WorldWideScience

Sample records for frogs xenopus laevis

  1. Vocal competition in male Xenopus laevis frogs

    OpenAIRE

    Tobias, Martha L.; Corke, Anna; Korsh, Jeremy; Yin, David; Kelley, Darcy B.

    2010-01-01

    Male Xenopus laevis frogs produce underwater advertisement calls that attract gravid females and suppress calling by male competitors. Here we explore whether groups of males establish vocal ranks and whether auditory cues alone suffice for vocal suppression. Tests of male–male pairs within assigned groups reveal linear vocal dominance relations, in which each male has a defined rank. Both the duration over which males interact, as well as the number of competitive opportunities, affect linea...

  2. PHENOBARBITAL AFFECTS THYROID HISTOLOGY AND LARVAL DEVELOPMENT IN THE AFRICAN CLAWED FROG XENOPUS LAEVIS

    Science.gov (United States)

    The abstract highlights our recent study to explore endocrine disrupting effects of phenobarbital in the African clawed frog, Xenopus laevis. In mammals, this chemical is known to induce the biotransforming enzyme UDP-glucuronosyltransferase (UDPGT) resulting in increased thyroid...

  3. Biophysics of underwater hearing in the clawed frog, Xenopus laevis

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Elepfandt, A

    1995-01-01

    Anesthetized clawed frogs (Xenopus laevis) were stimulated with underwater sound and the tympanic disk vibrations were studied using laser vibrometry. The tympanic disk velocities ranged from 0.01 to 0.5 mm/s (at a sound pressure of 2 Pa) in the frequency range of 0.4-4 kHz and were 20-40 dB high...

  4. Ovarian hyperstimulation syndrome in gonadotropin-treated laboratory South African clawed frogs (Xenopus laevis).

    Science.gov (United States)

    Green, Sherril L; Parker, John; Davis, Corrine; Bouley, Donna M

    2007-05-01

    Ovarian hyperstimulation syndrome (OHS) is a rare but sometimes fatal iatrogenic complication of ovarian stimulation associated with the administration of exogenous gonadotropins to women undergoing treatment for infertility. Laboratory Xenopus spp are commonly treated with human chorionic gonadotropin (hCG) to stimulate ovulation and optimize the number of oocytes harvested for use in biomedical research. Here we report cases of OHS in 2 gonadotropin-treated laboratory Xenopus laevis. After receiving hCG, the frogs developed severe subcutaneous accumulation of fluid, coelomic distention, and whole-body edema and were unable to dive, although they continued to eat and swim. At postmortem examination, extensive subcutaneous edema was present; ascites and massive numbers of free-floating eggs were found in the coelomic cavity and in aberrant locations: around the heart-sac and adhered to the liver capsule. Whole-body edema, gross enlargement of the ovaries, ascites, and abdominal distention are findings comparable to those observed in women with OHS. The pathophysiology of OHS is thought to be related to hormonally induced disturbances of vasoactive mediators, one of which may be vascular endothelial growth factor secreted by theca and granulosa cells. We know of no other report describing OHSlike symptoms in gonadotropin-treated frogs, and the cases described here are 2 of the 3 we have observed at our respective institutions over the last 6 y. According to these results, OHS appears to be rare in gonadotropin-treated laboratory Xenopus. However, the condition should be included in the differential diagnosis for the bloated frog.

  5. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Science.gov (United States)

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  6. The morphology and attachment of Protopolystoma xenopodis (Monogenea: Polystomatidae infecting the African clawed frog Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Theunissen Maxine

    2014-01-01

    Full Text Available The African clawed frog Xenopus laevis (Anura: Pipidae is host to more than 25 parasite genera encompassing most of the parasitic invertebrate groups. Protopolystoma xenopodis Price, 1943 (Monogenea: Polystomatidae is one of two monogeneans infecting X. laevis. This study focussed on the external morphology of different developmental stages using scanning electron microscopy, histology and light microscopy. Eggs are released continuously and are washed out when the frog urinates. After successful development, an active swimming oncomiracidium leaves the egg capsule and locates a potential post-metamorphic clawed frog. The oncomiracidium migrates to the kidney where it attaches and starts to feed on blood. The parasite then migrates to the urinary bladder where it reaches maturity. Eggs are fusiform, about 300 μm long, with a smooth surface and are operculated. Oncomiracidia are elongated and cylindrical in shape, with an oval posterior cup-shaped haptor that bears a total of 20 sclerites; 16 marginal hooklets used for attachment to the kidney of the host and two pairs of hamulus primordia. Cilia from the 64 ciliated cells enable the oncomiracidium to swim for up to 24 h when the cilia subsequently curl up, become non-functional and are shed from the body. The tegument between the ciliated cells bears a series of sensory papillae. The body of the mature parasite is elongated and pyriform and possesses an opisthaptor armed with three pairs of suckers and two pairs of falciform hooks to ensure a firm grip on the flexible internal surface of the urinary bladder.

  7. The Pharmacokinetics of Enrofloxacin in Adult African Clawed Frogs (Xenopus laevis)

    Science.gov (United States)

    Howard, Antwain M; Papich, Mark G; Felt, Stephen A; Long, Charles T; McKeon, Gabriel P; Bond, Emmitt S; Torreilles, Stéphanie L; Luong, Richard H; Green, Sherril L

    2010-01-01

    Pharmacokinetics of enrofloxacin, a fluoroquinolone antibiotic, was determined in adult female Xenopus laevis after single-dose administration (10 mg/kg) by intramuscular or subcutaneous injection. Frogs were evaluated at various time points until 8 h after injection. Plasma was analyzed for antibiotic concentration levels by HPLC. We computed pharmacokinetic parameters by using noncompartmental analysis of the pooled concentrations (naive pooled samples). After intramuscular administration of enrofloxacin, the half-life was 5.32 h, concentration maximum was 10.85 µg/mL, distribution volume was 841.96 mL/kg, and area under the time–concentration curve was 57.59 µg×h/mL; after subcutaneous administration these parameters were 4.08 h, 9.76 µg/mL, 915.85 mL/kg, and 47.42 µg×h/mL, respectively. According to plasma pharmacokinetics, Xenopus seem to metabolize enrofloxacin in a manner similar to mammals: low levels of the enrofloxacin metabolite, ciprofloxacin, were detected in the frogs’ habitat water and plasma. At necropsy, there were no gross or histologic signs of toxicity after single-dose administration; toxicity was not evaluated for repeated dosing. The plasma concentrations reached levels considered effective against common aquatic pathogens and suggest that a single, once-daily dose would be a reasonable regimen to consider when treating sick frogs. The treatment of sick frogs should be based on specific microbiologic identification of the pathogen and on antibiotic susceptibility testing. PMID:21205443

  8. Overland movement in African clawed frogs (Xenopus laevis: empirical dispersal data from within their native range

    Directory of Open Access Journals (Sweden)

    F. André De Villiers

    2017-11-01

    Full Text Available Dispersal forms are an important component of the ecology of many animals, and reach particular importance for predicting ranges of invasive species. African clawed frogs (Xenopus laevis move overland between water bodies, but all empirical studies are from invasive populations with none from their native southern Africa. Here we report on incidents of overland movement found through a capture-recapture study carried out over a three year period in Overstrand, South Africa. The maximum distance moved was 2.4 km with most of the 91 animals, representing 5% of the population, moving ∼150 m. We found no differences in distances moved by males and females, despite the former being smaller. Fewer males moved overland, but this was no different from the sex bias found in the population. In laboratory performance trials, we found that males outperformed females, in both distance moved and time to exhaustion, when corrected for size. Overland movement occurred throughout the year, but reached peaks in spring and early summer when temporary water bodies were drying. Despite permanent impoundments being located within the study area, we found no evidence for migrations of animals between temporary and permanent water bodies. Our study provides the first dispersal kernel for X. laevis and suggests that it is similar to many non-pipid anurans with respect to dispersal.

  9. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis.

    Science.gov (United States)

    Nagai, Keita; Ishida, Takuya; Hashimoto, Takafumi; Harada, Yuichirou; Ueno, Shuichi; Ueda, Yasushi; Kubo, Hideo; Iwao, Yasuhiro

    2009-06-01

    To identify a molecule involved in sperm-egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm-surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti-SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti-SGP antibody recognized large molecules, with molecular masses of 65-150 kDa and minor smaller molecules with masses of 20-28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle-binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm-egg membrane binding and is responsible for the establishment of fertilization in Xenopus.

  10. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    Directory of Open Access Journals (Sweden)

    Charlotte De Busschere

    2016-02-01

    Full Text Available Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

  11. First parasitological study of the African clawed frog (Xenopus laevis, Amphibia in Chile

    Directory of Open Access Journals (Sweden)

    Cristóbal Castillo

    Full Text Available Abstract Introduced species can arrive into new territories with parasites; however, these species are expected to face lower parasite richness than in their original regions. Both introduced hosts and parasites can affect native fauna. Since their release into the wild in Chile following laboratory use, Xenopus laevis Daudin, 1802 has widely spread throughout central Chile. The only pathogen described on the host is the fungus Batrachochytrium dendrobatidis Longcore, Pessier, Nichols, 1999; thus, this is the first parasitological study of this species in Chile. In 10 localities in central Chile, 179 specimens of X. laevis were captured and examined for parasites in the gastrointestinal tube, cavities, lungs, liver, and skin. Only nine specimens of the genus Contracaecum Railliet, Henry, 1912 were found in six specimens of X. laevis from a private dam in La Patagua. It is likely that these parasites originated from species of native birds. This is the first record of Contracaecum sp. in Chilean amphibians.

  12. Structure-related effects of pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Ruigt, GeS. F.; Bercken, J. van den

    1982-01-01

    The effects of seven different pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis, were investigated by means of electrophysiological methods. The results show that two classes of pyrethroid can be clearly distinguished. (i)

  13. Tissue distribution of enrofloxacin in African clawed frogs (Xenopus laevis) after intramuscular and subcutaneous administration.

    Science.gov (United States)

    Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril

    2013-03-01

    As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis.

  14. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis.

    Science.gov (United States)

    Wu, Cheng-Wei; Tessier, Shannon N; Storey, Kenneth B

    2017-12-01

    Estivation is an adaptive stress response utilized by some amphibians during periods of drought in the summer season. In this study, we examine the regulation of the insulin signaling cascade and glycolysis pathway in the African clawed frog Xenopus laevis during the dehydration stress induced state of estivation. We show that in the brain and heart of X. laevis, dehydration reduces the phosphorylation of the insulin growth factor-1 receptor (IGF-1R), and this is followed by similar reductions in the phosphorylation of the Akt and mechanistic target of rapamycin (mTOR) kinase. Interestingly, phosphorylation levels of IGF-1R and mTOR were not affected in the kidney, and phosphorylation levels of P70S6K and the ribosomal S6 protein were elevated during dehydration stress. Animals under estivation are also susceptible to periods of hypoxia, suggesting that glycolysis may also be affected. We observed that protein levels of many glycolytic enzymes remained unchanged during dehydration; however, the hypoxia response factor-1 alpha (HIF-1α) protein was elevated by greater than twofold in the heart during dehydration. Overall, we provide evidence that shows that the insulin signaling pathway in X. laevis is regulated in a tissue-specific manner during dehydration stress and suggests an important role for this signaling cascade in mediating the estivation response.

  15. Effects of cadmium on growth, metamorphosis and gonadal sex differentiation in tadpoles of the African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2009-01-01

    Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8. 85 or 860 mu g L(-1) in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 3 1; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 mu g Cd L(-1). On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 mu g Cd L(-1). On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 mu g L(-1), thus creating a U-shaped size distribution at 0-85 mu g Cd L(-1). However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 mu g Cd L(-1) relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles.

  16. The colloidal thyroxine (T4) ring as a novel biomarker of perchlorate exposure in the African clawed frog Xenopus laevis

    Science.gov (United States)

    Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.

    2006-01-01

    The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.

  17. Metabolic cost of osmoregulation in a hypertonic environment in the invasive African clawed frog Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Isaac Peña-Villalobos

    2016-07-01

    Full Text Available Studies of aquatic invertebrates reveal that salinity affects feeding and growth rates, reproduction, survival, and diversity. Little is known, however, about how salinity impacts the energy budget of vertebrates and amphibians in particular. The few studies focused on this topic in vertebrates suggest that the ingestion of salts and the resulting osmoregulatory activity is energetically expensive. We analyzed the effect of saline acclimation on standard metabolic rates (SMR and the activities of metabolic enzymes of internal organs and osmoregulatory variables (plasma osmolality and urea plasma level in females of Xenopus laevis by means of acclimating individuals to an isosmotic (235 mOsm NaCl; ISO group and hyper-osmotic (340 mOsm NaCl; HYP group environment for 40 days. After acclimation, we found that total and mass-specific SMR was approximately 80% higher in the HYP group than those found in the ISO group. These changes were accompanied by higher citrate synthase activities in liver and heart in the HYP group than in the ISO group. Furthermore, we found a significant and positive correlation between metabolic rates and plasma urea, and citrate synthase activity in liver and heart. These results support the notion that the cost of osmoregulation is probably common in most animal species and suggest the existence of a functional association between metabolic rates and the adjustments in osmoregulatory physiology, such as blood distribution and urea synthesis.

  18. Assessment of mutagenic damage by monofunctional alkylating agents and gamma radiation in haploid and diploid frogs, Xenopus laevis

    International Nuclear Information System (INIS)

    Hart, D.R.; Armstrong, J.B.

    1984-01-01

    Adult male South African clawed frogs, Xenopus laevis, were mutagenized by 3-day immersion in aqueous solutions of ethyl methanesulfonate (EMS), diethyl nitrosamine (DEN), or ethyl nitrosourea (ENU), or by acute exposure to gamma radiation. They were then spawned repeatedly at 2-week intervals with untreated females, and embryonic survival of the progeny was used to assess genetic damage. Recessive lethal effects were assessed from reduced survival of androgenetic haploid progeny. Neither recessive nor dominant lethal effects were obtained after exposure to 100 mg/liter EMS or 2 g/liter DEN. At 250 mg/liter EMS, peak dominant lethality occurred 3-5 weeks after treatment. Most embryos hatched, but many were abnormal and died shortly after hatching. Haploid survival was significantly reduced over a broader period, from 1 to 13 weeks after mutagenesis. Treatment with 75 mg/liter ENU produced effects similar to the 250-mg/liter EMS mutagenesis. At 400 mg/liter EMS, the frequency and severity of the effects on both diploid and haploid embryos were increased over the lower dose. Gamma irradiation at 1500 R produced effects similar to the 400-mg/liter mutagenesis, except that peak dominant lethality extended from 1 to 7 weeks

  19. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    Science.gov (United States)

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  20. Hyperinnervation improves Xenopus laevis limb regeneration.

    Science.gov (United States)

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Polystyrene nanoparticles affect Xenopus laevis development

    Energy Technology Data Exchange (ETDEWEB)

    Tussellino, Margherita; Ronca, Raffaele [University of Naples Federico II, Department of Biology (Italy); Formiggini, Fabio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Marco, Nadia De [University of Naples Federico II, Department of Biology (Italy); Fusco, Sabato; Netti, Paolo Antonio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Carotenuto, Rosa, E-mail: rosa.carotenuto@unina.it [University of Naples Federico II, Department of Biology (Italy)

    2015-02-15

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  2. Polystyrene nanoparticles affect Xenopus laevis development

    International Nuclear Information System (INIS)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-01-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos

  3. Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis.

    Science.gov (United States)

    Konno, Norifumi; Fujii, Yuya; Imae, Haruka; Kaiya, Hiroyuki; Mukuda, Takao; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2013-05-01

    Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  5. A model for investigating developmental eye repair in Xenopus laevis.

    Science.gov (United States)

    Kha, Cindy X; Son, Philip H; Lauper, Julia; Tseng, Kelly Ai-Sun

    2018-04-01

    Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  7. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs and C-12 alkane (dodecane in Xenopus laevis Frog Embryos

    Directory of Open Access Journals (Sweden)

    B. Burýšková

    2006-01-01

    Full Text Available Short chain chlorinated paraffins (SCCPs are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12 and non-chlorinated n-alkane (dodecane, C-12 in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX. Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both chemicals caused up to 11% mortality. On the other hand, we observed developmental malformations and reduced embryo growth at 5 mg/l and higher concentrations. However, the effects were not related to chlorination pattern as both SCCPs and dodecane induced qualitatively similar effects. SCCPs also significantly induced phase II detoxification enzyme glutathione S-transferase (GST in Xenopus laevis embryos even at 0.5 mg/L, and this biomarker might be used as another early warning of chronic toxic effects. Our results newly indicate significant developmental toxicity of both SCCPs and n-dodecane to aquatic organisms along with inductions of specific biochemical toxicity mechanisms.

  8. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    Science.gov (United States)

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  9. Effects of cadmium, estradiol-17beta and their interaction on gonadal condition and metamorphosis of male and female African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2010-01-01

    To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17beta (E(2)) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10microgL(-1)), E(2) (1microgL(-1)), or Cd and E(2) (Cd+E(2)) in FETAX medium from fertilization to 75d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including >or= tadpoles NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E(2) and Cd+E(2) treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E(2) and Cd+E(2) treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E(2) or their combination compared to control animals. In males, but not females, the effect of Cd+E(2) was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd+E(2) treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E(2) both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.

  10. Effects of cadmium, estradiol-17β and their interaction on gonadal condition and metamorphosis of male and female African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2010-01-01

    To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17?? (E2) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10 ??g L-1), E2 (1 ??g L-1), or Cd and E2 (Cd + E2) in FETAX medium from fertilization to 75 d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including tadpoles ???NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E2 and Cd + E2 treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E2 and Cd + E2 treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E2 or their combination compared to control animals. In males, but not females, the effect of Cd + E2 was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd + E2 treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E2 both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.

  11. The Genome of the Western Clawed Frog Xenopus tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Uffe; Harland, Richard M.; Gilchrist, Michael J.; Hendrix, David; Jurka, Jerzy; Kapitonov, Vladimir; Ovcharenko, Ivan; Putnam, Nicholas H.; Shu, Shengqiang; Taher, Leila; Blitz, Ira L.; Blumberg, Bruce; Dichmann, Darwin S.; Dubchak, Inna; Amaya, Enrique; Detter, John C.; Fletcher, Russell; Gerhard, Daniela S.; Goodstein, David; Graves, Tina; Grigoriev, Igor V.; Grimwood, Jane; Kawashima, Takeshi; Lindquist, Erika; Lucas, Susan M.; Mead, Paul E.; Mitros, Therese; Ogino, Hajime; Ohta, Yuko; Poliakov, Alexander V.; Pollet, Nicolas; Robert, Jacques; Salamov, Asaf; Sater, Amy K.; Schmutz, Jeremy; Terry, Astrid; Vize, Peter D.; Warren, Wesley C.; Wells, Dan; Wills, Andrea; Wilson, Richard K.; Zimmerman, Lyle B.; Zorn, Aaron M.; Grainger, Robert; Grammer, Timothy; Khokha, Mustafa K.; Richardson, Paul M.; Rokhsar, Daniel S.

    2009-10-01

    The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.

  12. The histone H5 variant in Xenopus laevis

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Linders, M. T.; Charles, R.

    1984-01-01

    The presumptive histone H5 of Xenopus laevis has been characterized by SDS and acid-urea-Triton polyacrylamide gel electrophoresis and compared with chicken histone H5. Chicken H5 has a lower electrophoretic mobility compared to that of Xenopus H5 in both gel systems. It is shown, using a polyclonal

  13. Xenopus laevis embryos and tadpoles as models for testing for ...

    African Journals Online (AJOL)

    The toxicity of bio available Zn, Cu, Pb, and Cd on the life stages of Xenopus laevis embryos and tadpoles was investigated. Cu and Cd were found to affect the hatching success of the embryos, with a strong negative relationship existing between the increase in Cu concentrations and the hatching of the embryos.

  14. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis Frog Embryos

    OpenAIRE

    B. Burýšková; L. Bláha; D. Vršková; K. Šimková; B. Maršálek

    2006-01-01

    Short chain chlorinated paraffins (SCCPs) are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12) and non-chlorinated n-alkane (dodecane, C-12) in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX). Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both ch...

  15. Cortical Isolation from Xenopus laevis Oocytes and Eggs.

    Science.gov (United States)

    Sive, Hazel L; Grainger, Robert M; Harland, Richard M

    2007-06-01

    INTRODUCTIONIn Xenopus laevis, the cortex is the layer of gelatinous cytoplasm that lies just below the plasma membrane of the egg. Rotation of the cortex relative to the deeper cytoplasm soon after fertilization is intimately linked to normal dorsal axis specification. The cortex can be dissected from the egg to analyze its composition and activity or to clone associated RNAs. This protocol describes a procedure for isolating the vegetal cortex of the fertilized egg.

  16. Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety.

    Science.gov (United States)

    Al-Yousuf, Karamallah; Webster, Carl A; Wheeler, Grant N; Bombelli, Francesca Baldelli; Sherwood, Victoria

    2017-08-04

    The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure, to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of novel biomedical NPs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 by John Wiley & Sons, Inc.

  17. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    Science.gov (United States)

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens

    International Nuclear Information System (INIS)

    Christin, M.S.; Menard, L.; Gendron, A.D.; Ruby, S.; Cyr, D.; Marcogliese, D.J.; Rollins-Smith, L.; Fournier, M.

    2004-01-01

    Over the last 30 years, there have been mass declines in diverse geographic locations among amphibian populations. Multiple causes have been suggested to explain this decline. Among these, environmental pollution is gaining attention. Indeed, some chemicals of environmental concern are known to alter the immune system. Given that amphibians are frequently exposed to agricultural pesticides, it is possible that these pollutants alter their immune system and render them more susceptible to different pathogens. In this study, we exposed two frog species, Xenopus laevis and Rana pipiens, for a short period of time to a mixture of pesticides (atrazine, metribuzine, endosulfan, lindane, aldicarb and dieldrin) representative in terms of composition and concentrations to what it is found in the environment of the southwest region of the province of Quebec. The pesticides were known to be present in surface water of many tributaries of the St. Lawrence River (Quebec, Canada). Our results demonstrate that the mixture of pesticides could alter the cellularity and phagocytic activity of X. laevis and the lymphocyte proliferation of R. pipiens. Taken together, these results indicate that agricultural pesticides can alter some aspects of the immune response in frogs and could contribute to their global decline by rendering them more susceptible to certain infections

  19. Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens

    Energy Technology Data Exchange (ETDEWEB)

    Christin, M.S.; Menard, L.; Gendron, A.D.; Ruby, S.; Cyr, D.; Marcogliese, D.J.; Rollins-Smith, L.; Fournier, M

    2004-03-30

    Over the last 30 years, there have been mass declines in diverse geographic locations among amphibian populations. Multiple causes have been suggested to explain this decline. Among these, environmental pollution is gaining attention. Indeed, some chemicals of environmental concern are known to alter the immune system. Given that amphibians are frequently exposed to agricultural pesticides, it is possible that these pollutants alter their immune system and render them more susceptible to different pathogens. In this study, we exposed two frog species, Xenopus laevis and Rana pipiens, for a short period of time to a mixture of pesticides (atrazine, metribuzine, endosulfan, lindane, aldicarb and dieldrin) representative in terms of composition and concentrations to what it is found in the environment of the southwest region of the province of Quebec. The pesticides were known to be present in surface water of many tributaries of the St. Lawrence River (Quebec, Canada). Our results demonstrate that the mixture of pesticides could alter the cellularity and phagocytic activity of X. laevis and the lymphocyte proliferation of R. pipiens. Taken together, these results indicate that agricultural pesticides can alter some aspects of the immune response in frogs and could contribute to their global decline by rendering them more susceptible to certain infections.

  20. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri

    Directory of Open Access Journals (Sweden)

    Malone John H

    2008-03-01

    Full Text Available Abstract Background Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri. In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females. Results We find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported. Conclusion We discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule.

  1. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  2. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    Science.gov (United States)

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  3. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Sakai, Tomomi; Tochio, Hidehito; Tenno, Takeshi; Ito, Yutaka; Kokubo, Tetsuro; Hiroaki, Hidekazu; Shirakawa, Masahiro

    2006-01-01

    In-cell NMR is an application of solution NMR that enables the investigation of protein conformations inside living cells. We have measured in-cell NMR spectra in oocytes from the African clawed frog Xenopus laevis. 15 N-labeled ubiquitin, its derivatives and calmodulin were injected into Xenopus oocytes and two-dimensional 1 H- 15 N correlation spectra of the proteins were obtained. While the spectrum of wild-type ubiquitin in oocytes had rather fewer cross-peaks compared to its in vitro spectrum, ubiquitin derivatives that are presumably unable to bind to ubiquitin-interacting proteins gave a markedly larger number of cross-peaks. This observation suggests that protein-protein interactions between ubiquitin and ubiquitin-interacting proteins may cause NMR signal broadening, and hence spoil the quality of the in-cell HSQC spectra. In addition, we observed the maturation of ubiquitin precursor derivative in living oocytes using the in-cell NMR technique. This process was partly inhibited by pre-addition of ubiquitin aldehyde, a specific inhibitor for ubiquitin C-terminal hydrolase (UCH). Our work demonstrates the potential usefulness of in-cell NMR with Xenopus oocytes for the investigation of protein conformations and functions under intracellular environmental conditions

  4. Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis.

    Science.gov (United States)

    Boorse, Graham C; Denver, Robert J

    2004-07-01

    Members of the corticotropin-releasing factor (CRF) family of peptides play pivotal roles in the regulation of neuroendocrine, autonomic, and behavioral responses to physical and emotional stress. In amphibian tadpoles, CRF-like peptides stimulate both thyroid and interrenal (adrenal) hormone secretion, and can thereby modulate the rate of metamorphosis. To better understand the regulation of expression and actions of CRF in amphibians we developed a homologous radioimmunoassay (RIA) for Xenopus laevis CRF (xCRF). We validated this RIA and tissue extraction procedure for the measurement of brain CRF content in tadpoles and juveniles. We show that the CRF-binding protein, which is highly expressed in X. laevis brain, is largely removed by acid extraction and does not interfere in the RIA. We analyzed CRF peptide content in five microdissected brain regions in prometamorphic tadpoles and juveniles. CRF was detected throughout the brain, consistent with its role as both a hypophysiotropin and a neurotransmitter/neuromodulator. CRF content was highest in the region of the preoptic area (POa) and increased in all brain regions after metamorphosis. Exposure to 4h of handling/shaking stress resulted in increased CRF peptide content in the POa in juvenile frogs. Injections of xCRF into prometamorphic tadpoles increased whole body corticosterone and thyroxine content, thus supporting findings in other anuran species that this peptide functions as both a corticotropin- and a thyrotropin (TSH)-releasing factor. Furthermore, treatment of cultured tadpole pituitaries with xCRF (100nM for 24h) resulted in increased medium content, but decreased pituitary content of TSHbeta-immunoreactivity. Our results support the view that CRF functions as a stress neuropeptide in X. laevis as in other vertebrates. Furthermore, we provide evidence for a dual hypophysiotropic action of CRF on the thyroid and interrenal axes in X. laevis as has been shown previously in other amphibian species.

  5. Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro

    International Nuclear Information System (INIS)

    Kaiserman, H.B.; Ingebritsen, T.S.; Benbow, R.M.

    1988-01-01

    DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [γ- 32 P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. The authors conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, they speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity

  6. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis.

    Science.gov (United States)

    Hoffmann, Frauke; Kloas, Werner

    2010-09-01

    Vinclozolin (VIN) is an antiandrogenic model substance as well as a common fungicide that can affect the endocrine system of vertebrates. The objective of this study was to investigate how VIN affects mate calling behavior of South African clawed frogs (Xenopus laevis) and whether it is effective at environmentally relevant concentrations. Male X. laevis were injected with human chorionic gonadotropin (hCG) to stimulate their androgen-controlled mate calling behavior and were treated with VIN at concentrations of 10(-6), 10(-8) and 10(-10)M. VIN at 10(-6)M reduced calling activity. Furthermore, the vocalization composition of VIN-treated X. laevis was altered. The call types advertisement calls and chirping are uttered by reproductively active males, whereas the call types growling, ticking, and rasping indicate a sexually unaroused state of a male. VIN at any of the tested concentrations led to a decrease in utterance of calls, which indicate a sexually aroused state of the males, and an increase in relative proportions of calls, indicating a sexually unaroused state of the males. Additionally, the mean duration of clicks and the number of accentuated clicks during the advertisement calls decreased at all concentrations of VIN. No significant differences were observed in any other temporal or spectral calling parameters between the treatments. This study illustrates that exposure to the antiandrogen VIN might result in a reduced reproductive success by altering mate calling behavior of X. laevis. Moreover, it suggests that the behavioral parameters examined in this study can be used as sensitive biomarkers for detecting antiandrogenic endocrine disrupting compounds in amphibians. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Xiuping Chen

    Full Text Available In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19 on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L-1 or 10 μg L-1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05. Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05, there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.

  8. De novo Transcriptome Assemblies of Rana (Lithobates catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Inanc Birol

    Full Text Available In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates catesbeiana and the African clawed frog (Xenopus laevis. We used high throughput RNA sequencing (RNA-seq data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.

  9. Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: A potential issue in endocrine testing

    Energy Technology Data Exchange (ETDEWEB)

    Du Preez, Louis H., E-mail: Louis.DuPreez@nwu.ac.za [School of Environmental Sciences and Development, North-West University, Potchefstroom 2531 (South Africa); Kunene, Nisile [School of Environmental Sciences and Development, North-West University, Potchefstroom 2531 (South Africa); Hanner, Robert [Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1 (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (Hong Kong); National Food Safety and Toxicology Center, Zoology Department, and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Solomon, Keith R., E-mail: ksolomon@uoguelph.ca [Centre for Toxicology and Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1 (Canada); Hosmer, Alan [Syngenta Crop Protection, Greensboro, NC 27419-8300 (United States); Van Der Kraak, Glen J. [Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1 (Canada)

    2009-10-19

    The African clawed frog (Xenopus laevis) has been identified as an appropriate sentinel for testing endocrine activity of existing chemicals in North America and Europe. Some reports suggest that the herbicide, atrazine (CAS Number [1912-24-9]) causes ovarian follicles to form in the testes of this frog. X. laevis collected from North East (NE) sites in South Africa had testicular ovarian follicles, irrespective of exposure to atrazine, while frogs from Southwest Western (SW) Cape region sites had none. Phylogenetic analysis of mitochondrial and nuclear genes indicates that frogs from the SW Cape are evolutionarily divergent from those from NE South Africa and the rest of sub-Saharan Africa. These findings provide a possible explanation for why conflicting results have been reported concerning the impact of atrazine on amphibian sexual differentiation and highlight the importance of understanding taxonomic status of the experimental animal. Even in common laboratory animals, there is a need for their correct taxonomic characterization before their use in tests for endocrine disruption.

  10. Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: A potential issue in endocrine testing

    International Nuclear Information System (INIS)

    Du Preez, Louis H.; Kunene, Nisile; Hanner, Robert; Giesy, John P.; Solomon, Keith R.; Hosmer, Alan; Van Der Kraak, Glen J.

    2009-01-01

    The African clawed frog (Xenopus laevis) has been identified as an appropriate sentinel for testing endocrine activity of existing chemicals in North America and Europe. Some reports suggest that the herbicide, atrazine (CAS Number [1912-24-9]) causes ovarian follicles to form in the testes of this frog. X. laevis collected from North East (NE) sites in South Africa had testicular ovarian follicles, irrespective of exposure to atrazine, while frogs from Southwest Western (SW) Cape region sites had none. Phylogenetic analysis of mitochondrial and nuclear genes indicates that frogs from the SW Cape are evolutionarily divergent from those from NE South Africa and the rest of sub-Saharan Africa. These findings provide a possible explanation for why conflicting results have been reported concerning the impact of atrazine on amphibian sexual differentiation and highlight the importance of understanding taxonomic status of the experimental animal. Even in common laboratory animals, there is a need for their correct taxonomic characterization before their use in tests for endocrine disruption.

  11. Islet-1 Immunoreactivity in the Developing Retina of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Guadalupe Álvarez-Hernán

    2013-01-01

    Full Text Available The LIM-homeodomain transcription factor Islet1 (Isl1 has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.

  12. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  13. Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis

    NARCIS (Netherlands)

    de Boer, Teun P.; Kok, Bart; Roël, Giulietta; van Veen, Toon A. B.; Destrée, Olivier H. J.; Rook, Martin B.; Vos, Marc A.; de Bakker, Jacques M. T.; van der Heyden, Marcel A. G.

    2006-01-01

    Vertebrate gap junctions are constituted of connexin (Cx) proteins. In Xenopus laevis, only seven different Cxs have been described so far. Here, we identify two new Cxs from X. laevis. Cx28.6 displays > 60% amino acid identity with human Cx25, Cx29 displays strong homology with mouse Cx26 and Cx30.

  14. A transgenic Xenopus laevis reporter model to study lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Annelii Ny

    2013-07-01

    The importance of the blood- and lymph vessels in the transport of essential fluids, gases, macromolecules and cells in vertebrates warrants optimal insight into the regulatory mechanisms underlying their development. Mouse and zebrafish models of lymphatic development are instrumental for gene discovery and gene characterization but are challenging for certain aspects, e.g. no direct accessibility of embryonic stages, or non-straightforward visualization of early lymphatic sprouting, respectively. We previously demonstrated that the Xenopus tadpole is a valuable model to study the processes of lymphatic development. However, a fluorescent Xenopus reporter directly visualizing the lymph vessels was lacking. Here, we created transgenic Tg(Flk1:eGFP Xenopus laevis reporter lines expressing green fluorescent protein (GFP in blood- and lymph vessels driven by the Flk1 (VEGFR-2 promoter. We also established a high-resolution fluorescent dye labeling technique selectively and persistently visualizing lymphatic endothelial cells, even in conditions of impaired lymph vessel formation or drainage function upon silencing of lymphangiogenic factors. Next, we applied the model to dynamically document blood and lymphatic sprouting and patterning of the initially avascular tadpole fin. Furthermore, quantifiable models of spontaneous or induced lymphatic sprouting into the tadpole fin were developed for dynamic analysis of loss-of-function and gain-of-function phenotypes using pharmacologic or genetic manipulation. Together with angiography and lymphangiography to assess functionality, Tg(Flk1:eGFP reporter tadpoles readily allowed detailed lymphatic phenotyping of live tadpoles by fluorescence microscopy. The Tg(Flk1:eGFP tadpoles represent a versatile model for functional lymph/angiogenomics and drug screening.

  15. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.

    Science.gov (United States)

    Seigfried, Franziska A; Dietmann, Petra; Kühl, Michael; Kühl, Susanne J

    2018-06-01

    The adhesion G protein-coupled receptor A2 (Adgra2) is a seven transmembrane receptor that has been described to be a regulator for angiogenesis in mice. Furthermore, the zebrafish ouchless mutant is unable to develop dorsal root ganglia through a disrupted trafficking of Adgra2. Besides RNA sequencing data, nothing is reported about Adgra2 in the south African crawled frog Xenopus laevis. In this study, we investigated for the first time the spatio-temporal expression of adgra2 during early Xenopus embryogenesis in detail. In silico approaches showed that the genomic adgra2 region as well as the Adgra2 protein sequence is highly conserved among different species including Xenopus. RT-PCR experiments confirmed that embryonic adgra2 expression is primarily detected at the beginning of neurulation and is then present throughout the whole Xenopus embryogenesis until stage 42. Whole mount in situ hybridization approaches visualized adgra2 expression in many tissues during Xenopus embryogenesis such as the cardiovascular system including the heart, the migrating neural crest cells and the developing eye including the periocular mesenchyme. Our results indicate a role of Adgra2 for embryogenesis and are a good starting point for further functional studies during early vertebrate development. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    Science.gov (United States)

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  18. Control of melanin synthesis during oogenesis in Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Kidson, S H

    1985-01-01

    The present study investigates the mechanisms that control the synthesis of pigment during Xenopus laevis oogenesis. In this study, in vitro and in vivo assays indicate that the activity of the enzyme tyrosinase, the only enzyme necessary for the synthesis of pigment also reaches a peak during mid-oogenesis. The isotopes carbon 14, tritium, phosphorus 32 and sulfur 35 are used in this experiments. Furthermore, in vitro tyrosinase assays of polysomes isolated from different stage oocytes show that the rise in tyrosinase activity during mid-oogenesis is accompanied by a rise in polysomes synthesizing tyrosinase. This suggests that the synthesis of tyrosinase is restricted to mid-oogenesis. It was also established that oocyte tyrosinase is synthesized as a 32 kd polypeptide and is processed intra-melanosomally into a 120-130 kd tetramer. It is this form that is catalytically active in vivo. Oocyte tyrosinase does not require post-translational protease activation. To investigate the hypothesis that the synthesis of tyrosinase is restricted to mid-oogenesis, the accumulation of messenger RNA coding for tyrosinase was measured at different stages of oogenesis using a tyrosinase cDNA probe. The preparation of the tyrosinase cDNA probe required the purification of tyrosinase mRNA. This was achieved by a technique based on affinity chromatography of polysomes. This enriched 'tyrosinase mRNA' translated in vitro into two major proteins of 32 kd and 20 kd. The mRNA microinjected into Xenopus oocytes is translated into active tyrosinase. Hybridization of the tyrosinase cDNA probe to dot blots of oocyte mRNA suggested that tyrosinase mRNA accumulation reaches a peak just before maximal tyrosinase synthesis. The absence of tyrosinase mRNA late in oogenesis suggests that this message is not synthesized at this stage. These results are interpreted in terms of the functional significance of lampbrush chromosomes.

  19. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs

    Directory of Open Access Journals (Sweden)

    Barker Donna

    2008-06-01

    Full Text Available Abstract Background Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1 in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. Results In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish. Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of

  20. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    Directory of Open Access Journals (Sweden)

    Anne Golding

    Full Text Available In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.

  1. The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat.

    Science.gov (United States)

    Probst, J C; Hauser, F; Joba, W; Hoffmann, W

    1992-03-25

    The frog integumentary mucin B.1 (FIM-B.1), discovered by molecular cloning, contains a cysteine-rich C-terminal domain which is homologous with von Willebrand factor. With the help of the polymerase chain reaction, we now characterize a contiguous region 5' to the von Willebrand factor domain containing the short consensus repeat typical of many proteins from the complement system. Multiple transcripts have been cloned, which originate from a single animal and differ by a variable number of tandem repeats (rep-33 sequences). These different transcripts probably originate solely from two genes and are generated presumably by alternative splicing of an huge array of functional cassettes. This model is supported by analysis of genomic FIM-B.1 sequences from Xenopus laevis. Here, rep-33 sequences are arranged in an interrupted array of individual units. Additionally, results of Southern analysis revealed genetic polymorphism between different animals which is predicted to be within the tandem repeats. A first investigation of the predicted mucins with the help of a specific antibody against a synthetic peptide determined the molecular mass of FIM-B.1 to greater than 200 kDa. Here again, genetic polymorphism between different animals is detected.

  2. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis

    DEFF Research Database (Denmark)

    Elliott, Taffeta M.; Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2007-01-01

    The clawed frog Xenopus laevis produces vocalizations consisting of distinct patterns of clicks. This study provides the first description of spontaneous, pure-tone and communication-signal evoked discharge properties of auditory nerve (n.VIII) fibers and dorsal medullary nucleus (DMN) cells...... in an obligatorily aquatic anuran. Responses of 297 n.VIII and 253 DMN units are analyzed for spontaneous rates (SR), frequency tuning, rate-intensity functions, and firing rate adaptation, with a view to how these basic characteristics shape responses to recorded call stimuli. Response properties generally resemble......Hz with approximately 500 Hz in 3 dB bandwidth. SRs range from 0 to 80 (n.VIII) and 0 to 73 spikes/s (DMN). Nerve and DMN units of all CFs follow click rates in natural calls,

  3. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K

    2002-01-01

    Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein wil...

  4. Comparative effects of DDT, allethrin, dieldrin and aldrin-transdiol on sense organs of Xenopus laevis

    NARCIS (Netherlands)

    Akkermans, L.M.A.; Bercken, J. van den; Versluijs-Helder, M.

    1975-01-01

    The effects of DDT, allethrin, dieldrin and aldrin-transdiol were studied in two different sense organs of Xenopus laevis; the lateral-line organ and the cutaneous touch receptors. DDT and allethrin produced pronounced repetitive firing in both preparations. Dieldrin and aldrin-transdiol, on the

  5. Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis

    NARCIS (Netherlands)

    Kidane, A.H.; van Dooren, S.H.; Roubos, E.W.; Jenks, B.G.

    2007-01-01

    Brain-derived neurotrophic factor (BDNF) and alpha-melanophore-stimulating hormone (alpha-MSH) are co-sequestered in secretory granules in melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis. alpha-MSH is responsible for pigment dispersion in dermal melanophores during

  6. METAMORPHIC INHIBITION OF XENOPUS LAEVIS BY SODIUM PERCHLORATE: EFFECTS ON DEVELOPMENT AND THYROID HISTOLOGY

    Science.gov (United States)

    The perchlorate anion inhibits thyroid hormone (TH) synthesis via inhibition of the sodium-iodide symporter. It is, therefore, a good model chemical to aid in the development of a bioassay to screen chemicals for effects on thyroid function. Xenopus laevis larvae were exposed to ...

  7. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Science.gov (United States)

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  8. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity

    Directory of Open Access Journals (Sweden)

    Martin M. Möckel

    2017-04-01

    Full Text Available The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes.

  9. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae).

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Leprince, Jérôme; Coquet, Laurent; Jouenne, Thierry; Vaudry, Hubert; Nowotny, Norbert; King, Jay D

    2015-10-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2012-01-01

    expressed in Xenopus laevis oocytes, whereas the neutral local anesthetic, benzocaine, does not, suggesting that a titratable amine is required for high-affinity inhibition. Consistent with this possibility, extracellular tetraethylammonium (TEA) and tetramethylammonium application produces potent, voltage...

  11. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    Science.gov (United States)

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  12. How does the Xenopus laevis embryonic cell cycle avoid spatial chaos?

    Science.gov (United States)

    Gelens, Lendert; Huang, Kerwyn Casey; Ferrell, James E.

    2015-01-01

    Summary Theoretical studies have shown that a deterministic biochemical oscillator can become chaotic when operating over a sufficiently large volume, and have suggested that the Xenopus laevis cell cycle oscillator operates close to such a chaotic regime. To experimentally test this hypothesis, we decreased the speed of the post-fertilization calcium wave, which had been predicted to generate chaos. However, cell divisions were found to develop normally and eggs developed into normal tadpoles. Motivated by these experiments, we carried out modeling studies to understand the prerequisites for the predicted spatial chaos. We showed that this type of spatial chaos requires oscillatory reaction dynamics with short pulse duration, and postulated that the mitotic exit in Xenopus laevis is likely slow enough to avoid chaos. In systems with shorter pulses, chaos may be an important hazard, as in cardiac arrhythmias, or a useful feature, as in the pigmentation of certain mollusk shells. PMID:26212326

  13. The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Lamers, W. H.; Charles, R.

    1986-01-01

    The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken has been established with monoclonal antibodies to histone H5. Both in Xenopus and in chicken, the protein has presumably a more widespread cellular distribution than hitherto expected but is absent

  14. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    OpenAIRE

    Orsini, F.; Santacroce, M.; Cremona, A.; Gosvami, N. N.; Lascialfari, A.; Hoogenboom, B. W.

    2014-01-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23...

  15. The role of nitric oxide during embryonic epidermis development of Xenopus laevis

    Czech Academy of Sciences Publication Activity Database

    Tománková, Silvie; Abaffy, Pavel; Šindelka, Radek

    2017-01-01

    Roč. 6, č. 6 (2017), s. 862-871 ISSN 2046-6390 R&D Projects: GA AV ČR LK21305; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Development * Nitric oxide * Epidermis * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 2.095, year: 2016

  16. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis

    OpenAIRE

    Perry, Kimberly J.; Johnson, Verity R.; Malloch, Erica L.; Fukui, Lisa; Wever, Jason; Thomas, Alvin G.; Hamilton, Paul W.; Henry, Jonathan J.

    2010-01-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84’s importance in lens, cornea and retinal development. Ex...

  17. Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations.

    Science.gov (United States)

    Shi, Huahong; Zhu, Pan; Guo, Suzhen

    2014-05-01

    Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations.

  18. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    Science.gov (United States)

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. XenDB: Full length cDNA prediction and cross species mapping in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Giegerich Robert

    2005-09-01

    Full Text Available Abstract Background Research using the model system Xenopus laevis has provided critical insights into the mechanisms of early vertebrate development and cell biology. Large scale sequencing efforts have provided an increasingly important resource for researchers. To provide full advantage of the available sequence, we have analyzed 350,468 Xenopus laevis Expressed Sequence Tags (ESTs both to identify full length protein encoding sequences and to develop a unique database system to support comparative approaches between X. laevis and other model systems. Description Using a suffix array based clustering approach, we have identified 25,971 clusters and 40,877 singleton sequences. Generation of a consensus sequence for each cluster resulted in 31,353 tentative contig and 4,801 singleton sequences. Using both BLASTX and FASTY comparison to five model organisms and the NR protein database, more than 15,000 sequences are predicted to encode full length proteins and these have been matched to publicly available IMAGE clones when available. Each sequence has been compared to the KOG database and ~67% of the sequences have been assigned a putative functional category. Based on sequence homology to mouse and human, putative GO annotations have been determined. Conclusion The results of the analysis have been stored in a publicly available database XenDB http://bibiserv.techfak.uni-bielefeld.de/xendb/. A unique capability of the database is the ability to batch upload cross species queries to identify potential Xenopus homologues and their associated full length clones. Examples are provided including mapping of microarray results and application of 'in silico' analysis. The ability to quickly translate the results of various species into 'Xenopus-centric' information should greatly enhance comparative embryological approaches. Supplementary material can be found at http://bibiserv.techfak.uni-bielefeld.de/xendb/.

  20. The roles of Bcl-xL in modulating apoptosis during development of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Calderon-Segura Maria

    2005-09-01

    Full Text Available Abstract Background Apoptosis is a common and essential aspect of development. It is particularly prevalent in the central nervous system and during remodelling processes such as formation of the digits and in amphibian metamorphosis. Apoptosis, which is dependent upon a balance between pro- and anti-apoptotic factors, also enables the embryo to rid itself of cells damaged by gamma irradiation. In this study, the roles of the anti-apoptotic factor Bcl-xL in protecting cells from apoptosis were examined in Xenopus laevis embryos using transgenesis to overexpress the XR11 gene, which encodes Bcl-xL. The effects on developmental, thyroid hormone-induced and γ-radiation-induced apoptosis in embryos were examined in these transgenic animals. Results Apoptosis was abrogated in XR11 transgenic embryos. However, the transgene did not prevent the apoptotic response of tadpoles to thyroid hormone during metamorphosis. Post-metamorphic XR11 frogs were reared to sexual maturity, thus allowing us to produce second-generation embryos and enabling us to distinguish between the maternal and zygotic contributions of Bcl-xL to the γ-radiation apoptotic response. Wild-type embryos irradiated before the mid-blastula transition (MBT underwent normal cell division until reaching the MBT, after which they underwent massive, catastrophic apoptosis. Over-expression of Bcl-xL derived from XR11 females, but not males, provided partial protection from apoptosis. Maternal expression of XR11 was also sufficient to abrogate apoptosis triggered by post-MBT γ-radiation. Tolerance to post-MBT γ-radiation from zygotically-derived XR11 was acquired gradually after the MBT in spite of abundant XR11 protein synthesis. Conclusion Our data suggest that Bcl-xL is an effective counterbalance to proapoptotic factors during embryonic development but has no apparent effect on the thyroid hormone-induced apoptosis that occurs during metamorphosis. Furthermore, post-MBT apoptosis

  1. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2017-04-01

    Full Text Available Emilia Galdiero,1 Annarita Falanga,2 Antonietta Siciliano,1 Valeria Maselli,1 Marco Guida,1 Rosa Carotenuto,1 Margherita Tussellino,1 Lucia Lombardi,3 Giovanna Benvenuto,4 Stefania Galdiero2 1Department of Biology, 2Department of Pharmacy and CiRPEB, University of Naples Federico II, 3Department of Experimental Medicine, Second University of Naples, 4Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Abstract: The use of quantum dots (QDs for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. Keywords: membranotropic peptide, delivery, blood–brain barrier, nanoparticles, genotoxicity

  2. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

    Science.gov (United States)

    Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek

    2017-01-01

    Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

  3. COMPARATIVE TOXICITY OF DIURON ON SURVIVAL AND GROWTH OF PACIFIC TREEFROG, BULLFROG, RED-LEGGED FROG, AND AFRICAN CLAWED FROG EMBRYOS AND TADPOLES

    Science.gov (United States)

    The effects of the herbicide diuron on survival and growth of Pacific treefrog (Pseudacris regilla),bullfrog(Rana catesbeiana), red-legged frog(Rana aurora),and African clawed frog(Xenopus laevis)embryos and tadpoles were determined in static-renewal tests. P.regilla and X.laevis...

  4. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

    Directory of Open Access Journals (Sweden)

    Aliaksandr Dzementsei

    2013-11-01

    The directional migration of primordial germ cells (PGCs to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro.

  5. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.

    Science.gov (United States)

    Zhang, Kun; Wang, Jin

    2018-05-31

    The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for

  6. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    Directory of Open Access Journals (Sweden)

    Patrizia Bonfanti

    2015-07-01

    Full Text Available The growing global production of zinc oxide nanoparticles (ZnONPs suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1–100 mg/L specifically synthesized for industrial purposes with different sizes, shapes (round, rod and surface coatings (PEG, PVP was tested using the frog embryo teratogenesis assay-Xenopus (FETAX to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  7. Interaction of higher plant ribosomal 5S RNAs with ''Xenopus laevis'' transcriptional factor IIIA

    International Nuclear Information System (INIS)

    Barciszewska, M.Z.

    1994-01-01

    In this paper transcriptional factor IIIA (TFIIIA) has been used as a probe for identity of three-dimensional-structure of eukaryotic 5S rRNAs. I was interested in finding a common motif in plant and ''Xenopus'' 5S rRNAs for TFIIIA recognition. I found that the two eukaryotic 5S rRNAs (from wheat germ and lupin seeds) are recognized by ''X. laevis'' TFIIIA and the data clearly suggest that these 5S rRNAs have very similar if not identical three-dimensional structures. Also effects of various conditions on stability of these complexes have been studied. (author). 30 refs, 6 figs, 1 tab

  8. Localisation and characteristics of bond sites of aldosterone along the nephron of an amphibian: Xenopus laevis

    International Nuclear Information System (INIS)

    Gnionsahe, Daze Apollinaire

    1986-01-01

    The author reports an academic work which aimed at determining characteristics of the aldosterone bond along the kidney nephron of the Xenopus laevis by using auto-radiography on isolated tubular segments. The objective was to highlight tubular segments at the origin of A6 cells by comparing aldosterone bond characteristics in these cells and in different tubular segments of the kidney. Besides, the author compared the bond distribution between the two aldosterone bond sites: the high affinity type I bond site (so-called mineralocorticoids), and low affinity type II bond site (so-called glucocorticoids)

  9. Expression of membrane targeted aequorin in Xenopus laevis oocytes.

    Science.gov (United States)

    Daguzan, C; Nicolas, M T; Mazars, C; Leclerc, C; Moreau, M

    1995-08-01

    We described here a system for high level of expression of the calcium activated photoprotein aequorin. This protein has been targeted to the plasma membrane of Xenopus oocyte by nuclear microinjection of a plasmid containing a construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and the 5-HT1A receptor. The expression of this fusion protein is placed under the control of RSV promoter. Functional photoprotein was reconstituted in the oocyte by incubation with coelenterazine. The amount of photoprotein 24 h after nuclear microinjection of the plasmid was sufficient to trigger a detectable light emission following calcium entry. The efficiency of the expression is correlated with the dose of plasmid injected. Intracytoplasmic injection of the plasmid always failed in photoprotein expression. Targeting of the apoprotein was demonstrated by immunolocalization under confocal microscopy. In our experimental conditions, the apoprotein was always localized at the animal pole above the nucleus. We never observed expression and targeting to the plasma membrane of the vegetal pole. WE suggest that such expression might be of great interest for the study of numerous problems of developmental biology, in which calcium-dependent pathways are involved.

  10. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    Science.gov (United States)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  11. Differences in mobility at the range edge of an expanding invasive population of Xenopus laevis in the west of France.

    Science.gov (United States)

    Louppe, Vivien; Courant, Julien; Herrel, Anthony

    2017-01-15

    Theoretical models predict that spatial sorting at the range edge of expanding populations should favor individuals with increased mobility relative to individuals at the center of the range. Despite the fact that empirical evidence for the evolution of locomotor performance at the range edge is rare, data on cane toads support this model. However, whether this can be generalized to other species remains largely unknown. Here, we provide data on locomotor stamina and limb morphology in individuals from two sites: one from the center and one from the periphery of an expanding population of the clawed frog Xenopus laevis in France where it was introduced about 30 years ago. Additionally, we provide data on the morphology of frogs from two additional sites to test whether the observed differences can be generalized across the range of this species in France. Given the known sexual size dimorphism in this species, we also test for differences between the sexes in locomotor performance and morphology. Our results show significant sexual dimorphism in stamina and morphology, with males having longer legs and greater stamina than females. Moreover, in accordance with the predictions from theoretical models, individuals from the range edge had a greater stamina. This difference in locomotor performance is likely to be driven by the significantly longer limb segments observed in animals in both sites sampled in different areas along the range edge. Our data have implications for conservation because spatial sorting on the range edge may lead to an accelerated increase in the spread of this invasive species in France. © 2017. Published by The Company of Biologists Ltd.

  12. The establishment of polarized membrane traffic in Xenopus laevis embryos.

    Science.gov (United States)

    Roberts, S J; Leaf, D S; Moore, H P; Gerhart, J C

    1992-09-01

    Delineation of apical and basolateral membrane domains is a critical step in the epithelialization of the outer layer of cells in the embryo. We have examined the initiation of polarized membrane traffic in Xenopus and show that membrane traffic is not polarized in oocytes but polarized membrane domains appear at first cleavage. The following proteins encoded by injected RNA transcripts were used as markers to monitor membrane traffic: (a) VSV G, a transmembrane glycoprotein preferentially inserted into the basolateral surface of polarized epithelial cells; (b) GThy-1, a fusion protein of VSV G and Thy-1 that is localized to the apical domains of polarized epithelial cells; and (c) prolactin, a peptide hormone that is not polarly secreted. In immature oocytes, there is no polarity in the expression of VSV G or GThy-1, as shown by the constitutive expression of both proteins at the surface in the animal and vegetal hemispheres. At meiotic maturation, membrane traffic to the surface is blocked; the plasma membrane no longer accepts the vesicles synthesized by the oocyte (Leaf, D. L., S. J. Roberts, J. C. Gerhart, and H.-P. Moore. 1990. Dev. Biol. 141:1-12). When RNA transcripts are injected after fertilization, VSV G is expressed only in the internal cleavage membranes (basolateral orientation) and is excluded from the outer surface (apical orientation, original oocyte membrane). In contrast, GThy-1 and prolactin, when expressed in embryos, are inserted or released at both the outer membrane derived from the oocyte and the inner cleavage membranes. Furthermore, not all of the cleavage membrane comes from an embryonic pool of vesicles--some of the cleavage membrane comes from vesicles synthesized during oogenesis. Using prolactin as a marker, we found that a subset of vesicles synthesized during oogenesis was only released after fertilization. However, while embryonic prolactin was secreted from both apical and basolateral surfaces, the secretion of oogenic prolactin

  13. Identification of a candidate CD5 homologue in the amphibian Xenopus laevis.

    Science.gov (United States)

    Jürgens, J B; Gartland, L A; Du Pasquier, L; Horton, J D; Göbel, T W; Cooper, M D

    1995-11-01

    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cells.

  14. Entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos

    International Nuclear Information System (INIS)

    Kao, K.R.; Elinson, R.P.

    1988-01-01

    The body plan of Xenopus laevis can be respecified by briefly exposing early cleavage stage embryos to lithium. Such embryos develop exaggerated dorsoanterior structures such as a radial eye and cement gland. In this paper, we demonstrate that the enhanced dorsoanterior phenotype results from an overcommitment of mesoderm to dorsoanterior mesoderm. Histological and immunohistochemical observations reveal that the embryos have a greatly enlarged notochord with very little muscle tissue. In addition, they develop a radial, beating heart, suggesting that lithium also specifies anterior mesoderm and pharyngeal endoderm. Randomly oriented diametrically opposed marginal zone grafts from lithium-treated embryos, when transplanted into ultraviolet (uv)-irradiated axis-deficient hosts, rescue dorsal axial structures. These transplantation experiments demonstrate that the entire marginal zone of the early gastrula consists of presumptive dorsal mesoderm. Vital dye marking experiments also indicate that the entire marginal zone maps to the prominent proboscis that is composed of chordamesoderm and represents the long axis of the embryo. These results suggest that lithium respecifies the mesoderm of Xenopus laevis embryos so that it differentiates into the Spemann organizer. We suggest that the origin of the dorsoanterior enhanced phenotypes generated by lithium and the dorsoanterior deficient phenotypes generated by uv irradiation are due to relative quantities of organizer. Our evidence demonstrates the existence of a continuum of body plan phenotypes based on this premise

  15. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Hilscherová, Klára; Babica, Pavel; Vršková, D.; Maršálek, Blahoslav; Bláha, Luděk

    2006-01-01

    Roč. 80, č. 4 (2006), s. 346-354 ISSN 0166-445X R&D Projects: GA MŠk 1M0571; GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : FETAX * Xenopus laevis * malformations * cyanobacterial fractions * biomarkers Subject RIV: EF - Botanics Impact factor: 2.964, year: 2006

  16. Evaluation of Parameters Critical for Observing Nucleic Acids Inside Living Xenopus laevis Oocytes by In-Cell NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hansel, R.; Foldynová, Silvie; Lohr, F.; Buck, J.; Bongartz, E.; Bamberg, E.; Schwalbe, H.; Dotsch, V.; Trantírek, Lukáš

    2009-01-01

    Roč. 131, č. 43 (2009), s. 15761-15768 ISSN 0002-7863 R&D Projects: GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z60220518 Keywords : in-cell NMR * nucleic acid * Xenopus laevis * DNA * RNA Subject RIV: BO - Biophysics Impact factor: 8.580, year: 2009

  17. Excitatory and depressant effects of dieldrin and aldrin-transdiol in the spinal cord of the toad (Xenopus laevis)

    NARCIS (Netherlands)

    Akkermans, L.M.A.; Bercken, J. van den; Versluijs-Helder, M.

    1975-01-01

    An investigation was made into the action of the insecticide dieldrin and one of its metabolites, aldrin-transdiol, on the isolated spinal cord of the toad, Xenopus laevis. Conventional electrophysiological techniques were used for stimulating and recording of dorsal and ventral spinal roots. An

  18. Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney

    Directory of Open Access Journals (Sweden)

    Mark E. Corkins

    2018-04-01

    Full Text Available Xenopus laevis embryos are an established model for studying kidney development. The nephron structure and genetic pathways that regulate nephrogenesis are conserved between Xenopus and humans, allowing for the study of human disease-causing genes. Xenopus embryos are also amenable to large-scale screening, but studies of kidney disease-related genes have been impeded because assessment of kidney development has largely been limited to examining fixed embryos. To overcome this problem, we have generated a transgenic line that labels the kidney. We characterize this cdh17:eGFP line, showing green fluorescent protein (GFP expression in the pronephric and mesonephric kidneys and colocalization with known kidney markers. We also demonstrate the feasibility of live imaging of embryonic kidney development and the use of cdh17:eGFP as a kidney marker for secretion assays. Additionally, we develop a new methodology to isolate and identify kidney cells for primary culture. We also use morpholino knockdown of essential kidney development genes to establish that GFP expression enables observation of phenotypes, previously only described in fixed embryos. Taken together, this transgenic line will enable primary kidney cell culture and live imaging of pronephric and mesonephric kidney development. It will also provide a simple means for high-throughput screening of putative human kidney disease-causing genes.

  19. Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine

    International Nuclear Information System (INIS)

    Hecker, Markus; Kim, Wan Jong; Park, June-Woo; Murphy, Margaret B.; Villeneuve, Daniel; Coady, Katherine K.; Jones, Paul D.; Solomon, Keith R.; Kraak, Glen van der; Carr, James A.; Smith, Ernest E.; Preez, Louis du; Kendall, Ronald J.; Giesy, John P.

    2005-01-01

    The ultrastructure of testicular cells of adult male African clawed frogs (Xenopus laevis) exposed to either estradiol (0.1 μg/L) or 2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine (atrazine; 10 or 100 μg/L) was examined by electron microscopy and compared to plasma concentrations of the steroid hormones, testosterone (T) and estradiol (E2), testicular aromatase activity and gonad growth expressed as the gonado-somatic index (GSI). Exposure to E2 caused significant changes both at the sub-cellular and biochemical levels. Exposure to E2 resulted in significantly fewer sperm cells, inhibition of meiotic division of germ cells, more lipid droplets that are storage compartments for the sex steroid hormone precursor cholesterol, and lesser plasma T concentrations. Although not statistically significant, frogs exposed to E2 had slightly smaller GSI values. These results may be indicative of an inhibition of gonad growth and disrupted germ cell development by E2. Concentrations of E2 in plasma were greater in frogs exposed to E2 in water. Exposure to neither concentration of atrazine caused effects on germ cell development, testicular aromatase activity or plasma hormone concentrations. These results suggest that atrazine does not affect testicular function. In contrast, exposure of male X. laevis to E2 led to sub-cellular events that are indicative of disruption of testicular development, and demasculinization processes (decrease of androgen hormone titers). These results indicate that atrazine does not cause responses that are similar to those caused by exposure to E2

  20. Transmembrane Signal Transduction in Oocyte Maturation and Fertilization: Focusing on Xenopus laevis as a Model Animal

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2014-12-01

    Full Text Available Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete “egg” and the male gamete “spermatozoon (sperm” develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.

  1. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  2. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen.

    Science.gov (United States)

    Sullivan, Kelly G; Levin, Michael

    2016-10-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. © 2016 Anatomical Society.

  3. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts.

    Science.gov (United States)

    Hara, Yuki; Merten, Christoph A

    2015-06-08

    Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts*

    Science.gov (United States)

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J.; Gibbons, Jennifer A.; Lin, Sue-Hwa; Colbran, Roger J.; Nutt, Leta K.

    2013-01-01

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  5. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    Science.gov (United States)

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  6. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    Science.gov (United States)

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  7. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  8. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    International Nuclear Information System (INIS)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A.

    2012-01-01

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression

  9. Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle

    Directory of Open Access Journals (Sweden)

    Raphaël Thuret

    2015-12-01

    Full Text Available Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.

  10. In vitro maintenance of spermatogenesis in Xenopus laevis testis explants cultured in serum-free media

    International Nuclear Information System (INIS)

    Risley, M.S.; Miller, A.; Bumcrot, D.A.

    1987-01-01

    Spermatogenesis has been maintained for extended periods in Xenopus laevis testis explants cultured in serum-free media supplemented with bovine serum albumin, insulin, transferrin, follicle-stimulating hormone, dihydrotestosterone, testosterone, retinol, ascorbate, and tocopherol. The organization of the testis fragments was maintained for 28 days, and all stages of development were present throughout the culture period. 3 H-Thymidine-labeled secondary (Type B) spermatogonia developed in 28 days into spermatids at the acrosomal vesicle stage whereas labeled zygotene spermatocytes became mature spermatids in 28 days. Spermatogonial proliferation also continued in vitro for 28 days. Germ cell differentiation was not dependent upon exogenous testosterone, ascorbate, or tocopherol since 3 H-labeled spermatogonia became mature spermatids in testes cultured 35 days in media lacking these supplements. Autoradiography demonstrated that 55% of the luminal sperm present in explants cultured 10 days had differentiated in vitro. Sperm from testes cultured 10-35 days were similar to sperm from freshly dissected testes with regard to motility and fecundity, and eggs fertilized with sperm from explant cultures developed normally into swimming tadpoles. The results demonstrate the feasibility of maintaining vertebrate spermatogenesis in culture and suggest that in vitro analysis of Xenopus spermatogenesis using defined media may provide important insights into the evolution of regulatory mechanisms in spermatogenesis

  11. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    Science.gov (United States)

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  12. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.

    Science.gov (United States)

    Born, Nadine; Thiesen, Hans-Jürgen; Lorenz, Peter

    2014-01-01

    The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.

  13. The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Eto, Ko; Iwama, Tomoyuki; Tajima, Tatsuya; Abe, Shin-ichi

    2012-10-01

    Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Science.gov (United States)

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  15. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    Directory of Open Access Journals (Sweden)

    Thorsten Pfirrmann

    Full Text Available In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  16. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    OpenAIRE

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A; Jones, Elizabeth A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of ...

  17. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    OpenAIRE

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of t...

  18. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  19. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    Science.gov (United States)

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Low concentrations of metal mixture exposures have adverse effects on selected biomarkers of Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Yologlu, Ertan, E-mail: ertanyologlu82@gmail.com [Adiyaman University, Faculty of Education, Department of Science Education, 02040 Adiyaman (Turkey); Ozmen, Murat [Inonu University, Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts & Science, 44280 Malatya (Turkey)

    2015-11-15

    Highlights: • Selected metal mixtures were evaluated for toxicity of safety limit concentrations. • Xenopus laevis tadpoles were used as model test organism. • Combinations of LC{sub 50} and LC{sub 50}/2 caused 100% lethality for some metals. • Metals did not change metallothionein levels in low concentrations. • Selected enzyme activities showed induction after low concentration exposures. - Abstract: Polluted ecosystems may contain mixtures of metals, such that the combinations of metals, even in low concentrations, may cause adverse effects. In the present study, we focused on toxic effects of mixtures of selected metals, the LC{sub 50} values, and also their safety limit in aquatic systems imposed by the European legislation using a model organism. Xenopus laevis tadpoles were used as test organisms. They were exposed to metals or their combinations due to 96-h LC{sub 50} values. Glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated. Metallothionein concentrations were also determined. The LC{sub 50}s for Cd, Pb, and Cu were calculated as 5.81 mg AI/L, 123.05 mg AI/L, and 0.85 mg AI/L, respectively. Low lethality ratios were observed with unary exposure of each metal in lower concentrations. Double or triple combinations of LC{sub 50} and LC{sub 50}/2 concentrations caused 100% lethality with Cd + Cu and Pb + Cd + Cu mixtures, while the Pb + Cu mixture also caused high lethal ratios. The selected enzyme activities were significantly affected by metals or mixtures, and dose-related effects were determined. The metallothionein levels generally increased as related to concentration in unary metals and mixtures. Acceptable limit values of unary metals and mixtures did not significantly change metallothionein levels. The results suggest that oxidative stress-related mechanisms are involved in the toxicity induced by selected

  1. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.

    Science.gov (United States)

    Vaccaro, M C; Wilding, M; Dale, B; Campanella, C; Carotenuto, R

    2012-08-01

    In Xenopus laevis oocytes a mitochondrial cloud (MC) is found between the nucleus and the plasma membrane at stages I-II of oogenesis. The MC contains RNAs that are transported to the future vegetal pole at stage II of oogenesis. In particular, germinal plasm mRNAs are found in the Message Transport Organiser (METRO) region, the MC region opposite to the nucleus. At stages II-III, a second pathway transports Vg1 and VegT mRNAs to the area where the MC content merges with the vegetal cortex. Microtubules become polarized at the sites of migration of Vg1 and VegT mRNAs through an unknown signalling mechanism. In early meiotic stages, the centrioles are almost completely lost with their remnants being dispersed into the cytoplasm and the MC, which may contain a MTOC to be used in the later localization pathway of the mRNAs. In mammals, XNOA 36 encodes a member of a highly conserved protein family and localises to the nucleolus or in the centromeres. In the Xenopus late stage I oocyte, XNOA 36 mRNA is transiently segregated in one half of the oocyte, anchored by a cytoskeletal network that contains spectrin. Here we found that XNOA 36 transcript also localises to the nucleoli and in the METRO region. XNOA 36 protein immunolocalization, using an antibody employed for the library immunoscreening that depicted XNOA 36 expression colonies, labels the migrating MC, the cytoplasm of stage I oocytes and in particular the vegetal cortex facing the MC. The possible role of XNOA 36 in mRNA anchoring to the vegetal cortex or in participating in early microtubule reorganization is discussed.

  2. Fidelity in the translation of reovirus mRNA in oocytes of Xenopus laevis

    International Nuclear Information System (INIS)

    Opperman, D.P.J.; Van der Walt, M.P.K.; Reinecke, C.J.

    1988-01-01

    The translation products formed from reovirus mRNA micro-injected into oocytes of Xenopus laevis were compared with authentic reovirus proteins by polyacrylamide gel electrophoresis, immunoprecipition, isolation of immune complexes by affinity chromatography and peptide mapping using proteolytic digestion with Staphylococcus aureus V8 protease. Products from the s-, m- and l-class mRNAs were detectable in quantities comparable to those synthesized in vivo, confirming that the differences in the translational efficiencies in the oocyte system resemble those found in vivo. The experimental procedures during this study, include the labelling of these translation products with [ 35 S]methionine. Protein μ1C was formed in the oocytes by post-translational cleavage of its precursor, protein μ1. The V8 protease peptide profile of the translation product with the same electrophoretic mobility as protein, σ3, is identical to that of the authentic reovirus protein. All these observations indicate a high degree of fidelity in the translation of reovirus mRNA in the oocyte system. The fidelity in translation, ratios of the various translation products, as well as post-translational modification suggest that the oocyte system might provide a means for studying the mechanism of reovirus morphogenesis

  3. Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole

    International Nuclear Information System (INIS)

    Tietge, Joseph E.; Degitz, Sigmund J.; Haselman, Jonathan T.; Butterworth, Brian C.; Korte, Joseph J.; Kosian, Patricia A.; Lindberg-Livingston, Annelie J.

    2013-01-01

    Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18–357 μg/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23–435 μg/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.

  4. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2012-01-01

    Full Text Available Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (Vmem demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by Vmem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  5. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis.

    Science.gov (United States)

    Perry, Kimberly J; Johnson, Verity R; Malloch, Erica L; Fukui, Lisa; Wever, Jason; Thomas, Alvin G; Hamilton, Paul W; Henry, Jonathan J

    2010-11-01

    G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina, and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84's importance in lens, cornea, and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino-injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. © 2010 Wiley-Liss, Inc.

  6. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  7. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    Tony Y-C Tsai

    2014-02-01

    Full Text Available During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min and the subsequent 11 cycles are short (∼30 min and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.

  8. The Effect of Plasma Exposure on Tail Regeneration of Tadpoles Xenopus Laevis

    Science.gov (United States)

    June, Joyce; Rivie, Adonis; Ezuduemoih, Raphael; Menon, Jaishri; Martus, Kevin

    2014-03-01

    Wound healing requires a balanced combination of nutrients and growth factors for healing and tissue regeneration. The effect of plasma exposure on tail regeneration of tadpoles, Xenopus laevis is investigated. The exposure of the wound to the helium plasma immediately followed the amputation of 40% of the tail. Amputation of the tail initiates regeneration of spinal cord, muscle, notochord, skin and connective tissues. By 24 h, the wound was covered by wound epithelium and blastema was formed by day 5. There was increased angiogenesis in plasma exposed tail regenerate compared to the control following 5 d post amputation. Observed was an increase in NO production in the regenerate of plasma exposed tadpoles was derived from increased activity of nNOS and iNOS. Western blot analysis for vascular endothelial growth factor showed stronger bands for the protein in amputated tadpoles of both the groups. Analysis of the composition and characteristics of the plasma using optical emission spectroscopy indicates excited state species consisting of N2, N2+,and OH is present in the plasma. This study was supported, in part, by the NSF Grant 1040108.

  9. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.

    Science.gov (United States)

    Buisson, Nicolas; Sirour, Cathy; Moreau, Nicole; Denker, Elsa; Le Bouffant, Ronan; Goullancourt, Aline; Darribère, Thierry; Bello, Valérie

    2014-12-01

    Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells. © 2014. Published by The Company of Biologists Ltd.

  10. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  11. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis.

    Science.gov (United States)

    Pablos, María Victoria; Jiménez, María Ángeles; San Segundo, Laura; Martini, Federica; Beltrán, Eulalia; Fernández, Carlos

    2016-06-01

    The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC. © 2015 SETAC.

  12. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  13. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    Science.gov (United States)

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  14. Three-dimensional reconstruction of the cranial and anterior spinal nerves in early tadpoles of Xenopus laevis (Pipidae, Anura).

    Science.gov (United States)

    Naumann, Benjamin; Olsson, Lennart

    2018-04-01

    Xenopus laevis is one of the most widely used model organism in neurobiology. It is therefore surprising, that no detailed and complete description of the cranial nerves exists for this species. Using classical histological sectioning in combination with fluorescent whole mount antibody staining and micro-computed tomography we prepared a detailed innervation map and a freely-rotatable three-dimensional (3D) model of the cranial nerves and anterior-most spinal nerves of early X. laevis tadpoles. Our results confirm earlier descriptions of the pre-otic cranial nerves and present the first detailed description of the post-otic cranial nerves. Tracing the innervation, we found two previously undescribed head muscles (the processo-articularis and diaphragmatico-branchialis muscles) in X. laevis. Data on the cranial nerve morphology of tadpoles are scarce, and only one other species (Discoglossus pictus) has been described in great detail. A comparison of Xenopus and Discoglossus reveals a relatively conserved pattern of the post-otic and a more variable morphology of the pre-otic cranial nerves. Furthermore, the innervation map and the 3D models presented here can serve as an easily accessible basis to identify alterations of the innervation produced by experimental studies such as genetic gain- and loss of function experiments. © 2017 Wiley Periodicals, Inc.

  15. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Kazumasa Mitogawa

    Full Text Available Axolotls (Ambystoma mexicanum can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.

  16. Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization.

    Science.gov (United States)

    Shilling, F M; Krätzschmar, J; Cai, H; Weskamp, G; Gayko, U; Leibow, J; Myles, D G; Nuccitelli, R; Blobel, C P

    1997-06-15

    Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.

  17. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    Science.gov (United States)

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  18. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  19. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  20. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  1. /sup 31/P nuclear-magnetic-resonance studies an the developing embryos of Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Gadian, D G [Oxford Univ. (UK). Dept. of Biochemistry; Colman, A [Oxford Univ. (UK). Dept. of Zoology

    1976-01-01

    The concentrations of nucleoside triphosphate, inorganic phosphate and yolk proteins, phosvitin and lipovitellin, have been monitored in living embryos of Xenopus laevis by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. The nucleoside triphosphate levels remain relatively constant at about 3.5 - 4.5 nmol/embryo at least until the 'spontaneous movement' stage of development. By the swimming tadpole stage an inorganic phosphate resonance representing about 30 nmol/embryo becomes evident in the NMR spectrum. Computer manipulation also shows such a resonance, although smaller, to be present at a somewhat earlier developmental stage; these findings are confirmed biochemically. The major contribution to the NMR spectrum of oocytes, unfertilized eggs and early embryos is the yolk phosphoprotein resonance. On isolation of the yolk from the embryos it is possible to quantify the contribution to the NMR spectrum from the lipid-phosphate and protein-phosphate moieties of the yolk proteins. During development, as the yolk is used up, it is found that the protein-phosphate resonance disappears at a greater rate than the lipid-phosphate peak. The total phosphorus content of the embryo (ca. 200 nmol/embryo) is shown biochemically to remain constant during development; however, the total amount of phosphorus observed by NMR decreases by about 40% during development. From the resonance positions of their ..cap alpha.., ..beta.. and ..gamma.. phosphate groups is is deduced that the nucleoside triphosphate molecules are liganded in vivo to a divalent cation which is not manganese, but could be either magnesium or calcium. From the position of the inorganic phosphate resonance it is deduced that the internal pH of embryos where this resonance is evident is 6.8 +- 0.2.

  2. Identification of a murine cysteinyl leukotriene receptor by expression in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Mollerup, Jens; Jørgensen, Sune T.; Hougaard, Charlotte

    2001-01-01

    We report the identification of an EST encoding a murine cysteinyl leukotriene (mCysLT) receptor. LTD4, LTC4 and LTE4 but not LTB4 or various nucleotides activated Ca2+-evoked Cl- currents in mCysLT1 expressing Xenopus laevis oocytes. The response to LTD4 was blocked by MK-571, reduced by pretrea...... by pretreatment with pertussis toxin (PTX), and was partly dependent on extracellular Ca2+. The identified murine CysLT1 receptor differs from the hCysLT1 receptor with regard to PTX sensitivity, receptor-mediated Ca2+ influx, and antagonist sensitivity....

  3. Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis.

    Science.gov (United States)

    Martens, G J; Weterings, K A; van Zoest, I D; Jenks, B G

    1987-03-13

    In the pars intermedia of the pituitary gland of the amphibian Xenopus laevis the level of mRNA encoding proopiomelanocortin (POMC), the precursor protein for alpha-melanophore-stimulating hormone (alpha-MSH), is shown to be dependent on physiological parameters. POMC mRNA levels in the pars intermedia of black-background-adapted Xenopus are much higher than those of white-adapted animals. These physiological changes in POMC mRNA levels are tissue-specific because they were not found in the pars distalis of the pituitary gland. Background transfer experiments revealed that modulation of POMC gene activity is much slower than changes in the secretion of alpha-MSH.

  4. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    International Nuclear Information System (INIS)

    Robert, Jacques; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-01-01

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8 + T cells or by sub-lethal γ-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8 + T cells and larval susceptibility to FV3 are consistent with an inefficient CD8 + T cell effector function during this developmental period

  5. Regulation of Melanopsins and Per1 by α-MSH and Melatonin in Photosensitive Xenopus laevis Melanophores

    Directory of Open Access Journals (Sweden)

    Maria Nathália de Carvalho Magalhães Moraes

    2014-01-01

    Full Text Available α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes and the melanopsins, Opn4x and Opn4m (photopigments. Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins’ expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.

  6. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    Science.gov (United States)

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  8. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    Science.gov (United States)

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin

  9. Histone gene expression in early development of Xenopus laevis. Analysis of histone mRNA in oocytes and embryos by blot-hybridization and cell-free translation

    NARCIS (Netherlands)

    van Dongen, W. M.; Moorman, A. F.; Destrée, O. H.

    1983-01-01

    This study comprises the hybridization analysis of electrophoretically separated histone mRNAs from oocytes and embryos of Xenopus laevis, and analysis of in vitro translation products of these mRNAs on polyacrylamide gels containing sodium dodecyl sulfate (SDS) or Triton X-100. In oocytes and

  10. Possible involvement of α- and β-receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo

    NARCIS (Netherlands)

    Brouwer, E.; Veerdonk, F.C.G. van de

    Participation of adrenergic receptors in the darkening reaction has been demonstrated in Xenopus laevis in vivo. Blockade of the β-receptors inhibited adaptation to a black background as well as the artificially MSH-induced dispersion. α-Receptors could not be proved to be involved in the dispersion

  11. Xenopus iaevis (Anura: Pipidae) Mating systems - A preliminary ...

    African Journals Online (AJOL)

    was inhibited if the frogs were injected with saline to simulate ripe ovaries. Russel (1954) described a low frequency tremor given by males when in amplexus with females. This behaviour was also noted by Grimm (1952). Although many authors have provided verbal or phonetic descriptions of the calls of Xenopus laevis, ...

  12. A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis

    Directory of Open Access Journals (Sweden)

    Christo P. Christov

    2018-02-01

    Full Text Available DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT, with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication. Blocking or immunodepletion of xNuRD inhibits DNA replication initiation in isolated nuclei in vitro and causes inhibition of DNA synthesis, developmental delay, and embryonic lethality in early embryos. xNuRD activity declines after the MBT, coinciding with dissociation of the complex and emergence of Y RNA-dependent initiation. Our data thus reveal an essential role for a NuRD complex as a DNA replication factor during early Xenopus development.

  13. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.

    Science.gov (United States)

    Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J

    1992-01-01

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  14. Effects of Endocrine Disruptors Ethinylestradiol and Procloraz on the vocal system of the frog Xenopus tropicalis

    DEFF Research Database (Denmark)

    Brande-Lavridsen, Nanna; Nørum, Ulrik; Korsgaard, Bodil

    2009-01-01

    -male competitive interactions. The call is associated with larger more numerous neural and muscular structures of sound production. The vocalization system of Xenopus and other Pipid frogs, the larynx and associated structures, is extremely sexual dimorphic. This includes both gross morphology such as size...

  15. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  16. The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Hartley Rebecca S

    2010-01-01

    Full Text Available Abstract Background The neural crest is a unique population of cells that arise in the vertebrate ectoderm at the neural plate border after which they migrate extensively throughout the embryo, giving rise to a wide range of derivatives. A number of proteins involved in neural crest development have dynamic expression patterns, and it is becoming clear that ubiquitin-mediated protein degradation is partly responsible for this. Results Here we demonstrate a novel role for the F-box protein Cdc4/Fbxw7 in neural crest development. Two isoforms of Xenopus laevis Cdc4 were identified, and designated xCdc4α and xCdc4β. These are highly conserved with vertebrate Cdc4 orthologs, and the Xenopus proteins are functionally equivalent in terms of their ability to degrade Cyclin E, an established vertebrate Cdc4 target. Blocking xCdc4 function specifically inhibited neural crest development at an early stage, prior to expression of c-Myc, Snail2 and Snail. Conclusions We demonstrate that Cdc4, an ubiquitin E3 ligase subunit previously identified as targeting primarily cell cycle regulators for proteolysis, has additional roles in control of formation of the neural crest. Hence, we identify Cdc4 as a protein with separable but complementary functions in control of cell proliferation and differentiation.

  17. Speculations on colonizing success of the African clawed frog ...

    African Journals Online (AJOL)

    1991-12-12

    Dec 12, 1991 ... Robinson. Ann. Durban Mus. 1: 167-170. SMITH, J.L.B. 1961. Fishes of the family Apogonidae of the western Indian Ocean and the Red Sea.lchlhyol. .... J. Herp. 12: 391-396. BAIRD, T. 1983. Influence of social and predatory stimulus on the air-breathing behavior of the African clawed frog,. Xenopus laevis.

  18. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    This study aimed to investigate the antifungal activity of skin secretions from selected frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and one toad (Amietophrynus pantherinus) of the south Western Cape Province of South Africa. Initially, different extraction techniques for the collection of skin secretions ...

  19. Macro and Trace Element Accumulation in Edible Crabs and Frogs ...

    African Journals Online (AJOL)

    The tissue accumulation of five macroelements (Na, Mg, K, Ca, Fe) and twelve trace elements (Vd, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Pb) were assessed in the organs of the edible frogs; Xenopus laevis and Rana esculentus, and whole body of the crab, Callinestes caught from Alaro Stream Floodplain (Ibadan, ...

  20. The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition

    Czech Academy of Sciences Publication Activity Database

    Short, S.; Kozmik, Zbyněk; Holland, L. Z.

    2012-01-01

    Roč. 318, č. 7 (2012), s. 555-571 ISSN 1552-5007 R&D Projects: GA ČR GAP305/10/2141; GA MŠk LH12047 Grant - others:NSF(US) MCB 06-20019 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax2/5/8 * alternative splicing * eye development * amphioxus * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.123, year: 2012

  1. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    International Nuclear Information System (INIS)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D.; Cobb, George P.; Maul, Jonathan D.

    2015-01-01

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  2. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    Directory of Open Access Journals (Sweden)

    Pedro L. Flores

    2017-06-01

    Full Text Available Maitotoxin (MTX is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP. Several reports indicate that MTX is an activator of non-selective cation channels (NSCC in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA approach and the two-electrode voltage-clamp technique (TEVC. The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1 protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  3. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.

  4. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  5. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles

    DEFF Research Database (Denmark)

    Merrywest, Simon D; McDearmid, Jonathan R; Kjaerulff, Ole

    2003-01-01

    Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated the mechani......Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated...... might promote postinhibitory rebound firing. The synaptic inputs during swimming were simulated using a sustained positive current, superimposed upon which were brief negative currents. When these conditions were held constant NA enhanced the probability of rebound firing--indicating a direct effect...

  6. The Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD on the Mortality and Growth of Two Amphibian Species (Xenopus laevis and Pseudacris triseriata

    Directory of Open Access Journals (Sweden)

    Alex Collier

    2008-12-01

    Full Text Available We observed a slight drop in the growth of Xenopus laevis and Pseudacris triseriata larvae following acute exposure (24-48 h during egg development to three concentrations of TCDD (0.3, 3.0, 30.0 μg/l. Our exposure protocol was modeled on a previous investigation that was designed to mimic the effects of maternal deposition of TCDD. The doses selected were consistent with known rates of maternal transfer between mother and egg using actual adult body burdens from contaminated habitats. Egg and embryonic mortality immediately following exposure increased only among 48 h X. laevis treatments. Control P. triseriata and X. laevis completed metamorphosis more quickly than TCDDtreated animals. The snout-vent length of recently transformed P. triseriata did not differ between treatments although controls were heavier than high-dosed animals. Likewise, the snout-vent length and weight of transformed X. laevis did not differ between control and TCDD treatments. These findings provide additional evidence that amphibians, including P. triseriata and X. laevis are relatively insensitive to acute exposure to TCDD during egg and embryonic development. Although the concentrations selected for this study were relatively high, they were not inconsistent with our current understanding of bioaccumulation via maternal transfer.

  7. Characterization of a Xenopus laevis mitochondrial protein with a high affinity for supercoiled DNA.

    OpenAIRE

    Mignotte, B; Barat, M

    1986-01-01

    A DNA binding protein of 31 Kd -mtDBPC- has been isolated from X. laevis oocyte mitochondria. It is present in large amounts in the organelle and does not show any enzymatic activity. Its binding to the superhelical form of a DNA is higher than for any other form, or for RNA. No sequence specificity could be found for any mtDNA fragments tested, including both origins of replication. It is able to introduce superhelical turns into relaxed circular DNA in the presence of a topoisomerase I acti...

  8. The Xenopus laevis morphogenetic factor, tumorhead, causes defects in polarized growth and cytokinesis in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Wu, Chuan Fen; Yang, Peirong; Traverso, Edwin E.; Etkin, Laurence D.; Marcus, Stevan

    2004-01-01

    Tumorhead (TH) is a maternally expressed gene product that regulates neural tube morphogenesis in the amphibian, Xenopus laevis. Here we describe the effects of TH expression in the rod-shaped fission yeast, Schizosaccharomyces pombe. Expression of TH in S. pombe resulted in severe morphological defects, including ovoid, bottle-shaped, and enlarged cells. Multi-septated cells were also observed in TH expressing cultures, indicating that TH is inhibitory to a process required for the completion of cytokinesis. TH expression caused significant actin and microtubule cytoskeletal defects, including depolarization of the cortical F-actin cytoskeleton and increased microtubule formation. Immunostaining experiments showed that TH is localized to the cell cortex, cell tips, and septum in S. pombe cells. Localization of TH to the cell cortex was dependent on the S. pombe PAK homolog, Shk1. Moreover, TH expression was inhibitory to the growth of a mutant defective in Shk1 function, suggesting that TH may interact with a component(s) of a PAK-mediated morphogenetic regulatory pathway in S. pombe. Taken together, our findings demonstrate that S. pombe may be a useful model organism for identifying potential TH interacting factors

  9. Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis

    International Nuclear Information System (INIS)

    Mouchet, Florence; Landois, Perine; Sarremejean, Elodie; Bernard, Guillaume; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2008-01-01

    Because of their outstanding properties, carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and growing number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxicological potential of double-walled carbon nanotubes (DWNTs) in the amphibian larvae Xenopus laevis at a large range of concentrations in water (from 10 to 500 mg L -1 ). Acute toxicity and genotoxicity were analysed after 12 days of static exposure in laboratory conditions. Acute toxicity was evaluated according to the mortality and the growth of larvae. The genotoxic effects were analysed by scoring the micronucleated erythrocytes of the circulating blood of larvae according to the International Standard micronucleus assay. Moreover, histological preparations of larval intestine were prepared after 12 days of exposure for observation using optical and transmission electron microscopy (TEM). Finally, the intestine of an exposed larva was prepared on a slide for analyse by Raman imaging. The results showed no genotoxicity in erythrocytes of larvae exposed to DWNTs in water, but acute toxicity at every concentration of DWNTs studied which was related to physical blockage of the gills and/or digestive tract. Indeed, black masses suggesting the presence of CNTs were observed inside the intestine using optical microscopy and TEM, and confirmed by Raman spectroscopy analysis. Assessing the risks of CNTs requires better understanding, especially including mechanistic and environmental investigations

  10. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Felix Schaffhauser

    Full Text Available An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34 demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  11. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    Science.gov (United States)

    Ubbels, Geertje A.; Brom, Tim G.

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body axis of the embryo. The dorso-ventral polarity is epigenetically established before first cleavage. Recent experiments strongly suggest that in the monospermic eggs of the anuran Xenopus laevis both the cytoskeleton and gravity act in the determination of the dorso-ventral polarity. In order to test the role of gravity in this process, eggs will be fertilized under microgravity conditions during the SL-D1 flight in 1985. In a fully automatic experiment container eggs will be kept under well-defined conditions and artificially fertilized as soon as microgravity is reached; eggs and embryos at different stages will then be fixed for later examination. Back on earth the material will be analysed and we will know whether fertilization under microgravity conditions is possible. If so, the relation of the dorso-ventral axis to the former sperm entry point will be determined on the whole embryos; in addition eggs and embryos will be analysed cytologically.

  12. In vitro and in silico cloning of Xenopus laevis SOD2 cDNA and its phylogenetic analysis.

    Science.gov (United States)

    Purrello, Michele; Di Pietro, Cinzia; Ragusa, Marco; Pulvirenti, Alfredo; Giugno, Rosalba; Di Pietro, Valentina; Emmanuele, Giovanni; Travali, Salvo; Scalia, Marina; Shasha, Dennis; Ferro, Alfredo

    2005-02-01

    By using the methodology of both wet and dry biology (i.e., RT-PCR and cycle sequencing, and biocomputational technology, respectively) and the data obtained through the Genome Projects, we have cloned Xenopus laevis SOD2 (MnSOD) cDNA and determined its nucleotide sequence. These data and the deduced protein primary structure were compared with all the other SOD2 nucleotide and amino acid sequences from eukaryotes and prokaryotes, published in public databases. The analysis was performed by using both Clustal W, a well known and widely used program for sequence analysis, and AntiClustAl, a new algorithm recently created and implemented by our group. Our results demonstrate a very high conservation of the enzyme amino acid sequence during evolution, which proves a close structure-function relationship. This is to be expected for very ancient molecules endowed with critical biological functions, performed through a specific structural organization. The nucleotide sequence conservation is less pronounced: this too was foreseeable, due to neutral mutations and to the species-specific codon usage. The data obtained by using AntiClustAl are comparable with those produced with Clustal W, which validates this algorithm as an important new tool for biocomputational analysis. Finally, it is noteworthy that evolutionary trees, drawn by using all the available data on SOD2 nucleotide sequences and amino acid and either Clustal W or AntiClustAl, are comparable to those obtained through phylogenetic analysis based on fossil records.

  13. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S.

    2005-01-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  14. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.

    Science.gov (United States)

    Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H

    2010-01-01

    In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  16. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  17. Pan-African phylogeography of a model organism, the African clawed frog "Xenopus laevis"

    Czech Academy of Sciences Publication Activity Database

    Furman, B. L. S.; Bewick, A. J.; Harrison, T. L.; Greenbaum, E.; Gvoždík, Václav; Kusamba, C.; Evans, B. J.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 909-925 ISSN 0962-1083 Institutional support: RVO:68081766 Keywords : gene flow * phylogeography * population genetics * species limits Subject RIV: EG - Zoology Impact factor: 5.947, year: 2015

  18. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    Science.gov (United States)

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  20. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  1. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Directory of Open Access Journals (Sweden)

    Allyson E Kennedy

    Full Text Available Since electronic cigarette (ECIG introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  2. Ontogenetic distribution of the transcription factor Nkx2.2 in the developing forebrain of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2011-03-01

    Full Text Available The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraoptoparaventricular area, as defined by the expression of the transcription factor Otp and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1-P3 and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior-posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.

  3. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Science.gov (United States)

    Kennedy, Allyson E; Kandalam, Suraj; Olivares-Navarrete, Rene; Dickinson, Amanda J G

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  4. Efficacy of tricaine methanesulfonate (MS-222 as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Carlana Ramlochansingh

    Full Text Available Anesthetics are drugs that reversibly relieve pain, decrease body movements and suppress neuronal activity. Most drugs only cover one of these effects; for instance, analgesics relieve pain but fail to block primary fiber responses to noxious stimuli. Alternately, paralytic drugs block synaptic transmission at neuromuscular junctions, thereby effectively paralyzing skeletal muscles. Thus, both analgesics and paralytics each accomplish one effect, but fail to singularly account for all three. Tricaine methanesulfonate (MS-222 is structurally similar to benzocaine, a typical anesthetic for anamniote vertebrates, but contains a sulfate moiety rendering this drug more hydrophilic. MS-222 is used as anesthetic in poikilothermic animals such as fish and amphibians. However, it is often argued that MS-222 is only a hypnotic drug and its ability to block neural activity has been questioned. This prompted us to evaluate the potency and dynamics of MS-222-induced effects on neuronal firing of sensory and motor nerves alongside a defined motor behavior in semi-intact in vitro preparations of Xenopus laevis tadpoles. Electrophysiological recordings of extraocular motor discharge and both spontaneous and evoked mechanosensory nerve activity were measured before, during and after administration of MS-222, then compared to benzocaine and a known paralytic, pancuronium. Both MS-222 and benzocaine, but not pancuronium caused a dose-dependent, reversible blockade of extraocular motor and sensory nerve activity. These results indicate that MS-222 as benzocaine blocks the activity of both sensory and motor nerves compatible with the mechanistic action of effective anesthetics, indicating that both caine-derivates are effective as single-drug anesthetics for surgical interventions in anamniotes.

  5. The progestin norethisterone affects thyroid hormone-dependent metamorphosis of Xenopus laevis tadpoles at environmentally relevant concentrations.

    Science.gov (United States)

    Lorenz, Claudia; Krüger, Angela; Schöning, Viola; Lutz, Ilka

    2018-04-15

    Previously, levonorgestrel (LNG) has been shown to be an endocrine disruptor of the amphibian thyroid system. In the present study, we investigated whether anti-thyroidal effects are a common property of progestins other than LNG. Premetamorphic Xenopus laevis tadpoles were exposed to norethisterone (NET) and dienogest DIE (each at 0.1-10nM) and LNG (10nM) until completion of metamorphosis. LNG and NET at all concentrations caused a significant developmental retardation whereas DIE did not impair time to metamorphosis. In LNG and 10nM NET exposed animals, tsh mRNA levels increased considerably later than the developmental delay occurred and thyroid histopathology showed no signs of TSH-hyperstimulation. Instead, thyroid glands from these treatments appeared inactive in producing thyroid hormones. Thyroidal transcript levels of dio2 and dio3 were increased by treatments with LNG and NET at 1nM and 10nM, whereas iyd mRNA was reduced by LNG and 10nM NET. Expression of slc5α5 was not changed by any treatment. Effects of DIE differed from those induced by LNG and NET. No developmental delay was measurable; however, tshβ and dio2 mRNAs were increased in pituitary glands of tadpoles exposed to 1.0nM and 10nM DIE. Thyroid histopathology displayed no abnormalities and thyroidal mRNA expression of the genes analyzed (slc5α5, iyd, dio2, dio3) was not changed by DIE. Overall, our results provide evidence that the anti-thyroidal effects already known from LNG are also present in another progestin, namely NET, even at environmentally relevant concentrations. In conclusion we suggest that progestins do not only pose an environmental risk in terms of their impact on reproductive success of aquatic vertebrates, but also with respect to their anti-thyroidal properties affecting amphibian metamorphosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Super agonist actions of clothianidin and related compounds on the SAD beta 2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Ihara, Makoto; Matsuda, Kazuhiko; Shimomura, Masaru; Sattelle, David B; Komai, Koichiro

    2004-03-01

    To compare the actions of clothianidin, a neonicotinoid acting on insect nicotinic acetylcholine receptors, and related compounds with that of imidacloprid, the compounds were tested on the Drosophila SAD-chicken beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. The maximum response of the SAD beta 2 nicotinic receptor to clothianidin was larger than that observed for acetylcholine. Ring breakage of the imidazolidine ring of imidacloprid resulting in the generation of a guanidine group was critical for this super agonist action.

  8. 4-acetoxyscirpendiol of Paecilomyces tenuipes inhibits Na(+)/D-glucose cotransporter expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Yoo, Ocki; Son, Joo-Hiuk; Lee, Dong-Hee

    2005-03-31

    Cordyceps, an entomopathogenic fungus, contains many health-promoting ingredients. Recent reports indicate that the consumption of cordyceps helps reduce blood-sugar content in diabetics. However, the mechanism underlying this reduction in circulatory sugar content is not fully understood. Methanolic extracts were prepared from the fruiting bodies of Paecilomyces tenuipes, and 4-beta acetoxyscirpendiol (4-ASD) was eventually isolated and purified. Na(+)/Glucose transporter-1 (SGLT-1) was expressed in Xenopus oocytes, and the effect of 4-ASD on SGLT-1 was analyzed utilizing a voltage clamp and by performing 2-deoxy-D-glucose (2-DOG) uptake studies. 4-ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose-dependent manner. In the presence of the derivatives of 4-ASD (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited in an 4-ASD-like manner. Of these derivatives, 15-acetoxyscirepenol inhibited SGLT-1 as well as 4-ASD, whereas diacetoxyscirpenol was slightly less effective. Taken together, these results strongly indicate that 4-ASD in P. tenuipes may lower blood sugar levels in the circulatory system. We conclude that 4-ASD and its derivatives are effective SGLT-1 inhibitors.

  9. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    Science.gov (United States)

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  10. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.

    Science.gov (United States)

    Maeda, R; Kobayashi, A; Sekine, R; Lin, J J; Kung, H; Maéno, M

    1997-07-01

    This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.

  11. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    JiaJia Dong

    Full Text Available BACKGROUND: A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. CONCLUSIONS/SIGNIFICANCE: Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and

  12. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  13. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  14. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).

    Science.gov (United States)

    Böser, S; Dournon, C; Gualandris-Parisot, L; Horn, E

    2008-03-01

    During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development

  15. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  16. The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals.

    Science.gov (United States)

    Del Pino, Eugenia M

    2018-01-03

    The study of oogenesis and early development of frogs belonging to the family Hemiphractidae provide important comparison to the aquatic development of other frogs, such as Xenopus laevis, because reproduction on land characterizes the Hemiphractidae. In this review, the multinucleated oogenesis of the marsupial frog Flectonotus pygmaeus (Hemiphractidae) is analyzed and interpreted. In addition, the adaptations associated with the incubation of embryos in the pouch of the female marsupial frog Gastrotheca riobambae (Hemiphractidae) and the embryonic development of this frog are summarized. Moreover, G. riobambae gastrulation is compared with the gastrulation modes of Engystomops randi and Engystomops coloradorum (Leptodactylidae); Ceratophrys stolzmanni (Ceratophryidae); Hyalinobatrachium fleischmanni and Espadarana callistomma (Centrolenidae); Ameerega bilinguis, Dendrobates auratus, Epipedobates anthonyi, Epipedobates machalilla, Epipedobates tricolor, and Hyloxalus vertebralis (Dendrobatidae); Eleutherodactylus coqui (Terrarana: Eleutherodactylidae), and X. laevis (Pipidae). The comparison indicated two modes of frog gastrulation. In X. laevis and in frogs with aquatic reproduction, convergent extension begins during gastrulation. In contrast, convergent extension occurs in the post-gastrula of frogs with terrestrial reproduction. These two modes of gastrulation resemble the transitions toward meroblastic cleavage found in ray-finned fishes (Actinopterygii). In spite of this difference, the genes that guide early development seem to be highly conserved in frogs. I conclude that the shift of convergent extension to the post-gastrula accompanied the diversification of frog egg size and terrestrial reproductive modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [125I]Bolton-Hunter neuropeptide-Y-binding sites on folliculo-stellate cells of the pars intermedia of Xenopus laevis: A combined autoradiographic and immunocytochemical study

    International Nuclear Information System (INIS)

    De Rijk, E.P.; Cruijsen, P.M.; Jenks, B.G.; Roubos, E.W.

    1991-01-01

    It has previously been established that neuropeptide-Y (NPY) is a potent inhibitor of alpha MSH release from the pars intermedia of the amphibian Xenopus laevis. The location of binding sites for NPY in the pars intermedia of the pituitary has now been studied with light microscopic autoradiography, using a dispersed cell labeling method with the specific NPY receptor ligand [ 125 I]Bolton-Hunter NPY. The majority of radioactive labeling was associated with folliculo-stellate cells; the percentage of labeling as well as the mean number of grains were approximately 5 times higher for folliculo-stellate cells than for melanotropes. An excess of nonlabeled NPY drastically reduced radiolabeling of folliculo-stellate cells, but had no effect on the degree of labeling of melanotropes. These results show that folliculo-stellate cells of X. laevis possess specific binding sites for NPY and indicate that NPY exerts its inhibitory action on the release of alpha MSH in an indirect fashion, by acting on the folliculo-stellate cells

  18. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  19. Friend of GATA (FOG interacts with the nucleosome remodeling and deacetylase complex (NuRD to support primitive erythropoiesis in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Mizuho S Mimoto

    Full Text Available Friend of GATA (FOG plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD, but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect.

  20. Friend of GATA (FOG) interacts with the nucleosome remodeling and deacetylase complex (NuRD) to support primitive erythropoiesis in Xenopus laevis.

    Science.gov (United States)

    Mimoto, Mizuho S; Christian, Jan L

    2012-01-01

    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect.

  1. Use of the enhanced frog embryo teratogenesis assay-Xenopus (FETAX) to determine chemically-induced phenotypic effects.

    Science.gov (United States)

    Hu, Lingling; Zhu, Jingmin; Rotchell, Jeanette M; Wu, Lijiao; Gao, Jinjuan; Shi, Huahong

    2015-03-01

    The frog embryo teratogenesis assay-Xenopus (FETAX) is an established method for the evaluation of the developmental toxicities of chemicals. To develop an enhanced FETAX that is appropriate for common environmental contaminants, we exposed Xenopus tropicalis embryos to eight compounds, including tributyltin, triphenyltin, CdCl2, pyraclostrobin, picoxystrobin, coumoxystrobin, all-trans-retinoic acid and 9-cis-retinoic acid. Multiple malformations were induced in embryos particularly following exposure to tributyltin, triphenyltin and pyraclostrobin at environmentally relevant concentrations. Based on the range of observed malformations, we proposed a phenotypic assessment method with 20 phenotypes and a 0-5 scoring system. This derived index exhibited concentration-dependent relationships for all of the chemicals tested. Furthermore, the phenotype profiles were characteristic of the different tested chemicals. Our results indicate that malformation phenotypes can be quantitatively integrated with the primary endpoints in conventional FETAX assessments to allow for increased sensitivity and measurement of quantitative effects and to provide indicative mechanistic information for each tested chemical. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Further Development and Validation of the Frog Embryo Teratogenesis Assay - Xenopus (FETAX). Phase III

    National Research Council Canada - National Science Library

    Bantle, John

    1996-01-01

    This interlaboratory study of the Frog Embryo Teratogenesis Assay (FETAX) was undertaken in order to assess the repeatability and reliability of data collected under the guide published by the American Society for Testing and Materials...

  3. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  4. Functional expression and characterization of plant ABC transporters in Xenopus laevis oocytes for transport engineering purposes

    DEFF Research Database (Denmark)

    Xu, Deyang; Veres, Dorottya; Belew, Zeinu Mussa

    2016-01-01

    the question whether the oocytes system is suitable to express and characterize ABC transporters. Thus we have selected AtABCG25, previously characterized in insect cells as the exporter of commercially valuable abscisic acid—as case study for optimizing of characterization in Xenopus oocytes. The tools...

  5. Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division

    Czech Academy of Sciences Publication Activity Database

    Šídová, Monika; Šindelka, Radek; Castoldi, M.; Benes, V.; Kubista, Mikael

    2015-01-01

    Roč. 5, č. 11157 (2015) ISSN 2045-2322 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : VG1 MESSENGER-RNA * VEGETAL CORTEX * FROG OOCYTE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  6. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Panitsas, Konstantinos-E; Boyd, C A R; Meredith, David

    2006-04-01

    To test whether the rabbit proton-coupled peptide transporter PepT1 is a multimer, we have employed a combination of transport assays, luminometry and site-directed mutagenesis. A functional epitope-tagged PepT1 construct (PepT1-FLAG) was co-expressed in Xenopus laevis oocytes with a non-functional but normally trafficked mutant form of the same transporter (W294F-PepT1). The amount of PepT1-FLAG cRNA injected into the oocytes was kept constant, while the amount of W294F-PepT1 cRNA was increased over the mole fraction range of 0 to 1. The uptake of [(3)H]-D: -Phe-L: -Gln into the oocytes was measured at pH(out) 5.5, and the surface expression of PepT1-FLAG was quantified by luminometry. As the mole fraction of injected W294F-PepT1 increased, the uptake of D: -Phe-L: -Gln decreased. This occurred despite the surface expression of PepT1-FLAG remaining constant, and so we can conclude that PepT1 must be a multimer. Assuming that PepT1 acts as a homomultimer, the best fit for the modelling suggests that PepT1 could be a tetramer, with a minimum requirement of two functional subunits in each protein complex. Western blotting also showed the presence of higher-order complexes of PepT1-FLAG in oocyte membranes. It should be noted that we cannot formally exclude the possibility that PepT1 interacts with unidentified Xenopus protein(s). The finding that PepT1 is a multimer has important implications for the molecular modelling of this protein.

  7. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: A dose–response study with benzo[a]pyrene and its degradation products

    International Nuclear Information System (INIS)

    Martini, Federica; Fernández, Carlos; Tarazona, José V.; Pablos, M. Victoria

    2012-01-01

    The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose–response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints. - Highlights: ► We study innate immune responses to benzo[a]pyrene in Xenopus laevis. ► mRNA expression of three typical proinflammatory proteins was monitored. ► Heat shock protein 70 mRNA induction showed a concentration/response/time relationship. ► Interleukin 1-β also showed a clear concentration/response relationship. ► Interleukin 1-β and heat shock protein 70 are useful indicators of immunotoxic effects. - The present study analyzed the use of cytokine mRNA levels as an earlier tool for predicting immunotoxicological risks to Xenopus laevis in a dose–response pattern.

  8. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements

    International Nuclear Information System (INIS)

    Timmins, P.A.; Langowski, J.; Brown, R.S.

    1988-01-01

    The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700±10,000 and 86,700±9,000 daltons from these two methods respectively. The observed match point of 54.4% D 2 O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. A simple elongated cylindrical model with dimensions of 140 angstrom length and 59 angstrom diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 angstrom in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA

  9. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein

    Directory of Open Access Journals (Sweden)

    Naofumi Miwa

    2015-05-01

    Full Text Available Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP, which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  10. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    Directory of Open Access Journals (Sweden)

    Federica Martini

    2012-01-01

    Full Text Available Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim and essential metals (zinc, copper, manganese, and selenium that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50 and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians.

  11. Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate

    Directory of Open Access Journals (Sweden)

    Maria B. Tereshina

    2014-07-01

    Full Text Available We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.

  12. Cloning of Interleukin-10 from African Clawed Frog (Xenopus tropicalis, with the Finding of IL-19/20 Homologue in the IL-10 Locus

    Directory of Open Access Journals (Sweden)

    Zhitao Qi

    2015-01-01

    Full Text Available Interleukin-10 (IL-10 is a pleiotropic cytokine that plays an important role in immune system. In the present study, the IL-10 gene of African clawed frog (Xenopus tropicalis was first cloned, and its expression pattern and 3D structure were also analyzed. The frog IL-10 mRNA encoded 172 amino acids which possessed several conserved features found in IL-10s from other species, including five-exon/four-intron genomic structure, conserved four cysteine residues, IL-10 family motif, and six α-helices. Real-time PCR showed that frog IL-10 mRNA was ubiquitous expressed in all examined tissues, highly in some immune related tissues including kidney, spleen, and intestine and lowly in heart, stomach, and liver. The frog IL-10 mRNA was upregulated at 24 h after LPS stimulation, indicating that it plays a part in the host immune response to bacterial infection. Another IL, termed as IL-20, was identified from the frog IL-10 locus, which might be the homologue of mammalian IL-19/20 according to the analysis results of the phylogenetic tree and the sequence identities.

  13. The effects of aquatic oxygen concentration, body size and respiratory behaviour on the stamina of obligate aquatic (Bufo americanus) and facultative air-breathing (Xenopus laevis and Rana berlandieri) anuran larvae.

    Science.gov (United States)

    Wassersug, R J; Feder, M E

    1983-07-01

    Larvae of the anurans Rana berlandieri and Xenopus laevis have lungs and can breathe air as well as irrigate buccal and pharyngeal surfaces for aquatic respiration. Larvae of Bufo americanus lack lungs until just before metamorphosis and are obligately aquatic. We examined the relationship between the locomotor stamina (time to fatigue), aquatic oxygen concentration, body size, and respiratory behaviour of swimming larvae of these species, with the following results: Stamina is size-dependent in all three species. Aquatic hypoxia reduces stamina in larvae of all three species, but most conspicuously in Bufo. Breathing air increases stamina in Rana larvae, especially in large animals and under aquatic hypoxia. In contrast to Rana larvae, Xenopus larvae swimming in normoxic water undergo a reduction in stamina when allowed to breathe air. In hypoxic water, aerial respiration moderates the reduction in stamina seen in Xenopus larvae. Branchial irrigation is associated with increased stamina in Xenopus, and is increased under hypoxia and at high swimming velocities. Respiratory demand, buoyancy and the drag associated with branchial irrigation all affect respiratory behaviour in Xenopus larvae. The great amount of interspecific variation in the relationship between respiratory behaviour and stamina reveals the importance of measuring performance directly when attempting to interpret the functional significance of respiratory structures and behaviour.

  14. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    Science.gov (United States)

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study.

    Science.gov (United States)

    Williams, John Russell; Rayburn, James R; Cline, George R; Sauterer, Roger; Friedman, Mendel

    2014-08-06

    The embryo toxicities of two food-processing-induced toxic compounds, acrylamide and furan, with and without added L-cysteine were examined individually and in mixtures using the frog embryo teratogenesis assay-Xenopus (FETAX). The following measures of developmental toxicity were used: (a) 96 h LC50, the median concentration causing 50% embryo lethality; (b) 96 h EC50, the median concentration causing 50% malformations of the surviving embryos; and (c) teratogenic index (96 h LC50/96 h EC50), an estimate of teratogenic risk. Calculations of toxic units (TU) were used to assess possible antagonism, synergism, or response addition of several mixtures. The evaluated compounds demonstrated counterintuitive effects. Furan had lower than expected toxicity in Xenopus embryos and, unlike acrylamide, does not seem to be teratogenic. However, the short duration of the tests may not show the full effects of furan if it is truly primarily genotoxic and carcinogenic. L-Cysteine showed unexpected properties in the delay of hatching of the embryos. The results from the interaction studies between combination of two or three components (acrylamide plus L-cysteine; furan plus L-cysteine; acrylamide plus furan; acrylamide plus furan and L-cysteine) show that furan and acrylamide seem to have less than response addition at 1:1 toxic unit ratio in lethality. Acrylamide and L-cysteine show severe antagonism even at low 19 acrylamide/1 L-cysteine TU ratios. Data from the mixture of acrylamide, furan, and L-cysteine show a slight antagonism, less than would have been expected from binary mixture exposures. Bioalkylation mechanisms and their prevention are discussed. There is a need to study the toxicological properties of mixtures of acrylamide and furan concurrently formed in heat-processed food.

  16. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    International Nuclear Information System (INIS)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-01-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors α (TRα) and βA (TRβA) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TRα gene expression whereas a marked up-regulation of TRβA mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TRβA mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TRβA mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TRβA gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TRβA expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TRβA mRNA up-regulation. Results of this study suggest that TRβA mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in

  17. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins.

    Science.gov (United States)

    Bu, Qixin; Li, Zhiqiang; Zhang, Junying; Xu, Fei; Liu, Jianmei; Liu, Heli

    2017-09-29

    The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis , the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Exposure of xenopus laevis tadpoles to cadmium reveals concentration-dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity

    Science.gov (United States)

    Sharma, Bibek; Patino, R.

    2008-01-01

    Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.

  19. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.

    Science.gov (United States)

    Fukuzawa, Toshihiko

    2010-10-01

    Unusual light-reflecting pigment cells, "white pigment cells", specifically appear in the periodic albino mutant (a(p) /a(p)) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.

  20. [Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice].

    Science.gov (United States)

    Niu, Ting; Liu, Ting; Jia, Yong-Qian; Liu, Ji-Yan; Wu, Yang; Hu, Bing; Tian, Ling; Yang, Li; Kan, Bing; Wei, Yu-Quan

    2005-09-01

    To explore the antitumor effect of immunotherapy with recombinant Xenopus laevis vascular endothelial growth factor (xVEGF) as a vaccine combined with adriamycin on lymphoma model in mice. EL4 lymphoma model was established in C57BL/6 mice. Mice were randomized into four groups: combination therapy, adriamycin alone, xVEGF alone and normal saline (NS) groups, and then were given relevant treatments. The growth of tumor, the survival rate of tumor-bearing mice, and the potential toxicity of regimens above were observed. Anti-VEGF antibody-producing B cells (APBCs) were detected by enzyme-linked immunospot (ELISPOT) assay. In addition, microvessel density (MVD) of tumor was detected by immunohistochemistry, and tumor cell apoptosis was also detected by TUNEL staining. The tumor volumes of mice were significantly smaller in combination group than those in other three groups (P < 0.05). Complete regression of tumor was observed in 3 of 10 mice in combination group. Forty-eight days after inoculation of tumor cells, the survival rate of mice was significantly higher in combination group than in NS group (P < 0.01). The anti-VEGF APBC count in combination group or xVEGF group was significantly higher, compared with that in adriamycin group or NS group (P < 0.01). MVD in tumor tissues was significantly lower in combination group than those in other three groups (P < 0.05). Moreover, tumor cell apoptosis was significantly higher in combination group than those in other three groups (P < 0.05). In this experimental study, the use of xVEGF vaccine and adriamycin as a combination of immunotherapy with chemotherapy has sucessfully produced synergistic antitumor effect on lymphoma in mice.

  1. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Arseny S Khakhalin

    Full Text Available In the developing mammalian brain, gamma-aminobutyric acid (GABA is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(- in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(- concentrations, and therefore a more depolarized GABA receptor (GABAR reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.

  2. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Kristen L Curran

    Full Text Available We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino and overexpression (mRNA of xBMAL1 protein (bHLH transcription factor or xNOCTURNIN protein (deadenylase on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001. These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05. We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002, while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively. We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.

  3. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    Science.gov (United States)

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-06

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A receptors expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Harriet Hammer

    Full Text Available The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(AR subtypes α1β2γ(2S, α2β2γ(2S, α3β2γ(2S, α5β2γ(2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5β2γ(2S GABA(ARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold as positive allosteric modulators at the α6β2δ GABA(AR than at the α(1,2,3,5β2γ(2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non

  5. Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis.

    Science.gov (United States)

    Horn, Eberhard R

    2006-08-01

    During space flights, tadpoles of the clawed toad Xenopus laevis occasionally develop upward bended tails (tail lordosis). The tail lordosis disappears after re-entry to 1g within a couple of days. The mechanisms responsible for the induction of the tail lordosis are unknown; physical conditions such as weight de-loading or physiological factors such as decreased vestibular activity in microgravity might contribute. Microgravity (microg) also exerts significant effects on the roll-induced vestibuloocular reflex (rVOR). The rVOR was used to clarify whether tail lordosis is caused by physiological factors, by correlating the occurrence of microg-induced tail lordosis with the extent of microg-induced rVOR modifications. Post-flight recordings from three space flights (D-2 Spacelab mission, STS-55 in 1993; Shuttle-to-Mir mission SMM-06, STS-84 in 1997; French Soyuz taxi flight Andromède to ISS in 2001) were analyzed in these experiments. At onset of microgravity, tadpoles were at stages 25-28, 33-36 or 45. Parameters tested were rVOR gain (ratio between the angular eye movement and the lateral 30 degrees roll) and rVOR amplitude (maximal angular postural change of the eyes during a 360 degrees lateral roll). A ratio of 22-84% of tadpoles developed lordotic tails, depending on the space flight. The overall observation was that the rVOR of tadpoles with normal tails was either not affected by microgravity, or it was enhanced. In contrast, the rVOR of lordotic animals always revealed a depression. In particular, during post-flight days 1-11, tadpoles with lordotic tails from all three groups (25-28, 33-36 and 45) showed a lower rVOR gain and amplitude than the 1g-controls. The rVOR gain and amplitude of tadpoles from the groups 25-28 and 33-36 that developed normal tails was not affected by microgravity while the rVOR of microg-tadpoles from the stage-45 group with normal tails revealed a significant rVOR augmentation. (1) the vestibular system of tadpoles with lordotic

  6. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  7. Expression analysis of some genes regulated by retinoic acid in controls and triadimefon-exposed embryos: is the amphibian Xenopus laevis a suitable model for gene-based comparative teratology?

    Science.gov (United States)

    Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena

    2011-06-01

    The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.

  8. Ubiquitin-mediated proteolysis in Xenopus extract.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2016-01-01

    The small protein modifier, ubiquitin, can be covalently attached to proteins in the process of ubiquitylation, resulting in a variety of functional outcomes. In particular, the most commonly-associated and well-studied fate for proteins modified with ubiquitin is their ultimate destruction: degradation by the 26S proteasome via the ubiquitin-proteasome system, or digestion in lysosomes by proteolytic enzymes. From the earliest days of ubiquitylation research, a reliable and versatile "cell-in-a-test-tube" system has been employed in the form of cytoplasmic extracts from the eggs and embryos of the frog Xenopus laevis. Biochemical studies of ubiquitin and protein degradation using this system have led to significant advances particularly in the study of ubiquitin-mediated proteolysis, while the versatility of Xenopus as a developmental model has allowed investigation of the in vivo consequences of ubiquitylation. Here we describe the use and history of Xenopus extract in the study of ubiquitin-mediated protein degradation, and highlight the versatility of this system that has been exploited to uncover mechanisms and consequences of ubiquitylation and proteolysis.

  9. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-05

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.

  10. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: Three-dimensional and ultrastructural analysis

    International Nuclear Information System (INIS)

    Kloc, Malgorzata; Bilinski, Szczepan; Dougherty, Matthew T.

    2007-01-01

    Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel and visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands

  11. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  12. A Method for Mechanism Analysis of Frog Swimming Based on Motion Observation Experiments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-05-01

    Full Text Available For understanding the mechanism of frog swimming under water and designing a frog-inspired swimming robot, kinematics of the frog body and trajectories of joints should be obtained. In this paper, an aquatic frog, Xenopus laevis, was chosen for analysis of swimming motions which were recorded by a high speed camera, and kinematic data were processed in a swimming data extraction platform. According to the shape features of the frog, we propose a method that the frog eyes are set as the natural data extraction markers for body motion, and kinematic data of joint trajectories are calculated by the contour points on the limbs. For the data processing, a pinhole camera model was built to transform the pixel coordinate system to world coordinate system, and the errors caused by the water refraction were analyzed and corrected. Finally, from the developed data extraction platform, the kinematic data for the analysis of swimming mechanism and design of frog-inspired robot were obtained.

  13. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    Science.gov (United States)

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-12-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

  14. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    OpenAIRE

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-01-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and...

  15. Mesoderm layer formation in Xenopus and Drosophila gastrulation

    International Nuclear Information System (INIS)

    Winklbauer, Rudolf; Müller, H-Arno J

    2011-01-01

    During gastrulation, the mesoderm spreads out between ectoderm and endoderm to form a mesenchymal cell layer. Surprisingly the underlying principles of mesoderm layer formation are very similar in evolutionarily distant species like the fruit fly, Drosophila melanogaster, and the frog, Xenopus laevis, in which the molecular and the cellular basis of mesoderm layer formation have been extensively studied. Complementary expression of growth factors in the ectoderm and their receptors in the mesoderm act to orient cellular protrusive activities and direct cell movement, leading to radial cell intercalation and the spreading of the mesoderm layer. This mechanism is contrasted with generic physical mechanisms of tissue spreading that consider the adhesive and physical properties of the cells and tissues. Both mechanisms need to be integrated to orchestrate mesenchymal morphogenesis

  16. Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages.

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Coquet, Laurent; Leprince, Jérôme; Jouenne, Thierry; Vaudry, Hubert; Measey, G John

    2015-01-01

    The International Union for Conservation of Nature (IUCN) Endangered Cape Platanna Xenopus gilli inhabits disjunct ranges at the tip of Cape Peninsula and near the town of Kleinmond on opposite sides of False Bay in the extreme southwest of Africa. Peptidomic analysis of host-defense peptides in norepinephrine-stimulated skin secretions from frogs from the Cape Peninsula range resulted in the identification of two magainins, two peptide glycine-leucine-amide (PGLa) peptides, two xenopsin-precursor fragment (XPF) peptides, nine caerulein-precursor fragment (CPF) peptides, and a peptide related to peptide glycine-glutamine (PGQ) previously found in an extract of Xenopus laevis stomach. The primary structures of the peptides indicate a close phylogenetic relationship between X. gilli and X. laevis but only magainin-1, PGLa and one CPF peptide are identical in both species. Consistent with previous data, the CPF peptides show the greatest antimicrobial potency but are hemolytic. There are appreciable differences in the expression of host-defense peptide genes in frogs from the population of animals sampled near Kleinmond as peptides corresponding to magainin-G2, XPF-G1, XPF-G2, and four CPF peptides, present in secretions from the Cape Peninsula frogs, were not identified in the skin secretions from Kleinmond frogs. Conversely, PGLa-G3, XPF-G3, and three CPF peptides were identified in the Kleinmond frogs but not in the Cape Peninsula animals. The data support the conclusion from morphometric analyses and comparisons of the nucleotide sequences of mitochondrial genes that the disjunct populations of X. gilli have undergone appreciable genetic, morphological, and phenotypic divergence. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Inhibition of sodium glucose cotransporter-I expressed in Xenopus laevis oocytes by 4-acetoxyscirpendiol from Cordyceps takaomantana (anamorph = Paecilomyces tenuipes).

    Science.gov (United States)

    Yoo, Ocki; Lee, Dong-Hee

    2006-02-01

    Cordyceps contains many health-promoting constituents. Recent studies revealed that the fruiting body of cordyceps significantly alleviates hyperglycemia which usually accompanies diabetes mellitus. The mechanism of the anti-hyperglycemic effect by cordyceps, however, is not fully understood. In this study, methanolic extracts were prepared from fruiting bodies of Paecilomyces tenuipes, and 4-beta acetoxyscirpendiol (ASD) was eventually purified from the extracts. The Na+/ glucose transporter-1 (SGLT-1) was expressed in Xenopus oocytes, and the effect of ASD on it was analyzed using voltage clamp and 2-deoxy-D-glucose (2-DOG) uptake studies. Fluorescence microscopy was performed to monitor the effect of ASD on glucose uptake using HEK293 cells expressing recombinant SGLT-1. ASD inhibited SGLT-1 activity, and its two derivatives (2-acetoxyscirpenol and 15-acetoxyscirpendiol), were also effective; 15-acetoxyscirepenol was as inhibitory as ASD while diacetoxyscirpenol had less effect. Thus, the ASD in P. tenuipes may play an important role in lowering blood sugar in the circulatory system along with its derivatives as specific inhibitors of SGLT-1.

  18. Sublethal toxic effects and induction of glutathione S-transferase by short chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Bláha, Luděk; Vršková, D.; Šimková, K.; Maršálek, Blahoslav

    2006-01-01

    Roč. 75, č. 1 (2006), s. 115-122 ISSN 0001-7213 R&D Projects: GA ČR(CZ) GA525/03/0367 Institutional research plan: CEZ:AV0Z60050516 Keywords : developmental toxicity * FETAX * SCCPs Subject RIV: EF - Botanics Impact factor: 0.491, year: 2006

  19. Targeted integration of genes in Xenopus tropicalis

    DEFF Research Database (Denmark)

    Shi, Zhaoying; Tian, Dandan; Xin, Huhu

    2017-01-01

    With the successful establishment of both targeted gene disruption and integration methods in the true diploid frog Xenopus tropicalis, this excellent vertebrate genetic model now is making a unique contribution to modelling human diseases. Here, we summarize our efforts on establishing homologous...... recombination-mediated targeted integration in Xenopus tropicalis, the usefulness, and limitation of targeted integration via the homology-independent strategy, and future directions on how to further improve targeted gene integration in Xenopus tropicalis....

  20. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa

    Czech Academy of Sciences Publication Activity Database

    Evans, B. J.; Carter, T. F.; Greenbaum, E.; Gvoždík, Václav; Kelley, D. B.; McLaughlin, P. J.; Pauwels, O. S. G.; Portik, D. M.; Stanley, E. L.; Tinsley, R. C.; Tobias, M. L.; Blackburn, D. C.

    2015-01-01

    Roč. 10, č. 12 (2015), č. článku e0142823. E-ISSN 1932-6203 R&D Projects: GA ČR GJ15-13415Y Institutional support: RVO:68081766 Keywords : host-defense peptides * genus Xenopus * skin secretions * South Africa * evolutionary relationships * model organism Subject RIV: EG - Zoology Impact factor: 3.057, year: 2015

  1. Tebuconazole disrupts steroidogenesis in Xenopus laevis

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Luong, Xuan; Hansen, Martin

    2015-01-01

    or animals adapted to the xenobiotic, blood samples were collected 12 days into the study and at termination (day 27). After 12 days of exposure to 100 and 500μgL(-1) tebuconazole, plasma levels of testosterone (T) and dihydrotestosterone (DHT) were increased, while plasma 17β-estradiol (E2) concentrations...... were greatly reduced. Exposure to 0.1μgL(-1), on the other hand, resulted in decreased levels of T and DHT, with no effects observed for E2. After 27 days of exposure, effects were no longer observed in circulating androgen levels while the suppressive effect on E2 persisted in the two high......-exposure groups (100 and 500μgL(-1)). Furthermore, tebuconazole increased gonadal concentrations of T and DHT as well as expression of the enzyme CYP17 (500μgL(-1), 27 days). These results suggest that tebuconazole exposure may supress the action of CYP17 at the lowest exposure (0.1μgL(-1)), while CYP19...

  2. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    Directory of Open Access Journals (Sweden)

    Lloyd Rhiannon E

    2012-09-01

    Full Text Available Abstract Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1 or of multiple pooled genomes (approach 2, the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3. All protein

  3. DDT exposure of frogs: A case study from Limpopo Province, South Africa.

    Science.gov (United States)

    Viljoen, Ignatius M; Bornman, Riana; Bouwman, Hindrik

    2016-09-01

    Amphibians are globally under pressure with environmental contaminants contributing to this. Despite caution aired more than 80 years ago of threats posed to amphibians by DDT spraying for disease vector control, no data have been published on concentrations or effects of DDT contamination in frogs from areas where DDT is actively sprayed to control the insect vectors of malaria. In this study, we sampled fat bodies of Xenopus laevis and Xenopus muelleri naturally occurring in an area where indoor residual spraying of DDT is employed and from adjacent, non-sprayed, areas. ΣDDT concentrations ranged between DDT in the eggs of the Grey Heron Ardea cinerea. This suggests that the DDT we found in frogs may have contributed to DDT loadings higher in the food web. These findings, combined with other studies from this area, support the need to reduce and eventually move away from DDT in malaria control safely and sustainably. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study.

    Science.gov (United States)

    Lacombe, C; Cifuentes-Diaz, C; Dunia, I; Auber-Thomay, M; Nicolas, P; Amiche, M

    2000-09-01

    The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.

  5. Evolution of advertisement calls in African clawed frogs

    Science.gov (United States)

    Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.

    2014-01-01

    Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737

  6. Life Histories of Frogs in the Namib Desert | Channing | African ...

    African Journals Online (AJOL)

    Four anuran taxa inhabit the central Namib: Xenopus laevis, Tomopterna delalandei cryptotis, Phrynomerus annectens and Bufo vertebrate hoeschi. Xenopus is confined to permanent pools in the Kuiseb river canyon. Tomopterna extends further into the Namib, but is restricted to the Kuiseb river bed. The Kuiseb is normally ...

  7. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  8. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    Directory of Open Access Journals (Sweden)

    Ellen A. G. Chernoff

    2018-02-01

    Full Text Available The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement. Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry, or at very low levels (polymerase chain reaction, PCR, in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+. The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53 and non-regenerating stages (NF 62+ and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration

  10. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    Science.gov (United States)

    Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri

    2018-01-01

    The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole

  11. Thermal ecological physiology of native and invasive frog species: do invaders perform better?

    Science.gov (United States)

    Cortes, Pablo A; Puschel, Hans; Acuña, Paz; Bartheld, José L; Bozinovic, Francisco

    2016-01-01

    Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi . In particular, the maximal righting performance (μ MAX ), optimal temperature ( T O ), lower (CT min ) and upper critical thermal limits (CT max ), thermal breadth ( T br ) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μ max and AUC in X. laevis in comparison to C. gayi . On the contrary, the invasive species showed lower values of CT min in comparison to the native one. In contrast, CT max , T O and T br showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi . Although there were differences in CT min , the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.

  12. Xenopus-FV3 host-pathogen interactions and immune evasion.

    Science.gov (United States)

    Jacques, Robert; Edholm, Eva-Stina; Jazz, Sanchez; Odalys, Torres-Luquis; Francisco, De Jesús Andino

    2017-11-01

    We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.

    Science.gov (United States)

    Buchholz, Daniel R

    2015-12-15

    Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans

  14. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model

    International Nuclear Information System (INIS)

    Clemente, Christofer J; Richards, Christopher

    2012-01-01

    Frogs are capable of impressive feats of jumping and swimming. Recent work has shown that anuran hind limb muscles can operate at lengths longer than the ‘optimal length’. To address the implications of muscle operating length on muscle power output and swimming mechanics, we built a robotic frog hind limb model based upon Xenopus laevis. The model simulated the force–length and force–velocity properties of vertebrate muscle, within the skeletal environment. We tested three muscle starting lengths, representing long, optimal and short starting lengths. Increasing starting length increased maximum muscle power output by 27% from 98.1 W kg −1 when muscle begins shortening from the optimal length, to 125.1 W kg −1 when the muscle begins at longer initial lengths. Therefore, longer starting lengths generated greater hydrodynamic force for extended durations, enabling faster swimming speeds of the robotic frog. These swimming speeds increased from 0.15 m s −1 at short initial muscle lengths, to 0.39 m s −1 for the longest initial lengths. Longer starting lengths were able to increase power as the muscle's force–length curve was better synchronized with the muscle's activation profile. We further dissected the underlying components of muscle force, separating force–length versus force–velocity effects, showing a transition from force–length limitations to force–velocity limitations as starting length increased. (paper)

  15. Embryotoxicita a indukce oxidativního stresu po exposici herbicidu paraquatu na modelovém necílovém organismu drápatce vodní (Xenopus laevis)

    Czech Academy of Sciences Publication Activity Database

    Pašková, Veronika; Hilscherová, Klára

    2007-01-01

    Roč. 43, č. 3 (2007), s. 107-112 ISSN 0007-389X. [Toxicita a biodegradabilita odpadů a látek významných ve vodním prostředí /13./. Vodňany, 18.06.2007-20.06.2007] R&D Projects: GA MŠk(CZ) 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : paraquat * oxidative stress * frogs Subject RIV: EF - Botanics

  16. The right thalamus may play an important role in anesthesia-awakening regulation in frogs

    Directory of Open Access Journals (Sweden)

    Yanzhu Fan

    2018-03-01

    Full Text Available Background Previous studies have shown that the mammalian thalamus is a key structure for anesthesia-induced unconsciousness and anesthesia-awakening regulation. However, both the dynamic characteristics and probable lateralization of thalamic functioning during anesthesia-awakening regulation are not fully understood, and little is known of the evolutionary basis of the role of the thalamus in anesthesia-awakening regulation. Methods An amphibian species, the South African clawed frog (Xenopus laevis was used in the present study. The frogs were immersed in triciane methanesulfonate (MS-222 for general anesthesia. Electroencephalogram (EEG signals were recorded continuously from both sides of the telencephalon, diencephalon (thalamus and mesencephalon during the pre-anesthesia stage, administration stage, recovery stage and post-anesthesia stage. EEG data was analyzed including calculation of approximate entropy (ApEn and permutation entropy (PE. Results Both ApEn and PE values differed significantly between anesthesia stages, with the highest values occurring during the awakening period and the lowest values during the anesthesia period. There was a significant correlation between the stage durations and ApEn or PE values during anesthesia-awakening cycle primarily for the right diencephalon (right thalamus. ApEn and PE values for females were significantly higher than those for males. Discussion ApEn and PE measurements are suitable for estimating depth of anesthesia and complexity of amphibian brain activity. The right thalamus appears physiologically positioned to play an important role in anesthesia-awakening regulation in frogs indicating an early evolutionary origin of the role of the thalamus in arousal and consciousness in land vertebrates. Sex differences exist in the neural regulation of general anesthesia in frogs.

  17. Exploring nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis

    Directory of Open Access Journals (Sweden)

    Wegnez Maurice

    2007-05-01

    Full Text Available Abstract Background The western African clawed frog Xenopus tropicalis is an anuran amphibian species now used as model in vertebrate comparative genomics. It provides the same advantages as Xenopus laevis but is diploid and has a smaller genome of 1.7 Gbp. Therefore X. tropicalis is more amenable to systematic transcriptome surveys. We initiated a large-scale partial cDNA sequencing project to provide a functional genomics resource on genes expressed in the nervous system during early embryogenesis and metamorphosis in X. tropicalis. Results A gene index was defined and analysed after the collection of over 48,785 high quality sequences. These partial cDNA sequences were obtained from an embryonic head and retina library (30,272 sequences and from a metamorphic brain and spinal cord library (27,602 sequences. These ESTs are estimated to represent 9,693 transcripts derived from an estimated 6,000 genes. Comparison of these cDNA sequences with protein databases indicates that 46% contain their start codon. Further annotation included Gene Ontology functional classification, InterPro domain analysis, alternative splicing and non-coding RNA identification. Gene expression profiles were derived from EST counts and used to define transcripts specific to metamorphic stages of development. Moreover, these ESTs allowed identification of a set of 225 polymorphic microsatellites that can be used as genetic markers. Conclusion These cDNA sequences permit in silico cloning of numerous genes and will facilitate studies aimed at deciphering the roles of cognate genes expressed in the nervous system during neural development and metamorphosis. The genomic resources developed to study X. tropicalis biology will accelerate exploration of amphibian physiology and genetics. In particular, the model will facilitate analysis of key questions related to anuran embryogenesis and metamorphosis and its associated regulatory processes.

  18. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration.

    Science.gov (United States)

    Satoh, Akira; Mitogawa, Kazumasa; Saito, Nanami; Suzuki, Miyuki; Suzuki, Ken-Ichi T; Ochi, Haruki; Makanae, Aki

    2017-12-15

    Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth.

    Science.gov (United States)

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-06-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity.

  20. Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    NARCIS (Netherlands)

    Jaspers, R.T.; van Beek-Harmsen, B.J.; Blankenstein, M.A.; Goldspink, G.; Huijing, P.A.J.B.M.; van der Laarse, W.J.

    2008-01-01

    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres

  1. Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans

    Directory of Open Access Journals (Sweden)

    Schlosser Gerhard

    2008-06-01

    Full Text Available Abstract Background Frogs primitively have a biphasic life history with an aquatic larva (tadpole and a usually terrestrial adult. However, direct developing frogs of the genus Eleutherodactylus have lost a free living larval stage. Many larval structures never form during development of Eleutherodactylus, while limbs, spinal cord, and an adult-like cranial musculoskeletal system develop precociously. Results Here, I compare growth and differentiation of the retina and tectum and development of early axon tracts in the brain between Eleutherodactylus coqui and the biphasically developing frogs Discoglossus pictus, Physalaemus pustulosus, and Xenopus laevis using morphometry, immunohistochemical detection of proliferating cell nuclear antigen (PCNA and acetylated tubulin, biocytin tracing, and in situ hybridization for NeuroD. Findings of the present study indicate that retinotectal development was greatly altered during evolution of Eleutherodactlyus mostly due to acceleration of cell proliferation and growth in retina and tectum. However, differentiation of retina, tectum, and fiber tracts in the embryonic brain proceed along a conserved slower schedule and remain temporally coordinated with each other in E. coqui. Conclusion These findings reveal a mosaic pattern of changes in the development of the central nervous system (CNS during evolution of the direct developing genus Eleutherodactylus. Whereas differentiation events in directly interconnected parts of the CNS such as retina, tectum, and brain tracts remained coordinated presumably due to their interdependent development, they were dissociated from proliferation control and from differentiation events in other parts of the CNS such as the spinal cord. This suggests that mosaic evolutionary changes reflect the modular character of CNS development.

  2. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition

    Science.gov (United States)

    Amodeo, Amanda A.; Jukam, David; Straight, Aaron F.; Skotheim, Jan M.

    2015-01-01

    During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development. PMID:25713373

  3. Frog Statistics

    Science.gov (United States)

    Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics

  4. Histological development of the gonad in juvenile Xenopus laevis

    Science.gov (United States)

    As directed by the Food Quality Protection Act, the US Environmental Protection Agency is developing a screening program for endocrine disrupting compounds. The Larval Amphibian Growth and Development Assay (LAGDA) is a tier II test intended to identify and characterize the adver...

  5. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    International Nuclear Information System (INIS)

    Marlatt, Vicki L.; Veldhoen, Nik; Lo, Bonnie P.; Bakker, Dannika; Rehaume, Vicki; Vallée, Kurtis; Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C.; Elphick, James R.; Helbing, Caren C.

    2013-01-01

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26–28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T 4 ), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T 4 /TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T 4 treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T 4 . The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  6. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  7. Characterization of a maternal type VI collagen in Xenopus embryos suggests a role for collagen in gastrulation

    NARCIS (Netherlands)

    Otte, A. P.; Roy, D.; Siemerink, M.; KOSTER, C. H.; Hochstenbach, F.; Timmermans, A.; Durston, A. J.

    1990-01-01

    We characterized a novel extracellular matrix element that is present in the earliest developmental stages of Xenopus laevis, and is recognized by an mAb 3D7. Based on amino acid composition, breakdown patterns by bacterial collagenases, and the molecular weights of the components of the antigen

  8. Dermaseptins and Magainins: Antimicrobial Peptides from Frogs' Skin—New Sources for a Promising Spermicides Microbicides—A Mini Review

    Directory of Open Access Journals (Sweden)

    Amira Zairi

    2009-01-01

    Full Text Available Sexually transmitted infections (STIs and human immunodeficiency virus (HIV, the causative agents of acquired immunodeficiency syndrome (AIDS, are two great concerns in the reproductive health of women. Thus, the challenge is to find products with a double activity, on the one hand having antimicrobial/antiviral properties with a role in the reduction of STI, and on the other hand having spermicidal action to be used as a contraceptive. In the absence of an effective microbicide along with the disadvantages of the most commonly used spermicidal contraceptive worldwide, nonoxynol-9, new emphasis has been focused on the development of more potential intravaginal microbicidal agents. Topical microbicides spermicides would ideally provide a female-controlled method of self-protection against HIV as well as preventing pregnancies. Nonoxynol-9, the only recommended microbicide spermicide, damages cervicovaginal epithelium because of its membrane-disruptive properties. Clearly, there is an urgent need to identify new compounds with dual potential microbicidal properties; antimicrobial peptides should be candidates for such investigations. Dermaseptins and magainins are two classes of cationic, amphipathic α-helical peptides that have been identified in the skin extracts of frogs Phyllomedusa sauvagei and Xenopus laevis. Regarding their contraceptive activities and their effect against various STI-causing pathogens, we believe that these two peptides are appropriate candidates in the evaluation of newer and safer microbicides spermicides in the future.

  9. Xenopus: An Emerging Model for Studying Congenital Heart Disease

    Science.gov (United States)

    Kaltenbrun, Erin; Tandon, Panna; Amin, Nirav M.; Waldron, Lauren; Showell, Chris; Conlon, Frank L.

    2011-01-01

    Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well-studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes. PMID:21538812

  10. Frog eat frog: exploring variables influencing anurophagy

    OpenAIRE

    Measey, G. John; Vimercati, Giovanni; de Villiers, F. Andr?; Mokhatla, Mohlamatsane M.; Davies, Sarah J.; Edwards, Shelley; Altwegg, Res

    2015-01-01

    Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet ...

  11. Tumor immunology viewed from alternative animal models—the Xenopus story

    Science.gov (United States)

    Banach, Maureen; Robert, Jacques

    2017-01-01

    a) Purpose of review Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. b) Recent findings Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. c) Summary Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies. PMID:28944105

  12. The Xenopus oocyte: a model for studying the metabolic regulation of cancer cell death.

    Science.gov (United States)

    Nutt, Leta K

    2012-06-01

    Abnormal metabolism and the evasion of apoptosis are both considered hallmarks of cancer. A remarkable biochemical model system, the Xenopus laevis oocyte, exhibits altered metabolism coupled to its apoptotic machinery in a similar fashion to cancer cells. This review considers the theory that these two hallmarks of cancer are coupled in tumor cells and provides strong proof that the Xenopus laevis oocyte system is an appropriate model in which to dissect the biochemical events underlying the connection between the two hallmarks. By further elucidating the mechanisms through which metabolism suppresses apoptotic machinery, we may gain a better understanding about how normal cells transform into cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers

    OpenAIRE

    Zuo, Li; Nogueira, Leonardo; Hogan, Michael C.

    2011-01-01

    Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contraction-induced ROS formation affects fatigue development. Single myofibers were loaded with 5 μM dihyd...

  14. Membrane junctions in xenopus eggs: their distribution suggests a role in calcium regulation

    OpenAIRE

    Gardiner, DM; Grey, RD

    1983-01-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma mem...

  15. Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.

    Science.gov (United States)

    Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z

    2016-01-01

    The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.

  16. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    Science.gov (United States)

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence

  17. A Novel Amphibian Tier 2 Testing Protocol: A 30-Week Exposure of Xenopus Tropicalis to the Antiandrogen Flutamide

    National Research Council Canada - National Science Library

    Knechtges, Paul L; Sprando, Robert L; Porter, Karen L; Brennan, Linda M; Miller, Mark F; Kumsher, David M; Dennis, William E; Brown, Charles C; Clegg Paul L. Knechtges. Robert L. Sprando. Karen L. Potter., Eric D

    2007-01-01

    .... For that reason, a tier 2 testing protocol using Xenopus (Silurana) tropicalis and a 30-week, flow-through exposure to the antiandrogen flutamide from stage 46 tadpoles through sexually mature adult frogs were developed and evaluated in this pilot study...

  18. Ein „neuer" javanischer Fundort von Phrynoglossus laevis laevis ( Gthr.)

    NARCIS (Netherlands)

    Brongersma, L.D.

    1935-01-01

    In der herpetologischen Sammlung, die dem Rijksmuseum van Natuurlijke Historie, Leiden, vor etwa hundert Jahre von Boie und Macklot übersandt wurde, befanden sich zwei Exemplare von Phrynoglossus laevis laevis (Gthr.). Diese Stücke wurden von Van Kampen (1923, p. 232 Fussnote: Oxyglossus laevis) in

  19. Formation of cell masses in the myelencephalon of the clawed frog ...

    African Journals Online (AJOL)

    An important process in the organization of developing nervous system is the clustering of neurons with similar properties to form nuclei. The development of myelencephalon of Xenopus muelleri, a pipid frog that retains a lateral line system throughout life, was studied in Nissl stained serial sections. The results showed that ...

  20. Complete Genome Sequence of the Frog Pathogen Mycobacterium ulcerans Ecovar Liflandii

    NARCIS (Netherlands)

    Tobias, Nicholas J.; Doig, Kenneth D.; Medema, Marnix H.; Chen, Honglei; Haring, Volker; Moore, Robert; Seemann, Torsten; Stinear, Timothy P.

    In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several

  1. Frog eat frog: exploring variables influencing anurophagy.

    Science.gov (United States)

    Measey, G John; Vimercati, Giovanni; de Villiers, F André; Mokhatla, Mohlamatsane M; Davies, Sarah J; Edwards, Shelley; Altwegg, Res

    2015-01-01

    Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.

  2. Frog eat frog: exploring variables influencing anurophagy

    Directory of Open Access Journals (Sweden)

    G. John Measey

    2015-08-01

    Full Text Available Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested.Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis.Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet.Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.

  3. Subcellular localization of class I histone deacetylases in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Xia eGuo

    2016-01-01

    Full Text Available Histone deacetylases (HDACs are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2 and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12 remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis.

  4. Deficient induction response in a Xenopus nucleocytoplasmic hybrid.

    Directory of Open Access Journals (Sweden)

    Patrick Narbonne

    2011-11-01

    Full Text Available Incompatibilities between the nucleus and the cytoplasm of sufficiently distant species result in developmental arrest of hybrid and nucleocytoplasmic hybrid (cybrid embryos. Several hypotheses have been proposed to explain their lethality, including problems in embryonic genome activation (EGA and/or nucleo-mitochondrial interactions. However, conclusive identification of the causes underlying developmental defects of cybrid embryos is still lacking. We show here that while over 80% of both Xenopus laevis and Xenopus (Silurana tropicalis same-species androgenetic haploids develop to the swimming tadpole stage, the androgenetic cybrids formed by the combination of X. laevis egg cytoplasm and X. tropicalis sperm nucleus invariably fail to gastrulate properly and never reach the swimming tadpole stage. In spite of this arrest, these cybrids show quantitatively normal EGA and energy levels at the stage where their initial gastrulation defects are manifested. The nucleocytoplasmic incompatibility between these two species instead results from a combination of factors, including a reduced emission of induction signal from the vegetal half, a decreased sensitivity of animal cells to induction signals, and differences in a key embryonic protein (Xbra concentration between the two species, together leading to inefficient induction and defective convergence-extension during gastrulation. Indeed, increased exposure to induction signals and/or Xbra signalling partially rescues the induction response in animal explants and whole cybrid embryos. Altogether, our study demonstrates that the egg cytoplasm of one species may not support the development promoted by the nucleus of another species, even if this nucleus does not interfere with the cytoplasmic/maternal functions of the egg, while the egg cytoplasm is also capable of activating the genome of that nucleus. Instead, our results provide evidence that inefficient signalling and differences in the

  5. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  6. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    Science.gov (United States)

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  7. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    Science.gov (United States)

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  8. Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Yergeau Donald A

    2011-11-01

    Full Text Available Abstract Background The Sleeping Beauty (SB transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate together with mRNA encoding the SB transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that SB transposons stably integrated into the frog genome are effective substrates for remobilization. Results Transgenic frogs that express the SB10 transposase were bred with SB transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the SB transposons. The remobilized SB transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'. Conclusions In this study, we demonstrate that SB transposons integrated into the X. tropicalis genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.

  9. Courtship in Frogs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 12. Courtship in Frogs Role of Acoustic Communication in Amphibian Courtship Behaviour. Debjani Roy. General Article Volume 1 Issue 12 December 1996 pp 39-48 ...

  10. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  11. Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos.

    Science.gov (United States)

    Chae, Jeong-Pil; Park, Mi Seon; Hwang, Yoo-Seok; Min, Byung-Hwa; Kim, Sang-Hyun; Lee, Hyun-Shik; Park, Mae-Ja

    2015-02-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) with analgesic and anti-pyretic properties. This compound is therefore used to treat pain, inflammatory disorders, and dysmenorrhea. Due to its multimodal mechanism of action and ability to penetrate placenta, diclofenac is known to have undesirable side effects including teratogenicity. However, limited data exist on its teratogenicity, and a detailed investigation regarding harmful effects of this drug during embryogenesis is warranted. Here, we analyzed the developmental toxic effects of diclofenac using Xenopus embryos according to the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) protocol. Diclofenac treatment exerted a teratogenic effect on Xenopus embryos with a teratogenic index (TI) value of 2.64 TI; if this value is higher than 1.2, the cut-off value indicative of toxicity. In particular, mortality of embryos treated with diclofenac increased in a concentration-dependent manner and a broad spectrum of malformations such as shortening and kinking of the axis, abdominal bulging, and prominent blister formation, was observed. The shape and length of internal organs also differed compared to the control group embryos and show developmental retardation on histological label. However, the expression of major tissue-specific markers did not change when analyzed by reverse transcription-polymerase chain reaction (RT-PCR). In conclusion, diclofenac treatment can promote teratogenicity that results in morphological anomalies, but not disrupt the developmental tissue arrangement during Xenopus embryogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.

    Science.gov (United States)

    Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck

    2017-08-15

    DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.

  13. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.

    Science.gov (United States)

    Gardiner, D M; Grey, R D

    1983-04-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.

  14. Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus.

    Science.gov (United States)

    Bae, Chang-Joon; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2018-01-15

    During embryogenesis vertebrates develop a complex craniofacial skeleton associated with sensory organs. These structures are primarily derived from two embryonic cell populations the neural crest and cranial placodes, respectively. Neural crest cells and cranial placodes are specified through the integrated action of several families of signaling molecules, and the subsequent activation of a complex network of transcription factors. Here we describe the expression and function of Anosmin-1 (Anos1), an extracellular matrix protein, during neural crest and cranial placodes development in Xenopus laevis. Anos1 was identified as a target of Pax3 and Zic1, two transcription factors necessary and sufficient to generate neural crest and cranial placodes. Anos1 is expressed in cranial neural crest progenitors at early neurula stage and in cranial placode derivatives later in development. We show that Anos1 function is required for neural crest and sensory organs development in Xenopus, consistent with the defects observed in Kallmann syndrome patients carrying a mutation in ANOS1. These findings indicate that anos1 has a conserved function in the development of craniofacial structures, and indicate that anos1-depleted Xenopus embryos represent a useful model to analyze the pathogenesis of Kallmann syndrome. Copyright © 2017. Published by Elsevier Inc.

  15. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  16. Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry

    Czech Academy of Sciences Publication Activity Database

    Flachsová, Monika; Šindelka, Radek; Kubista, Mikael

    2013-01-01

    Roč. 3, č. 2278 (2013) ISSN 2045-2322 R&D Projects: GA MŠk ED1.1.00/02.0109; GA ČR GA301/09/1752 Institutional research plan: CEZ:AV0Z50520701 Keywords : DORSAL-VENTRAL AXIS * CORTICAL ROTATION * PROSPECTIVE AREAS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.078, year: 2013

  17. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  18. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.

    Science.gov (United States)

    Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A

    2011-03-15

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.

  19. Voltage gated potassium channels expressed in Xenopus laevis(AMPHIBIA oocytes

    Directory of Open Access Journals (Sweden)

    Hedna Chaves

    2003-01-01

    Full Text Available Heterologous expression has been an important tool for structural and functionalcharacterization of proteins. The study of biophysical properties of ion channels,pumps and transporters has been possible thanks to their expression in Xenopuslaevisoocytes. Here we report the expression of two voltage gated channels, Kv1.1and Shaker, in X. laevisoocytes using a method for oocyte extraction, isolation, cul-ture, and microinjection adapted to the latitude and altitude conditions of Bogotá,Colombia.

  20. IDENTIFICATION AND MOLECULAR CLONING OF XENOPUS LAEVIS SP22, A PROTEIN ASSOCIATED WITH FERTILIZATION IN MAMMALS

    Science.gov (United States)

    ABSTRACTSP22 is a protein that has been characterized in rats where it has been related with fertility. SP22 homologues have been studied in mouse and man and a definitive role for the protein has not been assigned yet. By means of a polyclonal IgG to recombinant rat SP22...

  1. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O

    International Nuclear Information System (INIS)

    Scharf, S.R.; Rowning, B.; Wu, M.; Gerhart, J.C.

    1989-01-01

    Excessively dorsalized embryos of Xenopus laevis develop from eggs treated with 30-70% D 2 O for a few minutes within the first third of the cell cycle following fertilization. As the concentration of D 2 O and the duration of exposure are increased, the anatomy of these embryos shifts in the direction of enlarged dorsal and anterior structures and reduced ventral and posterior ones. Twinning of dorsoanterior structures is frequent. Intermediate forms include embryos with large heads but no trunks or tails. The limit form of the series has cylindrical symmetry, with circumferential bands of eye pigment and cement gland, a core of notochord-like tissue, and a centrally located beating heart. D 2 O treatment seems to increase the egg's sensitivity to the dorsalizing effects of cortical rotation and to stimulate the egg to initiate two or more directions of rotation. Such eggs probably establish thereafter a widened and/or duplicated Nieuwkoop center in the vegetal hemisphere, with the subsequent induction of a widened and/or duplicated Spemann organizer region in the marginal zone, which leads to excessive dorsal development. The existence of these anatomical forms indicates the potential of the egg to undertake dorsal development at all positions of its circumference and suggests that normal patterning depends on the limited and localized activation or disinhibition of this widespread potential

  2. Courtship in Frogs

    Indian Academy of Sciences (India)

    well-defined physical characteristics and a clear biological meaning. ... men t most successfully were the frogs and toads (hereafter referred ... Sound Pressure Level (SPL) in decibels = 20 loglOPt/Pr where,. Pt is the .... R.erythraea (left) and mean spectrum and sonagram of the female ... and egg laying activities initiated. 5.

  3. Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis

    Science.gov (United States)

    Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2013-01-01

    Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234

  4. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo

    Directory of Open Access Journals (Sweden)

    Mogi Kazue

    2012-04-01

    Full Text Available Abstract Background It has long been known that cerebrospinal fluid (CSF, its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. Methods The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter into the fourth cerebral ventricle at embryonic/larval stages 30-53. Results The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius. In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. Conclusions This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow

  5. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    Science.gov (United States)

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  6. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.

    Directory of Open Access Journals (Sweden)

    Yi Tao

    Full Text Available In the developing central nervous system (CNS, progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP, a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA or Valproic acid (VPA decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12. The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.

  7. Genome-wide transcriptional response of Silurana (Xenopus tropicalis to infection with the deadly chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Erica Bree Rosenblum

    Full Text Available Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing

  8. Characterization of Cer-1 cis-regulatory region during early Xenopus development.

    Science.gov (United States)

    Silva, Ana Cristina; Filipe, Mário; Steinbeisser, Herbert; Belo, José António

    2011-05-01

    Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

  9. Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2012-01-01

    from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells....... The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3...... cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor...

  10. Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9.

    Science.gov (United States)

    Stone, Stacie; Sobeck, Alexandra; van Kogelenberg, Margriet; de Graaf, Bendert; Joenje, Hans; Christian, Jan; Hoatlin, Maureen E

    2007-07-01

    Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.

  11. Signal recognition particle assembly in relation to the function of amplified nucleoli of Xenopus oocytes.

    Science.gov (United States)

    Sommerville, John; Brumwell, Craig L; Politz, Joan C Ritland; Pederson, Thoru

    2005-03-15

    The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.

  12. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  13. Lithobates sylvaticus (wood frog)

    Science.gov (United States)

    Fuller, Pam

    2016-01-01

    A single specimen found southwest of Hattiesburg in Timberton (31.270391oN, 89.327675oW; WGS 84). 23 July 2015. Gary, Kat, and Ron Lukens. Verifi ed by Kenneth Krysko, Florida Museum of Natural History (UF-Herpetology 176455). This species has never been recorded from the state of Mississippi before (Dodd 2013. Frogs of the United States and Canada – Volume 2. John Hopkins University Press, Baltimore, Maryland. 982 pp.). According to Dodd (2013), the closest population is located in east central Alabama, approximately 400 km to the northeast, as documented by Davis and Folkerts (1986. Brimleyana 12:29-50).

  14. Resurrection and re-description of Plethodontohyla laevis (Boettger, 1913 and transfer of Rhombophryne alluaudi (Mocquard, 1901 to the genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae

    Directory of Open Access Journals (Sweden)

    Adriana Bellati

    2018-02-01

    Full Text Available The systematics of the cophyline microhylid frog genera Plethodontohyla and Rhombophryne have long been intertwined, and their relationships have only recently started to become clear. While Rhombophryne has received a lot of recent taxonomic attention, Plethodontohyla has been largely neglected. Our study is a showcase of just how complex the taxonomic situation between these two genera is, and the care that must be taken to resolve taxonomic conundrums where old material, multiple genus transitions, and misattribution of new material obfuscate the picture. We assessed the identity of the historic names Dyscophus alluaudi (currently in the genus Rhombophryne, Phrynocara laeve and Plethodontohyla laevis tsianovohensis (both synonyms of Rhombophryne alluaudi based on an integrative taxonomic approach harnessing genetics, external morphology, osteological data obtained via micro-Computed Tomography (micro-CT and bioacoustics. We show that (1 the holotype of Dyscophus alluaudi is a member of the genus Plethodontohyla; (2 the Rhombophryne specimens from central Madagascar currently assigned to Rhombophryne alluaudi have no affinity with that species, and are instead an undescribed species; and (3 Phrynocara laeve and Dyscophus alluaudi are not synonymous, but represent closely related species, whereas Plethodontohyla laevis tsianovohensis is tentatively confirmed as synonym of D. alluaudi. We resurrect and re-describe Plethodontohyla laevis, and re-allocate and re-describe Plethodontohyla alluaudi on the basis of new and historic material.

  15. Effect of Ethanol Leaf Extract of Newboulda Laevis on Blood ...

    African Journals Online (AJOL)

    Erah

    ethanol extract Newbouldia laevis and the fifth group received a reference standard, glibenclamide (5 mg/kg). Treatment ... presence of saponins, tannins, alkaloids and flavonoids. Conclusion: ..... City for his technical assistance in the course.

  16. Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.

    Science.gov (United States)

    Hudson, David M; Weis, Maryann; Eyre, David R

    2011-05-03

    Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.

  17. Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    2011-05-01

    Full Text Available Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986, except α1(III, have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707. In mammals only α2(I and α2(V chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I. Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.

  18. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    Science.gov (United States)

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-06-02

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.

  19. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  20. Distribution of BDE-99 and effects on metamorphosis of BDE-99 and -47 after oral exposure in Xenopus tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Gunnar [Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-750 07 Uppsala (Sweden) and Centre for Reproductive Biology in Uppsala (CRU), P.O. Box 7054, SE-750 07 Uppsala (Sweden)]. E-mail: gunnar.carlsson@bvf.slu.se; Kulkarni, Pushkar [Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-750 07 Uppsala (Sweden); Larsson, Pia [Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-750 07 Uppsala (Sweden); Norrgren, Leif [Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-750 07 Uppsala (Sweden); Centre for Reproductive Biology in Uppsala (CRU), P.O. Box 7054, SE-750 07 Uppsala (Sweden)

    2007-08-15

    The high concentrations of polybrominated diphenylethers (PBDEs) in the environment have raised the need for generating more information about the impact of these substances on animals. To study the distribution of {sup 14}C-labelled 2,2',4,4',5-pentabromodiphenyl ether ({sup 14}C-BDE-99) in Xenopus tropicalis (West African clawed frog) {sup 14}C-BDE-99 was administered by dietary exposure to tadpoles at stage 54 or to juvenile frogs at stage 66. Whole-body autoradiography and liquid scintillation counting were used to examine the distribution of the substance at different survival times. Further, X. tropicalis tadpoles were dietarily exposed to the PBDE congeners BDE-47 and BDE-99 to study the effects on metamorphosis process. Measurements like body weight, body length, hind limb length and developmental stage as well as histological measurements on thyroid glands were performed after 14 days of exposure. Autoradiograms revealed high concentrations and long term retention of {sup 14}C-BDE-99 in adipose tissue and melanin in frogs exposed both as tadpoles and juveniles. Further, a difference in uptake was recorded between the exposures at stages 54 and 66, implying that the juvenile frogs have higher uptake and more prolonged retention of the chemical than the tadpoles. Hind limb length was reduced in tadpoles dietarily exposed to 1 mg/g feed of both BDE congeners. This was associated with reduced body weight and body length for BDE-47, suggesting general toxicity. Tadpoles exposed to BDE-99 also showed lower developmental stage but no effects on body weight or body length, suggesting possible thyroid hormone disruption. Higher concentrations of both congeners caused increased mortality. Thus, it can be concluded that in the present study, BDE-99 was retained for a longer period in the juvenile frogs than in metamorphosing tadpoles and that BDE-99 had an impact on X. tropicalis metamorphosis that might be of thyroid disrupting origin.

  1. Distribution of BDE-99 and effects on metamorphosis of BDE-99 and -47 after oral exposure in Xenopus tropicalis

    International Nuclear Information System (INIS)

    Carlsson, Gunnar; Kulkarni, Pushkar; Larsson, Pia; Norrgren, Leif

    2007-01-01

    The high concentrations of polybrominated diphenylethers (PBDEs) in the environment have raised the need for generating more information about the impact of these substances on animals. To study the distribution of 14 C-labelled 2,2',4,4',5-pentabromodiphenyl ether ( 14 C-BDE-99) in Xenopus tropicalis (West African clawed frog) 14 C-BDE-99 was administered by dietary exposure to tadpoles at stage 54 or to juvenile frogs at stage 66. Whole-body autoradiography and liquid scintillation counting were used to examine the distribution of the substance at different survival times. Further, X. tropicalis tadpoles were dietarily exposed to the PBDE congeners BDE-47 and BDE-99 to study the effects on metamorphosis process. Measurements like body weight, body length, hind limb length and developmental stage as well as histological measurements on thyroid glands were performed after 14 days of exposure. Autoradiograms revealed high concentrations and long term retention of 14 C-BDE-99 in adipose tissue and melanin in frogs exposed both as tadpoles and juveniles. Further, a difference in uptake was recorded between the exposures at stages 54 and 66, implying that the juvenile frogs have higher uptake and more prolonged retention of the chemical than the tadpoles. Hind limb length was reduced in tadpoles dietarily exposed to 1 mg/g feed of both BDE congeners. This was associated with reduced body weight and body length for BDE-47, suggesting general toxicity. Tadpoles exposed to BDE-99 also showed lower developmental stage but no effects on body weight or body length, suggesting possible thyroid hormone disruption. Higher concentrations of both congeners caused increased mortality. Thus, it can be concluded that in the present study, BDE-99 was retained for a longer period in the juvenile frogs than in metamorphosing tadpoles and that BDE-99 had an impact on X. tropicalis metamorphosis that might be of thyroid disrupting origin

  2. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  3. Insertional Mutagenesis for Genes involved in Otic/Vestibular Development and Function in Xenopus Tropicalis

    Science.gov (United States)

    Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.

  4. Pemanfaatan kulit kodok (bull frog

    Directory of Open Access Journals (Sweden)

    Muchtar Lutfie

    1995-06-01

    Full Text Available The objective of this study was to measure the tensile strength and the elongation of finished leather made from Bull Frog skin, so that the utilization of that leather can be specified. The samples used were twenty pieces of wet salted Bull Frog skin from East Java which have been processed to finished leather using chromosal B. and Irgatan LV as the tanning agents. Laboratory tests shawed that the average tensile strength was 177,675 Kg/Cm2 and the average elongation was 89,9%. Based on those results, it can be concluded that Bull Frog leather was suitable for leather goods such as bag, wallet, etc. so it can be used as substitute for Glace leather.

  5. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes.

    Science.gov (United States)

    Bakouh, Naziha; Bellanca, Sebastiano; Nyboer, Britta; Moliner Cubel, Sonia; Karim, Zoubida; Sanchez, Cecilia P; Stein, Wilfred D; Planelles, Gabrielle; Lanzer, Michael

    2017-09-29

    The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum , PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo , our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  7. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Sarbjit Nijjar

    Full Text Available We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2, we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the "late", Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.

  8. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  9. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  10. Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Fujimi, Takahiko J; Hatayama, Minoru; Aruga, Jun

    2012-01-15

    Zic3 controls neuroectodermal differentiation and left-right patterning in Xenopus laevis embryos. Here we demonstrate that Zic3 can suppress Wnt/β-catenin signaling and control development of the notochord and Spemann's organizer. When we overexpressed Zic3 by injecting its RNA into the dorsal marginal zone of 2-cell-stage embryos, the embryos lost mesodermal dorsal midline structures and showed reduced expression of organizer markers (Siamois and Goosecoid) and a notochord marker (Xnot). Co-injection of Siamois RNA partially rescued the reduction of Xnot expression caused by Zic3 overexpression. Because the expression of Siamois in the organizer region is controlled by Wnt/β-catenin signaling, we subsequently examined the functional interaction between Zic3 and Wnt signaling. Co-injection of Xenopus Zic RNAs and β-catenin RNA with a reporter responsive to the Wnt/β-catenin cascade indicated that Zic1, Zic2, Zic3, Zic4, and Zic5 can all suppress β-catenin-mediated transcriptional activation. In addition, co-injection of Zic3 RNA inhibited the secondary axis formation caused by ventral-side injection of β-catenin RNA in Xenopus embryos. Zic3-mediated Wnt/β-catenin signal suppression required the nuclear localization of Zic3, and involved the reduction of β-catenin nuclear transport and enhancement of β-catenin degradation. Furthermore, Zic3 co-precipitated with Tcf1 (a β-catenin co-factor) and XIC (I-mfa domain containing factor required for dorsoanterior development). The findings in this report produce a novel system for fine-tuning of Wnt/β-catenin signaling. Copyright © 2011. Published by Elsevier Inc.

  11. Guinea Worm in a Frog

    Centers for Disease Control (CDC) Podcasts

    2017-03-09

    Dr. Mark Eberhard, a retired parasitologist and CDC guest researcher, discusses Guinea worm infection in a wild-caught frog.  Created: 3/9/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/9/2017.

  12. Salmonella Infection and Water Frogs

    Centers for Disease Control (CDC) Podcasts

    2010-01-12

    This podcast, featuring lead investigator Shauna Mettee, discusses the first known outbreak of Salmonella in people due to contact with water frogs.  Created: 1/12/2010 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 1/12/2010.

  13. Further Development and Validation of the frog Embryo Teratogenesis Assay - Xenopus (FETAX)

    Science.gov (United States)

    1991-02-28

    the gut, notochord and face. The first definitive test gave a EC50 of 0.0109 mg/ml. The LC50 was estimated to be 0.015 mg/ml. This gives an...approximate T.I. of 1.38. The most common malformations were in the gut, notochord and face. The mortality curve in Figure 56 was figured from a transformation...Control embryos achieved Stage 46 at the end of the 96 h exposure period. Side view presented to show effect on face, gut and notochord . From top to

  14. CARE AND FEEDING OF FROGS

    International Nuclear Information System (INIS)

    Pan, Margaret; Chiang, Eugene

    2012-01-01

    'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Blériot', appear consistent with a sinusoid of period ∼4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad disk torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t delay , the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t delay exceeds the frog libration period P lib , and if damping from Lindblad torques balances driving from co-orbital torques. If t delay ib , then the libration amplitude damps to zero. In the case of Blériot, the frog resonance model can reproduce the observed libration period P lib ≅ 4 yr. However, our simple feedback prescription suggests that Blériot's t delay ∼ 0.01P lib , which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.

  15. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Blom, Sigrid Marie; Schmitt, Nicole; Jensen, Henrik Sindal

    2009-01-01

    Kv7.2-5, is now in clinical trial phase III for the treatment of partial onset seizures. One of the main obstacles in developing Kv7 channel active drugs has been to identify compounds that can discriminate between the neuronal subtypes, a feature that could help diminish side effects and increase...

  16. Antiandrogenic effects of prochloraz in Xenopus laevis_data_Haselman et al_version_0_20171122

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data are represented in the tables and graphs in the journal article, Antiandrogenic effects following multiple life stage exposure to the fungicide prochloraz...

  17. Regulation of Thyroid-stimulating Hormone Release from the Pituitary by Thyroxine during Metamorphosis in Xenopus laevis

    Science.gov (United States)

    Environmentally-relevant chemicals such as perchlorate have the ability to disrupt the hypothalamo-pituitary-thyroid (HPT) axis of exposed individuals. Larval anurans are a particularly suitable model species for studying the effects of thyroid-disrupting chemicals (TDCs) becaus...

  18. Negative Feedback Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Metamorphosis in Xenopus laevis

    Science.gov (United States)

    A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...

  19. Ethanol extracts of Newbouldia laevis stem and leaves modulate ...

    African Journals Online (AJOL)

    The ethanol extracts of N. laevis leaves and stem possessed antioxidant activity as shown by increased activities of superoxide dismutase and catalase, and glutathione levels of the diabetic rats after treatment. High levels of alkaline phosphatase (ALP), and alanine aminotransaminase (ALT), which are typical of oxidative ...

  20. Cytoarchitectural effects of ethanolic leaf extract of Newbouldia laevis

    African Journals Online (AJOL)

    The pre-cisplatin group was treated with 100mg/kg body weight of ethanolic leaf extract of N. laevis for twelve weeks before being treated with 8mg/kg of cisplatin ... The testicular sections of pre-cisplatin group showed remarkable preservation of the original testicular and epididymal cytoarchitecture, compared to the ...

  1. Effect of Ethanol Leaf Extract of Newboulda Laevis on Blood ...

    African Journals Online (AJOL)

    Purpose: To investigate anti-diabetic effect of the ethanol leaf extract of Newbouldia laevis (P. Beauv) in alloxan-induced diabetic rats. Methods: Alloxan (150 mg/kg) was administered to wistar albino rats via the intraperitoneal route. The diabetic rats were then placed in 5 groups, following stabilization of hyperglycemia.

  2. From frog integument to human skin: dermatological perspectives from frog skin biology

    NARCIS (Netherlands)

    Haslam, I.S.; Roubos, E.W.; Mangoni, M.L.; Yoshizato, K.; Vaudry, H.; Kloepper, J.E.; Pattwell, D.M.; Maderson, P.F.A.; Paus, R.

    2014-01-01

    For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a

  3. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    Science.gov (United States)

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  4. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    Science.gov (United States)

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland. Copyright © 2014 the American Physiological Society.

  5. Apoptosis regulates notochord development in Xenopus

    OpenAIRE

    Malikova, Marina; Van Stry, Melanie; Symes, Karen

    2007-01-01

    The notochord is the defining characteristic of the chordate embryo, and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through ...

  6. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.

  7. Snoring puddle frog

    International Nuclear Information System (INIS)

    Lloyd, Mark Anthony

    2000-01-01

    Full text: The purpose of this paper is to hold a biological mirror in front of ourselves, the nuclear energy community, and to suggest that the reflection we will see there will help us both professionally and as members of a broader society. Let us start with sex. For sex to function as a means of reproduction, a male and a female of a particular species have to recognise each other and mate. The important terms here are 'particular species' and 'recognise'. Within most species, extraordinarily precise mate recognition systems have evolved. The precise frequency of the croak of a particular species of frog; the precise seasonal coloration of a particular species of salmon; the precise length of the tail of a particular species of bird; each is recognisable instantly to a prospective mate, though not to untrained human ears or eyes. 'The Recognition Concept of Species' (1985) is a monograph that has become something of a 'classic' in annals of evolutionary biology. Its author, HEH Paterson, suggests that a species can be defined as a group of organisms that share a common mate recognition system. Mating is an exchange of genes, and creatures that do not recognise each other do not exchange genes. A mate recognition system closes off the gene pool and may increasingly isolate its participants from even their nearest relatives. Biological evolution has numerous links and parallels with the evolution of human cultures. Some of our recognition systems seem to have a knack for drawing everyone in - American popular culture, for example, is now inescapable. Other recognition systems repel all but a few - take, or rather don't take, the Hell's Angels or the Ku Klux Klan. We, as members of the nuclear energy culture, are members of a closed and even repellent gene pool. We share a recognition system by which we perpetuate ourselves from generation to generation, from Hiroshima to Chernobyl. Outsiders do not understand our language: terms like 'credit for fission products

  8. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    Science.gov (United States)

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  9. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  10. The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells.

    Directory of Open Access Journals (Sweden)

    Laure Anne D'Amico

    Full Text Available In contrast to mammals that have limited proliferation and neurogenesis capacities, the Xenopus frog exhibit a great potential regarding proliferation and production of new cells in the adult brain. This ability makes Xenopus a useful model for understanding the molecular programs required for adult neurogenesis. Transcriptional factors that control adult neurogenesis in vertebrate species undergoing widespread neurogenesis are unknown. NeuroD1 is a member of the family of proneural genes, which function during embryonic neurogenesis as a potent neuronal differentiation factor. Here, we study in detail the expression of NeuroD1 gene in the juvenile and adult Xenopus brains by in situ hybridization combined with immunodetections for proliferation markers (PCNA, BrdU or in situ hybridizations for cell type markers (Vimentin, Sox2. We found NeuroD1 gene activity in many brain regions, including olfactory bulbs, pallial regions of cerebral hemispheres, preoptic area, habenula, hypothalamus, cerebellum and medulla oblongata. We also demonstrated by double staining NeuroD1/BrdU experiments, after long post-BrdU administration survival times, that NeuroD1 gene activity was turned on in new born neurons during post-metamorphic neurogenesis. Importantly, we provided evidence that NeuroD1-expressing cells at this brain developmental stage were post-mitotic (PCNA- cells and not radial glial (Vimentin+ or progenitors (Sox2+ cells.

  11. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (--209B, (--231C, (--233D, (--235B", (--221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Garraffo H Martin

    2007-09-01

    Full Text Available Abstract Background The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (--235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. Results The enantioselective syntheses of (--209B, (--231C, (--233D, (--235B", (--221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7 expressed in Xenopus laevis oocytes, (--231C effectively blocked α4β2 receptor responses (IC50 value, 1.5 μM with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (--221I and (--epi-193E were more potent in blocking α7 receptor responses (IC50 value, 4.4 μM and 9.1 μM, respectively than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively. Conclusion We achieved the total synthesis of (--209B, (--231C, (--233D, (--235B", (--221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (--233D was determined. Furthermore, the relative stereochemistry of (--231C and (--221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E

  12. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  13. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline.

    Science.gov (United States)

    Regnault, Christophe; Usal, Marie; Veyrenc, Sylvie; Couturier, Karine; Batandier, Cécile; Bulteau, Anne-Laure; Lejon, David; Sapin, Alexandre; Combourieu, Bruno; Chetiveaux, Maud; Le May, Cédric; Lafond, Thomas; Raveton, Muriel; Reynaud, Stéphane

    2018-05-08

    Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo( a )pyrene or triclosan at concentrations of 50 ng⋅L -1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F 1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo( a )pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.

  14. Eleutherodactylus frog introductions to Hawaii

    Science.gov (United States)

    Kraus, Fred; Campbell, Earl W.; Allison, Allen; Pratt, Thane K.

    1999-01-01

    As an oceanic archipelago isolated from continental source areas, Hawaii lacks native terrestrial reptiles and amphibians, Polynesians apparently introduced seven gecko and skink species after discovering the islands approximately 1500 years ago, and another 15 reptiles and five frogs have been introduced in the last century and a half (McKeown 1996). The Polynesian introductions are probably inadvertent because the species involved are known stowaway dispersers (Gibbons 1985; Dye and Steadman 1990), In contrast, most of the herpetological introductions since European contact with Hawaii have been intentional. Several frog species were released for biocontrol of insects (e.g., Dendrobates auratus, Bufo marinus, Rana rugosa, Bryan 1932; Oliver and Shaw 1953), and most of the remaining species are released or escaped pets (e.g., Phelsuma spp., Chamaeleo jacksonii, Iguana iguana, McKeown 1996), Government-approved releases have not occurred for many years, but the rate of establishment of new species has increased in the past few decades because of the importation and subsequent release of pets.

  15. Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

    Science.gov (United States)

    Oron, Y; Gillo, B; Gershengorn, M C

    1988-06-01

    Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

  16. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  17. Neuromuscular control of prey capture in frogs.

    OpenAIRE

    Nishikawa, K C

    1999-01-01

    While retaining a feeding apparatus that is surprisingly conservative morphologically, frogs as a group exhibit great variability in the biomechanics of tongue protraction during prey capture, which in turn is related to differences in neuromuscular control. In this paper, I address the following three questions. (1) How do frog tongues differ biomechanically? (2) What anatomical and physiological differences are responsible? (3) How is biomechanics related to mechanisms of neuromuscular cont...

  18. Prey specialization and diet of frogs in Borneo

    OpenAIRE

    Ahlm, Kristoffer

    2015-01-01

    Earlier studies of the diet of frogs indicate that most adult frogs are mainly insectivorous. Overall, frogs are viewed more as generalists than specialists in terms of their diet. However, despite earlier studies, there are still gaps in our knowledge regarding what frogs tend to eat and the degree of specialization. The aim of this study was to investigate the diet choice of frogs in a tropical ecosystem. The present study was conducted in a well-known hotspot for frogs with 66 of the 156 k...

  19. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus.

    Science.gov (United States)

    Futel, Mélinée; Leclerc, Catherine; Le Bouffant, Ronan; Buisson, Isabelle; Néant, Isabelle; Umbhauer, Muriel; Moreau, Marc; Riou, Jean-François

    2015-03-01

    In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2. © 2015. Published by The Company of Biologists Ltd.

  20. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  1. Genomic analysis of Xenopus organizer function

    Directory of Open Access Journals (Sweden)

    Suhai Sándor

    2006-06-01

    Full Text Available Abstract Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues

  2. Comparison of TALEN scaffolds in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2013-11-01

    Transcription activator-like effector nucleases (TALENs are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis, we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  3. THE PROPELLER AND THE FROG

    International Nuclear Information System (INIS)

    Pan, Margaret; Chiang, Eugene

    2010-01-01

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of ∼4 years, similar to the ∼3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  4. Isolation and characterization of microsatellite loci from the Australasian sea snake, Aipysurus laevis

    DEFF Research Database (Denmark)

    Lukoschek, Vimoksalehi; Waycott, Michelle; Dunshea, Glenn

    2005-01-01

    We developed 13 microsatellite loci for the olive sea snake, Aipysurus laevis, using both enriched and unenriched genomic DNA libraries. Eleven codominant loci, that reliably amplified, were used to screen 32 individuals across the geographic range of A. laevis. Four loci had four or more alleles...... (maximum 12), whereas the other seven had either two or three. All but one locus was in Hardy-Weinberg equilibrium. These loci will provide useful markers to investigate population genetic structure for the olive sea snake....

  5. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients.

    Science.gov (United States)

    Nakayama, Takuya; Fisher, Marilyn; Nakajima, Keisuke; Odeleye, Akinleye O; Zimmerman, Keith B; Fish, Margaret B; Yaoita, Yoshio; Chojnowski, Jena L; Lauderdale, James D; Netland, Peter A; Grainger, Robert M

    2015-12-15

    Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Birds and frogs in mathematics and physics

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Freeman J [Institute for Advanced Study, Princeton, NJ (United States)

    2010-11-15

    Some scientists are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. A brief history of mathematics and its applications in physics is presented in this article. (from the history of physics)

  7. Hematophagous insects as vectors for frog trypanosomes.

    Science.gov (United States)

    Ramos, B; Urdaneta-Morales, S

    1977-12-01

    Experimental infections of three hematophagous arthropods (Rhodnius prolixus, Aedes aegypti, and Culex pipiens) with a trypanosome of the Trypanosoma rotatorium complex found in the frogs Hyla crepitans and Leptodactylus insularum revealed that A. aegypti is a good host for the flagellate; the course of development in the intestinal tract of the mosquito is described from 15 minutes to 168 hours. C. pipiens showed only low intestinal infections and R. prolixus did not permit development of the parasite. It is postulated that, in addition to the transmission of T. rotatorium by leeches, batrachophilic mosquitoes may transmit the parasite to frogs of more terrestrial habits by being ingested by these anurans.

  8. Birds and frogs in mathematics and physics

    International Nuclear Information System (INIS)

    Dyson, Freeman J

    2010-01-01

    Some scientists are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. A brief history of mathematics and its applications in physics is presented in this article. (from the history of physics)

  9. Pseudacris triseriata (western chorus frog) and Rana sylvatica (wood frog) chytridiomycosis

    Science.gov (United States)

    Rittman, S.E.; Muths, E.; Green, D.E.

    2003-01-01

    The chytrid fungus Batrachochytrium dendrobatidis is a known pathogen of anuran amphibians, and has been correlated with amphibian die-offs worldwide (Daszak et. al. 1999. Emerging Infectious Diseases 5:735-748). In Colorado, B. dendrobatidis has infected Boreal toads (Bufo boreas) (Muths et. al., in review) and has been identified on museum specimens of northern leopard frogs (Rana pipiens) (Carey et. al. 1999. Develop. Comp. Immunol. 23:459-472). We report the first verified case of chytrid fungus in chorus frogs (Pseudacris triseriata) and wood frogs (Rana sylvatica) in the United States. We collected seven P. triseriata, and two adult and two juvenile R. sylvatica in the Kawuneeche Valley in Rocky Mountain National Park (RMNP) during June 2001. These animals were submitted to the National Wildlife Health Center (NWHC) as part of an amphibian health evaluation in RMNP. Chorus frogs were shipped in one container. Wood frog adults and juveniles were shipped in two separate containers. Histological examinations of all chorus frogs and 3 of 4 wood frogs were positive for chytrid fungus infection. The fourth (adult) wood frog was too decomposed for meaningful histology. Histological findings consisted of multifocally mild to diffusely severe infections of the epidermis of the ventrum and hindlimb digital skin. Chytrid thalli were confined to the thickened epidermis (hyperkeratosis), were spherical to oval, and occasional thalli contained characteristic discharge pores or zoospores (Green and Kagarise Sherman 1999. J. Herpetol 35:92-103; Fellers et al. 2001. Copeia 2001:945-953). We cannot confirm that all specimens carried the fungus at collection, because infection may have spread from one individual to all other individuals in each container during transport. Further sampling of amphibians in Kawuneeche Valley is warranted to determine the rate of infection and mortality in these populations.

  10. Water Frogs, Aquariums, and Salmonella -- Oh My!

    Centers for Disease Control (CDC) Podcasts

    2009-12-09

    This CDC Kidtastics podcast discusses how people can get Salmonella from water frogs and aquariums.  Created: 12/9/2009 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 12/9/2009.

  11. Of volcanoes, saints, trash, and frogs

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    , at the same time as political elections and economic hardship. During one year of ethnographic fieldwork volcanoes, saints, trash and frogs were among the nonhuman entities referred to in conversations and engaged with when responding to the changes that trouble the world and everyday life of Arequipans...

  12. OCT imaging of craniofacial anatomy in xenopus embryos (Conference Presentation)

    Science.gov (United States)

    Deniz, Engin; Jonas, Stephan M.; Griffin, John; Hooper, Michael C.; Choma, Michael A.; Khokha, Mustafa K.

    2016-03-01

    The etiology of craniofacial defects is incompletely understood. The ability to obtain large amounts of gene sequence data from families affected by craniofacial defects is opening up new ways to understand molecular genetic etiological factors. One important link between gene sequence data and clinical relevance is biological research into candidate genes and molecular pathways. We present our recent research using OCT as a nondestructive phenotyping modality of craniofacial morphology in Xenopus embryos, an important animal model for biological research in gene and pathway discovery. We define 2D and 3D scanning protocols for a standardized approach to craniofacial imaging in Xenopus embryos. We define standard views and planar reconstructions for visualizing normal anatomy and landmarks. We compare these views and reconstructions to traditional histopathology using alcian blue staining. In addition to being 3D, nondestructive, and having much faster throughout, OCT can identify craniofacial features that are lost during traditional histopathological preparation. We also identify quantitative morphometric parameters to define normative craniofacial anatomy. We also note that craniofacial and cardiac defects are not infrequently present in the same patient (e.g velocardiofacial syndrome). Given that OCT excels at certain aspects of cardiac imaging in Xenopus embryos, our work highlights the potential of using OCT and Xenopus to study molecular genetic factors that impact both cardiac and craniofacial development.

  13. EBF proteins participate in transcriptional regulation of Xenopus muscle development.

    Science.gov (United States)

    Green, Yangsook Song; Vetter, Monica L

    2011-10-01

    EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs.

    Science.gov (United States)

    Snow, P; Yim, D L; Leibow, J D; Saini, S; Nuccitelli, R

    1996-11-25

    Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation in Xenopus laevis. Here we measure the endogenous production of both Ins(1,4,5)P3 and PIP2 during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3 increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 microM) to a peak of 0.42 pmole per egg (0.93 microM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3 during the time that the Ca2+ wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3 in wave propagation. This increase in Ins(1,4,5)P3 is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3 involves a PIP2 hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2 levels to fall as a result of hydrolysis, we find that PIP2 actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2 per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2 concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2 in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2 as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2 normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2 concentrations, suggesting that the 2-fold higher total PIP2 in the vegetal half is not due to a gradient of PIP2 in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.

  15. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.

    Science.gov (United States)

    Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E

    1991-08-01

    Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

  16. Large intestine bacterial flora of nonhibernating and hibernating leopard frogs (Rana pipiens).

    OpenAIRE

    Gossling, J; Loesche, W J; Nace, G W

    1982-01-01

    The bacteria in the large intestines of 10 northern leopard frogs (Rana pipiens) were enumerated and partially characterized. Four nonhibernating frogs were collected in the summer, four hibernating frogs were collected in the winter, and two frogs just emerged from hibernation were collected in the spring. All frogs had about 10(10) bacteria per g (wet weight) of intestinal contents and about 10(9) bacteria per g (wet weight) of mucosal scraping, although the counts from the winter frogs wer...

  17. Atomic absorption spectrometry of the leaves of Newbouldia Laevis (Bignoniaceae)

    International Nuclear Information System (INIS)

    Mohammed, L.; Musa, A.; Isma'il, M. B.; Ahmed, Y. A.; Okunade, I.O.; Garba, M. A.

    2011-01-01

    In this study, fresh leaves samples of Newbouldia laevis, a medicinal plant, popularly known as African Border tree used traditionally for the treatment of a number of diseases, were collected in Dakace, (Lat. 11degree05'N Long. 7degree46'E) Zaria, Kaduna State, North-Central Nigeria, during the wet season (October to November) of 2008. The samples were digested using a tri-acid mixture (HNO 3 , HCIO 4 , and H 2 SO 4 ) in the ratio of 25:4:2 respectively. The concentrations of essential trace elements including magnesium, copper, iron, zinc, and cobalt in the samples were determined by Atomic Absorption Spectrometry (AAS). The results obtained showed that Fe has the highest mean concentration of 8.2481±3.689μg/g; whereas Co has the least mean concentration of 0.111±0.055μg/g. The study also revealed that the mean concentrations of Mg, Cu and Zn exceed the recommended limit set by FAO.

  18. Rarity Status and Habitat of Shorea laevis and Shorea leprosula in Muara Teweh, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2012-08-01

    Full Text Available Forest exploitation and conversion to other landuse may cause lost of biodiversity, including most important dipterocarp trees species, i.e. Shorea leprosula and Shorea laevis. The objective of this study was to determine the rarity status of the two important shorea species, i.e. S. laevis and S. leprosula, based on IUCN criteria, their habitat characteristics, and their association with other species, as one of the basis for determining their conservation strategy as a part of forest management. This study was conducted in three types of ecosystem (virgin forest, secondary forest, and fragmented forest in Muara Teweh, Central Kalimantan.  Methodology used in this research includes vegetation and tree diversity analysis. Study results showed that both S. laevis and S. leprosula were included within category of “low risk” in the 3 types of ecosystem in the forest area being studied.  Habitat characteristics which determined the absence of S. laevis in the virgin forest habitat was the soil permeability which was too low, whereas other soil chemical and physical properties in the three types of ecosystems were relatively similar.  Presence of S. laevis were positively associated with species of S. uliginosa, Dialium platysepalum, Dipterocarpus ibmalatus, Palaquium rostatum, Vatica rasak, Adinandra sp., and Memecyclon steenis.  On the other hand,  S. leprosula were positively correlated with S. kunstleri, Castanopsis sp., Shorea sp., Quercus bennettii, Castanopsis argentea, and D. hasseltii.Keywords: threatened species, Shorea spp., habitat characteristic, ecosystems type, associated species

  19. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    Directory of Open Access Journals (Sweden)

    John N Griffin

    2015-03-01

    Full Text Available The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.

  20. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus.

    Science.gov (United States)

    Gentsch, George E; Spruce, Thomas; Monteiro, Rita S; Owens, Nick D L; Martin, Stephen R; Smith, James C

    2018-03-12

    Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  1. The unexpected teratogenicity of RXR antagonist UVI3003 via activation of PPARγ in Xenopus tropicalis

    International Nuclear Information System (INIS)

    Zhu, Jingmin; Janesick, Amanda; Wu, Lijiao; Hu, Lingling; Tang, Weiyi; Blumberg, Bruce; Shi, Huahong

    2017-01-01

    The RXR agonist (triphenyltin, TPT) and the RXR antagonist (UVI3003) both show teratogenicity and, unexpectedly, induce similar malformations in Xenopus tropicalis embryos. In the present study, we exposed X. tropicalis embryos to UVI3003 in seven specific developmental windows and identified changes in gene expression. We further measured the ability of UVI3003 to activate Xenopus RXRα (xRXRα) and PPARγ (xPPARγ) in vitro and in vivo. We found that UVI3003 activated xPPARγ either in Cos7 cells (in vitro) or Xenopus embryos (in vivo). UVI3003 did not significantly activate human or mouse PPARγ in vitro; therefore, the activation of Xenopus PPARγ by UVI3003 is novel. The ability of UVI3003 to activate xPPARγ explains why UVI3003 and TPT yield similar phenotypes in Xenopus embryos. Our results indicate that activating PPARγ leads to teratogenic effects in Xenopus embryos. More generally, we infer that chemicals known to specifically modulate mammalian nuclear hormone receptors cannot be assumed to have the same activity in non-mammalian species, such as Xenopus. Rather they must be tested for activity and specificity on receptors of the species in question to avoid making inappropriate conclusions. - Highlights: • UVI3003 is a RXRs antagonist and shows teratogenicity to Xenopus embryos. • UVI3003 activated xPPARγ either in Cos7 cells or Xenopus embryos. • UVI3003 did not activate human or mouse PPARγ in Cos7 cells. • Activating PPARγ leads to teratogenic effects in Xenopus embryos.

  2. Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsujioka

    Full Text Available Organ regenerative ability depends on the animal species and the developmental stage. The molecular bases for variable organ regenerative ability, however, remain unknown. Previous studies have identified genes preferentially expressed in the blastema tissues in various animals, but transcriptome analysis of the isolated proliferating blastema cells has not yet been reported. In the present study, we used RNA-sequencing analysis to analyze the gene expression profile of isolated proliferating blastema cells of regenerating Xenopus laevis tadpole tails. We used flow cytometry to isolate proliferating cells, and non-proliferating blastema cells, from regenerating tadpole tails as well as proliferating tail bud cells from tail bud embryos, the latter two of which were used as control cells, based on their DNA content. Among the 28 candidate genes identified by RNA-sequencing analysis, quantitative reverse transcription-polymerase chain reaction identified 10 genes whose expression was enriched in regenerating tadpole tails compared with non-regenerating tadpole tails or tails from the tail bud embryos. Among them, whole mount in situ hybridization revealed that chromosome segregation 1-like and interleukin 11 were expressed in the broad area of the tail blastema, while brevican, lysyl oxidase, and keratin 18 were mainly expressed in the notochord bud in regenerating tails. We further combined whole mount in situ hybridization with immunohistochemistry for the incorporated 5-bromo-2-deoxyuridine to confirm that keratin 18 and interleukin 11 were expressed in the proliferating tail blastema cells. Based on the proposed functions of their homologs in other animal species, these genes might have roles in the extracellular matrix formation in the notochord bud (brevican and lysyl oxidase, cell proliferation (chromosome segregation 1-like and keratin 18, and in the maintenance of the differentiation ability of proliferating blastema cells (interleukin 11

  3. Genotoxicity evaluation of the insecticide endosulfan in the wetland macrophyte Bidens laevis L

    International Nuclear Information System (INIS)

    Perez, Debora J.; Menone, Mirta L.; Camadro, Elsa L.; Moreno, Victor J.

    2008-01-01

    The frequency of micronuclei (MN) and chromosome aberrations in anaphase-telophase (CAAT) was determined in root tips of the wetland macrophyte Bidens laevis exposed to environmentally relevant concentrations of endosulfan (0.01, 0.02, 0.5 and 5 μg/L) for 48 h. MN frequency varied from 0 in negative controls and plants exposed to 0.01 μg/L endosulfan to 0-3 in plants exposed to 5 μg/L. Moreover, a significant concentration-dependent increase of CAAT was observed. The higher proportion of laggards and vagrand chromosomes observed at 5 μg/L would indicate that endosulfan interacts with the spindle interrupting normal chromosome migration. Endosulfan resulted genotoxic to B. laevis, a species of potential value for bioassays and in situ monitoring of environmental contamination by pesticides. - Endosulfan causes a concentration-dependent increase of chromosome aberrations in the macrophyte Bidens laevis

  4. Apomorphine effects on frog locomotor behavior

    OpenAIRE

    Chu, Joanne; Wilczynski, Walter

    2007-01-01

    The neuroanatomical pathways of the DA systems have been shown to be largely conserved across many vertebrate taxa. It is less certain whether the structural similarities seen between mammals and amphibians reflect a similar functional homology. DA is well known for its role in facilitating motor behaviors in mammals. We examined whether a similar role for DA exists in amphibians using the Northern Leopard Frog (Rana pipiens). We investigated the effects of the nonspecific DA agonist, apomorp...

  5. Cellular mechanisms of nociception in the frog

    Czech Academy of Sciences Publication Activity Database

    Kuffler, D. P.; Lyfenko, Alla; Vyklický st., Ladislav; Vlachová, Viktorie

    2002-01-01

    Roč. 88, č. 4 (2002), s. 1843-1850 ISSN 0022-3077 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Grant - others:NATO(XX) Grant 977062 Institutional research plan: CEZ:AV0Z5011922 Keywords : cellular mechanisms of nociception * frog Subject RIV: FH - Neurology Impact factor: 3.743, year: 2002

  6. High levels of prevalence related to age and body condition: host-parasite interactions in a water frog Pelophylax kl hispanicus

    Directory of Open Access Journals (Sweden)

    Mar Comas

    2014-06-01

    Full Text Available Host traits can significantly influence patterns of infection and disease. Here, we studied the helminths parasitizing the Italian edible frog Pelophylax kl. hispanicus, giving special attention to the relationship between parasites and host traits such as sex, snout vent length, weight and body condition. The helminth community was composed of seven species: three trematode species (Diplodiscus subclavatus, Gorgodera cygnoides, Pleurogenes claviger, three nematode species (Icosiella neglecta, Oswaldocruzia filiformis, Rhabdias sp. and one acanthocephalan species (Pomphorhychus laevis. We found that prevalence was positively correlated with snout-vent length and weight, but did not differ with body condition or sex. We found that prevalence and mean species richness increased with age. Our results show that abundance of Icosiella neglecta was positively correlated with higher values for host body condition. In fact, we found that high prevalence and mean species richness do not necessarily imply poorer body condition in the parasitized host. In conclusion, our results show that the helminth community in this taxon has great diversity, and this host-parasite system seems to be evolved to low levels of virulence, helminths maintaining a commensal relationship with this frog.

  7. Biogeographic patterns of Colombian frogs and toads

    International Nuclear Information System (INIS)

    Lynch, John D.; Ruiz Carranza, Pedro M; Ardila Robayo, Maria Cristina

    1997-01-01

    Using the data provided in Ruiz-Carranza et al. (1996) the distributions of the 540 species of frogs and toads are partitioned among ten ecogeographic units of Colombia defined on the basis of precipitation and elevation. Some lowlands areas (pacific lowlands, Amazonian) exhibit high diversity (85-94 species) but lowlands areas in general are impoverished (30-52 species), especially when contrasted with upland areas. The three Andean cordilleras harbor between 87 and 121 species of frogs and toads, demonstrating that the biodiversity of Colombia resides primarily in its montane components, not in its lowland rain forests. When biological endemicity is separated from political endemicity, five areas of high endemicity remain (the three Andean cordilleras, the Sierra Nevada de Santa Marta, and the pacific lowlands). We endeavor to explain this description by recourse to cladistic analyses of several groups of leptodactylid frogs where we find that the general pattern of diversification is by means of horizontal diversification (allopatric speciation) with a minor contribution from vertical diversification

  8. PROTEIN PROFILING OF XENOPUS LAEVIS BRAIN CELLS FOLLOWING EXPOSURE TO T4-SYNTHESIS INHIBITORS: POTENTIAL APPLICATION TO THE ASSESSMENT/DIAGNOSIS OF XENOBIOTICS THAT PERTURB THE THYROID PATHWAY

    Science.gov (United States)

    To address USEPA's need for a cost effective, non-mammalian screening assay for thyroid axis disrupting chemicals, a multi-endpoint strategy combining molecular and in vivo protocols in an amphibian model is being applied at MED-Duluth. To support the molecular phase goals of thi...

  9. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    Science.gov (United States)

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  10. Deppresion in the Level of Cadherin and alfa, á-, ç-catenins in Transgenic Xenopus laevis Highly Expressing c-Src

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, K.; Habrová, V.; Takáč, Mirko; Jonák, Jiří

    2000-01-01

    Roč. 46, č. 1 (2000), s. 3-10 ISSN 0015-5500 R&D Projects: GA ČR GV312/96/K205 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.351, year: 2000

  11. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik S.

    2015-01-01

    different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences...... by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α1,2,3,5β2γ2S GABAARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20...

  12. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    Science.gov (United States)

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  13. RELATIVE QUANTIFICATION OF PROTEINS IN THE BRAIN OF XENOPUS LAEVIS UPON EXPOSURE TO CHEMICALS IS PERFORMED WITH PEPTIDE MASS TAGS USING ITRAQ TECHNOLOGY

    Science.gov (United States)

    To address USEPA's need for a cost effective, non-mammalian screening assay for thyroid axis disrupting chemicals, a multi-endpoint strategy combining molecular and in vivo protocols in an amphibian model is being applied at MED-Duluth.

  14. Evaluation of Gene Expression Endpoints in the Context of a Xenopus laevis Metamorphosis-based Bioassay to Detect Thyroid Hormone Disruptors

    Science.gov (United States)

    This study accentuates the need to examine multiple tissues and provides critical information required for optimization of exposure regimens and endpoint assessments that focus on the detection of disruption in TH-regulatory systems.

  15. APPLICATION OF ORGANIC IODINE SPECIES ANALYTICS: DETERMINING THYROID HORMONE STATUS IN ADULT DANIO RERIO AND DEVELOPING XENOPUS LAEVIS USING LC/ICP-MS

    Science.gov (United States)

    Disruption of normal thyroid function by xenobiotic chemicals is an important ecological issue. Theoretically, normal thyroid hormone (TH) homeostasis and action can be disrupted at several sites in the synthetic and elimination pathways. Indeed, xenobiotic chemicals, which are k...

  16. Assessment of frog meat utilisation in Ibadan, Oyo state, Nigeria ...

    African Journals Online (AJOL)

    Frogs are among the most threatened species of wildlife in IUCN red list. Its utilisation in Ibadan, a major depot in western Nigeria was therefore conducted with the aim of assessing the forms and trend of use; and amongst others, reasons for frog meat consumption. Data for the study were collected through questionnaire, ...

  17. Modeling potential river management conflicts between frogs and salmonids

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh

    2016-01-01

    Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...

  18. Using a Phototransduction System to Monitor the Isolated Frog Heart

    Science.gov (United States)

    Stephens, Philip J.

    2015-01-01

    A simple and inexpensive method of monitoring the movement of an isolated frog heart provides comparable results to those obtained with a force transducer. A commercially available photoresistor is integrated into a Wheatstone bridge circuit, and the output signal is interfaced directly with a recording device. An excised, beating frog heart is…

  19. Compendium of the FY1990 and FY1992 Research Reviews for the Research Methods Branch

    Science.gov (United States)

    1994-09-01

    fish digestion. In: Cultivation of Fish Fry and Its Live Food, E. Styczynska-Jurewicz, T. Backiel, E. Japers, and G. Persoone, eds. Bredene, Belgium...sunfish exposed to contaminated sediment. Ecotoxicology , in press. Van Holde, K.E. (ed.) 1989. Chromatin. New York: Springer-Verlag. 136 ORNITHINE...developmental toxicity test that utilizes the embryos of the South African clawed frog Xenopus laevis. The assay has applications for ecotoxicology and also

  20. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    Science.gov (United States)

    2008-08-01

    nutritional physiology. Vet. Res. Commun. 8:77–91. Lee S-Y, Brodman BW. 2004. Biodegradation of 1,3,5-trinitro-1,3,5-triazine (RDX). Journal of...laevis (African clawed frog) Strain: Outbred Age: embryo/Larvae/Adults Source: All of Xenopus used in this proposal were bred from captive stocks...Laboratory studies have shown that PAHs may stimulate the induction of hepatic monooxygenase activity in birds , although PAHs are rapidly metabolized, and

  1. CRIM1 Complexes with ß-catenin and Cadherins, Stabilizes Cell-Cell Junctions and Is Critical for Neural Morphogenesis

    OpenAIRE

    Ponferrada, Virgilio G.; Fan, Jieqing; Vallance, Jefferson E.; Hu, Shengyong; Mamedova, Aygun; Rankin, Scott A.; Kofron, Matthew; Zorn, Aaron M.; Hegde, Rashmi S.; Lang, Richard A.

    2012-01-01

    In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using C...

  2. Pathosphere.org: Pathogen Detection and Characterization Through a Web-based, Open-source Informatics Platform

    Science.gov (United States)

    2015-12-29

    human), Homo sapiens chromosome (human), Mus_musculus ( rodent ), Sus scrofa (pig), mitochondrion genome, and Xenopus laevis (frog) . The taxonomy... Amazon Web Services. PLoS Comput Biol 2011, 7:e1002147. 10. Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C, Palacios G, Khristova ML...human enterovirus C genotypes found in respiratory samples from Peru . J Gen Virol 2013, 94(Pt 1):120–7. 54. Jacob ST, Crozier I, Schieffelin JS

  3. Efficacy of ivermectin as an anthelmintic in leopard frogs.

    Science.gov (United States)

    Letcher, J; Glade, M

    1992-02-15

    Ivermectin administered cutaneously at dosages of 2 mg/kg of body weight eliminated nematode infections in leopard frogs. Three clinical trials were conducted. In the first trial, 5 groups of 11 frogs were given ivermectin IM at dosages of 0, 0.2, 0.4, 2, or 20 mg/kg. All frogs given ivermectin IM at dosages of 2.0 mg/kg or greater died. In trial 2, 44 frogs, allotted to 5 groups, were given ivermectin cutaneously at 0, 0.2, 2, or 20 mg/kg. Cutaneously administered ivermectin was not toxic at dosages up to 20 mg/kg. In trial 3, nematode infections were eliminated in all 10 frogs treated cutaneously with ivermectin at 2.0 mg/kg.

  4. What happened in the South American Gran Chaco? Diversification of the endemic frog genus Lepidobatrachus Budgett, 1899 (Anura: Ceratophryidae).

    Science.gov (United States)

    Brusquetti, Francisco; Netto, Flavia; Baldo, Diego; Haddad, Célio F B

    2018-06-01

    The Chaco is one the most neglected and least studied regions of the world. This highly-seasonal semiarid biome is an extensive continuous plain without any geographic barrier, and in spite of its high species diversity, the events and processes responsible have never been assessed. Miocene marine introgressions and Pleistocene glaciations have been mentioned as putative drivers of diversification for some groups of vertebrates in adjacent biomes of southern South America. Here we used multilocus data (one mitochondrial and six nuclear loci) from the three species of the endemic frog genus Lepidobatrachus (Lepidobatrachus asper, Lepidobatrachus laevis, and Lepidobatrachus llanensis) to determine if any of the historical events suggested as drivers of vertebrate diversification in southern South America are related to the diversification of the genus and if the Chaco is indeed a biome without barriers. Using fossil calibration in a coalescent framework we estimated that the genus diversified in the second half of the Miocene, coinciding with marine introgressions. Genetic patterns and historical demography suggest an important role of old archs and cratons as refuges during floods. In one species of the genus, L. llanensis, genetic structure reveals some breaks along the landscape, the main one of which corresponds to an area of the central Chaco that may act as a climatic barrier. Additionally, we found differential effects of the main Chacoan rivers on species of Lepidobatrachus that could be related to the time of persistence of populations in the areas influenced by these rivers. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Biodiversity of frog haemoparasites from sub-tropical northern KwaZulu-Natal, South Africa

    OpenAIRE

    Edward C. Netherlands; Courtney A. Cook; Donnavan J.D. Kruger; Louis H. du Preez; Nico J. Smit

    2015-01-01

    Since South Africa boasts a high biodiversity of frog species, a multispecies haemoparasite survey was conducted by screening the blood from 29 species and 436 individual frogs. Frogs were collected at three localities in sub-tropical KwaZulu-Natal, a hotspot for frog diversity. Twenty per cent of the frogs were infected with at least one of five groups of parasites recorded. Intraerythrocytic parasites comprising Hepatozoon, Dactylosoma, and viral or bacterial organisms, as well as extracell...

  6. The Observation of Frog Species at State University of Malang as a Preliminary Effort on Frog Conservation

    Directory of Open Access Journals (Sweden)

    Dian Ratri Wulandari

    2013-04-01

    Full Text Available Frog is an amphibian which is widely spread around the world. Indonesia houses 450 species which represent 11% of frog species in the world. In Java Island alone, there live 42 species of frogs and toads. Frogs can be used as an environment indicator in that the presence of frog in a particular place indicates that the place stays natural and unpolluted. The 1st Campus of State University of Malang, which is located in the heart of Malang District, has been developing rapidly currently. Thus, it requires the construction of new various facilities to support its huge activities. Extensive construction can be destructive even damaging to the habitat of frog, which potentially threats the frog’s life, if it does not take the environmental impact into careful consideration. This study is aimed to identify the species of frog which survives at State University of Malang with, particularly the frog species found in 1995. Species identification was conducted by observing the morphological character. This study found that there were four species with three species remained survived in 1995; those were Duttaphrynus melanostictus, Polypedates leucomystax, and Kaloula baleta; and one new species called Rana chalconota. This study also revealed that there were four species which were extinct; those were Fejervarya cancrivora, Fejervarya limnocharis, Ingerophrynus biporcatus, and Occidoziga lima. This situation shows the decreasing amount of species from 7 to 4 within the last 17 years. This result indicates that there is a serious environmental degradation which causes the losing of frog habitats. Further research is needed to study the ecological condition changing in order to save the frog species.

  7. Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2018-05-16

    The Xenopus extract system has been used extensively as a simple, quick, and robust method for assessing the stability of proteins against proteasomal degradation. In this protocol, methods are provided for assessing the half-life of in vitro translated radiolabeled proteins using Xenopus egg or embryo extracts. © 2019 Cold Spring Harbor Laboratory Press.

  8. Peatlands and green frogs: A relationship regulated by acidity?

    Science.gov (United States)

    Mazerolle, M.J.

    2005-01-01

    The effects of site acidification on amphibian populations have been thoroughly addressed in the last decades. However, amphibians in naturally acidic environments, such as peatlands facing pressure from the peat mining industry, have received little attention. Through two field studies and an experiment, I assessed the use of bog habitats by the green frog (Rana clamitans melanota), a species sensitive to various forestry and peat mining disturbances. First, I compared the occurrence and breeding patterns of frogs in bog and upland ponds. I then evaluated frog movements between forest and bog habitats to determine whether they corresponded to breeding or postbreeding movements. Finally, I investigated, through a field experiment, the value of bogs as rehydrating areas for amphibians by offering living Sphagnum moss and two media associated with uplands (i.e., water with pH ca 6.5 and water-saturated soil) to acutely dehydrated frogs. Green frog reproduction at bog ponds was a rare event, and no net movements occurred between forest and bog habitats. However, acutely dehydrated frogs did not avoid Sphagnum. Results show that although green frogs rarely breed in bogs and do not move en masse between forest and bog habitats, they do not avoid bog substrates for rehydrating, despite their acidity. Thus, bogs offer viable summering habitat to amphibians, which highlights the value of these threatened environments in terrestrial amphibian ecology.

  9. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  10. Lipofection strategy for the study of Xenopus retinal development.

    Science.gov (United States)

    Ohnuma, Shin-ichi; Mann, Fanny; Boy, Sébastien; Perron, Muriel; Harris, William A

    2002-12-01

    The analysis of gene function during retinal development can be addressed by perturbing gene expression either by inhibition or by overexpression in desired regions and at defined stages of development. An in vivo lipofection strategy has been applied for stage-specific and region-specific expression of genes in Xenopus retina. Due to colipofection efficiency, this strategy enables us to study functional interaction of genes by lipofecting multiple expression constructs. This lipofection technique also allows us to transfect morpholino oligonucleotides into retinoblasts to block gene function. We present here various aspects of this technique, including recent improvements and modifications.

  11. Complete Genome Sequence of Frog virus 3, Isolated from a Strawberry Poison Frog (Oophaga pumilio) Imported from Nicaragua into the Netherlands.

    Science.gov (United States)

    Saucedo, Bernardo; Hughes, Joseph; van Beurden, Steven J; Suárez, Nicolás M; Haenen, Olga L M; Voorbergen-Laarman, Michal; Gröne, Andrea; Kik, Marja J L

    2017-08-31

    Frog virus 3 was isolated from a strawberry poison frog ( Oophaga pumilio ) imported from Nicaragua via Germany to the Netherlands, and its complete genome sequence was determined. Frog virus 3 isolate Op /2015/Netherlands/UU3150324001 is 107,183 bp long and has a nucleotide similarity of 98.26% to the reference Frog virus 3 isolate. Copyright © 2017 Saucedo et al.

  12. Complete Genome Sequence of Frog virus 3, Isolated from a Strawberry Poison Frog (Oophaga pumilio) Imported from Nicaragua into the Netherlands

    NARCIS (Netherlands)

    Saucedo, Bernardo; Hughes, Joseph; van Beurden, Steven J; Suárez, Nicolás M; Haenen, Olga L M; Voorbergen-Laarman, Michal A; Gröne, Andrea; Kik, Marja J L

    2017-01-01

    Frog virus 3 was isolated from a strawberry poison frog (Oophaga pumilio) imported from Nicaragua via Germany to the Netherlands, and its complete genome sequence was determined. Frog virus 3 isolate Op/2015/Netherlands/UU3150324001 is 107,183 bp long and has a nucleotide similarity of 98.26% to the

  13. Complete genome sequence of frog virus 3, isolated from a strawberry poison frog (Oophaga pumilio) imported from nicaragua into the Netherlands

    NARCIS (Netherlands)

    Saucedo, Bernardo; Hughes, Joseph; Beurden, van Steven J.; Suárez, Nicolás M.; Haenen, Olga L.M.; Voorbergen-Laarman, Michal; Gröne, Andrea; Kika, Marja J.L.

    2017-01-01

    Frog virus 3 was isolated from a strawberry poison frog (Oophaga pumilio) imported from Nicaragua via Germany to the Netherlands, and its complete genome sequence was determined. Frog virus 3 isolate Op/2015/Netherlands/UU3150324001 is 107,183 bp long and has a nucleotide similarity of 98.26% to the

  14. FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Sabrina Murgan

    Full Text Available In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain is directly required to restrict anterior neural development.

  15. FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos.

    Science.gov (United States)

    Murgan, Sabrina; Castro Colabianchi, Aitana Manuela; Monti, Renato José; Boyadjián López, Laura Elena; Aguirre, Cecilia E; Stivala, Ernesto González; Carrasco, Andrés E; López, Silvia L

    2014-01-01

    In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.

  16. Invasive American bullfrogs and African clawed frogs in South America

    DEFF Research Database (Denmark)

    Barbosa, Fabiana G.; Both, Camila; Bastos, Miguel

    2017-01-01

    .5% of the protected areas within the Atlantic Forest may be most at risk of invasion by L. catesbeianus and X. laevis under current climate conditions, followed by areas in the Cerrado (51.7), Tropical Andes (37.6%), Tumbes-Choco-Magdalena (22.5%), and Chilean Winter Rainfall and Valdivian Forests (20...

  17. Islet-1 is required for ventral neuron survival in Xenopus

    International Nuclear Information System (INIS)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-01-01

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  18. Structure and expression of the Xenopus retinoblastoma gene.

    Science.gov (United States)

    Destrée, O H; Lam, K T; Peterson-Maduro, L J; Eizema, K; Diller, L; Gryka, M A; Frebourg, T; Shibuya, E; Friend, S H

    1992-09-01

    We have cloned a Xenopus homology (XRb1) of the human retinoblastoma susceptibility gene. DNA sequence analysis shows that the XRb1 gene product is highly conserved in many regions. The leucine repeat motif and many of the potential cdc2 phosphorylation sites, as well as potential sites for other kinases, are retained. The region of the protein homologous to the SV40 T antigen binding site and the basic region directly C-terminal to the E1A binding site are all conserved. XRb1 gene expression at the RNA level was studied by Northern blot analysis. Transcripts of 4.2 and 10-kb are present as maternal RNA stores in the oocyte. While the 4.2-kb product is stable until at least the mid-blastula stage, the 10-kb transcript is selectively degraded. Between stages 11 and 13 the 10-kb transcript reappears and also a minor product of approximately 11 kb becomes apparent. Both the 4.2- and the 10-kb transcripts remain present until later stages of development and are also present in all adult tissues examined, although at differing levels. Antibodies raised against human p105Rb which recognize the protein product of the XRb1 gene, pXRb1, detect the Xenopus 99-kDa protein prior to the mid-blastula stage, but at lower levels than at later stages in development.

  19. FROG: The Fast And Realistic OpenGL Event Displayer

    CERN Document Server

    Quertenmont, Loic

    2009-01-01

    FROG [1] [2] is a generic framework dedicated to visualisation of events in high energy experiment. It is suitable to any particular physics experiment or detector design. The code is light (< 3 MB) and fast (browsing time 20 events per second for a large High Energy Physics experiment) and can run on various operating systems, as its object-oriented structure (C++) relies on the cross-platform OPENGL [3] and GLUT [4] libraries. Moreover, FROG does not require installation of third party libraries for the visualisation. This documents describes the features and principles of FROG version 1.106, its working scheme and numerous functionalities such as: 3D and 2D visualisation, graphical user interface, mouse interface, configuration files, production of pictures of various format, integration of personal objects, etc. Finally the application of FROG for physic experiment/environement, such as Gastof, CMS, ILD, Delphes will be presented for illustration.

  20. Metabolomic profiling of Green Frogs exposed to Mixed Pesticides

    Data.gov (United States)

    U.S. Environmental Protection Agency — GC/MS data from the metabolomic profiling of green frog livers after exposure to pesticides and their mixtures. This dataset is associated with the following...

  1. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  2. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Directory of Open Access Journals (Sweden)

    Dian Zhang

    Full Text Available In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  3. Is chytridiomycosis driving Darwin's frogs to extinction?

    Directory of Open Access Journals (Sweden)

    Claudio Soto-Azat

    Full Text Available Darwin's frogs (Rhinoderma darwinii and R. rufum are two species of mouth brooding frogs from Chile and Argentina that have experienced marked population declines. Rhinoderma rufum has not been found in the wild since 1980. We investigated historical and current evidence of Batrachochytrium dendrobatidis (Bd infection in Rhinoderma spp. to determine whether chytridiomycosis is implicated in the population declines of these species. Archived and live specimens of Rhinoderma spp., sympatric amphibians and amphibians at sites where Rhinoderma sp. had recently gone extinct were examined for Bd infection using quantitative real-time PCR. Six (0.9% of 662 archived anurans tested positive for Bd (4/289 R. darwinii; 1/266 R. rufum and 1/107 other anurans, all of which had been collected between 1970 and 1978. An overall Bd-infection prevalence of 12.5% was obtained from 797 swabs taken from 369 extant individuals of R. darwinii and 428 individuals representing 18 other species of anurans found at sites with current and recent presence of the two Rhinoderma species. In extant R. darwinii, Bd-infection prevalence (1.9% was significantly lower than that found in other anurans (7.3%. The prevalence of infection (30% in other amphibian species was significantly higher in sites where either Rhinoderma spp. had become extinct or was experiencing severe population declines than in sites where there had been no apparent decline (3.0%; x(2 = 106.407, P<0.001. This is the first report of widespread Bd presence in Chile and our results are consistent with Rhinoderma spp. declines being due to Bd infection, although additional field and laboratory investigations are required to investigate this further.

  4. Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Perez, D.J. [Laboratorio de Genetica, Estacion Experimental Agropecuaria Balcarce (INTA), Facultad de Ciencias Agrarias, UNMdP, CC 276, 7620 Balcarce (Argentina); Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina); Lukaszewicz, G. [Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Menone, M.L., E-mail: lujanm@mdp.edu.a [Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina); Camadro, E.L. [Laboratorio de Genetica, Estacion Experimental Agropecuaria Balcarce (INTA), Facultad de Ciencias Agrarias, UNMdP, CC 276, 7620 Balcarce (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina)

    2011-01-15

    The wetland macrophyte Bidens laevis possesses suitable cytological characteristics for genotoxicity testing. To test its sensitivity as compared to terrestrial plants species currently in use in standardized assays, Methyl Methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and Maleic Hydrazide (HM) were used. On the other hand, the insecticide Endosulfan (ES) - an environmentally relevant contaminant - was assayed in seeds and two-month old plants. Mitotic Index (MI), frequency of Chromosome Aberrations in Anaphase-Telophase (CAAT) and frequency of Abnormal Metaphases (AM) were analyzed. MH, MMS and ENU caused a significant decrease of the MI. MMS was aneugenic whereas MH and ENU were both aneugenic and clastogenic. ES caused a significant concentration-dependent increase of total- and aneugenic-CAAT in roots and a significant high frequency of AM at high concentrations. Because of its sensitivity to mutagenic substances, B. laevis can be regarded as a reliable and convenient species for genotoxicity assays especially if aquatic contaminants are evaluated. - The wetland macrophyte Bidens laevis is sensitive to genotoxic compounds similarly to terrestrial standardized species.

  5. Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta).

    Science.gov (United States)

    Yamada, Kazumasa; Yoshikawa, Shinya; Ichinomiya, Mutsuo; Kuwata, Akira; Kamiya, Mitsunobu; Ohki, Kaori

    2014-01-01

    The order Parmales (Heterokontophyta) is a group of small-sized unicellular marine phytoplankton, which is distributed widely from tropical to polar waters. The cells of Parmales are surrounded by a distinctive cell wall, which consists of several siliceous plates fitting edge to edge. Phylogenetic and morphological analyses suggest that Parmales is one of the key organisms for elucidating the evolutionary origin of Bacillariophyceae (diatoms), the most successful heterokontophyta. The effects of silicon-limitation on growth and morphogenesis of plates were studied using a strain of Triparma laevis NIES-2565, which was cultured for the first time in artificial sea water. The cells of T. laevis were surrounded by eight plates when grown with sufficient silicon. However, plate formation became incomplete when cells were cultured in a medium containing low silicate (ca. silicon-limitation did not affect growth rate; cells continued to divide without changing their growth rate, even after all plates were lost. Loss of plates was reversible; when cells without plates were transferred to a medium containing sufficient silicate, regeneration of shield and ventral plates was followed by the formation of girdle and triradiate plates. The results indicate that the response to silicon-limitation of T. laevis is different from that of diatoms, where cell division becomes inhibited under such conditions.

  6. Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity

    International Nuclear Information System (INIS)

    Perez, D.J.; Lukaszewicz, G.; Menone, M.L.; Camadro, E.L.

    2011-01-01

    The wetland macrophyte Bidens laevis possesses suitable cytological characteristics for genotoxicity testing. To test its sensitivity as compared to terrestrial plants species currently in use in standardized assays, Methyl Methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and Maleic Hydrazide (HM) were used. On the other hand, the insecticide Endosulfan (ES) - an environmentally relevant contaminant - was assayed in seeds and two-month old plants. Mitotic Index (MI), frequency of Chromosome Aberrations in Anaphase-Telophase (CAAT) and frequency of Abnormal Metaphases (AM) were analyzed. MH, MMS and ENU caused a significant decrease of the MI. MMS was aneugenic whereas MH and ENU were both aneugenic and clastogenic. ES caused a significant concentration-dependent increase of total- and aneugenic-CAAT in roots and a significant high frequency of AM at high concentrations. Because of its sensitivity to mutagenic substances, B. laevis can be regarded as a reliable and convenient species for genotoxicity assays especially if aquatic contaminants are evaluated. - The wetland macrophyte Bidens laevis is sensitive to genotoxic compounds similarly to terrestrial standardized species.

  7. Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin.

    Science.gov (United States)

    Vandenberg, Laura N; Levin, Michael

    2010-04-01

    How embryos consistently orient asymmetries of the left-right (LR) axis is an intriguing question, as no macroscopic environmental cues reliably distinguish left from right. Especially unclear are the events coordinating LR patterning with the establishment of the dorsoventral (DV) axes and midline determination in early embryos. In frog embryos, consistent physiological and molecular asymmetries manifest by the second cell cleavage; however, models based on extracellular fluid flow at the node predict correct de novo asymmetry orientation during neurulation. We addressed these issues in Xenopus embryos by manipulating the timing and location of dorsal organizer induction: the primary dorsal organizer was ablated by UV irradiation, and a new organizer was induced at various locations, either early, by mechanical rotation, or late, by injection of lithium chloride (at 32 cells) or of the transcription factor XSiamois (which functions after mid-blastula transition). These embryos were then analyzed for the position of three asymmetric organs. Whereas organizers rescued before cleavage properly oriented the LR axis 90% of the time, organizers induced in any position at any time after the 32-cell stage exhibited randomized laterality. Late organizers were unable to correctly orient the LR axis even when placed back in their endogenous location. Strikingly, conjoined twins produced by late induction of ectopic organizers did have normal asymmetry. These data reveal that although correct LR orientation must occur no later than early cleavage stages in singleton embryos, a novel instructive influence from an early organizer can impose normal asymmetry upon late organizers in the same cell field.

  8. Left-Right Asymmetric Morphogenesis in the Xenopus Digestive System

    Science.gov (United States)

    Muller, Jennifer K.; Prather, D.R.; Nascone-Yoder, N. M.

    2003-01-01

    The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development. ?? 2003 Wiley-Liss, Inc.

  9. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  10. Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8.

    Science.gov (United States)

    Hayashi, Shuichi; Itoh, Mari; Taira, Sumiko; Agata, Kiyokazu; Taira, Masanori

    2004-08-01

    Fibroblast growth factors (FGFs) mediate many cell-to-cell signaling events during early development. Nou-darake (ndk), a gene encoding an FGF receptor (FGFR)-like molecule, was found to be highly and specifically expressed in the head region of the planarian Dugesia japonica, and its functional analyses provided strong molecular evidence for the existence of a brain-inducing circuit based on the FGF signaling pathway. To analyze the role of ndk during vertebrate development, we isolated the Xenopus ortholog of ndk, the vertebrate FGFR-like 1 gene (XFGFRL1). Expression of XFGFRL1/Xndk was first detected in the anterior region at the late gastrula stage and dramatically increased at the early neurula stage in an overall anterior mesendodermal region, including the prechordal plate, paraxial mesoderm, anterior endoderm, and archenteron roof. This anterior expression pattern resembles that of ndk in planarians, suggesting that the expression of FGFRL1/ndk is conserved in evolution between these two distantly diverged organisms. During the tail bud stages, XFGFRL1/Xndk expression was detected in multiple regions, including the forebrain, eyes, midbrain-hindbrain boundary, otic vesicles, visceral arches, and somites. In many of these regions, XFGFRL1/Xndk was coexpressed with XFGF8, indicating that XFGFRL1/Xndk is a member of the XFGF8 synexpression group, which includes sprouty, sef, and isthmin. Copyright 2004 Wiley-Liss, Inc.

  11. Female preferences for aposematic signal components in a polymorphic poison frog

    NARCIS (Netherlands)

    Maan, Martine E.; Cummings, Molly E.

    Aposematic signals may be subject to conflicting selective pressures from predators and conspecifics. We studied female preferences for different components of aposematic coloration in the polymorphic poison frog Oophaga pumilio across several phenotypically distinct populations. This frog shows

  12. Determination of age, longevity and age at reproduction of the frog ...

    Indian Academy of Sciences (India)

    Unknown

    separately in plastic bags and placed in 5 different aquaria. Each frog was anaesthetized (using anaesthetic ether), the body mass ... bone of each frog, were measured using an ocular .... One of the problems generally associated with skeleto-.

  13. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  14. DNA is a co-factor for its own replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Lebofsky, Ronald; van Oijen, Antoine M.; Walter, Johannes C.

    Soluble Xenopus egg extracts efficiently replicate added plasmids using a physiological mechanism, and thus represent a powerful system to understand vertebrate DNA replication. Surprisingly, DNA replication in this system is highly sensitive to plasmid concentration, being undetectable below

  15. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  16. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  17. THE MOCHE BOTANICAL FROG (La rana botánica mochica)

    OpenAIRE

    Donna McClelland †

    2011-01-01

    Plants and animals with features which identify them as supernaturals characterize the art of the Precolumbian Moche culture of northern Peru. Among these animals is a frog with feline attributes and a consistent association with manioc tubers, stalks, and plants, the Botanical Frog. The Botanical Frog appears to have been patterned on Leptodactylus pentadactylus. It is shown copulating with felines. Fine line painted vessels and ones with low relief decoration show the Botanical Frog perform...

  18. Fluctuations of the population of Daphnia laevis Birge 1878: a six-year study in a tropical lake

    Directory of Open Access Journals (Sweden)

    LPM. Brandão

    Full Text Available The fluctuation of the population of Daphnia laevis in Lake Jacaré (Middle River Doce, Minas Gerais was monitored monthly (at one point in the limnetic region for six years (2002-2007 as part of the Program of Long-Term Ecological Research (LTER/UFMG. The following parameters were also monitored: water temperature, pH, electrical conductivity, dissolved oxygen, chlorophyll a, total phosphorus, phosphate, total nitrogen, nitrate, nitrite, ammonia, and densities of Chaoborus and ephippia of Daphnia laevis in the sediment. A seasonal pattern was observed in the fluctuation of D. laevis, with higher densities recorded during periods of circulation (May-August. A significant correlation was found between the density of D. laevis and temperature (r = -0.47, p = 0.0001, chlorophyll-a (r = -0.32, p = 0.016 and indicators of the lake's trophic status (total phosphorus, r = 0.32, p = 0.007 and trophic state, r = 0.36, p = 0.003, as well as Chaoborus density (r = 0.43 and p = 0.002. These results indicate that changes in the physical and chemical characteristics of the water related with stratification and circulation of the lake may have a direct (temperature, total phosphorous or an indirect (food availability, presence of predators, ephippia eclosion influence on the fluctuation of the D. laevis population.

  19. Effects of the Chytrid fungus on the Tarahumara frog (Rana tarahumarae) in Arizona and Sonora, Mexico

    Science.gov (United States)

    Stephen F. Hale; Philip C. Rosen; James L. Jarchow; Gregory A. Bradley

    2005-01-01

    We conducted histological analyses on museum specimens collected 1975-1999 from 10 sites in Arizona and Sonora to test for the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) in ranid frogs, focusing on the Tarahumara frog (Rana tarahumarae). During 1981-2000, frogs displaying disease signs were found in the field, and...

  20. Sophisticated Communication in the Brazilian Torrent Frog Hylodes japi.

    Science.gov (United States)

    de Sá, Fábio P; Zina, Juliana; Haddad, Célio F B

    2016-01-01

    Intraspecific communication in frogs plays an important role in the recognition of conspecifics in general and of potential rivals or mates in particular and therefore with relevant consequences for pre-zygotic reproductive isolation. We investigate intraspecific communication in Hylodes japi, an endemic Brazilian torrent frog with territorial males and an elaborate courtship behavior. We describe its repertoire of acoustic signals as well as one of the most complex repertoires of visual displays known in anurans, including five new visual displays. Previously unknown in frogs, we also describe a bimodal inter-sexual communication system where the female stimulates the male to emit a courtship call. As another novelty for frogs, we show that in addition to choosing which limb to signal with, males choose which of their two vocal sacs will be used for visual signaling. We explain how and why this is accomplished. Control of inflation also provides additional evidence that vocal sac movement and color must be important for visual communication, even while producing sound. Through the current knowledge on visual signaling in Neotropical torrent frogs (i.e. hylodids), we discuss and highlight the behavioral diversity in the family Hylodidae. Our findings indicate that communication in species of Hylodes is undoubtedly more sophisticated than we expected and that visual communication in anurans is more widespread than previously thought. This is especially true in tropical regions, most likely due to the higher number of species and phylogenetic groups and/or to ecological factors, such as higher microhabitat diversity.

  1. Tourism and the Conservation of Critically Endangered Frogs

    Science.gov (United States)

    Morrison, Clare; Simpkins, Clay; Castley, J. Guy; Buckley, Ralf C.

    2012-01-01

    Protected areas are critical for the conservation of many threatened species. Despite this, many protected areas are acutely underfunded, which reduces their effectiveness significantly. Tourism is one mechanism to promote and fund conservation in protected areas, but there are few studies analyzing its tangible conservation outcomes for threatened species. This study uses the 415 IUCN critically endangered frog species to evaluate the contribution of protected area tourism revenue to conservation. Contributions were calculated for each species as the proportion of geographic range inside protected areas multiplied by the proportion of protected area revenues derived from tourism. Geographic ranges were determined from IUCN Extent of Occurrence maps. Almost 60% (239) of critically endangered frog species occur in protected areas. Higher proportions of total range are protected in Nearctic, Australasian and Afrotopical regions. Tourism contributions to protected area budgets ranged from 5–100%. These financial contributions are highest for developing countries in the Afrotropical, Indomalayan and Neotropical regions. Data for both geographic range and budget are available for 201 critically endangered frog species with proportional contributions from tourism to species protection ranging from 0.8–99%. Tourism's financial contributions to critically endangered frog species protection are highest in the Afrotropical region. This study uses a coarse measure but at the global scale it demonstrates that tourism has significant potential to contribute to global frog conservation efforts. PMID:22984440

  2. Frog sound identification using extended k-nearest neighbor classifier

    Science.gov (United States)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  3. Sophisticated Communication in the Brazilian Torrent Frog Hylodes japi.

    Directory of Open Access Journals (Sweden)

    Fábio P de Sá

    Full Text Available Intraspecific communication in frogs plays an important role in the recognition of conspecifics in general and of potential rivals or mates in particular and therefore with relevant consequences for pre-zygotic reproductive isolation. We investigate intraspecific communication in Hylodes japi, an endemic Brazilian torrent frog with territorial males and an elaborate courtship behavior. We describe its repertoire of acoustic signals as well as one of the most complex repertoires of visual displays known in anurans, including five new visual displays. Previously unknown in frogs, we also describe a bimodal inter-sexual communication system where the female stimulates the male to emit a courtship call. As another novelty for frogs, we show that in addition to choosing which limb to signal with, males choose which of their two vocal sacs will be used for visual signaling. We explain how and why this is accomplished. Control of inflation also provides additional evidence that vocal sac movement and color must be important for visual communication, even while producing sound. Through the current knowledge on visual signaling in Neotropical torrent frogs (i.e. hylodids, we discuss and highlight the behavioral diversity in the family Hylodidae. Our findings indicate that communication in species of Hylodes is undoubtedly more sophisticated than we expected and that visual communication in anurans is more widespread than previously thought. This is especially true in tropical regions, most likely due to the higher number of species and phylogenetic groups and/or to ecological factors, such as higher microhabitat diversity.

  4. Apomorphine effects on frog locomotor behavior.

    Science.gov (United States)

    Chu, Joanne; Wilczynski, Walter

    2007-05-16

    The neuroanatomical pathways of the DA systems have been shown to be largely conserved across many vertebrate taxa. It is less certain whether the structural similarities seen between mammals and amphibians reflect a similar functional homology. DA is well known for its role in facilitating motor behaviors in mammals. We examined whether a similar role for DA exists in amphibians using the Northern Leopard Frog (Rana pipiens). We investigated the effects of the nonspecific DA agonist, apomorphine (APO) on a complex motor task that included two distinct components known to be differentially modulated by DA in mammals: swimming and climbing. We demonstrated that a high single dose of APO (20 mg/kg, body weight) strongly increased the amount of time spent completing the motor task. Furthermore, we showed that although APO did not significantly alter several aspects of swimming behavior, two aspects of climbing behavior were disrupted. Both climbing speed and climbing ability were impaired by APO treatment. These results increase our understanding of DA function in amphibians and add to our understanding of structure-function homologies of dopamine function across vertebrate taxa.

  5. Distribution, structure and projections of the frog intracardiac neurons.

    Science.gov (United States)

    Batulevicius, Darius; Skripkiene, Gertruda; Batuleviciene, Vaida; Skripka, Valdas; Dabuzinskiene, Anita; Pauza, Dainius H

    2012-05-21

    Histochemistry for acetylcholinesterase was used to determine the distribution of intracardiac neurons in the frog Rana temporaria. Seventy-nine intracardiac neurons from 13 frogs were labelled iontophoretically by the intracellular markers Alexa Fluor 568 and Lucifer Yellow CH to determine their structure and projections. Total neuronal number per frog heart was (Mean ± SE) 1374 ± 56. Largest collections of neurons were found in the interatrial septum (46%), atrioventricular junction (25%) and venal sinus (12%). Among the intracellularly labelled neurons, we found the cells of unipolar (71%), multipolar (20%) and bipolar (9%) types. Multiple processes originated from the neuron soma, hillock and proximal axon. These processes projected onto adjacent neuron somata and cardiac muscle fibers within the interatrial septum. Average total length of the processes from proximal axon was 348 ± 50 μm. Average total length of processes from soma and hillock was less, 118 ± 27 μm and 109 ± 24 μm, respectively. The somata of 59% of neurons had bubble- or flake-shaped extensions. Most neurons from the major nerves in the interatrial septum sent their axons towards the ventricle. In contrast, most neurons from the ventral part of the interatrial septum sent their axons towards the atria. Our findings contradict to a view that the frog intracardiac ganglia contain only non-dendritic neurons of the unipolar type. We conclude that the frog intracardiac neurons are structurally complex and diverse. This diversity may account for the complicated integrative functions of the frog intrinsic cardiac ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog.

    Science.gov (United States)

    McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A

    2016-06-01

    Poison frogs sequester chemical defenses from arthropod prey, although the details of how arthropod diversity contributes to variation in poison frog toxins remains unclear. We characterized skin alkaloid profiles in the Little Devil poison frog, Oophaga sylvatica (Dendrobatidae), across three populations in northwestern Ecuador. Using gas chromatography/mass spectrometry, we identified histrionicotoxins, 3,5- and 5,8-disubstituted indolizidines, decahydroquinolines, and lehmizidines as the primary alkaloid toxins in these O. sylvatica populations. Frog skin alkaloid composition varied along a geographical gradient following population distribution in a principal component analysis. We also characterized diversity in arthropods isolated from frog stomach contents and confirmed that O. sylvatica specialize on ants and mites. To test the hypothesis that poison frog toxin variability reflects species and chemical diversity in arthropod prey, we (1) used sequencing of cytochrome oxidase 1 to identify individual prey specimens, and (2) used liquid chromatography/mass spectrometry to chemically profile consumed ants and mites. We identified 45 ants and 9 mites in frog stomachs, including several undescribed species. We also showed that chemical profiles of consumed ants and mites cluster by frog population, suggesting different frog populations have access to chemically distinct prey. Finally, by comparing chemical profiles of frog skin and isolated prey items, we traced the arthropod source of four poison frog alkaloids, including 3,5- and 5,8-disubstituted indolizidines and a lehmizidine alkaloid. Together, the data show that toxin variability in O. sylvatica reflects chemical diversity in arthropod prey.

  7. Landscape genetics of high mountain frog metapopulations

    Science.gov (United States)

    Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.

    2010-01-01

    Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a

  8. Expression cloning of camelid nanobodies specific for Xenopus embryonic antigens.

    Directory of Open Access Journals (Sweden)

    Keiji Itoh

    Full Text Available Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies, which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology.

  9. spib is required for primitive myeloid development in Xenopus.

    Science.gov (United States)

    Costa, Ricardo M B; Soto, Ximena; Chen, Yaoyao; Zorn, Aaron M; Amaya, Enrique

    2008-09-15

    Vertebrate blood formation occurs in 2 spatially and temporally distinct waves, so-called primitive and definitive hematopoiesis. Although definitive hematopoiesis has been extensively studied, the development of primitive myeloid blood has received far less attention. In Xenopus, primitive myeloid cells originate in the anterior ventral blood islands, the equivalent of the mammalian yolk sac, and migrate out to colonize the embryo. Using fluorescence time-lapse video microscopy, we recorded the migratory behavior of primitive myeloid cells from their birth. We show that these cells are the first blood cells to differentiate in the embryo and that they are efficiently recruited to embryonic wounds, well before the establishment of a functional vasculature. Furthermore, we isolated spib, an ETS transcription factor, specifically expressed in primitive myeloid precursors. Using spib antisense morpholino knockdown experiments, we show that spib is required for myeloid specification, and, in its absence, primitive myeloid cells retain hemangioblast-like characteristics and fail to migrate. Thus, we conclude that spib sits at the top of the known genetic hierarchy that leads to the specification of primitive myeloid cells in amphibians.

  10. Circadian disc shedding in Xenopus retina in vitro

    International Nuclear Information System (INIS)

    Flannery, J.G.; Fisher, S.K.

    1984-01-01

    To further examine the endogenous rhythm of disc shedding and phagocytosis observed in several species, adult Xenopus were entrained to a 12 hr light/12 hr dark cycle and then placed in constant darkness. At various times during a 3-day period of constant darkness, eyes were explanted and placed into culture medium, then processed for light and electron microscopy. A clear rhythmicity of disc shedding was observed, with pronounced peaks at the times light onset occurred in the original entrainment cycle. Modification of the HCO 3 - ion concentration in the medium was found to raise the amplitude of the peak of endogenous disc shedding. Explants maintained in culture medium containing deuterium oxide (a compound known to perturb circadian oscillators) were found to shed with a longer interval between peaks. The addition of the protein synthesis inhibitor, anisomycin, to this preparation suppressed the shedding rhythm. The action of anisomycin was investigated by autoradiographic examination of the pattern of 3 H-leucine uptake and protein synthesis by the explant. The findings suggest the presence of a circadian oscillator for rhythmic disc shedding within the amphibian eye

  11. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  12. Synchronization modulation of Na/K pumps on Xenopus oocytes

    Science.gov (United States)

    Liang, Pengfei; Mast, Jason; Chen, Wei

    We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.

  13. Ontogenetic polychromatism in marsupial frogs (Anura: Hylidae Ontogenetic polychromatism in marsupial frogs (Anura: Hylidae

    Directory of Open Access Journals (Sweden)

    Duellman William E.

    1986-12-01

    Full Text Available Color polymorphism is common in many species of marsupial frogs.  Extreme cases of pattern polymorphism are documented in four species. In Amphignathodon guentheri, Castrotheca aureomaculata, G. qriswoldi, and G. helenae juveniles are known to have only one color morph, where as two or more patterns exist in adults. In these species, polymorphism apparently develops ontogenetically. El polimorfismo cromático es común a algunas especies de sapos marsupiales. Casos extremos del modelo de polimorfismo son evidentes en cuatro especies Amphignathodon guentheri, Gastrotheca aureomaculata, G. griswoldi, y G. helenae. En estas especies, se sabe que los juveniles tienen sólo un morfo de color; el polimorfismo, al parecer, se desarrolla ontogenéticamente.

  14. A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina

    Directory of Open Access Journals (Sweden)

    He Rong-Qiao

    2007-06-01

    Full Text Available Abstract Background Otx genes, orthologues of the Drosophila orthodenticle gene (otd, play crucial roles in vertebrate brain development. In the Xenopus eye, Xotx2 and Xotx5b promote bipolar and photoreceptor cell fates, respectively. The molecular basis of their differential action is not completely understood, though the carboxyl termini of the two proteins seem to be crucial. To define the molecular domains that make the action of these proteins so different, and to determine whether their retinal abilities are shared by Drosophila OTD, we performed an in vivo molecular dissection of their activity by transfecting retinal progenitors with several wild-type, deletion and chimeric constructs of Xotx2, Xotx5b and otd. Results We identified a small 8–10 amino acid divergent region, directly downstream of the homeodomain, that is crucial for the respective activities of XOTX2 and XOTX5b. In lipofection experiments, the exchange of this 'specificity box' completely switches the retinal activity of XOTX5b into that of XOTX2 and vice versa. Moreover, the insertion of this box into Drosophila OTD, which has no effect on retinal cell fate, endows it with the specific activity of either XOTX protein. Significantly, in cell transfection experiments, the diverse ability of XOTX2 and XOTX5b to synergize with NRL, a cofactor essential for vertebrate rod development, to transactivate the rhodopsin promoter is also switched depending on the box. We also show by GST-pull down that XOTX2 and XOTX5b differentially interact with NRL, though this property is not strictly dependent on the box. Conclusion Our data provide molecular evidence on how closely related homeodomain gene products can differentiate their functions to regulate distinct cell fates. A small 'specificity box' is both necessary and sufficient to confer on XOTX2 and XOTX5b their distinct activities in the developing frog retina and to convert the neutral orthologous OTD protein of Drosophila

  15. Evidence of auditory insensitivity to vocalization frequencies in two frogs

    DEFF Research Database (Denmark)

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob

    2017-01-01

    The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discriminat...

  16. Natural disturbance reduces disease risk in endangered rainforest frog populations.

    Science.gov (United States)

    Roznik, Elizabeth A; Sapsford, Sarah J; Pike, David A; Schwarzkopf, Lin; Alford, Ross A

    2015-08-21

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11-28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence.

  17. Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs.

    Science.gov (United States)

    Roelants, Kim; Bossuyt, Franky

    2005-02-01

    Current models for the early diversification of living frogs inferred from morphological, ontogenetic, or DNA sequence data invoke very different scenarios of character evolution and biogeography. To explore central controversies on the phylogeny of Anura, we analyzed nearly 4000 base pairs of mitochondrial and nuclear DNA for the major frog lineages. Likelihood-based analyses of this data set are congruent with morphological evidence in supporting a paraphyletic arrangement of archaeobatrachian frogs, with an (Ascaphus + Leiopelma) clade as the sister-group of all other living anurans. The stability of this outcome is reinforced by screening for phylogenetic bias resulting from site-specific rate variation, homoplasy, or the obligatory use of distantly related outgroups. Twenty-one alternative branching and rooting hypotheses were evaluated using a nonparametric multicomparison test and parametric bootstrapping. Relaxed molecular clock estimates situate the emergence of crown-group anurans in the Triassic, approximately 55 million years prior to their first appearance in the fossil record. The existence of at least four extant frog lineages on the supercontinent Pangaea before its breakup gains support from the estimation that three early splits between Laurasia- and Gondwana-associated families coincide with the initial rifting of these landmasses. This observation outlines the potential significance of this breakup event in the formation of separate Mesozoic faunal assemblages in both hemispheres.

  18. Choosing the safest route: frog orientation in an agricultural landscape

    NARCIS (Netherlands)

    Mazerolle, M.J.; Vos, C.C.

    2006-01-01

    Orientation is a key component to successful movements between habitats. We hypothesized that barren agricultural landscapes hinder the ability of frogs to orient and move between habitats. Specifically, we predicted that when presented with a choice between a short route through a hostile

  19. Frogs from the Leeward group, Venezuela and eastern Colombia

    NARCIS (Netherlands)

    Brongersma, L.D.

    1948-01-01

    The present notes deal with a small collection of frogs that was made by Dr. P. WAGENAAR HUMMELINCK during his visits to the islands of the Leeward Group, Venezuela and Eastern Colombia. I have included in this study the specimens of Pleurodema brachyops (Cope) already present in the Rijksmuseum van

  20. Taxonomic variation in oviposition by tailed frogs (Aschaphus spp.).

    Science.gov (United States)

    Nancy E. Karraker; David S. Pilliod; Michael J. Adams; Evelyn L. Bull; Paul Stephen Corn; Lowell V. Diller; Linda A. Dupuis; Marc P. Hayes; Blake R. Hossack; Garth R. Hodgson; Erin J. Hyde; Kirk Lohman; Bradford R. Norman; Lisa M. Ollivier; Christopher A. Pearl; Charles R. Peterson

    2006-01-01

    Tailed frogs (Ascaphus spp.) oviposit in cryptic locations in streams of the Pacific Northwest and Rocky Mountains. This aspect of their life history has restricted our understanding of their reproductive ecology. The recent split of A. montanus in the Rocky Mountains from A. truei was based on molecular...

  1. A new grass frog from Namibia | Channing | African Zoology

    African Journals Online (AJOL)

    A new species of grass frog of lhe genus Ptychadena is described from northern Namibia. Although superficially similar to Ptychadena schillukorum and Ptychadena mossambica, the new species differs In advertisement call, and external characters. An examination of a series of published sonagrams indicates that ...

  2. Vectorcardiogram of the 'Man-Frog' | Skowron | South African ...

    African Journals Online (AJOL)

    Chest electrodes from a man and from a frog are connected simultaneously to an oscilloscope - the one to the vertical and the other to the horizontal plates - and the resulting display observed. It consists of a loop, the interpretation of which is discussed, and the conclusion is reached that the presently held vector theory ...

  3. Ranavirus in wild edible frogs Pelophylax kl. esculentus in Denmark

    DEFF Research Database (Denmark)

    Ariel, Ellen; Kielgast, Jos; Svart, Hans Erik

    2009-01-01

    interviewed by phone and 10 cases were examined on suspicion of diseaseinduced mortality. All samples were negative for Bd. Ranavirus was isolated from 2 samples of recently dead frogs collected during a mass mortality event in an artificial pond near Slagelse, Denmark. The identity of the virus was confirmed...

  4. Genomic Sequencing of Ranaviruses Isolated from Edible Frogs (Pelophylax esculentus)

    DEFF Research Database (Denmark)

    Ariel, Ellen; Subramaniam, Kuttichantran; Imnoi, Kamonchai

    2017-01-01

    Ranaviruses were isolated from wild edible frogs (Pelophylax esculentus) during epizootics in Denmark and Italy. Phylogenomic analyses revealed that these isolates are closely related and belong to a clade of ranaviruses that includes the Andrias davidianus ranavirus (ADRV), common midwife toad r...

  5. Foraging behaviour in tadpoles of the bronze frog Rana temporalis ...

    Indian Academy of Sciences (India)

    Unknown

    The ability of bronze frog Rana temporalis tadpoles (pure or mixed parental lines) to ... less of whether they are siblings or non-siblings in a group, which correlates well with ..... Sutherland W J and Parker G A 1992 The relationship between.

  6. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  7. Antimicrobial peptides from the skins of North American frogs.

    Science.gov (United States)

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  8. Pesticides and Population Declines of California Alpine Frogs

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured ...

  9. Research on moving object detection based on frog's eyes

    Science.gov (United States)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  10. Measurement and Evaluation of Wear Frogs Switches ŽSR

    Directory of Open Access Journals (Sweden)

    Urda Ján

    2014-05-01

    Full Text Available This paper deals with the measurement and evaluation of wear frogs switches ZSR. One of the main problems is the oversize wear. The possibilities analysis of this problem is offered through a set of switches and monitoring of selected parameters. One of these parameters is also monitoring the vertical wear

  11. Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens.

    Science.gov (United States)

    Hovey, Kyle J; Seiter, Emily M; Johnson, Erin E; Saporito, Ralph A

    2018-03-01

    Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

  12. Properties of the chromatin assembled on DNA injected into Xenopus oocytes and eggs

    International Nuclear Information System (INIS)

    Gargiulo, G.; Wasserman, W.; Worcel, A.

    1983-01-01

    The onset of DNA synthesis occurs between 10 and 30 minutes after activation of the egg and thus the transition from nuclease-sensitive to nuclease-resistant supercoils may take place on the newly replicated DNA. To test this possibility, the nonradioactive circular 5-kb DNA carrying the Drosophila histone gene repeat and [α -32 P]dCTP were coinjected into fertilized eggs. Such protocol labels both the injected, replicated heterologous DNA and the replicated endogenous, maternal Xenopus DNA. The labeled, presumably replicated, supercoiled DNA is resistant to micrococcal nuclease as expected. The endogenous, high-molecular-weight Xenopus DNA is degraded to 180-bp nucleosomal DNA. Thus, the nuclease resistance is not a general property of chromatin during the cleavage stage of the Xenopus embryo but is a peculiar feature of the injected DNA. 42 references, 5 figures

  13. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai

    2018-01-01

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and

  14. Sexual differences in prevalence of a new species of trypanosome infecting t?ngara frogs

    OpenAIRE

    Bernal, Ximena E.; Pinto, C. Miguel

    2016-01-01

    Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from túngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypa...

  15. The poly(rC)-binding protein αCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation

    Science.gov (United States)

    Vishnu, Melanie R.; Sumaroka, Marina; Klein, Peter S.; Liebhaber, Stephen A.

    2011-01-01

    Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3′ UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3′ UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings. PMID:21444632

  16. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  17. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages

    Czech Academy of Sciences Publication Activity Database

    Tlapáková, T.; Nguyen, T.M.X.; Vegrichtova, M.; Šídová, Monika; Strnadova, K.; Bláhová, M.; Krylov, V.

    2016-01-01

    Roč. 5, č. 9 (2016), s. 1275-1282 ISSN 2046-6390 R&D Projects: GA AV ČR LK21305; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Testicular somatic cells * Xenopus tropicalis * Migration potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.095, year: 2016

  18. Effect of cattle exclosures on Columbia Spotted Frog abundance

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher; Chambert, Thierry; Mccreary, Brome; Galvan, Stephanie; Rowe, Jennifer

    2018-01-01

    Livestock grazing is an important land use in the western USA and can have positive or negative effects on amphibians. Columbia Spotted Frog (Rana luteiventris) often use ponds that provide water for cattle. We conducted a long-term manipulative study on US Forest Service land in northeastern Oregon to determine the effects of full and partial exclosures that limited cattle access to ponds used by frogs. We found weak evidence of a short-term increase in abundance that did not differ between full and partial exclosures and that diminished with continuing exclusion of cattle. The benefit of exclosures was small relative to the overall decline in breeding numbers that we documented. This suggests that some protection can provide a short-term boost to populations.

  19. Old World frog and bird vocalizations contain prominent ultrasonic harmonics

    Science.gov (United States)

    Narins, Peter M.; Feng, Albert S.; Lin, Wenyu; Schnitzler, Hans-Ulrich; Denzinger, Annette; Suthers, Roderick A.; Xu, Chunhe

    2004-02-01

    Several groups of mammals such as bats, dolphins and whales are known to produce ultrasonic signals which are used for navigation and hunting by means of echolocation, as well as for communication. In contrast, frogs and birds produce sounds during night- and day-time hours that are audible to humans; their sounds are so pervasive that together with those of insects, they are considered the primary sounds of nature. Here we show that an Old World frog (Amolops tormotus) and an oscine songbird (Abroscopus albogularis) living near noisy streams reliably produce acoustic signals that contain prominent ultrasonic harmonics. Our findings provide the first evidence that anurans and passerines are capable of generating tonal ultrasonic call components and should stimulate the quest for additional ultrasonic species.

  20. The rediscovered Hula painted frog is a living fossil.

    Science.gov (United States)

    Biton, Rebecca; Geffen, Eli; Vences, Miguel; Cohen, Orly; Bailon, Salvador; Rabinovich, Rivka; Malka, Yoram; Oron, Talya; Boistel, Renaud; Brumfeld, Vlad; Gafny, Sarig

    2013-01-01

    Amphibian declines are seen as an indicator of the onset of a sixth mass extinction of life on earth. Because of a combination of factors such as habitat destruction, emerging pathogens and pollutants, over 156 amphibian species have not been seen for several decades, and 34 of these were listed as extinct by 2004. Here we report the rediscovery of the Hula painted frog, the first amphibian to have been declared extinct. We provide evidence that not only has this species survived undetected in its type locality for almost 60 years but also that it is a surviving member of an otherwise extinct genus of alytid frogs, Latonia, known only as fossils from Oligocene to Pleistocene in Europe. The survival of this living fossil is a striking example of resilience to severe habitat degradation during the past century by an amphibian.

  1. Conservation and divergence of ADAM family proteins in the Xenopus genome

    Directory of Open Access Journals (Sweden)

    Shah Anoop

    2010-07-01

    Full Text Available Abstract Background Members of the disintegrin metalloproteinase (ADAM family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some

  2. ESR analysis of irradiated frogs' legs and fishes

    International Nuclear Information System (INIS)

    Raffi, J.; Agnel, J.-P.; Evans, J.C.; Rowlands, C.C.; Lesgards, G.

    1989-01-01

    Electron spin resonance (ESR) spectral analysis of different parts (bones, scales, jaw, etc.) from ionized (irradiated) frozen frogs' legs and fishes (brown trout and sardine) were recorded. There is always present, after treatment, a signal due to the irradiation. ESR and ENDOR experiments lead us to assign it to h 1 centers from hydroxyapatite, as in the case of other irradiated meat bones. The use of ESR to prove whether one of these foods has been irradiated or not is discussed. (author)

  3. Vocalizations of primary forest frog species in the Central Amazon.

    OpenAIRE

    Zimmerman, Barbara L.; Bogart, James P.

    1984-01-01

    The calls of 18 species of Amazonian forest frogs were recorded in 3 localities: the Tapajos National Park near Itaituba, the Reserva Ducke near Manaus, and the INPA-WWF reserves near Manaus. Structural and time parameters and sonographs of these calls including previously undescribed vocalization by 10 species are presented. Unlike open habitat species, several forest frong species characteriscally demonstrated one on more of the following temporal parameters: very low call rates, sporadic i...

  4. Evidence of auditory insensitivity to vocalization frequencies in two frogs

    DEFF Research Database (Denmark)

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob

    2017-01-01

    discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B. pitanga, are insensitive to the sound of their own calls. Both species produce advertisement calls outside their hearing sensitivity range and their inner ears...... by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs....

  5. Reflex Marine celebrates 10. anniversary of FROG crew transfer device

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Reflex Marine developed the initial 3-person FROG crew transfer device in response to the main risks identified from incidents involving traditional rope baskets for personnel transfer: falling, collisions, hard landings, and immersion. To address these issues, the FROG was developed with 4-point harnesses, a protective shell, shock-absorbing landing feet, and self-righting capability. As a result of industry demand for a higher capacity transfer device, the company introduced 6- and 9-man versions of the FROG. The perceptions and reality of marine transfers have changed greatly over the past decade, from the design of the device to vessel specifications and increased focus on crane operations. Marine transfers offer a low-risk alternative to helicopter transfers. The TORO, a low-cost crew transfer capsule launched in February 2009, fits into a standard shipping container, providing significant logistical advantages. The TORO can carry 4 passengers, offer protection from side impacts and hard landings, and is buoyant and self-righting. Most of the units are being used by major oil and gas companies, but offshore wind turbines are an emerging source of demand for the crew transfer system. 3 figs.

  6. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    Science.gov (United States)

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  7. Internal pigment cells respond to external UV radiation in frogs.

    Science.gov (United States)

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. © 2016. Published by The Company of Biologists Ltd.

  8. Correlation between chloride flux via the mitochondria-rich cells and transepithelial water movement in isolated frog skin (Rana esculenta)

    DEFF Research Database (Denmark)

    Nielsen, Robert

    1995-01-01

    Antidiuretic hormone; chloride transport; electroosmosis; Frog skin; Intercalated cells; Local osmosis; Mitochondria-rich cells.......Antidiuretic hormone; chloride transport; electroosmosis; Frog skin; Intercalated cells; Local osmosis; Mitochondria-rich cells....

  9. Electrophysiological evidence for an ATP-gated ion channel in the principal cells of the frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Robert

    2000-01-01

    P2X receptor, Na+ absorption, Short circuit current, Cell potential, Microelectrodes, Frog skin, Cytosolic Ca2+......P2X receptor, Na+ absorption, Short circuit current, Cell potential, Microelectrodes, Frog skin, Cytosolic Ca2+...

  10. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    Science.gov (United States)

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  11. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Furuichi, Takuya; Yamamoto, Yoko

    2014-12-01

    Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    Science.gov (United States)

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  13. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  14. IgE antibodies of fish allergic patients cross-react with frog parvalbumin.

    Science.gov (United States)

    Hilger, C; Thill, L; Grigioni, F; Lehners, C; Falagiani, P; Ferrara, A; Romano, C; Stevens, W; Hentges, F

    2004-06-01

    The major allergens in fish are parvalbumins. Important immunoglobulin (Ig)E cross-recognition of parvalbumins from different fish species has been shown. Recently frog parvalbumin alpha has been found to be responsible for a case of IgE-mediated anaphylaxis triggered by the ingestion of frog meat. The aim of this study was to investigate whether IgE antibodies of fish allergic persons cross-react with frog parvalbumin and to appreciate its clinical relevance. The sera of 15 fish allergic patients and one fish and frog allergic patient were tested by IgE-immunoblotting against frog muscle extract. Sera were tested against recombinant parvalbumin alpha and beta from Rana esculenta. Skin prick tests were performed in selected patients with recombinant frog parvalbumin. Ca(2+) depletion experiments and inhibition studies with purified cod and frog recombinant parvalbumin were done to characterize the cross-reactive pattern. Fourteen of the sera tested had IgE antibodies recognizing low molecular weight components in frog muscle extract. Calcium depletion experiments or inhibition of patient sera with purified cod parvalbumin led to a significant or complete decrease in IgE binding. When tested against recombinant parvalbumins, three of 13 sera reacted with alpha parvalbumin and 11 of 12 reacted with beta parvalbumin from R. esculenta. Skin prick tests performed with recombinant frog parvalbumin were positive in fish allergic patients. Inhibition studies showed that a fish and frog allergic patient was primarily sensitized to fish parvalbumin. Cod parvalbumin, a major cross-reactive allergen among different fish species, shares IgE binding epitopes with frog parvalbumin. This in vitro cross-reactivity seems to be also clinically relevant. Parvalbumins probably represent a new family of cross-reactive allergens.

  15. An addition to the diversity of dendrobatid frogs in Venezuela: description of three new collared frogs (Anura: Dendrobatidae: Mannophryne

    Directory of Open Access Journals (Sweden)

    César Luis Barrio-Amorós

    2010-07-01

    Full Text Available Three new species of collared frogs of the genus Mannophryne are described from Venezuela. Two are newly discovered taxa from the Venezuelan Andes, whereas the third species, previously confused with M. trinitatis, is from the Caracas area in the Cordillera de la Costa. The call of the three new species and that of Mannophryne collaris are described. Taxonomic, zoogeographic, and conservation issues are discussed.

  16. Which frog's legs do froggies eat? The use of DNA barcoding for identification of deep frozen frog legs (Dicroglossidae, Amphibia) commercialized in France

    OpenAIRE

    Ohler, Annemarie; Nicolas, Violaine

    2017-01-01

    International audience; Several millions frogs captured in the wild in Indonesia are sold for food yearly in French supermarkets, as deep frozen frog legs. They are commercialized as Rana macrodon, but up to 15 look-alike species might also be concerned by this trade. From December 2012 to May 2013, we bought 209 specimens of deep frozen frog legs, and identified them through a barcoding approach based on the 16S gene. Our results show that 206 out of the 209 specimens belong to Fejervarya ca...

  17. Effects of Cylindrospermopsis raciborskii strains (Woloszynska, 1912 Senayya & Subba Raju on the mobility of Daphnia laevis (Cladocera, Daphniidae

    Directory of Open Access Journals (Sweden)

    GC Restani

    Full Text Available Cylindrospermopsis raciborskii is a cyanobacterium distributed worldwide that is known to produce cyanotoxins. Some of the Brazilian strains can produce saxitoxins (STXs, which are classified as neurotoxins and can paralyze cladocerans .Daphnia laevis is a cladoceran with a wide distribution in the Americas and has been studied as a possible test-organism in toxicity bioassays. The present work tested the acute effect on D laevis mobility when fed a saxitoxin-producing (STX and neoSTX C. raciborskii strain, CYRF-01, and compared the results with the effects of a non-toxic strain (NPCS-1. Neonates (6-24 hours after birth were exposed to concentrations of C. raciborskii varying from 102 to 106 cells·mL–1 of each strain for up to three hours. The cladocerans were then transferred to a medium without toxic filaments for 24 hours. Only the organisms exposed to the STX-producing strain showed signs of the immobilization of swimming movements, confirming the effects of the toxins. There was a linear correlation between the time required to induce stopping the swimming movement, with a shorter time to needed to induce immobilization at a higher the concentration; this correlation was inverse to the time required to recover the swimming movements (longer at higher concentrations, p < 0.1. D. laevis is a tropical and subtropical species with great potential for use in toxicity tests for the detection of STXs, despite being native to and found in a great array of freshwater bodies. This is the first assay testing STX-producing and non-producing C. raciborskii strains on D. laevis, species that are both found in Brazilian ecosystems.

  18. Effects of Cylindrospermopsis raciborskii strains (Woloszynska, 1912) Senayya & Subba Raju on the mobility of Daphnia laevis (Cladocera, Daphniidae).

    Science.gov (United States)

    Restani, G C; Fonseca, A L

    2014-02-01

    Cylindrospermopsis raciborskii is a cyanobacterium distributed worldwide that is known to produce cyanotoxins. Some of the Brazilian strains can produce saxitoxins (STXs), which are classified as neurotoxins and can paralyze cladocerans .Daphnia laevis is a cladoceran with a wide distribution in the Americas and has been studied as a possible test-organism in toxicity bioassays. The present work tested the acute effect on D laevis mobility when fed a saxitoxin-producing (STX and neoSTX) C. raciborskii strain, CYRF-01, and compared the results with the effects of a non-toxic strain (NPCS-1). Neonates (6-24 hours after birth) were exposed to concentrations of C. raciborskii varying from 102 to 106 cells·mL-1 of each strain for up to three hours. The cladocerans were then transferred to a medium without toxic filaments for 24 hours. Only the organisms exposed to the STX-producing strain showed signs of the immobilization of swimming movements, confirming the effects of the toxins. There was a linear correlation between the time required to induce stopping the swimming movement, with a shorter time to needed to induce immobilization at a higher the concentration; this correlation was inverse to the time required to recover the swimming movements (longer at higher concentrations, p < 0.1). D. laevis is a tropical and subtropical species with great potential for use in toxicity tests for the detection of STXs, despite being native to and found in a great array of freshwater bodies. This is the first assay testing STX-producing and non-producing C. raciborskii strains on D. laevis, species that are both found in Brazilian ecosystems.

  19. Identification of Gender-specific Transcripts by Microarray in Gonad Tissue of Larval and Juvenile Xenopus tropicalis

    Science.gov (United States)

    Amphibian model species Xenopus tropicalis is currently being utilized by EPA in the development of a standardized in vivo reproductive toxicity assay. Perturbations to the hypothalamic-pituitary-gonadal axis from exposure to endocrine disrupting compounds during larval develop...

  20. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity

    NARCIS (Netherlands)

    Laat, S.W. de; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids were studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein- -1abelled fatty