcision. However, recurrence might be observed in half of the patients after puberty.
Trace metal fronts in European shelf waters
International Nuclear Information System (INIS)
Kremling, K.
1983-01-01
The Hebrides shelf edge area is characterized by strong horizontal salinity gradients (fronts) which mark the boundary between Scottish coastal and oceanic waters. The results presented here, obtained in summer 1981 on a transect between the open north Atlantic and the German Bight, confirm that the hydrographical front is accompanied by dramatic increases in inorganic nutrients (phosphate, silicate) and dissolved trace elements such as Cd, Cu, Mn, and 226 Ra. These data (together with measurements from North Sea regions) suggest that the trace metals are mobilized from partly reduced (organic-rich) sediments and vertically mixed into the surface waters. The regional variations evident from the transect are interpreted as being the result of the hydrography prevailing in waters around the British Isles. (author)
Face recognition based on depth maps and surface curvature
Gordon, Gaile G.
1991-09-01
This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.
Dynamic curvature sensing employing ionic-polymer–metal composite sensors
International Nuclear Information System (INIS)
Bahramzadeh, Yousef; Shahinpoor, Mohsen
2011-01-01
A dynamic curvature sensor is presented based on ionic-polymer–metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson–Nernst–Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations
Gregory, A L; Agarwal, A; Lasenby, J
2017-11-01
We present a novel application of rotors in geometric algebra to represent the change of curvature tensor that is used in shell theory as part of the constitutive law. We introduce a new decomposition of the change of curvature tensor, which has explicit terms for changes of curvature due to initial curvature combined with strain, and changes in rotation over the surface. We use this decomposition to perform a scaling analysis of the relative importance of bending and stretching in flexible tubes undergoing self-excited oscillations. These oscillations have relevance to the lung, in which it is believed that they are responsible for wheezing. The new analysis is necessitated by the fact that the working fluid is air, compared to water in most previous work. We use stereographic imaging to empirically measure the relative importance of bending and stretching energy in observed self-excited oscillations. This enables us to validate our scaling analysis. We show that bending energy is dominated by stretching energy, and the scaling analysis makes clear that this will remain true for tubes in the airways of the lung.
Test of the FLRW Metric and Curvature with Strong Lens Time Delays
Energy Technology Data Exchange (ETDEWEB)
Liao, Kai [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhengxiang; Wang, Guo-Jian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk [Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)
2017-04-20
We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.
Probing interaction and spatial curvature in the holographic dark energy model
International Nuclear Information System (INIS)
Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin
2009-01-01
In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model
Test of the FLRW Metric and Curvature with Strong Lens Time Delays
International Nuclear Information System (INIS)
Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long
2017-01-01
We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.
He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an
2018-03-01
Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.
Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments
DEFF Research Database (Denmark)
Faes, Antonin; Frandsen, Henrik Lund; Pihlatie, Mikko
2010-01-01
One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zi......One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel...... it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12 cm2 half-cell. Curvature and porosity are measured...
National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...
National Oceanic and Atmospheric Administration, Department of Commerce — Curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Curvature describes the rate of change of...
Detonative propagation and accelerative expansion of the Crab Nebula shock front.
Gao, Yang; Law, Chung K
2011-10-21
The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society
Influence of Coanda surface curvature on performance of bladeless fan
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Determination of cut front position in laser cutting
International Nuclear Information System (INIS)
Pereira, M; Thombansen, U
2016-01-01
Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable. (paper)
Determination of cut front position in laser cutting
Pereira, M.; Thombansen, U.
2016-07-01
Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable.
Positive spatial curvature does not falsify the landscape
Horn, B.
2017-12-01
We present a simple cosmological model where the quantum tunneling of a scalar field rearranges the energetics of the matter sector, sending a stable static ancestor vacuum with positive spatial curvature into an inating solution with positive curvature. This serves as a proof of principle that an observation of positive spatial curvature does not falsify the hypothesis that our current observer patch originated from false vacuum tunneling in a string or field theoretic landscape. This poster submission is a summary of the work, and was presented at the 3rd annual ICPPA held in Moscow from October 2 to 5, 2017, by Prof. Rostislav Konoplich on behalf of the author.
Curvature perturbation and waterfall dynamics in hybrid inflation
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao
2011-01-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here
Curvature perturbation and waterfall dynamics in hybrid inflation
Energy Technology Data Exchange (ETDEWEB)
Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Numerical studies of transverse curvature effects on transonic flow stability
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long
2018-05-01
The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.
Characteristic wave fronts in magnetohydrodynamics
International Nuclear Information System (INIS)
Menon, V.V.; Sharma, V.D.
1981-01-01
The influence of magnetic field on the process of steepening or flattening of the characteristic wave fronts in a plane and cylindrically symmetric motion of an ideal plasma is investigated. This aspect of the problem has not been considered until now. Remarkable differences between plane, cylindrical diverging, and cylindrical converging waves are discovered. The discontinuity in the velocity gradient at the wave front is shown to satisfy a Bernoulli-type equation. The discussion of the solutions of such equations reported in the literature is shown to be incomplete, and three general theorems are established. 18 refs
Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz
2017-12-01
Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.
Flow structure in front of the broad-crested weir
Directory of Open Access Journals (Sweden)
Zachoval Zbyněk
2015-01-01
Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.
Radiation hardness on very front-end for SPD
International Nuclear Information System (INIS)
Cano, Xavier; Graciani, Ricardo; Gascon, David; Garrido, Lluis; Bota, Sebastia; Herms, Atila; Comerma, Albert; Riera, Jordi
2005-01-01
The calorimeter front-end electronics of the LHCb experiment will be located in a region, which is not protected from radiation. Therefore, all the electronics must be qualified to stand some defined radiation levels. The procedure, measurements and results of an irradiation test for every component of the very front-end SPD detector, which is part of the LHCb calorimeter are presented here. All the tested components, except a custom made ASIC, are commercially available
Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine
Energy Technology Data Exchange (ETDEWEB)
Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia)
2008-04-07
The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm ({+-}0.6 mm) for the first and 2.1 mm ({+-}1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and
Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine
International Nuclear Information System (INIS)
Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo
2008-01-01
The purpose of this study is to present a framework for quantitative analysis of spinal curvature in 3D. In order to study the properties of such complex 3D structures, we propose two descriptors that capture the characteristics of spinal curvature in 3D. The descriptors are the geometric curvature (GC) and curvature angle (CA), which are independent of the orientation and size of spine anatomy. We demonstrate the two descriptors that characterize the spinal curvature in 3D on 30 computed tomography (CT) images of normal spine and on a scoliotic spine. The descriptors are determined from 3D vertebral body lines, which are obtained by two different methods. The first method is based on the least-squares technique that approximates the manually identified vertebra centroids, while the second method searches for vertebra centroids in an automated optimization scheme, based on computer-assisted image analysis. Polynomial functions of the fourth and fifth degree were used for the description of normal and scoliotic spinal curvature in 3D, respectively. The mean distance to vertebra centroids was 1.1 mm (±0.6 mm) for the first and 2.1 mm (±1.4 mm) for the second method. The distributions of GC and CA values were obtained along the 30 images of normal spine at each vertebral level and show that maximal thoracic kyphosis (TK), thoracolumbar junction (TJ) and maximal lumbar lordosis (LL) on average occur at T3/T4, T12/L1 and L4/L5, respectively. The main advantage of GC and CA is that the measurements are independent of the orientation and size of the spine, thus allowing objective intra- and inter-subject comparisons. The positions of maximal TK, TJ and maximal LL can be easily identified by observing the GC and CA distributions at different vertebral levels. The obtained courses of the GC and CA for the scoliotic spine were compared to the distributions of GC and CA for the normal spines. The significant difference in values indicates that the descriptors of GC and CA
A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.
Chen, Chun-Chi; Chen, Hao-Wen
2013-08-28
This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
On the projective curvature tensor of generalized Sasakian-space ...
African Journals Online (AJOL)
space-forms under some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; ...
Inverse curvature flows in asymptotically Robertson Walker spaces
Kröner, Heiko
2018-04-01
In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.
On a class of graphs with prescribed mean curvature
International Nuclear Information System (INIS)
Duong Minh Duc; Costa Salavessa, I.M. de
1989-11-01
We study a class of quasilinear elliptic equations on the unit ball of R n and apply these results to get the existence of graphs with prescribed mean curvature on n-hyperbolic spaces. (author). 18 refs
Higher-order curvature terms and extended inflation
International Nuclear Information System (INIS)
Wang Yun
1990-01-01
We consider higher-order curvature terms in context of the Brans-Dicke theory of gravity, and investigate the effects of these terms on extended inflationary theories. We find that the higher-order curvature terms tend to speed up inflation, although the original extended-inflation solutions are stable when these terms are small. Analytical solutions are found for two extreme cases: when the higher-order curvature terms are small, and when they dominate. A conformal transformation is employed in solving the latter case, and some of the subtleties in this technique are discussed. We note that percolation is less likely to occur when the higher-order curvature terms are present. An upper bound on α is expected if we are to avoid excessive and inadequate percolation of true-vacuum bubbles
Gauge and non-gauge curvature tensor copies
International Nuclear Information System (INIS)
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
Bacterial cell curvature through mechanical control of cell growth
DEFF Research Database (Denmark)
Cabeen, M.; Charbon, Godefroid; Vollmer, W.
2009-01-01
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...
Constant scalar curvature hypersurfaces in extended Schwarzschild space-time
International Nuclear Information System (INIS)
Pareja, M. J.; Frauendiener, J.
2006-01-01
We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat
Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
International Nuclear Information System (INIS)
Li Guanghan; Tian Daping; Wu Chuanxi
2011-01-01
We prove the existence and asymptotic behavior of rotationally symmetric solitons of mean curvature flow for noncompact submanifolds in Euclidean and Minkowski spaces, which generalizes part of the corresponding results for hypersurfaces of Jian.
Curvature and elasticity of substitution: what is the link?
Czech Academy of Sciences Publication Activity Database
Matveenko, Andrei; Matveenko, V.
2014-01-01
Roč. 10, č. 2 (2014), s. 7-20 ISSN 1800-5845 Grant - others:UK(CZ) GAUK 308214 Institutional support: PRVOUK-P23 Keywords : curvature * elasticity of substitution * production function Subject RIV: AH - Economics
Cosmic censorship, persistent curvature and asymptotic causal pathology
International Nuclear Information System (INIS)
Newman, R.P.A.C.
1984-01-01
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Measuring the curvature of space with stretched strings
International Nuclear Information System (INIS)
Lyth, D.H.
1983-01-01
The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)
Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT
International Nuclear Information System (INIS)
Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.; Lindfors, Karen K.
2015-01-01
Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimal feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C_T) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C_T yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C_T were conducted. The results showed that C_T was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure
No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan
2010-01-01
In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the clas...
Existence of conformal metrics on spheres with prescribed Paneitz curvature
International Nuclear Information System (INIS)
Ben Ayed, Mohamed; El Mehdi, Khalil
2003-07-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)
Inflation in a shear-or curvature-dominated universe
International Nuclear Information System (INIS)
Steigman, G.; Turner, M.S.
1983-01-01
We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)
Curvature-driven acceleration: a utopia or a reality?
International Nuclear Information System (INIS)
Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh
2006-01-01
The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature
Curvature-driven acceleration: a utopia or a reality?
Energy Technology Data Exchange (ETDEWEB)
Das, Sudipta [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Banerjee, Narayan [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Dadhich, Naresh [Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)
2006-06-21
The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.
Existence of conformal metrics on spheres with prescribed Paneitz curvature
Ben-Ayed, M
2003-01-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong; Bobby,; Sumpter, Bobby G.; Meunier, Vincent; Yushin, Gleb; Portet, Cristelle; Gogotsi, Yury
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior ...
Atomic fine structure in a space of constant curvature
International Nuclear Information System (INIS)
Bessis, N.; Bessis, G.; Shamseddine, R.
1982-01-01
As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)
Perry, Jim
1995-01-01
Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)
Linear response to long wavelength fluctuations using curvature simulations
Energy Technology Data Exchange (ETDEWEB)
Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)
2016-09-01
We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.
The Spatial Structure of Planform Migration - Curvature Relation of Meandering Rivers
Guneralp, I.; Rhoads, B. L.
2005-12-01
of previous studies. Continuous curvature series can be related to measured rates of lateral migration to explore empirically the relationship between spatially extended curvature and local bend migration. The methodology is applied to a study reach along a highly sinuous section of the Embarras River in Illinois, USA, which contains double-headed asymmetrical loops. To identify patterns of channel planform and rates of lateral migration for a study reach along Embarrass River in central Illinois, geographical information systems analysis of historical aerial photography over a period from 1936 to 1998 was conducted. Results indicate that parametric cubic spline interpolation provides excellent characterization of the complex planforms and planform curvatures of meandering rivers. The findings also indicate that the spatial structure of migration rate-curvature relation may be more complex than a simple exponential distance-decay function. The study represents a first step toward unraveling the spatial structure of planform evolution of meandering rivers and for developing models of planform dynamics that accurately relate spatially extended patterns of channel curvature to local rates of lateral migration. Such knowledge is vital for improving the capacity to accurately predict planform change of meandering rivers.
Curvature reduces bending strains in the quokka femur
Directory of Open Access Journals (Sweden)
Kyle McCabe
2017-03-01
Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.
Curvature recognition and force generation in phagocytosis
Directory of Open Access Journals (Sweden)
Prassler Jana
2010-12-01
Full Text Available Abstract Background The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. Results Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR domain in combination with an Src homology (SH3 domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. Conclusions Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle
Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko
2017-07-01
The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.
Chow, Alexander K; Sidelsky, Steven A; Levine, Laurence A
2018-05-22
There are limited data in the literature that describe the management of Peyronie's disease (PD) with severe compound curvature, which often requires additional straightening procedures after plaque excision and grafting (PEG) to achieve functional penile straightening (compound curvature treated with PEG and supplemental tunica albuginea plication (TAP). We performed a retrospective chart review of patients with PD and acute angulation who underwent PEG (group 1) and patients with compound curvature who underwent PEG with TAP (group 2) between 2007 and 2016. Primary post-operative outcomes of interest include change in penile curvature, change in measured stretched penile length, and subjective report on penile sensation and sexually induced penile rigidity. 240 Men with PD were included in the study, of which 79 (33%) patients in group 1 underwent PEG and 161 (67%) in group 2 underwent PEG and TAP. There was no difference in associated PD co-morbidities including age, hypertension, hyperlipidemia, hypogonadism, diabetes, or tobacco use. After artificial induction of erection with intracorporal trimix injection, the average primary curvature was 73 (range, 20-120) degrees for group 1 compared to 79 (range, 35-140) degrees for group 2 (P = .01). Group 2 had an average secondary curvature of 36 (20-80 degrees). After completion of PEG, men in group 2 had an average residual curvature of 30 (range, 20-50) degrees which required 1-6 TAPs to achieve functional straightness (compound curvature to date. Limitations of this study include the retrospective nature of the analysis as well as the lack of a validated objective measurement of erectile function after penile straightening. Our study found no baseline difference in underlying co-morbidities in men with severe compound curvature compared with men with acute severe angulated curvature. Men with severe compound curvature represent a severe and under-recognized population of men with PD who can be surgically
Model-independent curvature determination with 21cm intensity mapping experiments
Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda
2018-04-01
Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21cm intensity mapping experiments such as HIRAX are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.
Model-independent curvature determination with 21 cm intensity mapping experiments
Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda
2018-06-01
Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.
Warps, grids and curvature in triple vector bundles
Flari, Magdalini K.; Mackenzie, Kirill
2018-06-01
A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.
Sequence periodicity in nucleosomal DNA and intrinsic curvature.
Nair, T Murlidharan
2010-05-17
Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
Effect of Tension and Curvature of Skin on Insertion Characteristics of Microneedle Array
Tachikawa, Hiroto; Takano, Naoki; Nishiyabu, Kazuaki; Miki, Norihisa; Ami, Yoshimichi
Recent MEMS (micro electro mechanical system) fabrication techniques have made it possible to produce painless microneedles precisely enough to be inserted into epidermis layer penetrating the stratum corneum of human skin. This paper presents a testing procedure to evaluate the insertion characteristics of microneedle array using cultured human skin considering the tension and the curvature. First, the biaxial strain applied to the cultured human skin was measured by optical technique with image processing. It was found that almost constant strain could be successfully given within a certain area and that error factors in the experiment except the thickness variation of the cultured skin were negligible. Next, using a microneedle square array for brain machine interface (BMI) application, the effects of biaxial tension and the curvature on insertion characteristics were discussed. Within the above mentioned area with high strain, the needles were successfully inserted.
Light front quantum chromodynamics: Towards phenomenology
Indian Academy of Sciences (India)
Light front dynamics; quantum chromodynamics; deep inelastic scattering. PACS Nos 11.10. ... What makes light front dynamics appealing from high energy phenomenology point of view? .... given in terms of Poincarй generators by. MВ = W P ...
Front Propagation in Stochastic Neural Fields
Bressloff, Paul C.; Webber, Matthew A.
2012-01-01
We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse
Light-Front Holography and AdS/QCD Correspondence
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; de Teramond, Guy F.
2008-04-23
Light-Front Holography is a remarkable consequence of the correspondence between string theory in AdS space and conformal field theories in physical-space time. It allows string modes {Phi}(z) in the AdS fifth dimension to be precisely mapped to the light-front wavefunctions of hadrons in terms of a specific light-front impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron. This mapping was originally obtained by matching the exact expression for electromagnetic current matrix elements in AdS space with the corresponding exact expression for the current matrix element using light-front theory in physical space-time. More recently we have shown that one obtains the identical holographic mapping using matrix elements of the energy-momentum tensor, thus providing an important consistency test and verification of holographic mapping from AdS to physical observables defined on the light-front. The resulting light-front Schrodinger equations predicted from AdS/QCD give a good representation of the observed meson and baryon spectra and give excellent phenomenological predictions for amplitudes such as electromagnetic form factors and decay constants.
The role of curvature in silica mesoporous crystals
Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu
2012-01-01
Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.
The role of curvature in silica mesoporous crystals
Miyasaka, Keiichi
2012-02-08
Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.
Studying biomolecule localization by engineering bacterial cell wall curvature.
Directory of Open Access Journals (Sweden)
Lars D Renner
Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.
The speed-curvature power law of movements: a reappraisal.
Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco
2018-01-01
Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.
Seabirds and fronts: a brief overview
Schneider, David C.
1990-01-01
Oceanographic fronts are the sites of enhanced physical and biological activity, including locally concentrated feeding by marine birds. Two general hypotheses relating marine birds to fronts have been developed. The first is that enhanced primary production at fronts increases prey supply through increased animal growth, reproduction, or immigration. The second is that prey patches develop at fronts either through behavioural responses of prey to thermal or salinity gradients, or through int...
Fluctuation charge effects in ionization fronts
International Nuclear Information System (INIS)
Arrayas, Manuel; Trueba, Jose L; Baltanas, J P
2008-01-01
In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster
Fluctuation charge effects in ionization fronts
Energy Technology Data Exchange (ETDEWEB)
Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)
2008-05-21
In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.
Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.
2018-03-01
We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.
Waterfall field in hybrid inflation and curvature perturbation
International Nuclear Information System (INIS)
Gong, Jinn-Ouk; Sasaki, Misao
2011-01-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation
Waterfall field in hybrid inflation and curvature perturbation
Energy Technology Data Exchange (ETDEWEB)
Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Sasaki, Misao, E-mail: jgong@lorentz.leidenuniv.nl, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2011-03-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.
Evolution of curvature perturbation in generalized gravity theories
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2009-01-01
Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
On the scalar curvature of self-dual manifolds
International Nuclear Information System (INIS)
Kim, J.
1992-08-01
We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.
Mikucki, Michael; Zhou, Y C
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.
Vibration Analysis of Circular Arch Element Using Curvature
Directory of Open Access Journals (Sweden)
H. Saffari
2008-01-01
Full Text Available In this paper, a finite element technique was used to determine the natural frequencies, and the mode shapes of a circular arch element was based on the curvature, which can fully represent the bending energy and by the equilibrium equations, the shear and axial strain energy were incorporated into the formulation. The treatment of general boundary conditions dose need a consideration when the element is incorporated by the curvature-based formula. This can be obtained by the introduction of a transformation matrix between nodal curvatures and nodal displacements. The equation of the motion for the element was obtained by the Lagrangian equation. Four examples are presented in order to verify the element formulation and its analytical capability.
Linearized curvatures for auxiliary fields in the de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1988-09-19
New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.
Local divergence and curvature divergence in first order optics
Mafusire, Cosmas; Krüger, Tjaart P. J.
2018-06-01
The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment also to the beam width. It is established that the beam’s focusing parameter can be defined as a ratio of the local divergence to the curvature divergence. The relationships between the two divergences and other second moment-based beam parameters are presented. Their various mathematical properties are presented such as their evolution through first order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is briefly discussed.
Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan
2014-07-01
Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.
Differential sensor in front photopyroelectric technique: II. Experimental
International Nuclear Information System (INIS)
Ivanov, R; Moreno, I; Araujo-Andrade, C; MarIn, E; Cruz-Orea, A; Pichardo-Molina, J L
2009-01-01
We describe the differential cell design and the experimental (optical and electronic) setup for the differential front photopyroelectric technique, whose theory has been developed in the first part of this paper (Ivanov et al 2008 J. Phys. D: Appl. Phys. 41 085106). We will show first how the direct (non-differential) front photopyroelectric theory described in our previous paper reproduces well the experimental results. The usefulness of the differential technique is demonstrated by means of experimental measurements of the thermal effusivity in binary ethanol-water and glycerol-water mixtures, based on a theoretical methodology that simplifies the measurement procedure and diminishes the experimental uncertainty.
Differential sensor in front photopyroelectric technique: II. Experimental
Energy Technology Data Exchange (ETDEWEB)
Ivanov, R; Moreno, I; Araujo-Andrade, C [Facultad de Fisica, Universidad Autonoma de Zacatecas, Calz. Solidaridad Esquina Paseo de la Bufa s/n, CP 98060, Zacatecas, Zac. (Mexico); MarIn, E [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Instituto Politecnico Nacional, Legaria 694, Col. Irrigacion, CP 11500, Mexico D.F. (Mexico); Cruz-Orea, A [Departamento de Fisica, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, CP 07360, Mexico D.F. (Mexico); Pichardo-Molina, J L, E-mail: rumen@fisica.uaz.edu.m [Centro de Investigaciones en Optica, Loma del Bosque 115, Loma del Campestre, CP 37150, Leon, Guanajuato (Mexico)
2009-06-21
We describe the differential cell design and the experimental (optical and electronic) setup for the differential front photopyroelectric technique, whose theory has been developed in the first part of this paper (Ivanov et al 2008 J. Phys. D: Appl. Phys. 41 085106). We will show first how the direct (non-differential) front photopyroelectric theory described in our previous paper reproduces well the experimental results. The usefulness of the differential technique is demonstrated by means of experimental measurements of the thermal effusivity in binary ethanol-water and glycerol-water mixtures, based on a theoretical methodology that simplifies the measurement procedure and diminishes the experimental uncertainty.
Some curvature properties of quarter symmetric metric connections
International Nuclear Information System (INIS)
Rastogi, S.C.
1986-08-01
A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)
Vertex Normals and Face Curvatures of Triangle Meshes
Sun, Xiang
2016-08-12
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ŉormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.
Berry Curvature in Magnon-Phonon Hybrid Systems.
Takahashi, Ryuji; Nagaosa, Naoto
2016-11-18
We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.
Prescribed curvature tensor in locally conformally flat manifolds
Pina, Romildo; Pieterzack, Mauricio
2018-01-01
A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.
DEFF Research Database (Denmark)
Rask, Morten; Sørensen, Bent F.
2012-01-01
A new approach is proposed for measuring the J integral (and thus the fracture resistance) of interface cracks in multiply laminates. With this approach the J integral is found from beam curvatures and applied moments. Knowledge of ply layup and stiffness is not required. In order to test...... was obtained between the two approaches. © 2012 Elsevier Ltd. All rights reserved....
Hydrodynamic instabilities in an ablation front
International Nuclear Information System (INIS)
Piriz, A R; Portugues, R F
2004-01-01
The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved
Hydrodynamic instabilities in an ablation front
Energy Technology Data Exchange (ETDEWEB)
Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2004-06-01
The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.
Planar microlens with front-face angle: design, fabrication, and characterization
Hafiz, Md Abdullah Al
2016-07-08
This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.
Planar microlens with front-face angle: design, fabrication, and characterization
Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee
2016-07-01
This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.
Planar microlens with front-face angle: design, fabrication, and characterization
Hafiz, Md Abdullah Al; Michael, Aron; Kwok, Chee-Yee
2016-01-01
This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.
Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma.
Directory of Open Access Journals (Sweden)
Yong Woo Kim
Full Text Available Quantitative evaluation of lamina cribrosa (LC posterior bowing in primary open-angle glaucoma (POAG eyes using swept-source optical coherence tomography.Patients with POAG (n = 123 eyes and healthy individuals of a similar age (n = 92 eyes were prospectively recruited. Anterior laminar insertion depth (ALID was defined as the vertical distance between the anterior laminar insertion and a reference plane connecting the Bruch's membrane openings (BMO. The mean LC depth (mLCD was approximated by dividing the area enclosed by the anterior LC, the BMO reference plane, and the two vertical lines for ALID measurement by the length between those two vertical lines. The LC curvature index was defined as the difference between the mLCD and the ALID. The factors influencing the LC curvature index were evaluated.The ALID and mLCD were significantly larger in POAG eyes than in healthy controls (P -6 dB and moderate-to-advanced glaucoma (MD < -6 dB, P = 0.95.LC posterior bowing was increased in POAG eyes, and was significantly associated with structural optic nerve head (ONH changes but not with functional glaucoma severity. Quantitative evaluation of LC curvature can facilitate assessment of glaucomatous ONH change.
The curvature of sensitometric curves for Kodak XV-2 film irradiated with photon and electron beams.
van Battum, L J; Huizenga, H
2006-07-01
Sensitometric curves of Kodak XV-2 film, obtained in a time period of ten years with various types of equipment, have been analyzed both for photon and electron beams. The sensitometric slope in the dataset varies more than a factor of 2, which is attributed mainly to variations in developer conditions. In the literature, the single hit equation has been proposed as a model for the sensitometric curve, as with the parameters of the sensitivity and maximum optical density. In this work, the single hit equation has been translated into a polynomial like function as with the parameters of the sensitometric slope and curvature. The model has been applied to fit the sensitometric data. If the dataset is fitted for each single sensitometric curve separately, a large variation is observed for both fit parameters. When sensitometric curves are fitted simultaneously it appears that all curves can be fitted adequately with a sensitometric curvature that is related to the sensitometric slope. When fitting each curve separately, apparently measurement uncertainty hides this relation. This relation appears to be dependent only on the type of densitometer used. No significant differences between beam energies or beam modalities are observed. Using the intrinsic relation between slope and curvature in fitting sensitometric data, e.g., for pretreatment verification of intensity-modulated radiotherapy, will increase the accuracy of the sensitometric curve. A calibration at a single dose point, together with a predetermined densitometer-dependent parameter ODmax will be adequate to find the actual relation between optical density and dose.
Three-Dimensional Analysis of the Curvature of the Femoral Canal in 426 Chinese Femurs
Directory of Open Access Journals (Sweden)
Xiu-Yun Su
2015-01-01
Full Text Available Purpose. The human femur has long been considered to have an anatomical anterior curvature in the sagittal plane. We established a new method to evaluate the femoral curvature in three-dimensional (3D space and reveal its influencing factors in Chinese population. Methods. 3D models of 426 femurs and the medullary canal were constructed using Mimics software. We standardized the positions of all femurs using 3ds Max software. After measuring the anatomical parameters, including the radius of femoral curvature (RFC and banking angle, of the femurs using the established femur-specific coordinate system, we analyzed and determined the relationships between the anatomical parameters of the femur and the general characteristics of the population. Results. Pearson’s correlation analyses showed that there were positive correlations between the RFC and height (r=0.339, p<0.001 and the femoral length and RFC (r=0.369, p<0.001 and a negative correlation between the femoral length and banking angle (r=-0.223, p<0.001. Stepwise linear regression analyses showed that the most relevant factors for the RFC and banking angle were the femoral length and gender, respectively. Conclusions. This study concluded that the banking angle of the femur was significantly larger in female than in male.
Energy Technology Data Exchange (ETDEWEB)
None
1978-12-01
The project's first objective is to establish, analytically, the cost and performance of design choices within the boundaries of the basic proposed concept. With these cost and performance measures as a guide, the second project objective is to design a cost-effective Dual Curvature collector module and collector field array. The third objective is to establish technical and economic concept feasibility through prototype fabrication and test. The final objective is to define the Dual Curvature collector commercialization requirements. The Dual Curvature collector uses a unique reflector module consisting of a reflective film that is tensioned on a reflector support frame. The tensioned membrane (film) surface approximates a hyperbolic paraboloid that is capable of linear focusing when the surface tracks the sun's apparent motion in one axis. The reflective film can be backed by polystyrene foam with an air space between the film and the foam surfaces. This provides damping of the reflector surface to minimize the effect of wind gusts and physical impacts. The baseline collector is intended to operate at a concentration of ten (10) or greater with a nominal absorber temperature of 150/sup 0/C (300/sup 0/F). The Component Research and Analysis tasks which lead to the selection of a baseline collector configuration are discussed. Also, some preliminary results of the Collector Module Design task are presented.
Total curvature and total torsion of knotted random polygons in confinement
Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta
2018-04-01
Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.
Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device
International Nuclear Information System (INIS)
Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S
2005-01-01
The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported
Damage assessment using flexibility and flexibility-based curvature for structural health monitoring
International Nuclear Information System (INIS)
Catbas, F N; Gul, M; Burkett, J L
2008-01-01
As a result of the recent advances in sensors, information technologies and material science, a considerable amount of research has been conducted in the area of smart infrastructures. While there are many important components of a smart infrastructure, an automated and continuous structural health monitoring (SHM) system is a critical one. SHM is typically used to track and evaluate the performance of a structure, symptoms of operational incidents, anomalies due to deterioration and damage during regular operation as well as after an extreme event. Successful health monitoring applications can be achieved by integrating experimental, analytical and information technologies on real-life operating structures. However, real-life investigations must be backed up by laboratory benchmark studies for validating theory, concepts, and new technologies. For this reason, a physical bridge model is developed to implement SHM methods and technologies. In this study, different aspects of model development are outlined in terms of design considerations, instrumentation, finite element modeling, and simulating damage scenarios. Different damage detection methods are evaluated using the numerical and the physical models. Modal parameter estimation studies are carried out to reliably identify the eigenvalues, eigenvectors and modal scaling from the measurement data. To assess the simulated damage, modal flexibility-based displacements and curvatures are employed. Structural behavior after damage is evaluated by inspecting the deflected shapes obtained using modal flexibility. More localized damage simulations such as stiffness reduction at a joint yield a very subtle stiffness decrease. In this case, the writers use a baseline to identify damage and also investigate the use of curvature as a complementary index. Curvature is advantageous for certain cases where the displacement results do not provide substantial changes. Issues related to using curvature as a damage identification
Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature.
Al-Sudani, Dina; Grande, Nicola M; Plotino, Gianluca; Pompa, Giorgio; Di Carlo, Stefano; Testarelli, Luca; Gambarini, Gianluca
2012-07-01
The goal of the present study was to test the fatigue resistance of nickel-titanium rotary files in a double curvature (S-shaped) artificial root canal and to compare those results with single curvature artificial root canals. Two nickel-titanium endodontic instruments consisting of identical instrument sizes (constant .06 taper and 0.25 tip diameter) were tested, ProFile instruments and Vortex instruments. Both instruments were tested for fatigue inside an artificial canal with a double curvature and inside a curved artificial canal with a single curvature. Ten instruments for each group were tested to fracture in continuous rotary motion at 300 rpm. Number of cycles to failure (NCF) was calculated to the nearest whole number, and the length of the fractured fragment was measured in millimeters. Data were statistically analyzed with a level of significance set at 95% confidence level. The NCF value was always statistically lower in the double curved artificial canal when compared with the single curve (P instruments of the same size of different brand only in the single curve; ProFile registered a mean of 633.5 ± 75.1 NCF, whereas Vortex registered a mean of 548 ± 48.9 NCF. Regardless of the differences between the instruments used in the present study, the results suggest that the more complex is the root canal, the more adverse are the effects on the cyclic fatigue resistance of the instruments. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Palmer, Antony L; Bradley, David A; Nisbet, Andrew
2015-03-08
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.
Internal waves and temperature fronts on slopes
Directory of Open Access Journals (Sweden)
S. A. Thorpe
Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.
Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves
Martel, S. J.; Mitchell, K.
2007-12-01
We are using aerial and tripod-mounted geodetic laser scanning (GLS) data, together with photography and large-scale geologic mapping, to investigate the formation of sheeting joints in Yosemite National Park. Sheeting joints are opening-mode fractures that form subparallel to the topography, and over broad areas in Yosemite they define the bedrock surface. Rock slabs bounded by sheeting joints superficially resemble the layers of an onion. Our hypothesis is that sheeting joints form where a tensile stress normal to the topographic surface exists in the shallow subsurface. This condition is met where k2 P22 + k3 P33 > γ cosβ, where k2 and k3 are the principal curvatures of the bedrock surface, P22 and P33 are the corresponding normal stresses parallel to the principal stresses, γ is the unit weight of the rock, and β is the slope angle. Sheeting joints are predicted where at least one of the principal curvatures is sufficiently convex (negative) and the corresponding normal stress is sufficiently compressive (negative). We use aerial GLS data with a vertical resolution of ~10 cm and a point spacing of ~1 m to measure the slope and curvature of the bedrock surface at the scale of a ridge or valley. We use tripod-mounted GLS data with a point spacing of ~5 cm, large-scale geologic mapping, and photographs to detect steps between consecutive sheeting joints, with the step height giving the sheet joint spacing. Outcrops hosting sheeting joints have a stair-step appearance with a distinctive curvature signature: high convex curvature at the top of a step, and high concave curvature at the step bottom. Steps between sheeting joints with a spacing of less than a meter or so are difficult to detect using the aerial GLS data. Apparently the interpolation of aerial data onto a grid, necessary for our curvature codes, and the smoothing of gridded data to filter out trees compromises the value of the aerial GLS data in detecting the step edges, even though the vertical
Dipolarization Fronts from Reconnection Onset
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Black hole production in particle collisions and higher curvature gravity
International Nuclear Information System (INIS)
Rychkov, Vyacheslav S.
2004-01-01
The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process
On conformal Paneitz curvature equations in higher dimensional spheres
International Nuclear Information System (INIS)
El Mehdi, Khalil
2004-11-01
We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)
Continuous-Curvature Path Generation Using Fermat's Spiral
Directory of Open Access Journals (Sweden)
Anastasios M. Lekkas
2013-10-01
Full Text Available This paper proposes a novel methodology, based on Fermat's spiral (FS, for constructing curvature-continuous parametric paths in a plane. FS has a zero curvature at its origin, a property that allows it to be connected with a straight line smoothly, that is, without the curvature discontinuity which occurs at the transition point between a line and a circular arc when constructing Dubins paths. Furthermore, contrary to the computationally expensive clothoids, FS is described by very simple parametric equations that are trivial to compute. On the downside, computing the length of an FS arc involves a Gaussian hypergeometric function. However, this function is absolutely convergent and it is also shown that it poses no restrictions to the domain within which the length can be calculated. In addition, we present an alternative parametrization of FS which eliminates the parametric speed singularity at the origin, hence making the spiral suitable for path-tracking applications. A detailed description of how to construct curvature-continuous paths with FS is given.
Eigenvalue estimates for submanifolds with bounded f-mean curvature
Indian Academy of Sciences (India)
GUANGYUE HUANG
1College of Mathematics and Information Science, Henan Normal University,. Xinxiang 453007 ... submanifolds in a hyperbolic space with the norm of their mean curvature vector bounded above by a constant. ..... [2] Batista M, Cavalcante M P and Pyo J, Some isoperimetric inequalities and eigenvalue estimates in ...
Multiple spinal curvatures in a captive African dwarf crocodile ...
African Journals Online (AJOL)
A 4 year old African dwarf crocodile that had been domiciled at the Zoological Gardens, University of Ibadan for 2 years was presented with a history of anorexia of two weeks' duration and reluctance to move for about a week prior to presentation. Physical examination revealed body curvatures and radiography was ...
Intracellular magnetophoresis of amyloplasts and induction of root curvature
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Zero mean curvature surfaces of mixed type in Minkowski space
International Nuclear Information System (INIS)
Klyachin, V A
2003-01-01
We investigate zero mean curvature surfaces in the Minkowski space R 3 1 such that their first fundamental quadratic form changes signature. Part of such a surface is space-like and part is time-like. We obtain complete information about the structure of the set of points where the surface changes type and prove the related existence and uniqueness theorems
On the Curvature and Heat Flow on Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Ohta Shin-ichi
2014-01-01
Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
The Paneitz curvature problem on lower dimensional spheres
Ben-Ayed, M
2003-01-01
In this paper we prescribe a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n is an element of left brace 5, 6 right brace. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results.
Axial Length/Corneal Radius of Curvature Ratio and Refractive ...
African Journals Online (AJOL)
2017-12-05
Dec 5, 2017 ... variously described as determined by the ocular biometric variables. There have been many studies on the relationship between refractive error and ocular axial length (AL), anterior chamber depth, corneal radius of curvature (CR), keratometric readings as well as other ocular biometric variables such as ...
GEOMETRY OF COMPLETE HYPERSURFACES EVOLVED BY MEAN CURVATURE FLOW
Institute of Scientific and Technical Information of China (English)
盛为民
2003-01-01
Some geometric behaviours of complete solutions to mean curvature flow before the singu-larities occur are studied. The author obtains the estimates of the rate of the distance betweentwo fixed points and the derivatives of the second fundamental form. By use of a new maximumprinciple, some geometric properties at infinity are obtained.
Cosmological models with positive scalar spatial curvature and Λ>0
Ponce de Leon, J.
1987-12-01
Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.
Critical dimension of strings with an extrinsic curvature
International Nuclear Information System (INIS)
Matsuki, T.; Viswanathan, K.S.
1988-01-01
The conformal anomaly is calculated by using the path-integral method to determine the critical dimension for a string theory with an extrinsic curvature by appropriately defining the first-order form of this Lagrangian. The critical dimension, defined by the vanishing of the Liouville kinetic term, is found to be D = 26, the same as for the ordinary bosonic string theory
Distributional curvature of time-dependent cosmic strings
Wilson, J P
1997-01-01
Colombeau's theory of generalised functions is used to calculate the contributions, at the rotation axis, to the distributional curvature for a time-dependent radiating cosmic string, and hence the mass per unit length of the string source. This mass per unit length is compared with the mass at null infinity, giving evidence for a global energy conservation law.
Automatic quantification of local and global articular cartilage surface curvature
DEFF Research Database (Denmark)
Folkesson, Jenny; Dam, Erik B; Olsen, Ole F
2008-01-01
The objective of this study was to quantitatively assess the surface curvature of the articular cartilage from low-field magnetic resonance imaging (MRI) data, and to investigate its role in populations with varying radiographic signs of osteoarthritis (OA), cross-sectionally and longitudinally...
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
Generalized Curvature-Matter Couplings in Modified Gravity
Directory of Open Access Journals (Sweden)
Tiberiu Harko
2014-07-01
Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.
Curvature-induced symmetry breaking in nonlinear Schrodinger models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth
2000-01-01
We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...
Other Earths: Search for Life and the Constant Curvature
Directory of Open Access Journals (Sweden)
Khoshyaran M. M.
2015-07-01
Full Text Available The objective of this paper is to propose a search methodology for finding other exactly similar earth like planets (or sister earths. The theory is based on space consisting of Riemann curves or highways. A mathematical model based on constant curvature, a moving frame bundle, and gravitational dynamics is introduced.
Supported lipid bilayers with controlled curvature via colloidal lithography
DEFF Research Database (Denmark)
Sundh, Maria; Manandhar, Michal; Svedhem, Sofia
2011-01-01
Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is prese...
Papapetrou's naked singularity is a strong curvature singularity
International Nuclear Information System (INIS)
Hollier, G.P.
1986-01-01
Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)
Remarks on the boundary curve of a constant mean curvature topological disc
DEFF Research Database (Denmark)
Brander, David; Lopéz, Rafael
2017-01-01
We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...
Front Propagation in Stochastic Neural Fields
Bressloff, Paul C.
2012-01-01
We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.
HINS Linac front end focusing system R&D
Energy Technology Data Exchange (ETDEWEB)
Apollinari, G.; Carcagno, R.H.; Dimarco, J.; Huang, Y.; Kashikhin, V.V.; Orris, D.F.; Page, T.M.; Rabehl, R.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab /Argonne
2008-08-01
This report summarizes current status of an R&D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process.
HINS Linac front end focusing system R and D
International Nuclear Information System (INIS)
Apollinari, G.; Carcagno, R.H.; Dimarco, J.; Huang, Y.; Kashikhin, V.V.; Orris, D.F.; Page, T.M.; Rabehl, R.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Fermilab; Argonne
2008-01-01
This report summarizes current status of an R and D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process
General characteristics of current in front of Port Said, Egypt
Directory of Open Access Journals (Sweden)
Mohamed S. Elsharkawy
2017-06-01
Full Text Available This paper is a preliminary investigation of the general characteristics of the current in front of the coastal Mediterranean city: Port Said, Egypt. The study of the current regime in front of Port Said helps environmental engineers to tackle problems as marine port sedimentation and shoreline changes. Surface and bottom current recordings at a single offshore station of depth 104 m located at 31° 34.90′ N, 32° 30.01′ E have been subject to statistical analysis. The measurements showed unexpectedly that bottom currents were relatively stronger than surface currents during May-99.
The upgraded Tevatron front end
International Nuclear Information System (INIS)
Glass, M.; Zagel, J.; Smith, P.; Marsh, W.; Smolucha, J.
1990-01-01
We are replacing the computers which support the CAMAC crates in the Fermilab accelerator control system. We want a significant performance increase, but we still want to be able to service scores of different varieties of CAMAC cards in a manner essentially transparent to console applications software. Our new architecture is based on symmetric multiprocessing. Several processors on the same bus, each running identical software, work simultaneously at satisfying different pieces of a console's request for data. We dynamically adjust the load between the processors. We can obtain more processing power by simply plugging in more processor cards and rebooting. We describe in this paper what we believe to be the interesting architectural features of the new front-end computers. We also note how we use some of the advanced features of the Multibus TM II bus and the Intel 80386 processor design to achieve reliability and expandability of both hardware and software. (orig.)
Directory of Open Access Journals (Sweden)
Étienne Poncelet
2011-06-01
Full Text Available De la porte d’eau de la Basse Deûle jusqu’au fort Saint-Sauveur, le front oriental de Lille, fortifié à l’époque espagnole, glisse ses courtines dans les entrelacs du périphérique et des gares. L’enjeu urbain actuel consiste à s’appuyer sur ces murs historiques pour « passer malgré tout » à travers cet écheveau urbain et retisser les fils de la continuité des promenades au cœur de la ville. Moins connus que le front occidental de la reine des citadelles, ces anciens espaces militaires sont une chance pour l’urbanisme de demain dont les opérations en cours de la Porte de Gand et de la Basse Deûle témoignent déjà.The east wall, at Lille, fortified during the period of Spanish occupation, extends from the Porte d'Eau de la Basse-Deûle to the Saint-Sauveur fort. Its curtain walls emerge today in a landscape of ring roads and railway territories. The issue today is to profit from these historic walls in order to make some sense of the urban chaos and to reinstate some urban continuity in the city-centre walkways. Although they are not as well known as the western wall of this major fortified city, these former military properties are an exciting opportunity for tomorrow's town-planners, as the operations already underway at the Porte de Gand et de la Basse Deûle suggest.
Calibration method for direct conversion receiver front-ends
Directory of Open Access Journals (Sweden)
R. Müller
2008-05-01
Full Text Available Technology induced process tolerances in analog circuits cause device characteristics different from specification. For direct conversion receiver front-ends a system level calibration method is presented. The malfunctions of the devices are compensated by tuning dominant circuit parameters. Thereto optimization techniques are applied which use measurement values and special evaluation functions.
Projectile Balloting Attributable to Gun Tube Curvature
Directory of Open Access Journals (Sweden)
Michael M. Chen
2010-01-01
Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
1984-03-30
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.
Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface
Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang
2018-03-01
In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.
Muon front end for the neutrino factory
Directory of Open Access Journals (Sweden)
C. T. Rogers
2013-04-01
Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.
Muon front end for the neutrino factory
Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J
2013-01-01
In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.
The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail
Frühauff, D.; Glassmeier, K.-H.
2017-11-01
In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.
Netburn, A. N.; Koslow, J. A.
2016-02-01
Although the strong physical gradients at fronts are primarily realized in the epipelagic, the biological impacts of frontal ecosystems can extend into mesopelagic waters. In 2008, Lara-Lopez et al. (2012) observed a significant shift in total biomass and community composition of migrating mesopelagic fishes at a strong persistent front off of the Pt. Conception area of the southern California Current Ecosystem. Through the California Current Ecosystem Long-Term Ecological Research Program, two additional intensive sampling cruises have been conducted on frontal systems in the general region. In 2011 and 2012, paired day and night midwater Matsuda-Oozeki-Hu trawls were conducted at stations located on either side of the fronts and at the fronts themselves, a suite of concurrent observations of the physical environment measured, and lower trophic levels sampled. Using satellite imagery, we estimate front duration of each of the 2008, 2011, and 2012 fronts, and investigate changes to the relative abundance and community composition across these systems, comparing the resolved patterns in 2011 and 2012 to those published from 2008. Results of this work will help address the questions: (1) What are the timescales required for front presence to impact mesopelagic fish communities? (2) Do different types of frontal systems (e.g., an eddy front vs. a "classic" front) result in different patterns of mesopelagic fish abundance and community composition? These answers will provide insight into the mechanisms of accumulation of fishes at fronts. As many mesopelagic fishes are important forage species for oceanic predators, understanding their response to the high productivity frontal systems is key to understanding ecosystem-wide impacts of fronts.
Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature
Loveridge, Lee C.
2004-01-01
Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.
Directory of Open Access Journals (Sweden)
Mahmoud Mohamed Ahmed Ewidea
2016-01-01
Full Text Available Purpose: Kinesio Taping (KT is a technique that has been used in the clinical management of people with chronic back pain. This study investigated the efficacy of KT on patient with chronic non-specific low back pain using electromyography (EMG and three-dimensional motion analysis (3DMA. Subjects: 50 patients with chronic low back pain aging from 25 – 40 years, with mean age (36.62±2.9 years. Patients were divided randomly into two equal groups, placebo group (A received sham KT, and group B received real KT. Methods: The outcome measurements were electrical activity of lumbar Para spinal muscle using EMG pre and post KT, lumbar curvature using 3DMA and pain Pre and post KT using visual analogue scale (VAS EMG and 3DMA were carried out at baseline and 2 weeks later while pain was recorded after 1 month. Results: Paired analysis for comparison between pre and post treatment measurements in each group showed significant decrease of lumbar curvature as well as medium frequency of Para spinal muscles in group B than group A. also there is significant decrease of pain in group B than on group A. Despite the equal baseline of all groups before treatment, there were significant decrease of lumbar curvature, medium frequency of Para spinal muscles and pain measurements in real KT group than placebo group. The results suggested that kinsiotaping have beneficial effects on pain, range of motion, and trunk muscle endurance in people with chronic non-specific low back pain of mechanical etiology
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Residual stress evaluation and curvature behavior of aluminium 7050 peen forming processed
International Nuclear Information System (INIS)
Oliveira, R.R. de; Lima, N.B.; Braga, A.P.V.; Goncalves, M.
2010-01-01
Shot peening is a superficial cold work process used to increase the fatigue life evaluated by residual stress measurements. The peen forming process is a variant of the shot peening process, where a curvature in the plate is obtained by the compression of the grains near to the surface. In this paper, the influence of the parameters such as: pressure of shot, ball shot size and thickness of aluminum 7050 samples with respect to residual stress profile and resulting arc height was studied. The evaluation of the residual stress profile was obtained by sin 2 Ψ method. (author)
Simon, T. W.; Moffat, R. J.
1979-01-01
Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer
Practical method for estimating road curvatures using onboard GPS and IMU equipment
Zamfir, S.; Drosescu, R.; Gaiginschi, R.
2016-08-01
This paper describes an experimental method to determine with high accuracy the curvature of a road segment, the turning radius of a car, and the discomfort level perceived by the passengers in the vehicle cabin when passing through a curve. For these experiments we used professional equipment provided with two GPS active antennas with 13 dB gain featuring non-contact 100 Hz speed and distance measurement, and a ten degree Inertial Measurement Unit (IMU) with dynamic orientation outputs. The same experimental measurements also usedthe low cost GPS equipment available on smartphones, domestic vehicle GPS devices, as well as an Arduino GPS shield in order to compare the results generated by professional equipment. The purpose of these experiments was also to establish if certain road curve sections were correctly executed in order to ensure the safety and comfort of passengers. Another use of the proposed method relates to the road accident reconstruction field, providing experts and forensics with an accurate method of measuring the roadway curvature at accident scenes or traffic events. The research and equipment described in this paper have been acquired and developed under a PhD studyand a European funded project won and elaborated by the authors.
Khabiri, Masoud; Ebrahimi, Maziar; Saei, Mohammad Reza
2017-12-01
File fracture can interfere with cleaning and shaping of the canal and compromise periradicular healing. Autoclave sterilization may prone the files to fracture. The purpose of the present study was to determine the effect of autoclave sterilization on the cyclic fatigue resistance of Hero642 rotary instrument in two curvatures of 45 and 60 degrees. For this experimental in-vitro study, 90 Nickel-Titanium HERO 642 rotary files #30 with 0.06 taper were selected. They were divided into two groups (curvature of 45 and 60 degree) of 45 files. Each group was then subdivided into 3 subgroups; group I: no sterilization, group II: 5 cycles of sterilization and group III: 10 cycles of sterilization. Files were used in artificial canals until fracture. The cyclic fatigue was measured as the number of cycles before fracture. The data was statically analyzed by Student's t-test and two-way analysis of variance. There was a significant difference in cyclic fatigue of two curvature of 45 and 60 degrees ( p = 0.001). However, sterilization process has no significant effect on cyclic fatigue of HERO files ( p = 0.557). Sterilization had no effect on the cyclic fatigue of HERO 642 files when used in curvature of 45 or 60 degrees.
Directory of Open Access Journals (Sweden)
Natalie J. Forde
2017-04-01
Full Text Available Magnetic resonance imaging (MRI studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD. Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd; 17.2 (3.4, 16.8 (3.2, and 17.7 (3.8, respectively]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity and local gyrification index were calculated for each point on the surface (vertex with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found
Effect of nano-scale curvature on the intrinsic blood coagulation system
Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.
2014-01-01
The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation ‘silent’ surface, while nanoparticles with lower surface curvature shows denaturation and concomitant coagulation. PMID:25341004
Extrinsic Isoperimetric Analysis on Submanifolds with Curvatures bounded from below
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2010-01-01
and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectively. In the same vein we also establish lower bounds on the mean exit time for Brownian motions in the extrinsic balls, i.e. lower bounds for the time it takes (on average) for Brownian particles to diffuse......We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field...... within the extrinsic ball from a given starting point before they hit the boundary of the extrinsic ball. In those cases, where we may extend our analysis to hold all the way to infinity, we apply a capacity comparison technique to obtain a sufficient condition for the submanifolds to be parabolic, i...
Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors
Energy Technology Data Exchange (ETDEWEB)
Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.
2011-01-31
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Non-linear realizations and higher curvature supergravity
Energy Technology Data Exchange (ETDEWEB)
Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2017-12-15
We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Curvature properties of four-dimensional Walker metrics
International Nuclear Information System (INIS)
Chaichi, M; Garcia-Rio, E; Matsushita, Y
2005-01-01
A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Energy Technology Data Exchange (ETDEWEB)
Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Gogotsi, Yury G. [Drexel University; Yushin, Gleb [Georgia Institute of Technology; Portet, Cristelle [Drexel University
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
On M-theory fourfold vacua with higher curvature terms
International Nuclear Information System (INIS)
Grimm, Thomas W.; Pugh, Tom G.; Weißenbacher, Matthias
2015-01-01
We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. We present a systematic derivation of the background solution by solving the Killing spinor conditions including higher curvature terms. These are translated into first-order differential equations for a globally defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry properties of the described solutions
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2017-01-12
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Generating ekpyrotic curvature perturbations before the big bang
International Nuclear Information System (INIS)
Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.
2007-01-01
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n s tends to range from slightly blue to red, with 0.97 s <1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Directory of Open Access Journals (Sweden)
Orlando Ragnisco
2007-02-01
Full Text Available An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3 integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
Imprint of spatial curvature on inflation power spectrum
International Nuclear Information System (INIS)
Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh
2008-01-01
If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.
Thermodynamic curvature of soft-sphere fluids and solids
Brańka, A. C.; Pieprzyk, S.; Heyes, D. M.
2018-02-01
The influence of the strength of repulsion between particles on the thermodynamic curvature scalar R for the fluid and solid states is investigated for particles interacting with the inverse power (r-n) potential, where r is the pair separation and 1 /n is the softness. Exact results are obtained for R in certain limiting cases, and the R behavior determined for the systems in the fluid and solid phases. It is found that in such systems the thermodynamic curvature can be positive for very soft particles, negative for steeply repulsive (or large n ) particles across almost the entire density range, and can change sign between negative and positive at a certain density. The relationship between R and the form of the interaction potential is more complex than previously suggested, and it may be that R is an indicator of the relative importance of energy and entropy contributions to the thermodynamic properties of the system.
International Nuclear Information System (INIS)
Lappalainen, A.; Norrgaard, M.; Alm, K.; Snellman, M.; Laitinen, O.
2001-01-01
The vertebral column of 124 randomly selected miniature dachshunds, representing 4.5% of the population registered by the Finnish Kennel Club during the years 1988 to 1996, were radiographed. The front legs were also radiographed in order to evaluate the curvature of the radius and ulna. Calcified discs were found in 75.9% of the longhaired miniature dachshunds and in 86.7% of the wirehaired ones. The occurrence of signs associated with IDD was 16.5% in longhaired and 15.6% in wirehaired miniature dachshunds. The occurrence of signs of IDD in dogs with calcified discs was 20.0% and 17.9% in longhaired and wirehaired miniature dachshunds, respectively. In dogs without calcifications only one dog showed signs of IDD. The curvature of the radius and the ulna did not differ between the dogs with signs of IDD and the healthy ones, or between the dogs with and without intervertebral calcifications. Our results indicate that radiographic eradication based on the presence of intervertebral calcifications is not suitable for breeding purposes for the Finnish miniature dachshund population because the percentage of dogs without calcifications is small
Salinity fronts in the tropical Pacific Ocean.
Kao, Hsun-Ying; Lagerloef, Gary S E
2015-02-01
This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m 3 . In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics.
Reheating via a generalized nonminimal coupling of curvature to matter
International Nuclear Information System (INIS)
Bertolami, Orfeu; Frazao, Pedro; Paramos, Jorge
2011-01-01
In this work, one shows that a generalized nonminimal coupling between geometry and matter is compatible with Starobinsky inflation and leads to a successful process of preheating, a reheating scenario based on the production of massive particles via parametric resonance. The model naturally extends the usual preheating mechanism, which resorts to an ad hoc scalar curvature-dependent mass term for a scalar field χ, and also encompasses a previously studied preheating channel based upon a nonstandard kinetic term.
On the concircular curvature tensor of Riemannian manifolds
International Nuclear Information System (INIS)
Rahman, M.S.; Lal, S.
1990-06-01
Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs
Torsion and curvature in higher dimensional supergravity theories
International Nuclear Information System (INIS)
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro
1983-01-01
This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-07
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Reflectionlessness, kurtosis and top curvature of potential barriers
International Nuclear Information System (INIS)
Ahmed, Zafar
2006-01-01
Apart from the rectangular barrier, other barriers having a single maximum generally display reflectivity, R(E), as a smoothly decreasing function of energy. We conjecture that symmetric potential barriers with a single maximum entail zeros or sharp minima in R(E) provided they have either their coefficient of kurtosis lying in the range (1.8, 3.0), or their top curvature as zero, or both
Tachyonless models of relativistic particles with curvature and torsion
International Nuclear Information System (INIS)
Kuznetsov, Yu.A.; Plyushchaj, M.S.
1992-01-01
The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs
Curvature of super Diff(S1)/S1
International Nuclear Information System (INIS)
Oh, P.; Ramond, P.
1987-01-01
Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds Diff(S 1 )/S 1 and Super Diff(S 1 )/S 1 using standard finite-dimensional coset space techniques. We regularize the infinite by ζ-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion. (orig.)
Curvature profiles as initial conditions for primordial black hole formation
International Nuclear Information System (INIS)
Polnarev, Alexander G; Musco, Ilia
2007-01-01
This work is part of an ongoing research programme to study possible primordial black hole (PBH) formation during the radiation-dominated era of the early universe. Working within spherical symmetry, we specify an initial configuration in terms of a curvature profile, which represents initial conditions for the large amplitude metric perturbations, away from the homogeneous Friedmann-Robertson-Walker model, which are required for PBH formation. Using an asymptotic quasi-homogeneous solution, we relate the curvature profile with the density and velocity fields, which at an early enough time, when the length scale of the configuration is much larger than the cosmological horizon, can be treated as small perturbations of the background values. We present general analytic solutions for the density and velocity profiles. These solutions enable us to consider in a self-consistent way the formation of PBHs in a wide variety of cosmological situations with the cosmological fluid being treated as an arbitrary mixture of different components with different equations of state. We obtain the analytical solutions for the density and velocity profiles as functions of the initial time. We then use two different parametrizations for the curvature profile and follow numerically the evolution of initial configurations
Generic Properties of Curvature Sensing through Vision and Touch
Directory of Open Access Journals (Sweden)
Birgitta Dresp-Langley
2013-01-01
Full Text Available Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1. Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.
Finger vein extraction using gradient normalization and principal curvature
Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan
2009-02-01
Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.
Curvature-driven instabilities in the Elmo Bumpy Torus (EBT)
International Nuclear Information System (INIS)
Abe, H.; Spong, D.A.; Antonsen, T.M. Jr.; Tsang, K.T.; Nguyen, K.T.
1982-01-01
Curvature-driven instabilities are analyzed for an EBT configuration which consists of plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic (MHD) theory. Stability criteria are obtained for five possible modes: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies greater than the ion-cyclotron frequency), a compressional instability, a background plasma interchange, and an interacting pressure-driven interchange. A wide parameter regime for stable operation is found, which, however, severely deteriorates for a band of intermediate mode numbers. Finite Larmor radius effects can eliminate this deterioration; moreover, all short-wavelength curvature-driven modes are stabilized if the hot electron Larmor radius rho/sub h/ satisfies (kappa/sub perpendicular/rho/sub h/) 2 > 2Δ/[Rβ/sub h/(1 + P'/sub parallel//P'/sub perpendicular/)], where kappa/sub perpendicular/ is the transverse wavenumber, Δ is the ring half-width, R is the mid-plane radius of curvature, β/sub h/ is the hot electron beta value, and P' is the pressure gradient. Resonant wave-particle instabilities predicted by a new low frequency variational principle show that a variety of remnant instabilities may still persist
Stability of cosmological deflagration fronts
Mégevand, Ariel; Membiela, Federico Agustín
2014-05-01
In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.
Stability of cosmological detonation fronts
Mégevand, Ariel; Membiela, Federico Agustín
2014-05-01
The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.
International Nuclear Information System (INIS)
Grey, C.A.
1994-01-01
A picture is drawn of the current supply side of the front-end fuel cycle production capacities in the CIS. Uranium production has been steadily declining, as in the West. Market realities have been reflected in local costs of production since the break-up of the former Soviet Union and some uneconomic mines have been closed. In terms of actual production, Kazakhstan, Russia and Uzbekistan, remain among the top five uranium producers in the world. Western government action has been taken to restrict the market access for natural uranium from the CIS. Reactors in the CIS continue to be supplied with fabricated fuel solely by Russian, though Western fuel fabricators have reduced Russian supplies to Eastern Europe. Russia's current dominance in conversion and enrichment services in both the CIS and Eastern Europe is likely to continue as long as the present surplus low enriched uranium stocks last and surplus production capacity exists. Market penetration in the West has been limited by government action but Russia in 1993 still held about 20% of the world's conversion market and nearly 19% of the enrichment market. (6 figures, 2 tables, 4 references) (UK)
Application of up-front licensing
International Nuclear Information System (INIS)
Grant, S.D.; Snell, V.G.
1995-01-01
AECL has been pioneering 'up-front' licensing of new reactor designs. The CANDU 3 design has been formally reviewed by AECB staff for a number of years. The CANDU 9 design has just started the up-front licensing process. The process gives designers, regulators and potential customers early confidence in the licensability of future plants. (author). 4 refs., 2 tabs
Application of up-front licensing
Energy Technology Data Exchange (ETDEWEB)
Grant, S D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada); Snell, V G [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)
1996-12-31
AECL has been pioneering `up-front` licensing of new reactor designs. The CANDU 3 design has been formally reviewed by AECB staff for a number of years. The CANDU 9 design has just started the up-front licensing process. The process gives designers, regulators and potential customers early confidence in the licensability of future plants. (author). 4 refs., 2 tabs.
RPC performance vs. front-end electronics
International Nuclear Information System (INIS)
Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Pastori, E.; Santonico, R.; Zerbini, A.
2012-01-01
Moving the amplification from the gas to the front-end electronics was a milestone in the development of Resistive Plate Chambers. Here we discuss the historical evolution of RPCs and we show the results obtained with newly developed front-end electronics with threshold in the fC range.
Through the EU's Back and Front Doors
DEFF Research Database (Denmark)
Adler-Nissen, Rebecca
2015-01-01
Through the EU's front- and backdoors: The selective Danish and Norwegian approaches in the Area of Freedom, Security and Justice Rebecca Adler-Nissen......Through the EU's front- and backdoors: The selective Danish and Norwegian approaches in the Area of Freedom, Security and Justice Rebecca Adler-Nissen...
International Nuclear Information System (INIS)
Akaoka, K.; Wakaida, I.
1996-01-01
We controlled the laser wave front through a laser beam simulation experiment propagating through medium. Thus, we confirmed that the RMS, defined as the quadratic mean of the laser beam wave front, dropped to the 1/3 - 1/6 of the pre-control value
Nuclear Physics on the Light Front
Miller, Gerald A.
1999-01-01
High energy scattering experiments involving nuclei are typically analyzed in terms of light front variables. The desire to provide realistic, relativistic wave functions expressed in terms of these variables led me to try to use light front dynamics to compute nuclear wave functions. The progress is summarized here.
Wave fronts of electromagnetic cyclotron harmonic waves
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.
1982-01-01
In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed
End-Users, Front Ends and Librarians.
Bourne, Donna E.
1989-01-01
The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)
Wave front sensing for next generation earth observation telescope
Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.
2017-09-01
High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.
Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga
2017-10-20
Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for
International Nuclear Information System (INIS)
Rand, R.P.; Fuller, N.L.; Gruner, S.M.; Parsegian, V.A.
1990-01-01
Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H II ) phases with addition of excess td. The spontaneous radius of curvature R 0 of lipid monolayers, as expressed in these H II phases, is allowed by the relief of hydrocarbon chain stress by td; R 0 increases with the ratio DOPC/DOPE. Single H II phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R 0 at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H II monolayer from R 0 is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R 0 matches the amount of td or water available, i.e., that curvature energy is minimized
Smith, Emily J; Marcellin-Little, Denis J; Harrysson, Ola L A; Griffith, Emily H
2017-10-01
OBJECTIVE To assess 3-D geometry of the humerus of dogs and determine whether the craniocaudal canal flare index (CFI) is associated with specific geometric features. SAMPLE CT images (n = 40) and radiographs (38) for 2 groups of skeletally mature nonchondrodystrophic dogs. PROCEDURES General dimensions (length, CFI, cortical thickness, and humeral head offset), curvature (shaft, humeral head, and glenoid cavity), version (humeral head and greater tubercle), and torsion were evaluated on CT images. Dogs were allocated into 3 groups on the basis of the craniocaudal CFI, and results were compared among these 3 groups. The CT measurements were compared with radiographic measurements obtained for another group of dogs. RESULTS Mean ± SD humeral head version was -75.9 ± 9.6° (range, -100.7° to -59.4°). Mean mechanical lateral distal humeral angle, mechanical caudal proximal humeral angle, and mechanical cranial distal humeral angle were 89.5 ± 3.5°, 50.2 ± 4.5°, and 72.9 ± 7.8°, respectively, and did not differ from corresponding radiographic measurements. Mean humeral curvature was 20.4 ± 4.4° (range, 9.6° to 30.5°). Mean craniocaudal CFI was 1.74 ± 0.18 (range, 1.37 to 2.10). Dogs with a high craniocaudal CFI had thicker cranial and medial cortices than dogs with a low craniocaudal CFI. Increased body weight was associated with a lower craniocaudal CFI. Radiographic and CT measurements of craniocaudal CFI and curvature differed significantly. CONCLUSIONS AND CLINICAL RELEVANCE CT-based 3-D reconstructions allowed the assessment of shaft angulation, torsion, and CFI. Radiographic and CT measurements of shaft curvature and CFI may differ.
Blocking-resistant communication through domain fronting
Directory of Open Access Journals (Sweden)
Fifield David
2015-06-01
Full Text Available We describe “domain fronting,” a versatile censorship circumvention technique that hides the remote endpoint of a communication. Domain fronting works at the application layer, using HTTPS, to communicate with a forbidden host while appearing to communicate with some other host, permitted by the censor. The key idea is the use of different domain names at different layers of communication. One domain appears on the “outside” of an HTTPS request—in the DNS request and TLS Server Name Indication—while another domain appears on the “inside”—in the HTTP Host header, invisible to the censor under HTTPS encryption. A censor, unable to distinguish fronted and nonfronted traffic to a domain, must choose between allowing circumvention traffic and blocking the domain entirely, which results in expensive collateral damage. Domain fronting is easy to deploy and use and does not require special cooperation by network intermediaries. We identify a number of hard-to-block web services, such as content delivery networks, that support domain-fronted connections and are useful for censorship circumvention. Domain fronting, in various forms, is now a circumvention workhorse. We describe several months of deployment experience in the Tor, Lantern, and Psiphon circumvention systems, whose domain-fronting transports now connect thousands of users daily and transfer many terabytes per month.
Characterizing Ion Flows Across a Dipolarization Front
Arnold, H.; Drake, J. F.; Swisdak, M.
2017-12-01
In light of the Magnetospheric Multiscale Mission (MMS) moving to study predominately symmetric magnetic reconnection in the Earth's magnetotail, it is of interest to investigate various methods for determining the relative location of the satellites with respect to the x line or a dipolarization front. We use a 2.5 dimensional PIC simulation to explore the dependence of various characteristics of a front, or flux bundle, on the width of the front in the dawn-dusk direction. In particular, we characterize the ion flow in the x-GSM direction across the front. We find a linear relationship between the width of a front, w, and the maximum velocity of the ion flow in the x-GSM direction, Vxi, for small widths: Vxi/VA=w/di*1/2*(mVA2)/Ti*Bz/Bxwhere m, VA, di, Ti, Bz, and Bx are the ion mass, upstream Alfven speed, ion inertial length, ion temperature, and magnetic fields in the z-GSM and x-GSM directions respectively. However, once the width reaches around 5 di, the relationship gradually approaches the well-known theoretical limit for ion flows, the upstream Alfven speed. Furthermore, we note that there is a reversal in the Hall magnetic field near the current sheet on the positive y-GSM side of the front. This reversal is most likely due to conservation of momentum in the y-GSM direction as the ions accelerate towards the x-GSM direction. This indicates that while the ions are primarily energized in the x-GSM direction by the front, they transfer energy to the electromagnetic fields in the y-GSM direction. The former energy transfer is greater than the latter, but the reversal of the Hall magnetic field drags the frozen-in electrons along with it outside of the front. These simulations should better able researchers to determine the relative location of a satellite crossing a dipolarization front.
Iterative wave-front reconstruction in the Fourier domain.
Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry
2017-05-15
The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.
Managing Controversies in the Fuzzy Front End
DEFF Research Database (Denmark)
Christiansen, John K.; Gasparin, Marta
2016-01-01
This research investigates the controversies that emerge in the fuzzy front end (FFE) and how they are closed so the innovation process can move on. The fuzzy front has been characterized in the literature as a very critical phase, but controversies in the FFE have not been studied before....... The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...
Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek
2017-10-01
Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.
SPD very front end electronics
International Nuclear Information System (INIS)
Luengo, S.; Gascon, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasis, X.
2006-01-01
The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the
Curvature fluctuations as progenitors of large scale holes
International Nuclear Information System (INIS)
Vittorio, N.; Santangelo, P.; Occhionero, F.
1984-01-01
The authors extend previous work to study the formation and evolution of deep holes, under the assumption that they arise from curvature or energy perturbations in the Hubble flow. Their algorithm, which makes use of the spherically symmetric and pressureless Tolman-Bondi solution, can embed a perturbation in any cosmological background. After recalling previous results on the central depth of the hole and its radial dimension, they give here specific examples of density and peculiar velocity profiles, which may have a bearing on whether galaxy formation is a dissipative or dissipationless process. (orig.)
Curvature effect on tearing modes in presence of neoclassical friction
Energy Technology Data Exchange (ETDEWEB)
Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Lütjens, Hinrich [Centre de Physique Théorique, Ecole Polytechnique, CNRS (France)
2013-11-15
Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.
The natural selection of metabolism explains curvature in allometric scaling
Witting, Lars
2016-01-01
I simulate the evolution of metabolism and mass to explain the curvature in the metabolic allometry for placental and marsupial mammals. I assume that the release of inter-specific competition by the extinction of dinosaurs 65 million years ago made it possible for each clade to diversity into a multitude of species across a wide range of niches. The natural selection of metabolism and mass was then fitted to explain the maximum observed body masses over time, as well as the current inter-spe...
The evolution of space curves by curvature and torsion
International Nuclear Information System (INIS)
Richardson, G; King, J R
2002-01-01
We apply Lie group based similarity methods to the study of a new, and widely relevant, class of objects, namely motions of a space curve. In particular, we consider the motion of a curve evolving with a curvature κ and torsion τ dependent velocity law. We systematically derive the Lie point symmetries of all such laws of motion and use these to catalogue all their possible similarity reductions. This calculation reveals special classes of law with high degrees of symmetry (and a correspondingly large number of similarity reductions). Of particular note is one class which is invariant under general linear transformations in space. This has potential applications in pattern and signal recognition
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2014-03-01
We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.
Field equations for gravity quadratic in the curvature
International Nuclear Information System (INIS)
Rose, B.
1992-01-01
Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs
On Front Slope Stability of Berm Breakwaters
DEFF Research Database (Denmark)
Burcharth, Hans F.
2013-01-01
The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...
QCD Phenomenology and Light-Front Wave Functions
International Nuclear Information System (INIS)
Brodsky, St.J.
2001-01-01
A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wave functions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wave functions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially-weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wave functions. (author)
Directory of Open Access Journals (Sweden)
Yin Song
2014-12-01
Full Text Available Though the importance of curvature continuity on compressor blade performances has been realized, there are two major questions that need to be solved, i.e., the respective effects of curvature continuity at the leading-edge blend point and the main surface, and the contradiction between the traditional theory and experimental observations in the effect of those novel leading-edge shapes with smaller curvature discontinuity and sharper nose. In this paper, an optimization method to design continuous-curvature blade profiles which deviate little from datum blades is proposed, and numerical and theoretical analysis is carried out to investigate the continuous-curvature effect on blade performances. The results show that the curvature continuity at the leading-edge blend point helps to eliminate the separation bubble, thus improving the blade performance. The main-surface curvature continuity is also beneficial, although its effects are much smaller than those of the blend-point curvature continuity. Furthermore, it is observed that there exist two factors controlling the leading-edge spike, i.e., the curvature discontinuity at the blend point which dominates at small incidences, and the nose curvature which dominates at large incidences. To the authors’ knowledge, such mechanisms have not been reported before, and they can help to solve the sharp-leading-edge paradox.
Residual stress evaluation and curvature behavior of aluminum 7050 peen forming processed
International Nuclear Information System (INIS)
Oliveira, Rene Ramos de
2011-01-01
Shot peening is a superficial cold work process used to increase the fatigue life evaluated by residual stress measurements. The peen forming process is a variant of the shot peening process, where a curvature in the plate is obtained by the compression of the grains near to the surface. In this paper, the influence of the parameters such as: pressure of shot, ball shot size and thickness of aluminum 7050 samples with respect to residual stress profile and resulting arc height was studied. The evaluation of the residual stress profile was obtained by sin 2 ψ method. The results show that the formation of the curvature arc height is proportional to the shot peening pressure, of spheres size and inversely proportional to the thickness of the sample, and that stress concentration factor is larger for samples shot peened with small balls. On final of this paper presents an additional study on micro strain and average crystallite size, which can evaluate the profile of the samples after blasting. (author)
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO
Crass, Jonathan; King, David; Mackay, Craig
2013-12-01
Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.
Effect of Plate Curvature on Blast Response of Structural Steel Plates
Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao
2018-04-01
In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.
Hern, W M
1993-01-01
honor those who advanced the cause of women's rights. They honored the physician who had to shout over hecklers to make his remarks heard. After a year of operation, the physician encountered differences with the Board of Directors of the clinic. Soon after that, he resigned and opened his own clinic with a bank loan of $7000. Within 4 years, his clinic had expanded, and he purchased its building. The harassment from antiabortion protesters continued, with broken windows, pickets, and, in February 1988, bullets fired through the front windows of the waiting room. This necessitated the installation of bullet-proof glass and a security system which cost $17,000. As of March 1, 1993, there had been 1285 acts of violence towards abortion clinics, which led to the destruction of more than 100. On March 10 of that year, a physician who performed abortions in Florida was gunned down by an anti-abortion protestor. People who provide abortions hope for legal protection and respect for their civil liberties, but they will continue to provide this service even if conditions do not improve.
The PHENIX Drift Chamber Front End Electroncs
Pancake, C.; Velkovska, J.; Pantuev, V.; Fong, D.; Hemmick, T.
1998-04-01
The PHENIX Drift Chamber (DC) is designed to operate in the high particle flux environment of the Relativistic Heavy Ion Collider and provide high resolution track measurements. It is segmented into 80 keystones with 160 readout channels each. The Front End Electronics (FEE) developed to meet the demanding operating conditions and the large number of readout channels of the DC will be discussed. It is based on two application specific integrated circuits: the ASD8 and the TMC-PHX1. The ASD8 chip contains 8 channels of bipolar amplifier-shaper-discriminator with 6 ns shaping time and ≈ 20 ns pulse width, which satisfies the two track resolution requirements. The TMC-PHX1 chip is a high-resolution multi-hit Time-to-Digital Converter. The outputs from the ASD8 are digitized in the Time Memory Cell (TMC) every (clock period)/32 or 0.78 ns (at 40 MHz), which gives the intrinsic time resolution of the system. A 256 words deep dual port memory keeps 6.4 μs time history of data at 40 MHz clock. Each DC keystone is supplied with 4 ASD8/TMC boards and one FEM board, which performs the readout of the TMC-PHX1's, buffers and formats the data to be transmitted over the Glink. The slow speed control communication between the FEM and the system is carried out over ARCNET. The full readout chain and the data aquisition system are being tested.
Constant curvature algebras and higher spin action generating functions
International Nuclear Information System (INIS)
Hallowell, K.; Waldron, A.
2005-01-01
The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R)-bar R 2 Lie algebra. We present a simple calculus for calculations in its universal enveloping algebra. As an application, we derive generating functions for the actions and gauge invariances of massive, partially massless and massless (for both Bose and Fermi statistics) higher spins on constant curvature backgrounds. These are formulated in terms of a minimal set of covariant, unconstrained, fields rather than towers of auxiliary fields. Partially massless gauge transformations are shown to arise as degeneracies of the flat, massless gauge transformation in one dimension higher. Moreover, our results and calculus offer a considerable simplification over existing techniques for handling higher spins. In particular, we show how theories of arbitrary spin in dimension d can be rewritten in terms of a single scalar field in dimension 2d where the d additional dimensions correspond to coordinate differentials. We also develop an analogous framework for spinor-tensor fields in terms of the corresponding superalgebra
Nonlinear quantum gravity on the constant mean curvature foliation
International Nuclear Information System (INIS)
Wang, Charles H-T
2005-01-01
A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory