WorldWideScience

Sample records for friendly network robotics

  1. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  2. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A working group (WG) study was conducted aiming at realizing human type robots. The following six working groups in the basement field were organized to study in terms mostly of items of technical development and final technical targets: platform, and remote attendance control in the basement field, maintenance of plant, etc., home service, disaster/construction, and entertainment in the application field. In the platform WG, a robot of human like form is planning which walks with two legs and works with two arms, and the following were discussed: a length of 160cm, weight of 110kg, built-in LAN, actuator specifications, modulated structure, intelligent driver, etc. In the remote attendance control WG, remote control using working function, stabilized movement, stabilized control, and network is made possible. Studied were made on the decision on a remote control cockpit by open architecture added with function and reformable, problems on the development of the standard language, etc. 77 ref., 82 figs., 21 tabs.

  3. Network-Friendly Gossiping

    Science.gov (United States)

    Serbu, Sabina; Rivière, Étienne; Felber, Pascal

    The emergence of large-scale distributed applications based on many-to-many communication models, e.g., broadcast and decentralized group communication, has an important impact on the underlying layers, notably the Internet routing infrastructure. To make an effective use of network resources, protocols should both limit the stress (amount of messages) on each infrastructure entity like routers and links, and balance as much as possible the load in the network. Most protocols use application-level metrics such as delays to improve efficiency of content dissemination or routing, but the extend to which such application-centric optimizations help reduce and balance the load imposed to the infrastructure is unclear. In this paper, we elaborate on the design of such network-friendly protocols and associated metrics. More specifically, we investigate random-based gossip dissemination. We propose and evaluate different ways of making this representative protocol network-friendly while keeping its desirable properties (robustness and low delays). Simulations of the proposed methods using synthetic and real network topologies convey and compare their abilities to reduce and balance the load while keeping good performance.

  4. The robot programming network

    OpenAIRE

    Cervera Mateu, Enric; Martinet, Philippe; Marín Prades, Raúl; Moughlbay, Amine A.; Pascual del Pobil Ferré, Ángel; Alemany, Jaime; Esteller Curto, Roger; Casañ Núñez, Gustavo Adolfo

    2016-01-01

    The Robot Programming Network (RPN) is an initiative for creating a network of robotics education laboratories with remote programming capabilities. It consists of both online open course materials and online servers that are ready to execute and test the programs written by remote students. Online materials include introductory course modules on robot programming, mobile robotics and humanoids, aimed to learn from basic concepts in science, technology, engineering, and math...

  5. Networking a mobile robot

    Science.gov (United States)

    McKee, Gerard T.

    1994-10-01

    Conventional mobile robotic systems are `stand alone'. Program development involves loading programs into the mobile, via an umbilical. Autonomous operation, in this context, means `isolation': the user cannot interact with the program as the robot is moving around. Recent research in `swarm robotics' has exploited wireless networks as a means of providing inter- robot communication, but the population is still isolated from the human user. In this paper we report on research we are conducting into the provision of mobile robots as resources on a local area computer network, and thus breaking the isolation barrier. We are making use of new multimedia workstation and wireless networking technology to link the robots to the network in order to provide a new type of resource for the user. We model the robot as a set of resources and propose a client-server architecture as the basis for providing user access to the robots. We describe the types of resources each robot can provide and we outline the potential for cooperative robotics, human-robot cooperation, and teleoperation and autonomous robot behavior within this context.

  6. Best Friend Networks of Children across Settings.

    Science.gov (United States)

    Ray, Glen E.; And Others

    1995-01-01

    Investigated children's classroom sociometry and size of their best-friend networks. For both classroom and playground settings, popular children had the most reciprocal best friends, while rejected children had the fewest, but had more on the playground than in the classroom. Results suggest that constraints and opportunities of different…

  7. Robot friendship: Can a robot be a friend?

    DEFF Research Database (Denmark)

    Emmeche, Claus

    2014-01-01

    Friendship is used here as a conceptual vehicle for framing questions about the distinctiveness of human cognition in relation to natural systems such as other animal species and to artificial systems such as robots. By exploring this very common form of a human interpersonal relationship, the au...

  8. Robot friendship: Can a robot be a friend?

    DEFF Research Database (Denmark)

    Emmeche, Claus

    2014-01-01

    Friendship is used here as a conceptual vehicle for framing questions about the distinctiveness of human cognition in relation to natural systems such as other animal species and to artificial systems such as robots. By exploring this very common form of a human interpersonal relationship...

  9. Cooperative robots and sensor networks

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    Mobile robots and Wireless Sensor Networks (WSNs) have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and WSNs have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other.
 The primary objective of book is to provide a reference for cutting-edge studies and research trends pertaining to robotics and sensor networks, and in particular for the coupling between them. The book consists of five chapters. The first chapter presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The second chapter is motivated by the need to improve existing solutions that deal with connectivity prediction, and proposed a genetic machine learning approach for link-quality prediction. The third chapter presents an arch...

  10. Distributed Estimation and Control for Robotic Networks

    NARCIS (Netherlands)

    Simonetto, A.

    2012-01-01

    Mobile robots that communicate and cooperate to achieve a common task have been the subject of an increasing research interest in recent years. These possibly heterogeneous groups of robots communicate locally via a communication network and therefore are usually referred to as robotic networks. The

  11. Ethnic Differences among Friend Networks Later in Life

    Science.gov (United States)

    Kang, Hyunsook; Hebert, Corie

    2014-01-01

    This study seeks to broaden the understanding of friend relationships in older adults and the differences in those friend relationships among various ethnic groups. Secondary data from the National Social Life, Health and Aging Project (NSHAP) was analyzed to test the hypothesis that Caucasian older adults have stronger friend networks than older…

  12. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  13. Portable control device for networked mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John T. (Albuquerque, NM); Byrne, Raymond H. (Albuquerque, NM); Bryan, Jon R. (Edgewood, NM); Harrington, John J. (Albuquerque, NM); Gladwell, T. Scott (Albuquerque, NM)

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  14. An evolution friendly modular architecture to produce feasible robots

    DEFF Research Database (Denmark)

    Faina, Andres; Bellas, Francisco; Orjales, Felix;

    2015-01-01

    This paper proposes the use of a modular robotic architecture in order to produce feasible robots through evolution. To this end, the main requirements the architecture must fulfill are analyzed and a top-down methodology is employed to obtain the different types of modules that make it up...... is described and different experiments provide an indication of how versatile the architecture is for evolving robot morphologies and control for specific tasks and how easy it is to build them....

  15. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  16. Cooperative robots and sensor networks 2014

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  17. Algorithmic Coordination in Robotic Networks

    Science.gov (United States)

    2010-11-29

    IEEE Transactions on Robotics and...34Discrete partitioning and coverage control for gossiping robots," IEEE Transactions on Robotics , Nov. 2010. Submitted iv Papers published in peer...and J. P. Hespanha, "On discrete-time pursuit-evasion games with sensing limitations," IEEE Transactions on Robotics , vol. 24, no. 6, pp. 1429

  18. Friends

    Institute of Scientific and Technical Information of China (English)

    邝群

    2002-01-01

    A life without a friend is a life without a sun. This is no doubt a truthful saying. Everybody needs friends. Without a friend, you will feel lonely and sad. Suppose you are in trouble , whom will you turn to for help if yo have no friends ?So it is necessary for all of us to make friends.

  19. Mesh networking optimized for robotic teleoperation

    Science.gov (United States)

    Hart, Abraham; Pezeshkian, Narek; Nguyen, Hoa

    2012-06-01

    Mesh networks for robot teleoperation pose different challenges than those associated with traditional mesh networks. Unmanned ground vehicles (UGVs) are mobile and operate in constantly changing and uncontrollable environments. Building a mesh network to work well under these harsh conditions presents a unique challenge. The Manually Deployed Communication Relay (MDCR) mesh networking system extends the range of and provides non-line-of-sight (NLOS) communications for tactical and explosive ordnance disposal (EOD) robots currently in theater. It supports multiple mesh nodes, robots acting as nodes, and works with all Internet Protocol (IP)-based robotic systems. Under MDCR, the performance of different routing protocols and route selection metrics were compared resulting in a modified version of the Babel mesh networking protocol. This paper discusses this and other topics encountered during development and testing of the MDCR system.

  20. Robotic velocity generation using neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fast-paced nature of robotic soccer necessitates real-time sensing coupled with quick decision making and behaving. The robot must have high response-rate, exact motion ability, and must robust enough to confront interfere during drastic match. But during the match, we find that the robot usually do not act exactly as the commands from host computer. In this paper, we analyze the reason and present a method that uses BP neural network to output robotic velocity directly instead of conventional path-plan strategy, to reduce the error between actual motion and ideal plan.

  1. Toward controlling perturbations in robotic sensor networks

    Science.gov (United States)

    Banerjee, Ashis G.; Majumder, Saikat R.

    2014-06-01

    Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.

  2. Evolving Social Networks via Friend Recommendations

    OpenAIRE

    Verma, Amit Kumar; Pal, Manjish

    2015-01-01

    A social network grows over a period of time with the formation of new connections and relations. In recent years we have witnessed a massive growth of online social networks like Facebook, Twitter etc. So it has become a problem of extreme importance to know the destiny of these networks. Thus predicting the evolution of a social network is a question of extreme importance. A good model for evolution of a social network can help in understanding the properties responsible for the changes occ...

  3. Spectral Control of Mobile Robot Networks

    CERN Document Server

    Zavlanos, Michael M; Jadbabaie, Ali

    2010-01-01

    The eigenvalue spectrum of the adjacency matrix of a network is closely related to the behavior of many dynamical processes run over the network. In the field of robotics, this spectrum has important implications in many problems that require some form of distributed coordination within a team of robots. In this paper, we propose a continuous-time control scheme that modifies the structure of a position-dependent network of mobile robots so that it achieves a desired set of adjacency eigenvalues. For this, we employ a novel abstraction of the eigenvalue spectrum by means of the adjacency matrix spectral moments. Since the eigenvalue spectrum is uniquely determined by its spectral moments, this abstraction provides a way to indirectly control the eigenvalues of the network. Our construction is based on artificial potentials that capture the distance of the network's spectral moments to their desired values. Minimization of these potentials is via a gradient descent closed-loop system that, under certain convex...

  4. On Endogenous Reconfiguration in Mobile Robotic Networks

    CERN Document Server

    Savla, Ketan

    2008-01-01

    In this paper, our focus is on certain applications for mobile robotic networks, where reconfiguration is driven by factors intrinsic to the network rather than changes in the external environment. In particular, we study a version of the coverage problem useful for surveillance applications, where the objective is to position the robots in order to minimize the average distance from a random point in a given environment to the closest robot. This problem has been well-studied for omni-directional robots and it is shown that optimal configuration for the network is a centroidal Voronoi configuration and that the coverage cost belongs to $\\Theta(m^{-1/2})$, where $m$ is the number of robots in the network. In this paper, we study this problem for more realistic models of robots, namely the double integrator (DI) model and the differential drive (DD) model. We observe that the introduction of these motion constraints in the algorithm design problem gives rise to an interesting behavior. For a \\emph{sparser} net...

  5. Boolean network robotics: a proof of concept

    CERN Document Server

    Roli, Andrea; Pinciroli, Carlo; Birattari, Mauro

    2011-01-01

    Dynamical systems theory and complexity science provide powerful tools for analysing artificial agents and robots. Furthermore, they have been recently proposed also as a source of design principles and guidelines. Boolean networks are a prominent example of complex dynamical systems and they have been shown to effectively capture important phenomena in gene regulation. From an engineering perspective, these models are very compelling, because they can exhibit rich and complex behaviours, in spite of the compactness of their description. In this paper, we propose the use of Boolean networks for controlling robots' behaviour. The network is designed by means of an automatic procedure based on stochastic local search techniques. We show that this approach makes it possible to design a network which enables the robot to accomplish a task that requires the capability of navigating the space using a light stimulus, as well as the formation and use of an internal memory.

  6. Peer Network Overlap in Twin, Sibling, and Friend Dyads

    Science.gov (United States)

    McGuire, Shirley; Segal, Nancy L.

    2013-01-01

    Research suggests that sibling–peer connections are important for understanding adolescent problem behaviors. Using a novel behavioral genetic design, the current study investigated peer network overlap in 300 child–child pairs (aged 7-13 years) in 5 dyad types: monozygotic (MZ), dizygotic twins, full siblings (FSs), friend pairs, and virtual…

  7. Robust Stereo-Vision Based 3D Object Reconstruction for the Assistive Robot FRIEND

    Directory of Open Access Journals (Sweden)

    COJBASIC, Z.

    2011-11-01

    Full Text Available A key requirement of assistive robot vision is the robust 3D object reconstruction in complex environments for reliable autonomous object manipulation. In this paper the idea is presented of achieving high robustness of a complete robot vision system against external influences such as variable illumination by including feedback control of the object segmentation in stereo images. The approach used is to change the segmentation parameters in closed-loop so that object features extraction is driven to a desired result. Reliable feature extraction is necessary to fully exploit a neuro-fuzzy classifier which is the core of the proposed 2D object recognition method, predecessor of 3D object reconstruction. Experimental results on the rehabilitation assistive robotic system FRIEND demonstrate the effectiveness of the proposed method.

  8. Towards Human-Friendly Efficient Control of Multi-Robot Teams

    Science.gov (United States)

    Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus

    2013-01-01

    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.

  9. Autonomous robot behavior based on neural networks

    Science.gov (United States)

    Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo

    1997-04-01

    The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.

  10. Friends of friends: are indirect connections in social networks important to animal behaviour?

    Science.gov (United States)

    Brent, Lauren J N

    2015-05-01

    Friend of a friend relationships, or the indirect connections between people, influence our health, well-being, financial success and reproductive output. As with humans, social behaviours in other animals often occur within a broad interconnected network of social ties. Yet studies of animal social behaviour tend to focus on associations between pairs of individuals. With the increase in popularity of social network analysis, researchers have started to look beyond the dyad to examine the role of indirect connections in animal societies. Here, I provide an overview of the new knowledge that has been uncovered by these studies. I focus on research that has addressed both the causes of social behaviours, i.e. the cognitive and genetic basis of indirect connections, as well as their consequences, i.e. the impact of indirect connections on social cohesion, information transfer, cultural practices and fitness. From these studies, it is apparent that indirect connections play an important role in animal behaviour, although future research is needed to clarify their contribution.

  11. Emergent velocity agreement in robot networks

    CERN Document Server

    Canepa, Davide; Izumi, Taisuke; Potop-Butucaru, Maria

    2011-01-01

    In this paper we propose and prove correct a new self-stabilizing velocity agreement (flocking) algorithm for oblivious and asynchronous robot networks. Our algorithm allows a flock of uniform robots to follow a flock head emergent during the computation whatever its direction in plane. Robots are asynchronous, oblivious and do not share a common coordinate system. Our solution includes three modules architectured as follows: creation of a common coordinate system that also allows the emergence of a flock-head, setting up the flock pattern and moving the flock. The novelty of our approach steams in identifying the necessary conditions on the flock pattern placement and the velocity of the flock-head (rotation, translation or speed) that allow the flock to both follow the exact same head and to preserve the flock pattern. Additionally, our system is self-healing and self-stabilizing. In the event of the head leave (the leading robot disappears or is damaged and cannot be recognized by the other robots) the flo...

  12. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  13. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Science.gov (United States)

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  14. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero

    2010-03-01

    Full Text Available In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites, a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  15. Visual guidance of a pig evisceration robot using neural networks

    DEFF Research Database (Denmark)

    Christensen, S.S.; Andersen, A.W.; Jørgensen, T.M.

    1996-01-01

    The application of a RAM-based neural network to robot vision is demonstrated for the guidance of a pig evisceration robot. Tests of the combined robot-vision system have been performed at an abattoir. The vision system locates a set of feature points on a pig carcass and transmits the 3D...... coordinates of these points to the robot. An active vision strategy taking advantage of the generalisation capabilities of neural networks is used to locate the control points. A neural network PC-expansion board that provides a new classification every 180 mu s is used to speed up the neural network...

  16. Idiotypic Immune Networks in Mobile Robot Control

    CERN Document Server

    Whitbrook, Amanda; Garibaldi, Jonathan

    2008-01-01

    Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (ais) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic ais network with a Reinforcement Learning based control system (rl) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic rl, a simplified hybrid ais-rl that implements idiotypic selection independently of derived concentration levels and a full hybrid ais-rl s...

  17. A Review on Sensor Network Issues and Robotics

    Directory of Open Access Journals (Sweden)

    Ji Hyoung Ryu

    2015-01-01

    Full Text Available The interaction of distributed robotics and wireless sensor networks has led to the creation of mobile sensor networks. There has been an increasing interest in building mobile sensor networks and they are the favored class of WSNs in which mobility plays a key role in the execution of an application. More and more researches focus on development of mobile wireless sensor networks (MWSNs due to its favorable advantages and applications. In WSNs robotics can play a crucial role, and integrating static nodes with mobile robots enhances the capabilities of both types of devices and enables new applications. In this paper we present an overview on mobile sensor networks in robotics and vice versa and robotic sensor network applications.

  18. Layered learning of soccer robot based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.

  19. Learning User Intention in Networked Mobile Robot Control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Teleoperated networked robot often has unpredictable behaviors due to uncertain time delay from data transmission over Internet. The robot cannot accomplish the desired actions of the remote operator in time, which severely impairs reliability and efficiency of the robot system. This paper investigated a novel approach, learning user intention, to compensate the uncertain time delay with the autonomy of a mobile robot. The user intention to control and operate the robot was modeled and incrementally inferred based on Bayesian techniques so that the desired actions could be recognized and completed by the robot autonomously. Thus the networked robot is able to fulfill the task assigned without frequent interaction with the user, which decreases data transmission and improves the efficiency of the whole system. Experimental results show the validity and feasibility of the proposed method.

  20. Feeling alone among friends: Adolescence, social networks and loneliness

    Directory of Open Access Journals (Sweden)

    Roberta Biolcati

    2015-12-01

    Full Text Available Adolescents are particularly susceptible to feelings of loneliness and social relationships are therefore an important part of their development. The aim of the present study is to explore the patterns of adolescents' use of Social Network Sites, e.g. Facebook, in relation to friendships, focusing on the differences between teenagers with a high and low level of loneliness. Participants (N=988 were aged 14-22 (M age = 16.32, SD = 1.59 and attended secondary schools in the north of Italy. The “loneliness group” includes more girls, older adolescents and subjects dissatisfied with their online and offline relationships; lonely adolescents consider their online contacts less as “true friends” and meet friends less frequently in person than the “no loneliness” group; the “loneliness” group believe it is easier to relate with peers online. Implications and suggestions for future research are discussed.

  1. Formation control for a network of small-scale robots.

    Science.gov (United States)

    Kim, Yoonsoo

    2014-10-01

    In this paper, a network of small-scale robots (typically centimeter-scale robots) equipped with artificial actuators such as electric motors is considered. The purpose of this network is to have the robots keep a certain formation shape (or change to another formation shape) during maneuvers. The network has a fixed communication topology in the sense that robots have a fixed group of neighbors to communicate during maneuvers. Assuming that each robot and its actuator can be modeled as a linear system, a decentralized control law (such that each robot activates its actuator based on the information from its neighbors only) is introduced to achieve the purpose of formation keeping or change. A linear matrix inequality (LMI) for deriving the upper bound on the actuator's time constant is also presented. Simulation results are shown to demonstrate the merit of the introduced control law.

  2. A wireless robot for networked laparoscopy.

    Science.gov (United States)

    Castro, Cristian A; Alqassis, Adham; Smith, Sara; Ketterl, Thomas; Sun, Yu; Ross, Sharona; Rosemurgy, Alexander; Savage, Peter P; Gitlin, Richard D

    2013-04-01

    State-of-the-art laparoscopes for minimally invasive abdominal surgery are encumbered by cabling for power, video, and light sources. Although these laparoscopes provide good image quality, they interfere with surgical instruments, occupy a trocar port, require an assistant in the operating room to control the scope, have a very limited field of view, and are expensive. MARVEL is a wireless Miniature Anchored Robotic Videoscope for Expedited Laparoscopy that addresses these limitations by providing an inexpensive in vivo wireless camera module (CM) that eliminates the surgical-tool bottleneck experienced by surgeons in current laparoscopic endoscopic single-site (LESS) procedures. The MARVEL system includes 1) multiple CMs that feature a wirelessly controlled pan/tilt camera platform, which enable a full hemisphere field of view inside the abdominal cavity, wirelessly adjustable focus, and a multiwavelength illumination control system; 2) a master control module that provides a near-zero latency video wireless communications link, independent wireless control for multiple MARVEL CMs, digital zoom; and 3) a wireless human-machine interface that gives the surgeon full control over CM functionality. The research reported in this paper is the first step in developing a suite of semiautonomous wirelessly controlled and networked robotic cyber-physical devices to enable a paradigm shift in minimally invasive surgery and other domains such as wireless body area networks.

  3. The analysis of network transmission method for welding robot information

    Science.gov (United States)

    Cheng, Weide; Zhang, Hua; Liu, Donghua; Wang, Hongbo

    2012-01-01

    On the asis of User Datagram Protocol (UserDatagram Protocol, UDP), to do some improvement and design a welding robot network communication protocol (welding robot network communicate protocol: WRNCP), working on the fields of the transport layer and application layer of TCP / IP protocol. According to the characteristics of video data, to design the radio push-type (Broadcast Push Model, BPM) transmission method, improving the efficiency and stability of video transmission.and to designed the network information transmission system, used for real-time control of welding robot network.

  4. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    Science.gov (United States)

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  5. Artificial Neural Networks in Applications of Industrial Robots

    Institute of Scientific and Technical Information of China (English)

    王克胜; JonathanLienhardt; 袁庆丰; 方明伦

    2004-01-01

    Artificial neural networks (ANNs) have been widely used to solve a number of problems to which analytical solutions are difficult to obtain using traditional mathematical approaches.Such problems exist also in the analysis of industrial robots. This paper presents an overview of ANN applications to robot kinematics, dynamics,control, trajectory and path planning, and sensing. Reasons for using or not using ANNs to industrial robots are explained as well.

  6. Friends with Faces: How Social Networks Can Enhance Face Recognition and Vice Versa

    Science.gov (United States)

    Mavridis, Nikolaos; Kazmi, Wajahat; Toulis, Panos

    The "friendship" relation, a social relation among individuals, is one of the primary relations modeled in some of the world's largest online social networking sites, such as "FaceBook." On the other hand, the "co-occurrence" relation, as a relation among faces appearing in pictures, is one that is easily detectable using modern face detection techniques. These two relations, though appearing in different realms (social vs. visual sensory), have a strong correlation: faces that co-occur in photos often belong to individuals who are friends. Using real-world data gathered from "Facebook," which were gathered as part of the "FaceBots" project, the world's first physical face-recognizing and conversing robot that can utilize and publish information on "Facebook" was established. We present here methods as well as results for utilizing this correlation in both directions. Both algorithms for utilizing knowledge of the social context for faster and better face recognition are given, as well as algorithms for estimating the friendship network of a number of individuals given photos containing their faces. The results are quite encouraging. In the primary example, doubling of the recognition accuracy as well as a sixfold improvement in speed is demonstrated. Various improvements, interesting statistics, as well as an empirical investigation leading to predictions of scalability to much bigger data sets are discussed.

  7. Adaptive control of mobile robots using a neural network.

    Science.gov (United States)

    de Sousa Júnior, C; Hermerly, E M

    2001-06-01

    A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results.

  8. Mobile Robot Navigation using Fuzzy Logic and Wavelet Network

    Directory of Open Access Journals (Sweden)

    Mustafa I. Hamzah

    2014-05-01

    Full Text Available This paper presents the proposed autonomous mobile robot navigation scheme.  The navigation of mobile robot in unknown environment with obstacle avoidance is based on using fuzzy logic and wavelet network. Several cases are designed and modeled in Simulink and MATLAB. Simulation results show good performance for the proposed scheme.

  9. Adaptive artificial neural network for autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  10. Ten Years of Cooperation Between Mobile Robots and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jesus Capitán Fernández

    2015-06-01

    Full Text Available This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper.

  11. Ten Years of Cooperation Between Mobile Robots and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jesus Capitán Fernández

    2015-06-01

    Full Text Available This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper.

  12. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  13. The cost of probabilistic gathering in oblivious robot networks

    CERN Document Server

    Clement, Julien; Potop-Butucaru, Maria Gradinariu; Messika, Stephane

    2008-01-01

    In this paper we address the complexity issues of two agreement problems in oblivious robot networks namely gathering and scattering. These abstractions are fundamental coordination problems in cooperative mobile robotics. Moreover, their oblivious characteristics makes them appealing for self-stabilization since they are self-stabilizing with no extra-cost. Given a set of robots with arbitrary initial location and no initial agreement on a global coordinate system, gathering requires that all robots reach the exact same but not predetermined location while scattering aims at scatter robots such that no two robots share the same location. Both deterministic gathering and scattering have been proved impossible under arbitrary schedulers therefore probabilistic solutions have been recently proposed. The contribution of this paper is twofold. First, we propose a detailed complexity analysis of the existent probabilistic gathering algorithms in both fault-free and fault-prone environments. We consider both crash ...

  14. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.

    2017-06-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  15. Cooperative Localization and Tracking in Distributed Robot-Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fan; Guilherme S.Pereira; Vijay Kumar

    2005-01-01

    This paper addresses the problem of real-time position and orientation estimation of networked mobile robots in two-dimensional Euclidean space with simultaneous tracking of a rigid unknown object based on exteroceptive sensory information extracted from distributed vision systems. The sufficient and necessary conditions for team localization are proposed. A localization and object tracking approach based on statistical operators and graph searching algorithms is presented for a team of robots localized with heterogeneous sensors. The approach was implemented in an experimental platform consisting of car-like mobile robots equipped with omnidirectional video cameras and IEEE 802.11b wireless networking. The experimental results validate the approach.

  16. A Bionic Neural Network for Fish-Robot Locomotion

    Institute of Scientific and Technical Information of China (English)

    Dai-bing Zhang; De-wen Hu; Lin-cheng Shen; Hai-bin Xie

    2006-01-01

    A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural network consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation results show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup,stop,forward swimming,backward swimming,turn right and turn left.

  17. A Unified Robotic Software Architecture for Service Robotics and Networks of Smart Sensors

    Science.gov (United States)

    Westhoff, Daniel; Zhang, Jianwei

    This paper proposes a novel architecture for the programming of multi-modal service robots and networked sensors. The presented software framework eases the development of high-level applications for distributed systems. The software architecture is based upon the Roblet-Technology, which is an exceptionally powerful medium in robotics. The possibility to develop, compile and execute an application on one workstation and distribute parts of a program based on the idea of mobile code is pointed out. Since the Roblet-Technology uses Java the development is independent of the operation system. The framework hides the network communication and therefore greatly improves the programming and testing of applications in service robotics. The concept is evaluated in the context of the service robot TASER of the TAMS Institute at the University of Hamburg. This robot consists of a mobile platform with two manipulators equipped with artificial hands. Several multimodal input and output devices for interaction round off the robot. Networked cameras in the working environment of TASER provide additional information to the robot. The integration of these smart sensors shows the extendability of the proposed concept to general distributed systems.

  18. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  19. Social Networking for the Older and Wiser Connect with Family, and Friends Old and New

    CERN Document Server

    McManus, Sean

    2010-01-01

    Social networks enable anyone with a computer and Internet connection to stay in touch with friends and family across the globe, and rediscover old acquaintances.  Social Networking for the Older and Wiser starts with the basics of social networks, before moving onto intermediate topics, all whilst highlighting ways to protect your privacy and keep your details secure. The book is packed with step-by-step instructions on how to use Facebook, Twitter, Friends Reunited, Saga Zone, and other social networks to:Create an account on your chosen social networkReconnect and stay-in-touch with old fr

  20. [Networked robotics: its present status and future prospect].

    Science.gov (United States)

    Tachi, S

    1999-04-01

    One of the most promising technologies today is the integration of virtual reality and robotics on a network. This is called network robotics in general and R-cubed (real-time remote robotics) in particular. R-cubed is a Japanese national R&D scheme to realize augmented telexistence (tele-existence) through various kinds of networks including the Internet. Telexistence is a concept named for the technology that enables people to have a real-time sensation of being present at a location other than the place where they actually exist, and to interact with a remote and/or virtual environment. They can thus "telexist" in a real environment that the robot is present or in a virtual environment that a computer has generated. It is also possible to telexist in a mixed environment of real and virtual which can be called augmented telexistence. The concept of telexistence, i.e., virtual existence in a remote or computer-generated environment, has developed into the national R-cubed R&D scheme to create an advanced and comfortable life for the network society of the 21st century. Based on the national R&D scheme of R-Cubed, the Humanoid Robotics Project (HRP) was launched in April 1998. This is an effort to integrate telerobotics, network technology, and virtual reality into networked telexistence, and significant results are expected.

  1. Defining a neural network controller structure for a rubbertuator robot.

    Science.gov (United States)

    Ozkan, M; Inoue, K; Negishi, K; Yamanaka, T

    2000-01-01

    Rubbertuator (Rubber-Actuator) robot arm is a pneumatic robot, unique with its lightweight, high power, compliant and spark free nature. Compressibility of air in the actuator tubes and the elastic nature of the rubber, however, are the two major sources of increased non-linearity and complexity in motion control. Soft computing, exploiting the tolerance of uncertainty and vagueness in cognitive reasoning has been offering easy to handle, robust, and low-priced solutions to several non-linear industrial applications. Nonetheless, the black-box approach in these systems results in application specific architectures with some important design parameters left for fine tuning (i.e. number of nodes in a neural network). In this study we propose a more systematic method in defining the structure of a soft computing technique, namely the backpropagation neural network, when used as a controller for rubbertuator robot systems. The structure of the neural network is based on the physical model of the robot, while the neural network itself is trained to learn the trajectory independent parameters of the model that are essential for defining the robot dynamics. The proposed system performance was compared with a well-tuned PID controller and shown to be more accurate in trajectory control for rubbertuator robots.

  2. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-06-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  3. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  4. Neural network based dynamic controllers for industrial robots.

    Science.gov (United States)

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  5. Collaboration Layer for Robots in Mobile Ad-hoc Networks

    DEFF Research Database (Denmark)

    Borch, Ole; Madsen, Per Printz; Broberg, Jacob Honor´e

    2009-01-01

    In many applications multiple robots in Mobile Ad-hoc Networks are required to collaborate in order to solve a task. This paper shows by proof of concept that a Collaboration Layer can be modelled and designed to handle the collaborative communication, which enables robots in small to medium size...... networks to solve tasks collaboratively. In this proposal the Collaboration Layer is modelled to handle service and position discovery, group management, and synchronisation among robots, but the layer is also designed to be extendable. Based on this model of the Collaboration Layer, generic services....... A prototype of the Collaboration Layer has been developed to run in a simulated environment and tested in an evaluation scenario. In the scenario five robots solve the tasks of vacuum cleaning and entrance guarding, which involves the ability to discover potential co-workers, form groups, shift from one group...

  6. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.

    Science.gov (United States)

    Budiharto, Widodo

    2015-01-01

    For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system.

  7. Radial Basis Function Network Compensators for Uncertainties of Robotic Manipulators

    OpenAIRE

    Ziauddin, S.M.; Zalzala, A.M.S.

    1994-01-01

    This report proposes a decentralised compensation scheme for uncertainties and modelling errors of robotic manipulators. The scheme employs a central decoupler and independent joint neural network controllers. Recursive Newton Euler formulas are used to decouple robot dynamics to obtain a set of equations in terms of each joint's input and output. To identify and suppress the effects of uncertainties associated with the model, each joint is controlled separately by Gaussian radial basis funct...

  8. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh;

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  9. Learning from Your Network of Friends: A Trajectory Representation Learning Model Based on Online Social Ties

    KAUST Repository

    Alharbi, Basma Mohammed

    2017-02-07

    Location-Based Social Networks (LBSNs) capture individuals whereabouts for a large portion of the population. To utilize this data for user (location)-similarity based tasks, one must map the raw data into a low-dimensional uniform feature space. However, due to the nature of LBSNs, many users have sparse and incomplete check-ins. In this work, we propose to overcome this issue by leveraging the network of friends, when learning the new feature space. We first analyze the impact of friends on individuals\\'s mobility, and show that individuals trajectories are correlated with thoseof their friends and friends of friends (2-hop friends) in an online setting. Based on our observation, we propose a mixed-membership model that infers global mobility patterns from users\\' check-ins and their network of friends, without impairing the model\\'s complexity. Our proposed model infers global patterns and learns new representations for both usersand locations simultaneously. We evaluate the inferred patterns and compare the quality of the new user representation against baseline methods on a social link prediction problem.

  10. Human-friendly robotic manipulators: safety and performance issues in controller design

    NARCIS (Netherlands)

    Tadele, Tadele Shiferaw

    2014-01-01

    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Success

  11. Human-friendly robotic manipulators: safety and performance issues in controller design

    NARCIS (Netherlands)

    Tadele, T.S.

    2014-01-01

    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Success

  12. Coordinating Robotic Networks through Belief Propogation

    Science.gov (United States)

    2012-09-12

    We have used an implementation of the proposed framework to conduct experiments in static unmapped physical environments both indoors and outdoors...coordination algorithm can interface with and run on multi-robot platforms by subscribing to appropriate input topics (e.g., robot pose, wifi signal...http://brown-ros-pkg.googlecode.com/svn/trunk/experimental/ardrone_brown/) • ardrone_nav: autonomous quadrotor navigation ◦ (http://brown-ros

  13. Remote programming of network robots within the UJI Industrial Robotics Telelaboratory: FPGA vision and SNRP network protocol

    OpenAIRE

    Marin, Raul; León, Germán; Wirz, Raul; Sales, Jorge; Claver, José M.; Sanz, Pedro J.; Fernández Ruzafa, José

    2009-01-01

    This paper presents the UJI Industrial Robotics Telelaboratory, which lets Ph.D. and Master’s degree students perform robotics and computer vision tele-experiments. By using this system, students are able to program experiments remotely via the Web, in order to combine the use of a field-programmable gate array (FPGA) to provide real-time vision processing, a conveyor belt, and a Motoman industrial manipulator. This paper introduces the novel SNRP protocol (i.e., Simple Network Robot Proto...

  14. Network Distributed Monitoring System Based on Robot Technology Middleware

    Directory of Open Access Journals (Sweden)

    Kunikatsu Takase

    2008-11-01

    Full Text Available In this paper, a network distributed monitoring system for human assistance robot system was developed to improve the interaction among the users and local service robotic system and enable a remote user to get a better understanding of what is going on in the local environment. Home integration robot system and network monitoring system using QuickCam Orbit cameras were developed and demonstrated from June 9 to June 19 at the 2005 World Exposition, Aichi, Japan. Improvements of network distributed monitoring system using IEEE1394 cameras with high performance and high resolution have been done in order to extend the application of system. Robot Technology Middleware (RTM was used in the developed system. By using RTM, we can develop cameras functional elements as RT software components that can be implemented by different programming languages, run in different operating system, or connected in different networks to interoperate.It is also easy to create comprehensive robot system application by reusing existing modules thus facilitating networkdistributed software sharing and improving the cost of writing and maintaining software.

  15. Privacy-Preserving and Efficient Friend Recommendation in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Bharath K. Samanthula

    2015-08-01

    Full Text Available The popularity of online social networks (OSNs is on constant rise due to various advantages, including online communication and sharing information of interest among friends. It is often that users want to make new friends to expand their social connections as well as to obtain information from a broad range of people. Friend recommendation is a very important application in many OSNs and has been studied extensively in the recent past. However,with the growing concerns about user privacy, there is a strong need to develop privacy-preserving friend recommendation methods for social networks. In this paper, we propose two novel methods to recommend friends for a given user by using the common neighbors proximity measure in a privacy-preserving manner. The first method is based on the properties of an additive homomorphic encryption scheme and also utilizes a universal hash function for efficiency purpose. The second method utilizes the concept of protecting the source privacy through anonymousmessage routing and recommends friends accurately and efficiently. In addition, we empirically compare the efficiency and accuracy of the proposed protocols, and address the implementation details of the two methods in practice. The proposed protocols provide a trade-off among security, accuracy, and efficiency; thus, users or the network provider can choose between these two protocols depending on the underlying requirements.

  16. Friend or Foe? Fake Profile Identification in Online Social Networks

    OpenAIRE

    Fire, Michael; Kagan, Dima; Elyashar, Aviad; Elovici, Yuval

    2013-01-01

    The amount of personal information unwillingly exposed by users on online social networks is staggering, as shown in recent research. Moreover, recent reports indicate that these networks are infested with tens of millions of fake users profiles, which may jeopardize the users' security and privacy. To identify fake users in such networks and to improve users' security and privacy, we developed the Social Privacy Protector software for Facebook. This software contains three protection layers,...

  17. Friend networking sites and their relationship to adolescents' well-being and social self-esteem.

    Science.gov (United States)

    Valkenburg, Patti M; Peter, Jochen; Schouten, Alexander P

    2006-10-01

    The aim of this study was to investigate the consequences of friend networking sites (e.g., Friendster, MySpace) for adolescents' self-esteem and well-being. We conducted a survey among 881 adolescents (10-19-year-olds) who had an online profile on a Dutch friend networking site. Using structural equation modeling, we found that the frequency with which adolescents used the site had an indirect effect on their social self-esteem and well-being. The use of the friend networking site stimulated the number of relationships formed on the site, the frequency with which adolescents received feedback on their profiles, and the tone (i.e., positive vs. negative) of this feedback. Positive feedback on the profiles enhanced adolescents' social self-esteem and well-being, whereas negative feedback decreased their self-esteem and well-being.

  18. Integrated Network Architecture for Sustained Human and Robotic Exploration

    Science.gov (United States)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  19. Dynamic Vehicle Routing for Robotic Networks (Workshop Briefing Charts)

    Science.gov (United States)

    2010-06-29

    Computation: Numerical Methods. Athena Scientific, 1997 4 S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks – Part I...29jun10 @ Baltimore, ACC 1 / 24 Motivation for Team Forming Group of vehicles monitoring a region Several different sensing modalities: electro- optical

  20. A user-friendly automated port placement planning system for laparoscopic robotic surgery

    Science.gov (United States)

    Torres, Luis G.; Azimian, Hamidreza; Enquobahrie, Andinet

    2014-03-01

    Laparoscopic surgery is a minimally invasive surgical approach in which surgical instruments are passed through ports placed at small incisions. This approach can benefit patients by reducing recovery times and scars. Surgeons have gained greater dexterity, accuracy, and vision through adoption of robotic surgical systems. However, in some cases a preselected set of ports cannot be accommodated by the robot; the robot's arms may cause collisions during the procedure, or the surgical targets may not be reachable through the selected ports. In this case, the surgeon must either make more incisions for more ports, or even abandon the laparoscopic approach entirely. To assist in this, we are building an easytouse system which, given a surgical task and preoperative medical images of the patient, will recommend a suitable port placement plan for the robotic surgery. This work bears two main contributions: 1) a high level user interface that assists the surgeon in operating the complicated underlying planning algorithm; and 2) an interface to assist the surgical team in implementation of the recommended plan in the operating room. We believe that such an automated port placement system would reduce setup time for robotic surgery and reduce the morbidity to patients caused by unsuitable surgical port placement.

  1. Neural-Network Control Of Prosthetic And Robotic Hands

    Science.gov (United States)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  2. Electricity storage: Friend or foe of the networks?

    Science.gov (United States)

    Jamasb, Tooraj

    2017-06-01

    As storage technology progresses it offers a range of solutions and services to users and the electricity industry. A new study explores whether or not this will eventually lead to self-sufficient consumers and spell the end of the networks as we know them.

  3. Family and Friends: Which Types of Personal Relationships Go Together in a Network?

    Science.gov (United States)

    Rözer, Jesper; Mollenhorst, Gerald; Poortman, Anne-Rigt

    We examine the link between family and personal networks. Using arguments about meeting opportunities, competition and social influence, we hypothesise how the presence of specific types of family members (i.e., a partner, children, parents and siblings) and non-family members (i.e., friends, neighbours and colleagues) in the network mutually affect one another. In addition, we propose that-beyond their mere presence-the active role of family members in the network strongly affects the presence of non-family members in the network. Data from the third wave of the Survey on the Social Networks of the Dutch, collected in 2012 and 2013, show that active involvement is of key importance; more than merely having family members present in one's personal network, the active involvement of specific types of family members in the personal network is associated with having disproportionally more other family members and having somewhat fewer non-family members in the network.

  4. Family and Friends : Which Types of Personal Relationships Go Together in a Network?

    NARCIS (Netherlands)

    Rözer, Jesper; Mollenhorst, Gerald; Poortman, Anne Rigt

    2015-01-01

    We examine the link between family and personal networks. Using arguments about meeting opportunities, competition and social influence, we hypothesise how the presence of specific types of family members (i.e., a partner, children, parents and siblings) and non-family members (i.e., friends, neighb

  5. Indonesian Muslim Adolescents' Use of Tobacco and Alcohol: Associations with Use by Friends and Network Affiliates

    Science.gov (United States)

    French, Doran C.; Purwono, Urip; Rodkin, Philip

    2014-01-01

    The objectives of this longitudinal study were to predict the tobacco and alcohol use of Indonesian Muslim adolescents from their religiosity and the substance use of friends and network affiliates. At Year 1, there were 996 participants from eighth grade (n = 507, age = 13.4 years) and 10th grade (n = 489, age = 15.4); 875 were followed into the…

  6. Religiosity of Adolescents and Their Friends and Network Associates: Homophily and Associations with Antisocial Behavior

    Science.gov (United States)

    French, Doran C.; Purwono, Urip; Rodkin, Philip C.

    2012-01-01

    This study assessed the similarity of adolescents and their friends and peer network associates in religiosity and the extent to which these relationships were associated with antisocial behavior. The sample included 1010 Indonesian (480 male, 530 female) 8th (13.37 years) and 10th grade (15.36 years) students. Adolescents were similar to their…

  7. Do Parental Networks Pay Off? Linking Children's Labor-Market Outcomes to their Parents' Friends

    OpenAIRE

    Plug, Erik; Van der Klaauw, Bas; Ziegler, Lennart

    2015-01-01

    This paper examines whether children are better off if their parents have stronger social networks. Using data on high-school friendships of parents, we analyze whether the number and characteristics of friends affect the labor-market outcomes of children. While parental friendships formed in high school appear long lasting, we find no significant impact on their children's occupational choices and earnings prospects. These results do not change when we account for network endogeneity, networ...

  8. Over-Snow Robots for Polar Instrument Networks

    Science.gov (United States)

    Lever, J.; Ray, L.

    2006-12-01

    - bandwidth data relays for stationary instrumentation. We are proposing a five-year project to upgrade the Cool Robot and demonstrate its utility to support polar science. We will refine the design for reliable, long-duration deployment in Antarctica and Greenland, construct 5 prototypes, quantify their capabilities through field tests, and commission the network by conducting several polar-science demonstration projects. Upgraded goals include 1,500-2,000-km summertime traverses of Antarctica and Greenland, safe navigation through 0.5-m amplitude sastrugi fields, survival in blizzards, and network adaptation to research events of opportunity. We are seeking polar scientists interested in using Cool Robots on research projects and will adapt the robot to their requirements.

  9. Adaptive Control for Robotic Manipulators Base on RBF Neural Network

    Directory of Open Access Journals (Sweden)

    MA Jing

    2013-09-01

    Full Text Available An adaptive neural network controller is brought forward by the paper to solve trajectory tracking problems of robotic manipulators with uncertainties. The first scheme consists of a PD feedback and a dynamic compensator which is composed by neural network controller and variable structure controller. Neutral network controller is designed to adaptive learn and compensate the unknown uncertainties, variable structure controller is designed to eliminate approach errors of neutral network. The adaptive weight learning algorithm of neural network is designed to ensure online real-time adjustment, offline learning phase is not need; Global asymptotic stability (GAS of system base on Lyapunov theory is analysised to ensure the convergence of the algorithm. The simulation result s show that the kind of the control scheme is effective and has good robustness.

  10. Robot Positioning and Navigation Based on Hybrid Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Shun-cai YAO; Jin-dong TAN; Hong-xia PAN

    2010-01-01

    Traditional sensor network and robot navigation are based an the map of detecting the fields available in advance.The optimal algorithms are developed to solve the energy saving,the shortest path problems,etc.However,in the practical encironment,there are many fields,whose map is difficult to get,and needs to be detected.In this paper a kind of ad-hoc navigation algorithm is explored,which is based on the hybrid sensor network without the prior map in advance.The navigation system is composed of static nodes and dynamic nodes.The static nodes monitor the occurrances of the events and broadcast them.In the system,a kind of algorithm is to locate the robot,which is based on cluster broadcasting.The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages.The robot gets the message and follows ad-hoc routine to arrive where the events occur.In the whole process,energy saving has been taken into account.The algorithms,which are based on the hybrid sensor network,are given in this paper.The simulation and practical results are also available.

  11. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  12. A World-Wide Network of Robotic Imaging Telescopes

    Science.gov (United States)

    McGruder, C., III; Barnaby, D.; Carini, M.; Gelderman, R.; Hackney, K.; Hackney, R.; Marchenko, S.; Scott, R.; Yan, Li; Chen, Wen-Ping

    The long-term monitoring of AGNs and massive stars, the search for extrasolar planets via the transit method and the detection of unpredictable transient events such as gamma-ray bursts require continuous observations by a world-wide network of telescopes. Two telescopes of this network are located in the USA (Kitt Peak and Kentucky). Western Kentucky University (USA) along with National Central University (Taiwan) and Yunnan Observatory (China) plan to place a fully robotic imaging telescope at Gao Meigu in Li Jiang, China.

  13. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Yong Tao; Jiaqi Zheng; Yuanchang Lin

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  14. Automatic calibration and neural networks for robot guidance

    Science.gov (United States)

    Sethuramasamyraja, Balaji; Ghaffari, Masoud; Hall, Ernest L.

    2003-10-01

    An autonomous robot must be able to sense its environment and react appropriately in a variable environment. The University of Cincinnati Robot team is actively involved in building a small, unmanned, autonomously guided vehicle for the International Ground Robotics Contest organized by Association for Unmanned Vehicle Systems International (AUVSI) each year. The unmanned vehicle is supposed to follow an obstacle course bounded by two white/yellow lines, which are four inches thick and 10 feet apart. The navigation system for one of the University of Cincinnati"s designs, Bearcat, uses 2 CCD cameras and an image-tracking device for the front end processing of the image captured by the cameras. The three dimensional world co-ordinates were reduced to two dimensional image coordinates as a result of the transformations taking place from the ground plane to the image plane. A novel automatic calibration system was designed to transform the image co-ordinates back to world co-ordinates for navigation purposes. The purpose of this paper is to simplify this tedious calibration using an artificial neural network. Image processing is used to automatically detect calibration points. Then a back projection neural algorithm is used to learn the relationships between the image coordinates and three-dimensional coordinates. This transformation is the main focus of this study. Using these algorithms, the robot built with this design is able to track and follow the lines successfully.

  15. Neural networks for advanced control of robot manipulators.

    Science.gov (United States)

    Patino, H D; Carelli, R; Kuchen, B R

    2002-01-01

    Presents an approach and a systematic design methodology to adaptive motion control based on neural networks (NNs) for high-performance robot manipulators, for which stability conditions and performance evaluation are given. The neurocontroller includes a linear combination of a set of off-line trained NNs, and an update law of the linear combination coefficients to adjust robot dynamics and payload uncertain parameters. A procedure is presented to select the learning conditions for each NN in the bank. The proposed scheme, based on fixed NNs, is computationally more efficient than the case of using the learning capabilities of the neural network to be adapted, as that used in feedback architectures that need to propagate back control errors through the model to adjust the neurocontroller. A practical stability result for the neurocontrol system is given. That is, we prove that the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN bank and the design parameters of the controller. In addition, a robust adaptive controller to NN learning errors is proposed, using a sign or saturation switching function in the control law, which leads to global asymptotic stability and zero convergence of control errors. Simulation results showing the practical feasibility and performance of the proposed approach to robotics are given.

  16. Maintaining communication link based on AODV routing protocol in mobile robot networks

    Science.gov (United States)

    Hu, Hui; Jiang, Hong

    2007-12-01

    Wired computer networks are vital in modern life. However, these networks are extremely vulnerable to disaster or attack in emergency situations. Therefore, how to maintain communication link under emergency situations is very important. In this paper, we utilize a series of autonomous mobile slave robots which follow behind the lead robot and automatically stop where needed to maintain an ad hoc network for guaranteeing a link between the lead robot and its remote monitor/control station. To accomplish this target, an efficient communication protocol limitation mobile robots broadcast based on AODV (LMRB-AODV) is proposed for deployment in multi-robot system. After then the lead robot could carry service traffics to the monitor station under emergency situations through the communication link. At any instance, the lead robot has the ability to reclaim the relay robot(s) which are unneeded in the network to rejoin the convoy behind the lead robot and use it to extend the range of wireless communication when the radio frequency (RF) shortcuts are detected by the lead robot. All relay deployment and reclaiming strategy functions occur without the operator's involvement. Finally, we provide a comparative study of their performance in a number of different simulation environments. The results show that the proposed scheme is very efficient in maintaining communication link in wireless network.

  17. Robotic Telescopes and Networks New Tools for Education and Science

    CERN Document Server

    Querci, F R

    1999-01-01

    Nowadays many telescopes around the world are automated and some networks of robotic telescopes are active or planned as shown by the lists we draw up. Such equipment could be used for the training of students and for science in the Universities of Developing Countries and of New Astronomical Countries, by sending them observational data via Internet or through remotely controlled telescopes. It seems that it is time to open up for discussion with UN and ESA organizations and also with IAU, how to implement links between robotic telescopes and such Universities applying for collaborations. Many scientific fields could thus be accessible to them, for example on stellar variability, near-earth object follow-up, gamma-ray burst counterpart tracking, and so on.

  18. Neural Network Schemes in Cartesian Space Control of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yiannis S. BOUTALIS

    2001-12-01

    Full Text Available In this paper we are studying the Cartesian space robot manipulator control problem by using Neural Networks (NN. Although NN compensation for model uncertainties has been traditionally carried out by modifying the joint torque/force of the robot, it is also possible to achieve the same objective by using the NN to modify other quantities of the controller. We present and evaluate four different NN controller designs to achieve disturbance rejection for an uncertain system. The design perspectives are dependent on the compensated position by NN. There are four quantities that can be compensated: torque , force F, control input U and the input trajectory Xd. By defining a unified training signal all NN control schemes have the same goal of minimizing the same objective functions. We compare the four schemes in respect to their control performance and the efficiency of the NN designs, which is demonstrated via simulations.

  19. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  20. Throughput Measurement Method Using Command Packets for Mobile Robot Teleoperation Via a Wireless Sensor Network

    OpenAIRE

    2016-01-01

    We are working to develop an information gathering system comprising a mobile robot and a wireless sensor network (WSN) for use in post-disaster underground environments. In the proposed system, a mobile robot carries wireless sensor nodes and deploys them to construct a WSN in the environment, thus providing a wireless communication infrastructure for mobile robot teleoperation. An operator then controls the mobile robot remotely while monitoring end-to-end communication quality with the mob...

  1. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  2. From social network to safety net: Dementia-friendly communities in rural northern Ontario.

    Science.gov (United States)

    Wiersma, Elaine C; Denton, Alison

    2016-01-01

    Dementia-friendly communities, as communities that enable people with dementia to remain involved and active and have control over their lives for as long as possible, centrally involve social support and social networks for people living with dementia. The purpose of this research was to explore and understand the context of dementia in rural northern communities in Ontario with an emphasis on understanding how dementia friendly the communities were. Using qualitative methods, interviews were conducted with a total of 71 participants, including 37 health service providers, 15 care partners, 2 people living with dementia and 17 other community members such as local business owners, volunteers, local leaders, friends and neighbours. The strong social networks and informal social support that were available to people living with dementia, and the strong commitment by community members, families and health care providers to support people with dementia, were considered a significant asset to the community. A culture of care and looking out for each other contributed to the social support provided. In particular, the familiarity with others provided a supportive community environment. People with dementia were looked out for by community members, and continued to remain connected in their communities. The social support provided in these communities demonstrated that although fragile, this type of support offered somewhat of a safety net for individuals living with dementia. This work provides important insights into the landscape of dementia in rural northern Ontario communities, and the strong social supports that sustain people with dementia remaining in the communities.

  3. Neural network control of mobile robot formations using RISE feedback.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, S

    2009-04-01

    In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are AS and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most NN controllers. Additionally, the stability of the formation in the presence of obstacles is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation do not occur. The asymptotic stability of the follower robots as well as the entire formation during an obstacle avoidance maneuver is demonstrated using Lyapunov methods, and numerical results are provided to verify the theoretical conjectures.

  4. Privacy‐Preserving Friend Matching Protocol approach for Pre‐match in Social Networks

    DEFF Research Database (Denmark)

    Ople, Shubhangi S.; Deshmukh, Aaradhana A.; Mihovska, Albena Dimitrova

    2016-01-01

    that a secure match can achieve at least one order of accuracy and better computational performance than the techniques that use homomorphic encryption.It can handle and tackle new characteristics and an environment for a particular application in a mobile social network....... for use in social networks due to its data sharing problems and information leakage. In this paper, we propose a novel framework for privacy–preserving profile matching. We implement both the client and server portion of the secure match and evaluate its performance network dataset. The results show......Social services make the most use of the user profile matching to help the users to discover friends with similar social attributes (e.g. interests, location, age). However, there are many privacy concerns that prevent to enable this functionality. Privacy preserving encryption is not suitable...

  5. Navigation of autonomous mobile robot using different activation functions of wavelet neural network

    Directory of Open Access Journals (Sweden)

    Panigrahi Pratap Kumar

    2015-03-01

    Full Text Available An autonomous mobile robot is a robot which can move and act autonomously without the help of human assistance. Navigation problem of mobile robot in unknown environment is an interesting research area. This is a problem of deducing a path for the robot from its initial position to a given goal position without collision with the obstacles. Different methods such as fuzzy logic, neural networks etc. are used to find collision free path for mobile robot. This paper examines behavior of path planning of mobile robot using three activation functions of wavelet neural network i.e. Mexican Hat, Gaussian and Morlet wavelet functions by MATLAB. The simulation result shows that WNN has faster learning speed with respect to traditional artificial neural network.

  6. A neural network controller for the path tracking control of a hopping robot involving time delays.

    Science.gov (United States)

    Chaitanya, V Sree Krishna; Reddy, M Srinivas

    2006-02-01

    In this paper a hopping robot motion with offset mass is discussed. A mathematical model has been considered and an efficient single layered neural network has been developed to suit to the dynamics of the hopping robot, which ensures guaranteed tracking performance leading to the stability of the otherwise unstable system. The neural network takes advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot parameters. Time delays in the control mechanism play a vital role in the motion of hopping robots. The present work also enables us to estimate the maximum time delay admissible with out losing the guaranteed tracking performance. Further this neural network does not require offline training procedures. The salient features are highlighted by appropriate simulations.

  7. Experimental and Theoretical Analysis of Storage Friendly TCP Performance in Distributed Storage Area Network

    Directory of Open Access Journals (Sweden)

    Suresh Muknahallipatna

    2007-08-01

    Full Text Available Fibre channel storage area networks (SAN are widely implemented in production data center environments. Recently the storage industry has moved towards deployment of distributed SANs (DSAN, geographically dispersed across large physical distances. In a DSAN, specialized gateway devices interconnect the individual Fibre Channel (FC fabrics over IP networks using TCP/IP based protocols (iFCP or FCIP or over metro to long distance optical networks such as Dense Wavelength Division Multiplexing (DWDM based networks that utilize native FC ports supporting large numbers of link credits. When using TCP/IP based storage networking protocols to interconnect local FC fabrics in a DSAN, the sustained throughput achievable depends upon the link characteristics and TCP/IP stack implementation. Sustaining maximum possible storage traffic throughput across the wide area network enables practical DSAN deployments by maintaining the required site to site service level agreements.This study explores the effects of several TCP/IP modifications on sustained traffic throughput for a DSAN interconnected via iFCP gateways across an impaired network. The TCP/IP stack modifications, known as storage friendly, include changes to the window scaling, congestion avoidance, and fast recovery algorithms. The theoretical background and experimental results are presented to explain and illustrate these modifications.

  8. Neural network payload estimation for adaptive robot control.

    Science.gov (United States)

    Leahy, M R; Johnson, M A; Rogers, S K

    1991-01-01

    A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.

  9. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies

    Science.gov (United States)

    Lee, Woo Jin; Lee, Won Kyung

    2016-01-01

    Because of the remarkable developments in robotics in recent years, technological convergence has been active in this area. We focused on finding patterns of convergence within robot technology using network analysis of patents in both the USPTO and KIPO. To identify the variables that affect convergence, we used quadratic assignment procedures (QAP). From our analysis, we observed the patent network ecology related to convergence and found technologies that have great potential to converge with other robotics technologies. The results of our study are expected to contribute to setting up convergence based R&D policies for robotics, which can lead new innovation. PMID:27764196

  10. Kinematic Analysis of 3-DOF Planer Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jolly Atit Shah

    2012-07-01

    Full Text Available Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 3-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 3-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

  11. Adaptive Color Mapping for NAO Robot Using Neural Network

    Directory of Open Access Journals (Sweden)

    Vahid Rahmani

    Full Text Available While playing soccer, the main task of the robot vision system is identifying and tracking objects such as ball, goals, teammate robots and opponent robots. The basis of many object identification methods, particularly those in soccer robots and RoboCup e ...

  12. The role of gender and friends' gender on peer socialization of adolescent drinking: a prospective multilevel social network analysis.

    Science.gov (United States)

    Deutsch, Arielle R; Steinley, Douglas; Slutske, Wendy S

    2014-09-01

    Although socializing effects of friends' drinking on adolescent drinking behavior have been firmly established in previous literature, study results on the importance of gender, as well as the specific role that gender may play in peer socialization, are very mixed. Given the increasing importance of gender in friendships (particularly opposite-sex friendships) during adolescence, it is necessary to better understand the nuanced roles that gender can play in peer socialization effects on alcohol use. In addition, previous studies focusing on the interplay between individual gender and friends' gender have been largely dyadic; less is known about potential gendered effects of broader social networks. The current study sought to further investigate potential effects of gender on friends' influence on adolescent drinking behavior with particular emphasis on the number of same-sex and opposite-sex friends within one's friendship network, as well as closeness to these friends. Using Waves I and II of the saturated sample of the National Longitudinal Study of Adolescent Health (Add Health), adolescent friendship networks were used to calculate the mean drinking behaviors of adolescent friends. Multi-level models estimated the effects of individual drinking behaviors, friend drinking behaviors, and school-level drinking behaviors on adolescent drinking 1 year later, as well as moderating effects of gender composition of friendship groups and male and female friend closeness on the relationship between friends' drinking behaviors and adolescent drinking behavior. Results documented that gender composition of friendship groups did not influence the effect of friends' drinking on individual drinking 1 year later. However, closeness to friends did influence this relationship. As closeness to male friends decreased, the influence of their drinking behavior increased, for both boys and girls. A similar effect was found for female friends, but only for boys. Female friend

  13. REAL-TIME MOTION PLANNING METHOD BASED ON NEURAL NETWORKS FOR MULTIPLE MOBILE ROBOTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The motion planning of multiple mobile robots undertaking individual tasks in the same environment is studied. A motion planning method based on neural networks is proposed. By storing fuzzy rules in neural networks the method can fully make use of the association ability and high processing speed of neural networks to make robots avoid collisions with other objects in real time.Compared with rules method,the method can not only avoid building a large and complex rules base but also make robots avoid collisions and conflicts at higher speed and with higher intelligence.

  14. Full-state tracking control of a mobile robot using neural networks.

    Science.gov (United States)

    Chaitanya, V Sree Krishna

    2005-10-01

    In this paper a nonholonomic mobile robot with completely unknown dynamics is discussed. A mathematical model has been considered and an efficient neural network is developed, which ensures guaranteed tracking performance leading to stability of the system. The neural network assumes a single layer structure, by taking advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot dynamic parameters. No assumptions relating to the boundedness is placed on the unmodeled disturbances. It is capable of generating real-time smooth and continuous velocity control signals that drive the mobile robot to follow the desired trajectories. The proposed approach resolves speed jump problem existing in some previous tracking controllers. Further, this neural network does not require offline training procedures. Lyapunov theory has been used to prove system stability. The practicality and effectiveness of the proposed tracking controller are demonstrated by simulation and comparison results.

  15. Application of neural networks and fuzzy control to the welding robot

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Intelligent control is applied in welding robot. The neural network was used for detecting the deviation of the torch from the center of the gap. The robot tracing the welding line with the fuzzy controller. The proposed method was successfully used to seam tracking in V-groove weld configuration .

  16. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  17. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.

    Science.gov (United States)

    Tani, Jun; Nishimoto, Ryu; Namikawa, Jun; Ito, Masato

    2008-02-01

    This paper examines characteristics of interactive learning between human tutors and a robot having a dynamic neural-network model, which is inspired by human parietal cortex functions. A humanoid robot, with a recurrent neural network that has a hierarchical structure, learns to manipulate objects. Robots learn tasks in repeated self-trials with the assistance of human interaction, which provides physical guidance until the tasks are mastered and learning is consolidated within the neural networks. Experimental results and the analyses showed the following: 1) codevelopmental shaping of task behaviors stems from interactions between the robot and a tutor; 2) dynamic structures for articulating and sequencing of behavior primitives are self-organized in the hierarchically organized network; and 3) such structures can afford both generalization and context dependency in generating skilled behaviors.

  18. Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Caihong Zhang

    2014-01-01

    Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.

  19. EFPC: An Environmentally Friendly Power Control Scheme for Underwater Sensor Networks.

    Science.gov (United States)

    Yang, Qiuling; Su, Yishan; Jin, Zhigang; Yao, Guidan

    2015-01-01

    In oceans, the limited acoustic spectrum resource is heavily shared by marine mammals and manmade systems including underwater sensor networks. In order to limit the negative impact of acoustic signal on marine mammals, we propose an environmentally friendly power control (EFPC) scheme for underwater sensor networks. EFPC allocates transmission power of sensor nodes with a consideration of the existence of marine mammals. By applying a Nash Equilibrium based utility function with a set of limitations to optimize transmission power, the proposed power control algorithm can conduct parallel transmissions to improve the network's goodput, while avoiding interference with marine mammals. Additionally, to localize marine mammals, which is a prerequisite of EFPC, we propose a novel passive hyperboloid localization algorithm (PHLA). PHLA passively localize marine mammals with the help of the acoustic characteristic of these targets. Simulation results show that PHLA can localize most of the target with a relatively small localization error and EFPC can achieve a close goodput performance compared with an existing power control algorithm while avoiding interfering with marine mammals.

  20. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  1. Manipulator adaptive control by neural networks in an orange picking robot.

    Science.gov (United States)

    Cavalieri, S; Plebe, A

    1996-12-01

    The paper focuses on the use of neural networks for process identification in an orange-picking robot adaptive control system. The results that will be shown in the paper refer to a study carried out under the European Community ESPRIT project "CONNY", dealing with the application of neural networks to robotics. The aim of the research is to verify the possibility of integrating a neural identification module in a traditional system to control the movement of the manipulators of the robot. The paper illustrates integration of neural identification in the existing orange-picking robot control system, highlighting the improvement of performance obtainable. Although the proposal refers to a specific robot, it can be applied to any system with the same dynamic features.

  2. Robust Neural Network Control of Electrically Driven Robot Manipulator using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Shafiei

    2010-02-01

    Full Text Available A novel approach to neural network based tracking-control of robot manipulator including actuator dynamics is proposed by using of backstepping method. A simple two-step backstepping is considered for an nlink robotic system, and a feedforward neural controller is designed at second step where structured and unstructured uncertainties in robot dynamics and actuator model are approximated by this neural controller. Bounds of network reconstruction error and other imprecisions are estimated adaptively and for compensating them, a robust control signal is added and modified. Stability analysis is performed by the Lyapunov direct method and performance efficiency of the proposed controller is justified by the simulations.

  3. Network-based reconfiguration routes for a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    LIU JinGuo; MA ShuGen; WANG YueChao; LI Bin

    2008-01-01

    This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot.The self-reconfigurable modular robot named "AMOEBA-Ⅰ" has nine kinds of non-isomorphic configurations that consist of a configuration network.Each configuration of the robot is defined to be a node in the weighted and directed configuration network.The transformation from one configuration to another is represented by a directed path with nonnegative weight.Graph theory is applied in the reconfiguration analysis,where reconfiguration route,reconfigurable matrix and route matrix are defined according to the topological information of these configurations.Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route.Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper.And it is potentially suitable for other self-reconfigurable robots' configuration control and reconfiguration planning.

  4. EFPC: An Environmentally Friendly Power Control Scheme for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiuling Yang

    2015-11-01

    Full Text Available In oceans, the limited acoustic spectrum resource is heavily shared by marine mammals and manmade systems including underwater sensor networks. In order to limit the negative impact of acoustic signal on marine mammals, we propose an environmentally friendly power control (EFPC scheme for underwater sensor networks. EFPC allocates transmission power of sensor nodes with a consideration of the existence of marine mammals. By applying a Nash Equilibrium based utility function with a set of limitations to optimize transmission power, the proposed power control algorithm can conduct parallel transmissions to improve the network’s goodput, while avoiding interference with marine mammals. Additionally, to localize marine mammals, which is a prerequisite of EFPC, we propose a novel passive hyperboloid localization algorithm (PHLA. PHLA passively localize marine mammals with the help of the acoustic characteristic of these targets. Simulation results show that PHLA can localize most of the target with a relatively small localization error and EFPC can achieve a close goodput performance compared with an existing power control algorithm while avoiding interfering with marine mammals.

  5. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    Science.gov (United States)

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.

  6. Decentralized Control of Unmanned Aerial Robots for Wireless Airborne Communication Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2010-09-01

    Full Text Available This paper presents a cooperative control strategy for a team of aerial robotic vehicles to establish wireless airborne communication networks between distributed heterogeneous vehicles. Each aerial robot serves as a flying mobile sensor performing a reconfigurable communication relay node which enabls communication networks with static or slow-moving nodes on gorund or ocean. For distributed optimal deployment of the aerial vehicles for communication networks, an adaptive hill-climbing type decentralized control algorithm is developed to seek out local extremum for optimal localization of the vehicles. The sensor networks estabilished by the decentralized cooperative control approach can adopt its configuraiton in response to signal strength as the function of the relative distance between the autonomous aerial robots and distributed sensor nodes in the sensed environment. Simulation studies are conducted to evaluate the effectiveness of the proposed decentralized cooperative control technique for robust communication networks.

  7. Distributed Algorithms on Robotic Networks for Coordination in Perception Tasks

    OpenAIRE

    Aragüés Muñoz, María del Rosario; Sagüés Blázquiz, Carlos

    2012-01-01

    El creciente interés en aplicaciones multi-robot está motivado por el amplio abanico de posibilidades ofrecidas por equipos de robot que realizan tareas colectivas de forma cooperativa. La eficiencia y robustez de estos equipos de robots va mucho más allá de lo que se puede realizar con un robot trabajando de forma individual. En estos escenarios, las estrategias distribuidas atraen una gran atención, especialmente en aplicaciones que son inherentemente distribuidas en espacio, tiempo o func...

  8. Throughput Measurement Method Using Command Packets for Mobile Robot Teleoperation Via a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Kei SAWAI

    2016-04-01

    Full Text Available We are working to develop an information gathering system comprising a mobile robot and a wireless sensor network (WSN for use in post-disaster underground environments. In the proposed system, a mobile robot carries wireless sensor nodes and deploys them to construct a WSN in the environment, thus providing a wireless communication infrastructure for mobile robot teleoperation. An operator then controls the mobile robot remotely while monitoring end-to-end communication quality with the mobile robot. Measurement of communication quality on wireless LANs has been widely studied. However, a throughput measurement method has not been developed for assessing the usability of wireless mobile robot teleoperation. In particular, a measurement method is needed that can handle mobile robots as they move around an unknown environment. Accordingly, in this paper, we propose a method for measuring throughput as a measure of communication quality in a WSN for wireless teleoperation of mobile robots. The feasibility of the proposed method was evaluated and verified in in practical field test where an operator remotely controlled mobile robots using a WSN.

  9. A maintenance scheme of communication link in mobile robot ad hoc networks based on potential field

    Science.gov (United States)

    Jiang, Hong; Jin, WenPing; Yang, GyoYing; Li, LeiMin

    2007-12-01

    Maintaining communication link in mobile robot networks between task robots and a control center is very important in some urgent application occasions such as remote danger detections. To offer a reliable multi-hop communication link, a link maintaining scheme based on artificial potential field is presented. The scheme is achieved by a task robot and communication relay ones. The task robot performs predefined tasks, and relay ones are simple robots which form a communication relay chain. When robots move towards destination in formation, a kind of attractive force created by communication quality is added to traditional potential field, and relay robots follow the task robot and automatically stop at adequate locations to form a relay chain from the control station to the task robot. In order to increase relay usage efficiency, when some relays are replaced by other short cut relays, the redundant relays can be reused by initiating another moving toward specified location. Simulation results show that the scheme can provide a reliable multi-hop communication link, and that the communication connection can be obtained through minimal number of relays.

  10. Biomimetics Micro Robot with Active Hardware Neural Networks Locomotion Control and Insect-Like Switching Behaviour

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2012-11-01

    Full Text Available In this paper, we presented the 4.0, 2.7, 2.5 mm, width, length, height size biomimetics micro robot system which was inspired by insects. The micro robot system was made from silicon wafer fabricated by micro electro mechanical systems (MEMS technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the insect‐like switching behaviour. In addition, we constructed the active hardware neural networks (HNN by analogue CMOS circuits as a locomotion controlling system. The HNN utilized the pulse‐type hardware neuron model (P‐HNM as a basic component. The HNN outputs the driving pulses using synchronization phenomena such as biological neural networks. The driving pulses can operate the actuators of the biomimetics micro robot directly. Therefore, the HNN realized the robot control without using any software programs or A/D converters. The micro robot emulated the locomotion method and the neural networks of an insect with rotary type actuators, link mechanisms and HNN. The micro robot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 26.4 mm/min when the step width was 0.88 mm.

  11. Control Loop Sensor Calibration Using Neural Networks for Robotic Control

    Directory of Open Access Journals (Sweden)

    Kathleen A. Kramer

    2011-01-01

    Full Text Available Whether sensor model’s inaccuracies are a result of poor initial modeling or from sensor damage or drift, the effects can be just as detrimental. Sensor modeling errors result in poor state estimation. This, in turn, can cause a control system relying upon the sensor’s measurements to become unstable, such as in robotics where the control system is applied to allow autonomous navigation. A technique referred to as a neural extended Kalman filter (NEKF is developed to provide both state estimation in a control loop and to learn the difference between the true sensor dynamics and the sensor model. The technique requires multiple sensors on the control system so that the properly operating and modeled sensors can be used as truth. The NEKF trains a neural network on-line using the same residuals as the state estimation. The resulting sensor model can then be reincorporated fully into the system to provide the added estimation capability and redundancy.

  12. Fire Extinguisher Robot Using Ultrasonic Camera and Wi-Fi Network Controlled with Android Smartphone

    Science.gov (United States)

    Siregar, B.; Purba, H. A.; Efendi, S.; Fahmi, F.

    2017-03-01

    Fire disasters can occur anytime and result in high losses. It is often that fire fighters cannot access the source of fire due to the damage of building and very high temperature, or even due to the presence of explosive materials. With such constraints and high risk in the handling of the fire, a technological breakthrough that can help fighting the fire is necessary. Our paper proposed the use of robots to extinguish the fire that can be controlled from a specified distance in order to reduce the risk. A fire extinguisher robot was assembled with the intention to extinguish the fire by using a water pump as actuators. The robot movement was controlled using Android smartphones via Wi-fi networks utilizing Wi-fi module contained in the robot. User commands were sent to the microcontroller on the robot and then translated into robotic movement. We used ATMega8 as main microcontroller in the robot. The robot was equipped with cameras and ultrasonic sensors. The camera played role in giving feedback to user and in finding the source of fire. Ultrasonic sensors were used to avoid collisions during movement. Feedback provided by camera on the robot displayed on a screen of smartphone. In lab, testing environment the robot can move following the user command such as turn right, turn left, forward and backward. The ultrasonic sensors worked well that the robot can be stopped at a distance of less than 15 cm. In the fire test, the robot can perform the task properly to extinguish the fire.

  13. [Robotics].

    Science.gov (United States)

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  14. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    Science.gov (United States)

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  15. Show me your friends and I will tell you what type of person you are: how own profile, number of friends, and type of friends influence impression formation on social network sites

    NARCIS (Netherlands)

    Utz, S.

    2010-01-01

    This experiment examines how far extraversion of the target (self-generated information), extraversion of the target's friends (friends-generated information), and number of friends (system-generated information) influence the perceived popularity, communal orientation, and social attractiveness of

  16. Show me your friends and I will tell you what type of person you are: how own profile, number of friends, and type of friends influence impression formation on social network sites

    NARCIS (Netherlands)

    Utz, S.

    2010-01-01

    This experiment examines how far extraversion of the target (self-generated information), extraversion of the target's friends (friends-generated information), and number of friends (system-generated information) influence the perceived popularity, communal orientation, and social attractiveness of

  17. Adaptive neural network consensus based control of robot formations

    Science.gov (United States)

    Guzey, H. M.; Sarangapani, Jagannathan

    2013-05-01

    In this paper, adaptive consensus based formation control scheme is derived for mobile robots in a pre-defined formation when full dynamics of the robots which include inertia, Corolis, and friction vector are considered. It is shown that dynamic uncertainties of robots can make overall formation unstable when traditional consensus scheme is utilized. In order to estimate the affine nonlinear robot dynamics, a NN based adaptive scheme is utilized. In addition to this adaptive feedback control input, an additional control input is introduced based on the consensus approach to make the robots keep their desired formation. Subsequently, the outer consensus loop is redesigned for reduced communication. Lyapunov theory is used to show the stability of overall system. Simulation results are included at the end.

  18. A Dual Neural Network as an Identifier for a Robot Arm

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez Rodríguez

    2015-04-01

    Full Text Available A novel dual recurrent neural network is presented and is used to identify the dynamics for a robot arm with three-Degrees of freedom (DoF and trained with a filtered error algorithm. The dual neural network has a structure of two recurrent neural networks working simultaneously, fighting each other to obtain the best identification values, being the criteria for the selection of the vest values: the standard deviation for the identification error. The neural identifier provides important information to a nonlinear block control transformation form acting as a control law to solve the trajectory tracking problem for the robotic plant’s behavior.

  19. Under-Actuated Robot Manipulator Positioning Control Using Artificial Neural Network Inversion Technique

    Directory of Open Access Journals (Sweden)

    Ali T. Hasan

    2012-01-01

    Full Text Available This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.

  20. Decentralized coverage control problems for mobile robotic sensor and actuator networks

    CERN Document Server

    Savkin, A; Xi, Z; Javed, F; Matveev, A; Nguyen, H

    2015-01-01

    This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are abl...

  1. Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion

    Directory of Open Access Journals (Sweden)

    Takehiko Ogawa

    2010-01-01

    Full Text Available In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.

  2. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.

    Science.gov (United States)

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang

    2016-12-01

    It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  3. An Integrated Software-based Solution for Modular and Self-independent Networked Robot

    CERN Document Server

    Firmansyah, I; Hermanto, B; Handoko, L T

    2008-01-01

    An integrated software-based solution for a modular and self-independent networked robot is introduced. The wirelessly operatable robot has been developed mainly for autonomous monitoring works with full control over web. The integrated software solution covers three components : a) the digital signal processing unit for data retrieval and monitoring system; b) the externally executable codes for control system; and c) the web programming for interfacing the end-users with the robot. It is argued that this integrated software-based approach is crucial to realize a flexible, modular and low development cost mobile monitoring apparatus.

  4. Predicting the Motion of a Robot Manipulator with Unknown Trajectories Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Sai Hong Tang

    2014-10-01

    Full Text Available Mathematically, the motion of a robot manipulator can be computed through the integration of kinematics, dynamics, and trajectories calculations. However, the calculations are complex and only can be applied if the configuration of the robot and the characteristics of the joint trajectories are known. This paper introduces the use of artificial neural networks (ANN to overcome these shortcomings by solving nonlinear functions and adapting the characteristics of unknown trajectories. A virtual six-degree-of-freedom (DOF robot manipulator is exploited as an example to show the robustness of the developed ANN topology.

  5. Automatic approach to stabilization and control for multi robot teams by multilayer network operator

    Directory of Open Access Journals (Sweden)

    Diveev Askhat

    2016-01-01

    Full Text Available The paper describes a novel methodology for synthesis a high-level control of autonomous multi robot teams. The approach is based on multilayer network operator method that belongs to a symbolic regression class. Synthesis is accomplished in three steps: stabilizing robots about some given position in a state space, finding optimal trajectories of robots’ motion as sets of stabilizing points and then approximating all the points of optimal trajectories by some multi-dimensional function of state variables. The feasibility and effectiveness of the proposed approach is verified on simulations of the task of control synthesis for three mobile robots parking in the constrained space.

  6. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    Directory of Open Access Journals (Sweden)

    Ehsan Ahvar

    2016-06-01

    Full Text Available User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i users’ privacy; (ii device-/tag-free; and (iii fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  7. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    Science.gov (United States)

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-06-27

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  8. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    Science.gov (United States)

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951

  9. Neural network-based adaptive controller design of robotic manipulators with an observer.

    Science.gov (United States)

    Sun, F; Sun, Z; Woo, P Y

    2001-01-01

    A neural network (NN)-based adaptive controller with an observer is proposed for the trajectory tracking of robotic manipulators with unknown dynamics nonlinearities. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity, while NNs are employed to further improve the control performance of the controlled system through approximating the modified robot dynamics function. The adaptive controller for robots with an observer can guarantee the uniform ultimate bounds of the tracking errors and the observer errors as well as the bounds of the NN weights. For performance comparisons, the conventional adaptive algorithm with an observer using linearity in parameters of the robot dynamics is also developed in the same control framework as the NN approach for online approximating unknown nonlinearities of the robot dynamics. Main theoretical results for designing such an observer-based adaptive controller with the NN approach using multilayer NNs with sigmoidal activation functions, as well as with the conventional adaptive approach using linearity in parameters of the robot dynamics are given. The performance comparisons between the NN approach and the conventional adaptation approach with an observer is carried out to show the advantages of the proposed control approaches through simulation studies.

  10. Motives for Online Friending and Following: The Dark Side of Social Network Site Connections

    Directory of Open Access Journals (Sweden)

    Jaap W. Ouwerkerk

    2016-08-01

    Full Text Available Motives for “friending,” following, or connecting with others on social network sites are often positive, but darker motives may also play an important role. A survey with a novel Following Motives Scale (FMS demonstrates accordingly that positive, sociable motives (i.e., others providing a valued source for humor and information, others sharing a common background, as well as relationship maintenance and inspirational motives (i.e., others providing a target for upward social comparison can be distinguished from darker motives related to insecurity (i.e., others providing reassurance, preference for online interaction, mediated voyeurism, as well as social obligation, and even darker antisocial motives related to self-enhancement (i.e., others providing a target for downward social comparison, competition, schadenfreude, gossip, as well as “hate-following”. Results show that lower self-esteem and higher levels of need for popularity, narcissism, and dispositional schadenfreude characterize users with stronger dark side motives, whereas users with more sociable motives report more satisfaction with life, thereby providing construct validity for the novel scale. Convergent validity is demonstrated by positive relations between following motives and both time spent and following counts on different social network sites. Moreover, an embedded experiment shows that antisocial motives predicted acceptance of a Facebook friendship request from a male or female high school acquaintance who suffered a setback in the domain of appearance or status (i.e., a convenient source for self-enhancement, thereby providing additional convergent validity for the Antisocial Motives subscale.

  11. A Dynamic Effective Fault Tolerance System in Robotic Manipulator using a Hybrid Neural Network based Controller

    Directory of Open Access Journals (Sweden)

    G. Jiji

    2014-04-01

    Full Text Available Robot manipulator play important role in the field of automobile industry, mainly it is used in gas welding application and manufacturing and assembling of motor parts. In complex trajectory, on each joint the speed of the robot manipulator is affected. For that reason, it is necessary to analyze the noise and vibration of robot's joints for predicting faults also improve the control precision of robotic manipulator. In this study we will propose a new fault detection system for Robot manipulator. The proposed hybrid fault detection system is designed based on fuzzy support vector machine and Artificial Neural Networks (ANNs. In this system the decouple joints are identified and corrected using fuzzy SVM, here non-linear signal are used for complete process and treatment, the Artificial Neural Networks (ANNs are used to detect the free-swinging and locked joint of the robot, two types of neural predictors are also employed in the proposed adaptive neural network structure. The simulation results of a hybrid controller demonstrate the feasibility and performance of the methodology.

  12. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  13. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  14. LAR VS DSR: EVALUATION OF AD HOC NETWORK PROTOCOLS IN PRACTICAL MANAGEMENT OF COMMUNICATION OF ROBOTS

    Directory of Open Access Journals (Sweden)

    HANIEH MOVAHEDI

    2014-12-01

    Full Text Available Controlling and managing of robots and their information communication to each other is an important issue, and wireless technologies without infrastructure like Ad hoc networks due to their quick trigger and cost slightness can play efficiently. Various protocols have been used in this field and in the recent study, two famous Ad hoc network protocols have been simulated for 4 km2 work areas with changes of the same elements in types of robots like speed, pause time, number of nodes, important parameters that show network optimization rate and include PDR, Throughput, End-To-End Delay by using simulation in GloMoSim software. In this research, for suitable protocols in every time, output has been calculated by making the same chance and then, obtained information was investigated statistically. In total, LAR protocol was recognized that had higher scores than DSR and could be used as an optimum protocol in robotic industries, technically.

  15. Training a Network of Electronic Neurons for Control of a Mobile Robot

    Science.gov (United States)

    Vromen, T. G. M.; Steur, E.; Nijmeijer, H.

    An adaptive training procedure is developed for a network of electronic neurons, which controls a mobile robot driving around in an unknown environment while avoiding obstacles. The neuronal network controls the angular velocity of the wheels of the robot based on the sensor readings. The nodes in the neuronal network controller are clusters of neurons rather than single neurons. The adaptive training procedure ensures that the input-output behavior of the clusters is identical, even though the constituting neurons are nonidentical and have, in isolation, nonidentical responses to the same input. In particular, we let the neurons interact via a diffusive coupling, and the proposed training procedure modifies the diffusion interaction weights such that the neurons behave synchronously with a predefined response. The working principle of the training procedure is experimentally validated and results of an experiment with a mobile robot that is completely autonomously driving in an unknown environment with obstacles are presented.

  16. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242

    Directory of Open Access Journals (Sweden)

    Ahmed R. J. Almusawi

    2016-01-01

    Full Text Available This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot’s joint angles.

  17. Robot Assisted Wireless Sensor Network for Monitoring and Detection of Explosives in Indoor Environment

    Directory of Open Access Journals (Sweden)

    Joshua D Freeman,

    2011-05-01

    Full Text Available In recent years, remote environment monitoring has been significantly improved with wireless sensor networking technology. This paper presents the real time streaming of an indoor environment using a wireless sensor network and a set of self-navigating robots. Mobile robots with mounted sensors will autonomously navigate through an indoor area with unknown obstacles. The robots will be able toavoid obstacles and move around the region. The robots sense the environmental parameters of the region, and send that data to the remote monitoring terminals using an underlying wireless sensornetwork. This design is applicable to networks where some of the sensors may not have sufficient range to sense data more accurately and closer monitoring is required. Effective path planning for the mobile robot is achieved by combining a map of the area, the sensor readings and the radio strength of the sensor network. Email alerts can be sent to officials if the sensed data goes above a predefined threshold level, thus successfully detecting the presence of explosives in a given area. This system streams the data in realtimeto the Internet making it possible for authorized personnel to view the status of the environment online.

  18. Application of neural network to humanoid robots-development of co-associative memory model.

    Science.gov (United States)

    Itoh, Kazuko; Miwa, Hiroyasu; Takanobu, Hideaki; Takanishi, Atsuo

    2005-01-01

    We have been studying a system of many harmonic oscillators (neurons) interacting via a chaotic force since 2002. Each harmonic oscillator is driven by chaotic force whose bifurcation parameter is modulated by the position of the harmonic oscillator. Moreover, a system of mutually coupled chaotic neural networks was investigated. Different patterns were stored in each network and the associative memory problem was discussed in these networks. Each network can retrieve the pattern stored in the other network. On the other hand, we have been developing new mechanisms and functions for a humanoid robot with the ability to express emotions and communicate with humans in a human-like manner. We introduced a mental model which consisted of the mental space, the mood, the equations of emotion, the robot personality, the need model, the consciousness model and the behavior model. This type of mental model was implemented in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II). In this paper, an associative memory model using mutually coupled chaotic neural networks is proposed for retrieving optimum memory (recognition) in response to a stimulus. We implemented this model in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II).

  19. APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on radial basis function (RBF) neural networks, the healthy working model of each sub-system of robot in FMS is established. A new approach to fault on-line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi-layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS.

  20. Dynamic Mobile RobotNavigation Using Potential Field Based Immune Network

    Directory of Open Access Journals (Sweden)

    Guan-Chun Luh

    2007-04-01

    Full Text Available This paper proposes a potential filed immune network (PFIN for dynamic navigation of mobile robots in an unknown environment with moving obstacles and fixed/moving targets. The Velocity Obstacle method is utilized to determine imminent obstacle collision of a robot moving in the time-varying environment. The response of the overall immune network is derived by the aid of fuzzy system. Simulation results are presented to verify the effectiveness of the proposed methodology in unknown environments with single and multiple moving obstacles

  1. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the co......In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity...

  2. A Hybrid System of Hierarchical Planning of Behaviour Selection Networks for Mobile Robot Control

    Directory of Open Access Journals (Sweden)

    Young-Seol Lee

    2014-04-01

    Full Text Available An office delivery robot receives a large amount of sensory data and there is uncertainty in its action outcomes. The robot should not only accomplish its goals using environmental information, but also consider various exceptions simultaneously. In this paper, we propose a hybrid system using hierarchical planning of modular behaviour selection networks to generate autonomous behaviour in the office delivery robot. Behaviour selection networks, one of the well-known behaviour-based methods suitable for goal-oriented tasks, are made up of several smaller behaviour modules. Planning is attached to the construct and adjust sequences of the modules by considering the sub-goals, the priority in each task and the user feedback. This helps the robot to quickly react in dynamic situations as well as achieve global goals efficiently. The proposed system is verified with both the Webot simulator and a Khepera II robot that runs in a real office environment carrying out delivery tasks. Experimental results have shown that a robot can achieve goals and generate module sequences successfully even in unpredictable situations. Additionally, the proposed planning method reduced the elapsed time during tasks by 17.5% since it adjusts the behaviour module sequences more effectively.

  3. Leveraging Large-Scale Semantic Networks for Adaptive Robot Task Learning and Execution.

    Science.gov (United States)

    Boteanu, Adrian; St Clair, Aaron; Mohseni-Kabir, Anahita; Saldanha, Carl; Chernova, Sonia

    2016-12-01

    This work seeks to leverage semantic networks containing millions of entries encoding assertions of commonsense knowledge to enable improvements in robot task execution and learning. The specific application we explore in this project is object substitution in the context of task adaptation. Humans easily adapt their plans to compensate for missing items in day-to-day tasks, substituting a wrap for bread when making a sandwich, or stirring pasta with a fork when out of spoons. Robot plan execution, however, is far less robust, with missing objects typically leading to failure if the robot is not aware of alternatives. In this article, we contribute a context-aware algorithm that leverages the linguistic information embedded in the task description to identify candidate substitution objects without reliance on explicit object affordance information. Specifically, we show that the task context provided by the task labels within the action structure of a task plan can be leveraged to disambiguate information within a noisy large-scale semantic network containing hundreds of potential object candidates to identify successful object substitutions with high accuracy. We present two extensive evaluations of our work on both abstract and real-world robot tasks, showing that the substitutions made by our system are valid, accepted by users, and lead to a statistically significant reduction in robot learning time. In addition, we report the outcomes of testing our approach with a large number of crowd workers interacting with a robot in real time.

  4. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors

    Directory of Open Access Journals (Sweden)

    Arturo Gil

    2010-05-01

    Full Text Available In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  5. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  6. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  7. Coordination control of behavior-based distributed networked robotic systems: a state modeling approach

    Science.gov (United States)

    Kuppan Chetty, R. M.; Singaperumal, M.; Nagarajan, T.

    2007-12-01

    The coordinated motion of group of autonomous mobile robots for the achievement of goal has been of high interest since the last decade. Previous research works have revealed that one of the essential problems in the area is to plan, navigate and coordinate the motion of robots, avoiding obstacles as well as each other while still achieving the goal. In this paper, Behavior Based approach for the control of distributed networked robotic system, concentrated towards the navigation, planning and coordination between them in unknown complex environment is addressed. A layered behavior based control architecture, with the basic behaviors of Message passing, Obstacle avoidance, Safe wandering and Pit sensing have been designed and assigned to the individual robotic systems to form a navigation algorithm. Validation of this guidance algorithm is carried out through simulations using SIMULINK/State flow.

  8. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.

    Science.gov (United States)

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2006-12-01

    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  9. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    Science.gov (United States)

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Wall-E Surveyor Robot using Wireless Networks

    Directory of Open Access Journals (Sweden)

    Aatish Chandak

    2014-12-01

    Full Text Available The methods for autonomous navigation of a robot in a real world environment is an area of interest for current researchers. Although there have been a variety of models developed, there are problems with regards to the integration of sensors for navigation in an outdoor environment like moving obstacles, sensor and component accuracy. This paper details an attempt to develop an autonomous robot prototype using only ultrasonic sensors for sensing the environment and GPS/ GSM and a digital compass for position and localization. An algorithm for the navigation based on reactive behaviour is presented. Once the robot has navigated to its final location based on remote access by the owner, it surveys the geographical region and uploads the real time images to the owner using an API that is developed for the Raspberry PI’s kernel.

  11. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  12. Robots

    Institute of Scientific and Technical Information of China (English)

    驷萍

    1997-01-01

    一篇介绍机器人的文章写得如此耐读,如此清新! 首先.我们弄清了robot一词的来历: It was used first in 1920 in a play by Czcchoslovak writer Karel Capek.The wordrobot comes from the Czech word for slave. 上句提供了一个时间:1920。文章接着便抓住这个时间做文章: 且The word robot.and robots themselves are less than 100 years old.But humanshave been dreaming of real and imaginary copies of themselves for thousands of years. 文章就这样写出了波澜,1920年和 thousands of years自然而然构成了强烈对比。1954年和1960s是两个谈及机器人时不得不一提的时间: In 1954,the world’s first robot was produced in the United States. During the 1960s,the first industrial robots appeared beside human workers infactories.下面这句让我们体味到 the Czech word for slave中的 slave不仅言之有理,而且影视和小说里的机器人“造反”,进而 killed the humans who made them的情节也“事出有因”: What do today’s robots do?Robots do work.Work that human consideruninteresting or dangerous.…do many jobs that people consider tiring. 本文将机器人的“功过”放在一起写,笔

  13. Proposition of a full deterministic medium access method for wireless network in a robotic application

    CERN Document Server

    Bossche, Adrien Van Den; Campo, Eric

    2008-01-01

    Today, many network applications require shorter react time. Robotic field is an excellent example of these needs: robot react time has a direct effect on its task's complexity. Here, we propose a full deterministic medium access method for a wireless robotic application. This contribution is based on some low-power wireless personal area networks, like ZigBee standard. Indeed, ZigBee has identified limits with Quality of Service due to non-determinist medium access and probable collisions during medium reservation requests. In this paper, two major improvements are proposed: an efficient polling of the star nodes and a temporal deterministic distribution of peer-to-peer messages. This new MAC protocol with no collision offers some QoS faculties.

  14. Experimental Studies of Neural Network Control for One-Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    P. K. Kim

    2012-01-01

    Full Text Available This paper presents development and control of a disc-typed one-wheel mobile robot, called GYROBO. Several models of the one-wheel mobile robot are designed, developed, and controlled. The current version of GYROBO is successfully balanced and controlled to follow the straight line. GYROBO has three actuators to balance and move. Two actuators are used for balancing control by virtue of gyro effect and one actuator for driving movements. Since the space is limited and weight balance is an important factor for the successful balancing control, careful mechanical design is considered. To compensate for uncertainties in robot dynamics, a neural network is added to the nonmodel-based PD-controlled system. The reference compensation technique (RCT is used for the neural network controller to help GYROBO to improve balancing and tracking performances. Experimental studies of a self-balancing task and a line tracking task are conducted to demonstrate the control performances of GYROBO.

  15. Fuzzy Neural Network based RFID Positioning and Navigation Method for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Bo-Wen Hong

    2013-07-01

    Full Text Available This study proposes the Radio Frequency Identification (RFID indoor positioning and navigation method based on fuzzy neural network. The proposed method is applied to a wheelchair home health care robot with wireless communication. One reader and four tags are used. Based on the Received Signal Strength Indication (RSSI data, the position of the robot can be determined. Further, to overcome the measurement error problem due to environmental parameter variation, a Fuzzy Neural Network (FNN is proposed to compensate the measurement data. The FNN automatically adjust the weight, the variance and the mean value to overcome effectively the environmental parameter variation. A back-propagation algorithm is developed to achieve self-learning. The successful experiment results show that the proposed system architecture and positioning system provide satisfactory accuracy and make home health care wheelchair robot positioning system available for navigation and guidance.

  16. Genetic-Algorithm Seeding Of Idiotypic Networks For Mobile-Robot Navigation

    CERN Document Server

    Whitbrook, Amanda; Garibaldi, Jonathan

    2008-01-01

    Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jernes idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, pre-engineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can...

  17. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    Science.gov (United States)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  18. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  19. Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network

    Science.gov (United States)

    2015-08-14

    independently evolving research directions based on physics -based models of mechanical, electromechanical and electronic devices, operational constraints...interactions between independently evolving research directions based on physics -based models of mechanical, electromechanical and electronic devices...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views

  20. Dynamic Vehicle Routing for Robotic Networks: Models, Fundamental Limitations and Algorithms

    Science.gov (United States)

    2010-04-16

    partitions. SIAM Review, January 2010. Submitted Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 31 / 34 Gossip partitioning policy: sample...Control Conference, Hollywood, CA, October 2009 Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 32 / 34 Gossip partitioning policy: analysis...Dynamic Vehicle Routing for Robotic Networks: Models, Fundamental Limitations and Algorithms Francesco Bullo Center for Control, Dynamical Systems

  1. Social Network Sites, Friends, and Celebrities: The Roles of Social Comparison and Celebrity Involvement in Adolescents’ Body Image Dissatisfaction

    Directory of Open Access Journals (Sweden)

    Shirley S. Ho

    2016-08-01

    Full Text Available This study applies the social comparison theory to examine the effects of adolescents’ engagement in comparison with friends and celebrities on social network sites (SNSs on (a their body image dissatisfaction (BID and (b their drive to be thin (DT or muscular (DM. The study also examines celebrity involvement as an antecedent of the outcome variables. Data were collected through a survey of 1,059 adolescents in Singapore. Regression analyses indicate that SNSs use was related to adolescents’ BID. Specifically, social comparison with friends on SNSs was significantly associated with adolescents’ BID, DT, and DM. Gender differences were also observed—social comparison with celebrities was significantly associated with BID and DT among female adolescents. Celebrity involvement was significantly associated with male BID. Theoretical and practical implications were discussed.

  2. Study on the Robot Robust Adaptive Control Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    温淑焕; 王洪瑞; 吴丽艳

    2003-01-01

    Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The technique will improve the adaptability to environment stiffness when the end-effector is in contact with the environment, and does not require any a priori knowledge on the upper bound of syste uncertainties. Moreover, it need not compute the inverse of inertia matrix. Learning algorithms for neural networks to minimize the force error directly are designed. Simulation results have shown a better force/position tracking when neural network is used.

  3. A networked modular hardware and software system for MRI-guided robotic prostate interventions

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.

    2012-02-01

    Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.

  4. Developmental word grounding through a growing neural network with a humanoid robot.

    Science.gov (United States)

    He, Xiaoyuan; Kojima, Ryo; Hasegawa, Osamu

    2007-04-01

    This paper presents an unsupervised approach of integrating speech and visual information without using any prepared data. The approach enables a humanoid robot, Incremental Knowledge Robot 1 (IKR1), to learn word meanings. The approach is different from most existing approaches in that the robot learns online from audio-visual input, rather than from stationary data provided in advance. In addition, the robot is capable of learning incrementally, which is considered to be indispensable to lifelong learning. A noise-robust self-organized growing neural network is developed to represent the topological structure of unsupervised online data. We are also developing an active-learning mechanism, called "desire for knowledge," to let the robot select the object for which it possesses the least information for subsequent learning. Experimental results show that the approach raises the efficiency of the learning process. Based on audio and visual data, they construct a mental model for the robot, which forms a basis for constructing IKRI's inner world and builds a bridge connecting the learned concepts with current and past scenes.

  5. Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-01-01

    Full Text Available Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR with wireless sensor network- (WSN- based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach.

  6. A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems

    Science.gov (United States)

    Zhong, Xu; Zhou, Yu

    2014-05-01

    This paper presents a decentralized multi-robot motion control strategy to facilitate a multi-robot system, comprised of collaborative mobile robots coordinated through wireless communications, to form and maintain desired wireless communication coverage in a realistic environment with unstable wireless signaling condition. A fuzzy neural network controller is proposed for each robot to maintain the wireless link quality with its neighbors. The controller is trained through reinforcement learning to establish the relationship between the wireless link quality and robot motion decision, via consecutive interactions between the controller and environment. The tuned fuzzy neural network controller is applied to a multi-robot deployment process to form and maintain desired wireless communication coverage. The effectiveness of the proposed control scheme is verified through simulations under different wireless signal propagation conditions.

  7. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.

    Science.gov (United States)

    Ito, Masato; Noda, Kuniaki; Hoshino, Yukiko; Tani, Jun

    2006-04-01

    This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative position between the robot's hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential mechanisms for those observed situated behaviors of the robot.

  8. Optimizing Network Topology to Reduce Aggregate Traffic in Systems of Mobile Robots

    CERN Document Server

    Navaravong, Leenhapat; Pasiliao, Eduardo L; Barnette, Gregory L; Dixon, Warren E

    2011-01-01

    Systems of networked mobile robots, such as unmanned aerial or ground vehicles, will play important roles in future military and commercial applications. The communications for such systems will typically be over wireless links and may require that the robots form an ad hoc network and communicate on a peer-to-peer basis. In this paper, we consider the problem of optimizing the network topology to minimize the total traffic in a network required to support a given set of data flows under constraints on the amount of movement possible at each mobile robot. In this paper, we consider a subclass of this problem in which the initial and final topologies are trees, and the movement restrictions are given in terms of the number of edges in the graph that must be traversed. We develop algorithms to optimize the network topology while maintaining network connectivity during the topology reconfiguration process. Our topology reconfiguration algorithm uses the concept of prefix labelling and routing to move nodes throu...

  9. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human-Robot Interaction.

    Science.gov (United States)

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2016-01-01

    To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language-behavior relationships and the temporal patterns of interaction. Here, "internal dynamics" refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language-behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language-behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.

  10. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human--Robot Interaction

    Directory of Open Access Journals (Sweden)

    Tatsuro Yamada

    2016-07-01

    Full Text Available To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language--behavior relationships and the temporal patterns of interaction. Here, ``internal dynamics'' refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language--behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language--behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.

  11. Guaranteeing Spoof-Resilient Multi-Robot Networks

    Science.gov (United States)

    2016-02-12

    Effective coordination, however, requires trust. In order for these multi- robot systems to perform their tasks optimally, transmitted data is often assumed...of anten- nas. SAR can be implemented using a well-studied signal processing algorithm called MUSIC [16] to obtain spatial fingerprints at each...empirical results in Sec. §9 demonstrate that α performs well when applied both in continuous and discrete settings. However, it is natural to ask

  12. Interaction and intelligence in living neuronal networks interfaced with moving robot

    Science.gov (United States)

    Kudoh, Suguru N.; Taguchi, Takahisa

    2006-01-01

    Neurons form complex networks and it seems that the living neuronal network can perform certain type of information processing. We are interested in intelligence autonomously formed in vitro. The most important features of the two-dimensional culture neural network are that it is a system in which the information processing is autonomously carries out. We reported previously that the functional connections were dynamically modified by synaptic potentiation and the process may be required for reorganization of the functional group of neurons. Such neuron assemblies are critical for information processing in brain. Certain types of feedback stimulation caused suppression of spontaneous network electrical activities and drastic re-organization of functional connections between neurons, when these activities are initially almost synchronized. The result suggests that neurons in dissociated culture autonomously re-organized their functional neuronal networks interacted with their environment. The spatio-temporal pattern of activity in the networks may be a reflection of their external environment. We also interfaced the cultured neuronal network with moving robot. The planar microelectrodes can be used for detecting neuronal electrical signals from the living neuronal network cultured on a 2-dimensional electrode array. The speed of actuators of moving robot was determined by these detected signals. Our goal is reconstruction of the neural network, which can process "thinking" in the dissociated culture system.

  13. Research on the head form design of service robots based on Kansei engineering and BP neural network

    Science.gov (United States)

    Zhu, Yan; Chen, Gang

    2017-01-01

    It is always a difficult problem to demonstrate the users' perceptual demand in the form design of home service robots. In this paper, the relationship between the design elements of the head form of home service robots and the perceptual evaluation of users is analyzed quantitatively by Kansei engineering and BP neural network. Finally, the aided design system of home service robots' head form is constructed by using VB language with the trained BP network and 3D modeling software. Furthermore, it's considered that the results should be applied to the overall form design of home service robots and the impacts of different design constraints should also be incorporated as the input layer of BP network. Thus the more comprehensive aided design system of home service robots could be established.

  14. Precise Localization of Mobile Robots via Odometry and Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Guoyu Fu

    2013-04-01

    Full Text Available Precise localization of mobile robots in uncertain environments is a fundamental and crucial issue in robotics. In this paper, to deal with the unbounded accumulated errors of dead reckoning (DR-based localization, wireless sensor network (WSN-based localization is applied to calibrate the uncertainty of odometry using a Kalman filter (KF. In addition, to further aid in obtaining precise positions and reduce uncertainty, a novel backward dead reckoning (BDR localization approach is proposed. The experimental results demonstrate the success and reliability of the proposed method.

  15. Precise Localization of Mobile Robots via Odometry and Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Guoyu Fu

    2013-04-01

    Full Text Available Precise localization of mobile robots in uncertain environments is a fundamental and crucial issue in robotics. In this paper, to deal with the unbounded accumulated errors of dead reckoning (DR‐based localization, wireless sensor network (WSN‐based localization is applied to calibrate the uncertainty of odometry using a Kalman filter (KF. In addition, to further aid in obtaining precise positions and reduce uncertainty, a novel backward dead reckoning (BDR localization approach is proposed. The experimental results demonstrate the success and reliability of the proposed method.

  16. Friendship selection and friends' influence. Dynamics of networks and actor attributes in early adolescence

    NARCIS (Netherlands)

    Knecht, A.B.

    2008-01-01

    Adolescent friends are often found to be similar. Similarity can be caused by selection and influence processes. This book examines selection and influence processes for delinquency, school attitudes, and alcohol use in early adolescence. For selection processes, we hypothesize that adolescents whos

  17. Friendship selection and friends' influence : Dynamics of networks and actor attributes in early adolescence

    NARCIS (Netherlands)

    Knecht, Andrea Beate

    2008-01-01

    Adolescent friends are often found to be similar. Similarity can be caused by selection and influence processes. This book examines selection and influence processes for delinquency, school attitudes, and alcohol use in early adolescence. For selection processes, we hypothesize that adolescents whos

  18. Friendship selection and friends' influence. Dynamics of networks and actor attributes in early adolescence

    NARCIS (Netherlands)

    Knecht, A.B.

    2008-01-01

    Adolescent friends are often found to be similar. Similarity can be caused by selection and influence processes. This book examines selection and influence processes for delinquency, school attitudes, and alcohol use in early adolescence. For selection processes, we hypothesize that adolescents

  19. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  20. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD Symptoms on Friend-Based Student Networks.

    Directory of Open Access Journals (Sweden)

    Jun Won Kim

    Full Text Available Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships. Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students.A total of 562 sixth-graders from two elementary schools (300 males provided the names of their best friends (maximum 10 names. Their teachers rated each student's ADHD symptoms using an ADHD rating scale.The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters.Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  1. Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation

    CERN Document Server

    Trianni, Vito; Reina, Andreagiovanni; Baronchelli, Andrea

    2016-01-01

    Consensus dynamics in decentralised multiagent systems are subject to intense studies, and several different models have been proposed and analysed. Among these, the naming game stands out for its simplicity and applicability to a wide range of phenomena and applications, from semiotics to engineering. Despite the wide range of studies available, the implementation of theoretical models in real distributed systems is not always straightforward, as the physical platform imposes several constraints that may have a bearing on the consensus dynamics. In this paper, we investigate the effects of an implementation of the naming game for the kilobot robotic platform, in which we consider concurrent execution of games and physical interferences. Consensus dynamics are analysed in the light of the continuously evolving communication network created by the robots, highlighting how the different regimes crucially depend on the robot density and on their ability to spread widely in the experimental arena. We find that ph...

  2. Artificial Hormone Reaction Networks: Towards Higher Evolvability in Evolutionary Multi-Modular Robotics

    CERN Document Server

    Hamann, Heiko; Schmickl, Thomas; Crailsheim, Karl

    2010-01-01

    The semi-automatic or automatic synthesis of robot controller software is both desirable and challenging. Synthesis of rather simple behaviors such as collision avoidance by applying artificial evolution has been shown multiple times. However, the difficulty of this synthesis increases heavily with increasing complexity of the task that should be performed by the robot. We try to tackle this problem of complexity with Artificial Homeostatic Hormone Systems (AHHS), which provide both intrinsic, homeostatic processes and (transient) intrinsic, variant behavior. By using AHHS the need for pre-defined controller topologies or information about the field of application is minimized. We investigate how the principle design of the controller and the hormone network size affects the overall performance of the artificial evolution (i.e., evolvability). This is done by comparing two variants of AHHS that show different effects when mutated. We evolve a controller for a robot built from five autonomous, cooperating modu...

  3. Neural Network Control for the Linear Motion of a Spherical Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yao Cai

    2011-09-01

    Full Text Available This paper discussed the stabilization and position tracking control of the linear motion of an underactuated spherical robot. By considering the actuator dynamics, a complete dynamic model of the robot is deduced, which is a complex third order, two variables nonlinear differential system and those two variables have strong coupling due to the mechanical structure of the robot. Different from traditional treatments, no linearization is applied to this system but a single‐input multiple‐output PID (SIMO_PID controller is designed by adopting a six‐input single‐ output CMAC_GBF (Cerebellar Model Articulation Controller with General Basis Function neural network to compensate the actuator nonlinearity and the credit assignment (CA learning method to obtain faster convergence of CMAC_GBF. The proposed controller is generalizable to other single‐input multiple‐output system with good real‐time capability. Simulations in Matlab are used to validate the control effects.

  4. Networked Control System for the Guidance of a Four-Wheel Steering Agricultural Robotic Platform

    Directory of Open Access Journals (Sweden)

    Eduardo Paciência Godoy

    2012-01-01

    Full Text Available A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA. One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80 m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS. This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains.

  5. Hand-Eye Calibration and Inverse Kinematics of Robot Arm using Neural Network

    DEFF Research Database (Denmark)

    Wu, Haiyan; Tizzano, Walter; Andersen, Thomas Timm

    2013-01-01

    tasks. This paper describes the theory and implementation of neural networks for hand-eye calibration and inverse kinematics of a six degrees of freedom robot arm equipped with a stereo vision system. The feedforward neural network and the network training with error propagation algorithm are applied......Traditional technologies for solving hand-eye calibration and inverse kinematics are cumbersome and time consuming due to the high nonlinearity in the models. An alternative to the traditional approaches is the articial neural network inspired by the remarkable abilities of the animals in dierent....... The proposed approaches are validated in experiments. The results indicate that the hand-eye calibration with simple neural network outperforms the conventional method. Meanwhile, the neural network exhibits a promising performance in solving inverse kinematics....

  6. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    Science.gov (United States)

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  7. Too Many Friends: Social Integration, Network Cohesion and Adolescent Depressive Symptoms

    Science.gov (United States)

    Falci, Christina; McNeely, Clea

    2009-01-01

    Using a nationally representative sample of adolescents, we examine associations among social integration (network size), network cohesion (alter-density), perceptions of social relationships (e.g., social support) and adolescent depressive symptoms. We find that adolescents with either too large or too small a network have higher levels of…

  8. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human–Robot Interaction

    Science.gov (United States)

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2016-01-01

    To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language–behavior relationships and the temporal patterns of interaction. Here, “internal dynamics” refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human’s linguistic instruction. After learning, the network actually formed the attractor structure representing both language–behavior relationships and the task’s temporal pattern in its internal dynamics. In the dynamics, language–behavior mapping was achieved by the branching structure. Repetition of human’s instruction and robot’s behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases. PMID:27471463

  9. Robotic movement preferentially engages the action observation network

    NARCIS (Netherlands)

    Cross, E.S.; Liepelt, R.; Hamilton, A.F.D.C.; Parkinson, J.; Ramsey, R.; Stadler, W.; Prinz, W.G.

    2012-01-01

    As humans, we gather a wide range of information about other people from watching them move. A network of parietal, premotor, and occipitotemporal regions within the human brain, termed the action observation network (AON), has been implicated in understanding others' actions by means of an

  10. A Novel Application of Artificial Neural Network for the Solution of Inverse Kinematics Controls of Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2012-08-01

    Full Text Available In robotic applications and research, inverse kinematics is one of the most important problems in terms of robot kinematics and control. Consequently, finding the solution of Inverse Kinematics in now days is considered as one of the most important problems in robot kinematics and control. As the intricacy of robot manipulator increases, obtaining the mathematical, statistical solutions of inverse kinematics are difficult and computationally expensive. For that reason, now soft-computing based highly intelligent based model applications should be adopted to getting appropriate solution for inverse kinematics. In this paper, a novel application of artificial neural network is used for controlling a robotic manipulator. The proposed methods are based on the establishments of the non-linear mapping between Cartesian and joint coordinates using multi layer perceptron and functional link artificial neural network.

  11. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  12. TARDEC Robotics

    Science.gov (United States)

    2010-01-12

    unclassified TARDEC Robotics Dr. James L. Overholt Director, Joint Center for Robotics US Army TARDEC Report Documentation Page Form ApprovedOMB No...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James L. Overholt... Robotics , Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter Technology

  13. Gradient-based Taxis Algorithms for Network Robotics

    OpenAIRE

    Blum, Christian; Hafner, Verena V.

    2014-01-01

    Finding the physical location of a specific network node is a prototypical task for navigation inside a wireless network. In this paper, we consider in depth the implications of wireless communication as a measurement input of gradient-based taxis algorithms. We discuss how gradients can be measured and determine the errors of this estimation. We then introduce a gradient-based taxis algorithm as an example of a family of gradient-based, convergent algorithms and discuss its convergence in th...

  14. EDENetworks: a user-friendly software to build and analyse networks in biogeography, ecology and population genetics.

    Science.gov (United States)

    Kivelä, Mikko; Arnaud-Haond, Sophie; Saramäki, Jari

    2015-01-01

    The recent application of graph-based network theory analysis to biogeography, community ecology and population genetics has created a need for user-friendly software, which would allow a wider accessibility to and adaptation of these methods. EDENetworks aims to fill this void by providing an easy-to-use interface for the whole analysis pipeline of ecological and evolutionary networks starting from matrices of species distributions, genotypes, bacterial OTUs or populations characterized genetically. The user can choose between several different ecological distance metrics, such as Bray-Curtis or Sorensen distance, or population genetic metrics such as FST or Goldstein distances, to turn the raw data into a distance/dissimilarity matrix. This matrix is then transformed into a network by manual or automatic thresholding based on percolation theory or by building the minimum spanning tree. The networks can be visualized along with auxiliary data and analysed with various metrics such as degree, clustering coefficient, assortativity and betweenness centrality. The statistical significance of the results can be estimated either by resampling the original biological data or by null models based on permutations of the data. © 2014 John Wiley & Sons Ltd.

  15. Learning Efficiency of Consciousness System for Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Osama Shoubaky

    2014-12-01

    Full Text Available This paper presents learning efficiency of a consciousness system for robot using artificial neural network. The proposed conscious system consists of reason system, feeling system and association system. The three systems are modeled using Module of Nerves for Advanced Dynamics (ModNAD. Artificial neural network of the type of supervised learning with the back propagation is used to train the ModNAD. The reason system imitates behaviour and represents self-condition and other-condition. The feeling system represents sensation and emotion. The association system represents behaviour of self and determines whether self is comfortable or not. A robot is asked to perform cognition and tasks using the consciousness system. Learning converges to about 0.01 within about 900 orders for imitation, pain, solitude and the association modules. It converges to about 0.01 within about 400 orders for the comfort and discomfort modules. It can be concluded that learning in the ModNAD completed after a relatively small number of times because the learning efficiency of the ModNAD artificial neural network is good. The results also show that each ModNAD has a function to imitate and cognize emotion. The consciousness system presented in this paper may be considered as a fundamental step for developing a robot having consciousness and feelings similar to humans.

  16. Cyber-physical approach to the network-centric robotics control task

    Science.gov (United States)

    Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey

    2016-10-01

    Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.

  17. Help from My "Friends": Social Capital in the Social Network Sites of Low-Income Students

    Science.gov (United States)

    Greenhow, Christine; Burton, Lisa

    2011-01-01

    The development of social capital in young people is positively associated with educational attainment, achievement, and psychosocial factors. Prior research has explored factors that contribute to social capital, such as offline social networks. To a lesser extent, studies have analyzed the relationship between online social networks and…

  18. Friends in the Classroom: A Comparison between Two Methods for the Assessment of Students' Friendship Networks

    Science.gov (United States)

    Pijl, Sip Jan; Koster, Marloes; Hannink, Anne; Stratingh, Anna

    2011-01-01

    One of the methods used most often to assess students' friendships and friendship networks is the reciprocal nomination method. However, an often heard complaint is that this technique produces rather negative outcomes. This study compares the reciprocal nomination method with another method to assess students' friendships and friendship networks:…

  19. How Many "Friends" Do You Need? Teaching Students How to Network Using Social Media

    Science.gov (United States)

    Sacks, Michael Alan; Graves, Nikki

    2012-01-01

    Student reliance on social media is undeniable. However, while we largely regard social media as a new phenomena, the concepts underlying it come directly from social network theory in sociology and organizational behavior. In this article, the authors examine how the social network concepts of size, quality, complexity, diffusion, and distance…

  20. How Many "Friends" Do You Need? Teaching Students How to Network Using Social Media

    Science.gov (United States)

    Sacks, Michael Alan; Graves, Nikki

    2012-01-01

    Student reliance on social media is undeniable. However, while we largely regard social media as a new phenomena, the concepts underlying it come directly from social network theory in sociology and organizational behavior. In this article, the authors examine how the social network concepts of size, quality, complexity, diffusion, and distance…

  1. With a little help from my friends : music consumption and networks

    Directory of Open Access Journals (Sweden)

    Paul Widdop

    2015-01-01

    Full Text Available It is widely accepted that a shift has occurred in the cultural consumption patterns of those higher in the social strata. Where tastes were based around rules of exclusion, they are now based on openness to a variety of cultures, both esoteric and popular. What is less understood is how an individual’s social networks affect their cultural tastes. Using social survey data on cultural participation, we find that musical consumption is mediated and construed through networks, and these networks play a much more significant role in cultural behaviour than current theoretical frameworks suggest.

  2. Adaptive control of 2-wheeled balancing robot by cerebellar neuronal network model.

    Science.gov (United States)

    Tanaka, Yoshiyuki; Ohata, Yohei; Kawamoto, Tomohiro; Hirata, Yutaka

    2010-01-01

    A new adaptive motor controller was constructed, and tested on the control of a 2-wheeled balancing robot in simulation and real world. The controller consists of a feedback (PD) controller and a cerebellar neuronal network model. The structure of the cerebellar model was configured based upon known anatomical neuronal connection in the cerebellar cortex. Namely it consists of 120 granular (Gr) cells, 1 Golgi cell, 6 basket/stellate cells, and 1 Purkinje (Pk) cell. Each cell is described by a typical artificial neuron model that outputs a weighted sum of inputs after a sigmoidal nonlinear transformation. The 2 components of the proposed controller work in parallel, in a way that the cerebellar model adaptively modifies the synaptic weights between Gr and Pk as in the real cerebellum to minimize the output of the PD controller. We demonstrate that the proposed controller successfully controls a 2-wheeled balancing robot, and the cerebellar model rapidly takes over the PD controller in simulation. We also show that an abrupt load change on the robot, which the PD controller alone cannot compensate for, can be adaptively compensated by the cerebellar model. We further confirmed that the proposed controller can be applied to the control of the robot in real world.

  3. Optimized Node Deployment Algorithm and Parameter Investigation in a Mobile Sensor Network for Robotic Systems

    Directory of Open Access Journals (Sweden)

    Rongxin Tang

    2015-10-01

    Full Text Available Mobile sensor networks are an important part of modern robotics systems and are widely used in robotics applications. Therefore, sensor deployment is a key issue in current robotics systems research. Since it is one of the most popular deployment methods, in recent years the virtual force algorithm has been studied in detail by many scientists. In this paper, we focus on the virtual force algorithm and present a corresponding parameter investigation for mobile sensor deployment. We introduce an optimized virtual force algorithm based on the exchange force, in which a new shielding rule grounded in Delaunay triangulation is adopted. The algorithm employs a new performance metric called ’pair-correlation diversion’, designed to evaluate the uniformity and topology of the sensor distribution. We also discuss the implementation of the algorithm’s computation and analyse the influence of experimental parameters on the algorithm. Our results indicate that the area ratio, φs, and the exchange force constant, G, influence the final performance of the sensor deployment in terms of the coverage rate, the convergence time and topology uniformity. Using simulations, we were able to verify the effectiveness of our algorithm and we obtained an optimal region for the (φs, G-parameter space which, in the future, could be utilized as an aid for experiments in robotic sensor deployment.

  4. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard eGrinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  5. Hope, friends, and subjective well-being: a social network approach to peer group contextual effects.

    Science.gov (United States)

    Parker, Philip D; Ciarrochi, Joseph; Heaven, Patrick; Marshall, Sarah; Sahdra, Baljinder; Kiuru, Noona

    2015-01-01

    Research on adolescence has previously shown that factors like depression and burnout are influenced by friendship groups. Little research, however, has considered whether similar effects are present for variables such as hope and subjective well-being. Furthermore, there is no research that considers whether the degree of hope of an adolescent's friends is associated with well-being over the individual's level of hope. Data were collected in 2012 from a sample of 15-year-olds (N = 1,972; 62% Caucasian; 46% identified as Catholic; 25% had professional parents) from the East Coast of Australia. Findings suggest that individuals from the same friendship group were somewhat similar in hope and well-being. Multilevel structural equation modeling indicated that friendship group hope was significantly related to psychological and social well-being.

  6. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  7. How people make friends in social networking sites—A microscopic perspective

    Science.gov (United States)

    Hu, Haibo; Wang, Xiaofan

    2012-02-01

    We study the detailed growth of a social networking site with full temporal information by examining the creation process of each friendship relation that can collectively lead to the macroscopic properties of the network. We first study the reciprocal behavior of users, and find that link requests are quickly responded to and that the distribution of reciprocation intervals decays in an exponential form. The degrees of inviters/accepters are slightly negatively correlative with reciprocation time. In addition, the temporal feature of the online community shows that the distributions of intervals of user behaviors, such as sending or accepting link requests, follow a power law with a universal exponent, and peaks emerge for intervals of an integral day. We finally study the preferential selection and linking phenomena of the social networking site and find that, for the former, a linear preference holds for preferential sending and reception, and for the latter, a linear preference also holds for preferential acceptance, creation, and attachment. Based on the linearly preferential linking, we put forward an analyzable network model which can reproduce the degree distribution of the network. The research framework presented in the paper could provide a potential insight into how the micro-motives of users lead to the global structure of online social networks.

  8. Robotics

    Science.gov (United States)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  9. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lianfu Han

    2016-09-01

    Full Text Available A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP. As the wireless network nodes, three robots comprise the WSN a personal computer (PC in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA, and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well.

  10. Distributed Multiagent for NAO Robot Joint Position Control Based on Echo State Network

    Directory of Open Access Journals (Sweden)

    Ling Qin

    2015-01-01

    Full Text Available Based on echo state networks, the joints position control of NAO robot is studied in this paper. The process to control the robot position can be divided into two phases. The senor parameters are released during the first phase. Depending on the dynamic coupling effect between the angle acceleration of passive joint and the torque of active joint, passive joint can be controlled indirectly to the desired position along the desired trajectory. The ESN control rules during the first phase are described and ESN controller is designed to control the motion of passive joint. The brake is locked during the second phase; then active joint is controlled to the desired position. The experimental control system based on PMAC controller is designed and developed. Finally, the joint position control of the NAO robot is achieved successfully by experiments. Echo state networks utilized incremental updates driven by new sensor readings and massive short memory with history inputs; thus varying communication rates can help imitate human upper limb motion based on wearable sensors to obtain human joint angles.

  11. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks

    Science.gov (United States)

    Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao

    2016-01-01

    A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well. PMID:27657088

  12. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.

    Science.gov (United States)

    Park, Gibeom; Tani, Jun

    2015-12-01

    The current study presents neurorobotics experiments on acquisition of skills for "communicable congruence" with human via learning. A dynamic neural network model which is characterized by its multiple timescale dynamics property was utilized as a neuromorphic model for controlling a humanoid robot. In the experimental task, the humanoid robot was trained to generate specific sequential movement patterns as responding to various sequences of imperative gesture patterns demonstrated by the human subjects by following predefined compositional semantic rules. The experimental results showed that (1) the adopted MTRNN can achieve generalization by learning in the lower feature perception level by using a limited set of tutoring patterns, (2) the MTRNN can learn to extract compositional semantic rules with generalization in its higher level characterized by slow timescale dynamics, (3) the MTRNN can develop another type of cognitive capability for controlling the internal contextual processes as situated to on-going task sequences without being provided with cues for explicitly indicating task segmentation points. The analysis on the dynamic property developed in the MTRNN via learning indicated that the aforementioned cognitive mechanisms were achieved by self-organization of adequate functional hierarchy by utilizing the constraint of the multiple timescale property and the topological connectivity imposed on the network configuration. These results of the current research could contribute to developments of socially intelligent robots endowed with cognitive communicative competency similar to that of human.

  13. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks.

    Science.gov (United States)

    Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao

    2016-09-21

    A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well.

  14. How people make friends in social networking sites - A microscopic perspective

    CERN Document Server

    Hu, Haibo

    2011-01-01

    We study the detailed growth of a social networking site with full temporal information by examining the creation process of each friendship relation that can collectively lead to the macroscopic properties of the network. We first study the reciprocal behavior of users, and find that link requests are quickly responded to and that the distribution of reciprocation intervals decays in an exponential form. The degrees of inviters/accepters are slightly negatively correlative with reciprocation time. In addition, the temporal feature of the online community shows that the distributions of intervals of user behaviors, such as sending or accepting link requests, follow a power law with a universal exponent, and peaks emerge for intervals of an integral day. We finally study the preferential selection and linking phenomena of the social networking site and find that, for the former, a linear preference holds for preferential sending and reception, and for the latter, a linear preference also holds for preferential...

  15. Will you accept the government's friend request? Social networks and privacy concerns.

    Directory of Open Access Journals (Sweden)

    David A Siegel

    Full Text Available Participating in social network websites entails voluntarily sharing private information, and the explosive growth of social network websites over the last decade suggests shifting views on privacy. Concurrently, new anti-terrorism laws, such as the USA Patriot Act, ask citizens to surrender substantial claim to privacy in the name of greater security. I address two important questions regarding individuals' views on privacy raised by these trends. First, how does prompting individuals to consider security concerns affect their views on government actions that jeopardize privacy? Second, does the use of social network websites alter the effect of prompted security concerns? I posit that prompting individuals to consider security concerns does lead to an increased willingness to accept government actions that jeopardize privacy, but that frequent users of websites like Facebook are less likely to be swayed by prompted security concerns. An embedded survey experiment provides support for both parts of my claim.

  16. Will you accept the government's friend request? Social networks and privacy concerns.

    Science.gov (United States)

    Siegel, David A

    2013-01-01

    Participating in social network websites entails voluntarily sharing private information, and the explosive growth of social network websites over the last decade suggests shifting views on privacy. Concurrently, new anti-terrorism laws, such as the USA Patriot Act, ask citizens to surrender substantial claim to privacy in the name of greater security. I address two important questions regarding individuals' views on privacy raised by these trends. First, how does prompting individuals to consider security concerns affect their views on government actions that jeopardize privacy? Second, does the use of social network websites alter the effect of prompted security concerns? I posit that prompting individuals to consider security concerns does lead to an increased willingness to accept government actions that jeopardize privacy, but that frequent users of websites like Facebook are less likely to be swayed by prompted security concerns. An embedded survey experiment provides support for both parts of my claim.

  17. User-friendly Establishment of Trust in Distributed Home Automation Networks

    DEFF Research Database (Denmark)

    Solberg Hjorth, Theis; Torbensen, Rune; Madsen, Per Printz

    2014-01-01

    Current wireless technologies use a variety of methods to locally exchange and verify credentials between devices to establish trusted relationships. Scenarios in home automation networks also require this capability over the Internet, but the necessary involvement of non-expert users to setup...... these relationships can lead to misconfiguration or breaches of security. We outline a security system for Home Automation called Trusted Domain that can establish and maintain cryptographically secure relationships between devices connected via IP-based networks and the Internet. Trust establishment is presented...

  18. User-friendly establishment of trust in distributed home automation networks

    DEFF Research Database (Denmark)

    Solberg Hjorth, Theis; Madsen, Per Printz; Torbensen, Rune Sonnich

    2012-01-01

    Current wireless technologies use a variety of methods to locally exchange and verify credentials between devices to establish trusted relationships. Scenarios in home automation networks also require this capability over the Internet, but the necessary involvement of non-expert users to setup...... these relationships can lead to misconfiguration or breaches of security. We outline a security system for Home Automation called Trusted Domain that can establish and maintain cryptographically secure relationships between devices connected via IP-based networks and the Internet. Trust establishment is presented...

  19. Aperiodic linear networked control considering variable channel delays: application to robots coordination.

    Science.gov (United States)

    Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel

    2015-05-27

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  20. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination

    Directory of Open Access Journals (Sweden)

    Carlos Santos

    2015-05-01

    Full Text Available One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  1. Hybrid Method for the Navigation of Mobile Robot Using Fuzzy Logic and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Zineb LAOUICI

    2014-11-01

    Full Text Available the aim of this paper is to present a strategy describing a hybrid approach for the navigation of a mobile robot in a partially known environment. The main idea is to combine between fuzzy logic approach suitable for the navigation in an unknown environment and spiking neural networks approach for solving the problem of navigation in a known environment. In the literature, many approaches exist for the navigation purpose, for solving separately the problem in both situations. Our idea is based on the fact that we consider a mixed environment, and try to exploit the known environment parts for improving the path and time of navigation between the starting point and the target. The Simulation results, which are shown on two simulated scenarios, indicate that the hybridization improves the performance of robot navigation with regard to path length and the time of navigation.

  2. An Artificial Neural Network Modeling for Force Control System of a Robotic Pruning Machine

    Directory of Open Access Journals (Sweden)

    Ali Hashemi

    2014-06-01

    Full Text Available Nowadays, there has been an increasing application of pruning robots for planted forests due to the growing concern on the efficiency and safety issues. Power consumption and working time of agricultural machines have become important issues due to the high value of energy in modern world. In this study, different multi-layer back-propagation networks were utilized for mapping the complex and highly interactive of pruning process parameters and to predict power consumption and cutting time of a force control equipped robotic pruning machine by knowing input parameters such as: rotation speed, stalk diameter, and sensitivity coefficient. Results showed significant effects of all input parameters on output parameters except rotational speed on cutting time. Therefore, for reducing the wear of cutting system, a less rotational speed in every sensitivity coefficient should be selected.

  3. Parametric motion control of robotic arms: A biologically based approach using neural networks

    Science.gov (United States)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  4. Friend me: which factors influence top global brands participation in social network sites

    NARCIS (Netherlands)

    Araujo, T.; Neijens, P.

    2012-01-01

    Purpose - This study focuses on how brands participate in social network sites (SNSs) and investigates both the different strategies they adopt and the factors that influence these strategies. Design/methodology/approach - The activities of top brands in SNSs were investigated through a content anal

  5. Friends in the classroom : a comparison between two methods for the assessment of students' friendship networks

    NARCIS (Netherlands)

    Pijl, Sip Jan; Koster, Marloes; Hannink, Anne; Stratingh, Anna

    2011-01-01

    One of the methods used most often to assess students' friendships and friendship networks is the reciprocal nomination method. However, an often heard complaint is that this technique produces rather negative outcomes. This study compares the reciprocal nomination method with another method to asse

  6. Colleges and Universities Want to Be Your Friend: Communicating via Online Social Networking

    Science.gov (United States)

    Wandel, Tamara L.

    2008-01-01

    This article presents a compilation of data regarding the role of online social networks within campus communities, specifically for nonacademic purposes. Both qualitative and quantitative data methodologies are used to provide a unique perspective on a constantly evolving topic. Interviews of students and administrators allow for candid…

  7. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm

    Directory of Open Access Journals (Sweden)

    Salvador eDura-Bernal

    2015-11-01

    Full Text Available Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm.This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuro-prosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility

  8. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  9. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  10. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls.

  11. Compassionate Friends

    Science.gov (United States)

    ... The services provided by the... Help Support Compassionate Friends Rest assured, every donation we receive is used ... remembered.... Read More... Sign Up for the Compassionate Friends Newsletter Find Support Chapters To The Newly Bereaved ...

  12. Suicidal Disclosures among Friends: Using Social Network Data to Understand Suicide Contagion*

    OpenAIRE

    Mueller, Anna S.; Abrutyn, Seth

    2015-01-01

    A robust literature suggests that suicide is socially contagious; however, we know little about how and why suicide spreads. Using network data from the National Longitudinal Study of Adolescent to Adult Health, we examine the effects of alter’s (1) disclosed and (2) undisclosed suicide attempts, (3) suicide ideation and (4) emotional distress on ego’s mental health one year later to gain insights into the emotional and cultural mechanisms that underlie suicide contagion. We find that when eg...

  13. APF-guided adaptive immune network algorithm for robot path planning

    Institute of Scientific and Technical Information of China (English)

    Mingxin YUAN; Sunan WANG; Canyang WU; Kunpeng LI

    2009-01-01

    Inspired by the mechanism of Jerne's idiotypic network hypothesis, a new adaptive immune network algorithm (AINA) is presented through the stimulation and suppression between the antigen and antibody by taking the environment and robot behavior as antigen and antibody respectively. A guiding weight is defined based on the artificial potential field (APF) method, and the guiding weight is combined with antibody vitality to construct a new antibody selection operator, which improves the searching efficiency. In addition, an updating operator of antibody vi-tality is provided based on the Baldwin effect, which results in a positive feedback mechanism of search and accelerates the convergence of the immune network. The simulation and experimental results show that the proposed algorithm is characterized by high searching speed, good convergence performance and strong planning ability, which solves the path planning well in complicated environments.

  14. A game theoretical approach for cooperative environmentally friendly cellular networks powered by the smart grid

    KAUST Repository

    Ghazzai, Hakim

    2014-11-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks, maximize their profits or achieve or tradeoff between both objectives. Mobile operators cooperate together by eliminating redundant base stations (BSs) using a low complexity algorithm that aims to maximize their objective functions subject to a quality of service constraint. The problem is modeled as a two-level Stackelberg game: a mobile operator level and a smart grid level. Indeed, in our framework, we assume that cellular networks are powered by multiple energy providers existing in the smart grid characterized by different pollutant levels in addition to renewable energy source deployed in BS sites. The objective is to find the best active BS combination and the optimal procurement decision needed to the network operation during collaboration by considering electricity real-time pricing. Our study includes the daily traffic variation in addition to the daily green energy availability. Our simulation results show a significant saving in terms of CO2 emissions compared to the non-collaboration case and that cooperative mobile operators exploiting renewables are more awarded than traditional operators. © 2014 IEEE.

  15. Radial Basis Functional Link Network and Hamilton Jacobi Issacs for Force/Position Control in Robotic Manipulation

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-01-01

    Full Text Available This paper works on hybrid force/position control in robotic manipulation and proposes an improved radial basis functional (RBF neural network, which is a robust relying on the Hamilton Jacobi Issacs principle of the force control loop. The method compensates uncertainties in a robot system by using the property of RBF neural network. The error approximation of neural network is regarded as an external interference of the system, and it is eliminated by the robust control method. Since the conventionally fixed structure of RBF network is not optimal, resource allocating network (RAN is proposed in this paper to adjust the network structure in time and avoid the underfit. Finally the advantage of system stability and transient performance is demonstrated by the numerical simulations.

  16. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    Science.gov (United States)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  17. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.

    Science.gov (United States)

    Johnston, S P; Prasad, G; Maguire, L; McGinnity, T M

    2010-12-01

    This paper presents an approach that permits the effective hardware realization of a novel Evolvable Spiking Neural Network (ESNN) paradigm on Field Programmable Gate Arrays (FPGAs). The ESNN possesses a hybrid learning algorithm that consists of a Spike Timing Dependent Plasticity (STDP) mechanism fused with a Genetic Algorithm (GA). The design and implementation direction utilizes the latest advancements in FPGA technology to provide a partitioned hardware/software co-design solution. The approach achieves the maximum FPGA flexibility obtainable for the ESNN paradigm. The algorithm was applied as an embedded intelligent system robotic controller to solve an autonomous navigation and obstacle avoidance problem.

  18. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot.

    Science.gov (United States)

    Avgousti, Sotiris; Panayides, Andreas S; Jossif, Antonis P; Christoforou, Eftychios G; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S

    2016-09-01

    This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations.

  19. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

    Directory of Open Access Journals (Sweden)

    Lingyan Ran

    2017-06-01

    Full Text Available Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN, trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  20. Designing ISP-friendly Peer-to-Peer Networks Using Game-based Control

    CERN Document Server

    Reddy, Vinith; Shakkottai, Srinivas; Reddy, A L Narasimha

    2009-01-01

    The rapid growth of peer-to-peer (P2P) networks in the past few years has brought with it increases in transit cost to Internet Service Providers (ISPs), as peers exchange large amounts of traffic across ISP boundaries. This ISP oblivious behavior has resulted in misalignment of incentives between P2P networks--that seek to maximize user quality--and ISPs--that would seek to minimize costs. Can we design a P2P overlay that accounts for both ISP costs as well as quality of service, and attains a desired tradeoff between the two? We design a system, which we call MultiTrack, that consists of an overlay of multiple \\emph{mTrackers} whose purpose is to align these goals. mTrackers split demand from users among different ISP domains while trying to minimize their individual costs (delay plus transit cost) in their ISP domain. We design the signals in this overlay of mTrackers in such a way that potentially competitive individual optimization goals are aligned across the mTrackers. The mTrackers are also capable of...

  1. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  2. Implementation of a Vision System for a Landmine Detecting Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Roger Achkar

    2012-09-01

    Full Text Available Landmines, specifically anti-tank mines, cluster bombs, and unexploded ordnance form a serious problem in many countries. Several landmine sweeping techniques are used for minesweeping. This paper presents the design and the implementation of the vision system of an autonomous robot for landmines localization. The proposed work develops state-of-the-art techniques in digital image processing for pre-processing captured images of the contaminated area. After enhancement, Artificial Neural Network (ANN is used in order to identify, recognize and classify the landmines’ make and model. The Back-Propagation algorithm is used for training the network. The proposed work proved to be able to identify and classify different types of landmines under various conditions (rotated landmine, partially covered landmine with a success rate of up to 90%.

  3. Implementation of a Vision System for a Landmine Detecting Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Roger Achkar

    2012-10-01

    Full Text Available Landmines, specifically anti-tank mines, cluster bombs, and unexploded ordnance form a serious problemin many countries. Several landmine sweeping techniques are used for minesweeping. This paper presentsthe design and the implementation of the vision system of an autonomous robot for landmines localization.The proposed work develops state-of-the-art techniques in digital image processing for pre-processingcaptured images of the contaminated area. After enhancement, Artificial Neural Network (ANN is used inorder to identify, recognize and classify the landmines’ make and model. The Back-Propagation algorithmis used for training the network. The proposed work proved to be able to identify and classify different typesof landmines under various conditions (rotated landmine, partially covered landmine with a success rateof up to 90%.

  4. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    Directory of Open Access Journals (Sweden)

    Qihong Chen

    2014-01-01

    Full Text Available This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX, and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  5. Nonlinear recurrent neural network predictive control for energy distribution of a fuel cell powered robot.

    Science.gov (United States)

    Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  6. A Hardware-Implementation-Friendly Pulse-Coupled Neural Network Algorithm for Analog Image-Feature-Generation Circuits

    Science.gov (United States)

    Chen, Jun; Shibata, Tadashi

    2007-04-01

    Pulse-coupled neural networks (PCNNs) are biologically inspired algorithms that have been shown to be highly effective for image feature generation. However, conventional PCNNs are software-oriented algorithms that are too complicated to implement as very-large-scale integration (VLSI) hardware. To employ PCNNs in image-feature-generation VLSIs, a hardware-implementation-friendly PCNN is proposed here. By introducing the concepts of exponentially decaying output and a one-branch dendritic tree, the new PCNN eliminates the large number of convolution operators and floating-point multipliers in conventional PCNNs without compromising its performance at image feature generation. As an analog VLSI implementation of the new PCNN, an image-feature-generation circuit is proposed. By employing floating-gate metal-oxide-semiconductor (MOS) technology, the circuit achieves a full voltage-mode implementation of the PCNN in a compact structure. Inheriting the merits of the PCNN, the circuit is capable of generating rotation-independent and translation-independent features for input patterns, which has been verified by SPICE simulation.

  7. Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset.

    Science.gov (United States)

    Mastronardi, Luigi; Giaccio, Vincenzo; Giannelli, Agostino; Scardera, Alfonso

    2015-01-01

    This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism. In Italy, agritourism is considered an agricultural activity and can only be performed by a farmer. Moreover, Italian national legislation forces the farmer to dedicate himself mainly to traditional farming, rather than to tourism activities. For this reason, environmental performances have been highlighted by analyzing only features and production systems of the farms. By utilizing the most frequent indicators used in studies regarding sustainability, the authors show how Italian agritourisms tend to develop more environmentally friendly agricultural methods, which have a positive impact on biodiversity, landscape and natural resources. The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset. The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies. The dichotomous structure of the dependent variable (presence or absence of agritourism at the farm) has a propensity for an assessment method based on Binary Response Model Regression.

  8. Collaborative multi-target tracking using networked micro-robotic vehicles

    Science.gov (United States)

    Biswas, Subir; Gupta, Sonny; Yu, Fan; Wu, Tao

    2007-04-01

    This paper presents a collaborative target tracking framework, in which distributed mechanisms are developed for tracking multiple mobile targets using a team of networked micro robotic vehicles. Applications of such a framework would include detection of multi-agent intrusion, network-assisted attack localization, and other collaborative search scenarios. The key idea of the developed framework is to design distributed algorithms that can be executed by tracking entities using a mobile ad hoc network. The paper comprises the following components. First, the software and hardware architectural detail of a Swarm Capable Autonomous Vehicle (SCAV) system that is used as the mobile platform in our target tracking application is presented. Second, the details of an indoor self-localization and Kalman filter based navigation system for the SCAV are presented. Third, a formal definition of the collaborative multi-target tracking problem and a heuristic based networked solution are developed. Finally, the performance of the proposed tracking framework is evaluated on a laboratory test-bed of a fleet of SCAV vehicles. A detailed system characterization in terms localization, navigation, and collaborative tracking performance is performed on the SCAV test-bed. In addition to valuable implementation insights about the localization, navigation, filtering, and ad hoc networking processes, a number of interesting conclusions about the overall tracking system are presented.

  9. On-line Detection of Gas Pipeline Based on the Real-Time Algorithm and Network Technology with Robot

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; YAN Guo-zheng; DING Guo-qing; ZHOU Bing; FU Xi-guang; ZUO Jian-yong

    2004-01-01

    The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.

  10. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.

    Science.gov (United States)

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-10-30

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  11. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    Directory of Open Access Journals (Sweden)

    Jun-Young Jung

    2015-10-01

    Full Text Available An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  12. Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space

    Institute of Scientific and Technical Information of China (English)

    Liangyong WANG; Tianyou CHAI; Zheng FANG

    2009-01-01

    A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.

  13. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  14. A Proposal for the Development of a Robot-Based Physical Distribution and Transportation Network for Urban Environments

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Brooks, Andrew G.

    2010-01-01

    to the consideration of specialized systems for realizing quantum leaps in efficiency. We therefore propose a novel variant of an automated transportation system: a dedicated network of transportation robots for delivering small-to-medium scale physical objects within the range of commuter automobiles for use...

  15. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.

    Science.gov (United States)

    Hinaut, Xavier; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2014-01-01

    One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction.

  16. A Velocity-Level Bi-Criteria Optimization Scheme for Coordinated Path Tracking of Dual Robot Manipulators Using Recurrent Neural Network.

    Science.gov (United States)

    Xiao, Lin; Zhang, Yongsheng; Liao, Bolin; Zhang, Zhijun; Ding, Lei; Jin, Long

    2017-01-01

    A dual-robot system is a robotic device composed of two robot arms. To eliminate the joint-angle drift and prevent the occurrence of high joint velocity, a velocity-level bi-criteria optimization scheme, which includes two criteria (i.e., the minimum velocity norm and the repetitive motion), is proposed and investigated for coordinated path tracking of dual robot manipulators. Specifically, to realize the coordinated path tracking of dual robot manipulators, two subschemes are first presented for the left and right robot manipulators. After that, such two subschemes are reformulated as two general quadratic programs (QPs), which can be formulated as one unified QP. A recurrent neural network (RNN) is thus presented to solve effectively the unified QP problem. At last, computer simulation results based on a dual three-link planar manipulator further validate the feasibility and the efficacy of the velocity-level optimization scheme for coordinated path tracking using the recurrent neural network.

  17. Teleoperation in surgical robotics--network latency effects on surgical performance.

    Science.gov (United States)

    Lum, Mitchell J H; Rosen, Jacob; King, Hawkeye; Friedman, Diana C W; Lendvay, Thomas S; Wright, Andrew S; Sinanan, Mika N; Hannaford, Blake

    2009-01-01

    A teleoperated surgical robotic system allows surgical procedures to be conducted across long distances while utilizing wired and wireless communication with a wide spectrum of performance that may affect the outcome. An open architecture portable surgical robotic system (Raven) was developed for both open and minimally invasive surgery. The system has been the subject of an intensive telesurgical experimental protocol aimed at exploring the boundaries of the system and surgeon performance during a series of field experiments in extreme environments (desert and underwater) teleportation between US, Europe, and Japan as well as lab experiments under synthetic fixed time delay. One standard task (block transfer emulating tissue manipulation) of the Fundamentals of Laparoscopic Surgery (FLS) training kit was used for the experimental protocol. Network characterization indicated a typical time delay in the range of 16-172 ms in field experiments. The results of the lab experiments showed that the completion time of the task as well as the length of the tool tip trajectory significantly increased (alphaerrors (block drooping) as well as the completion time and the tool tip path length at different time delays.

  18. Artificial Neural Networks in Applications of Industrial Robots%人工神经网络在工业机器人中的应用

    Institute of Scientific and Technical Information of China (English)

    王克胜; Jonathan Lienhardt; 袁庆丰; 方明伦

    2004-01-01

    Artificial neural networks (ANNs) have been widely used to solve a number of problems to which analytical solutions are difficult to obtain using traditional mathematical approaches. Such problems exist also in the analysis of industrial robots. This paper presents an overview of ANN applications to robot kinematics, dynamics, control, trajectory and path planning, and sensing. Reasons for using or not using ANNs to industrial robots are explained as well.

  19. Robotic transportation.

    Science.gov (United States)

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  20. Adaptive Algorithms for Coverage Control and Space Partitioning in Mobile Robotic Networks

    CERN Document Server

    Ny, Jerome Le

    2010-01-01

    We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic gradient view simplifies and generalizes previously proposed solutions, and is applicable to new complex scenarios, for example adaptive coverage involving heterogeneous agents. Finally, our algorithms often take the form of simple distributed rules that could be implemented on resource-limited platforms.

  1. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  2. Muscle emulation with DC motor and neural networks for biped robots.

    Science.gov (United States)

    Serhan, Hayssam; Nasr, Chaiban G; Henaff, Patrick

    2010-08-01

    This paper shows how to use a DC motor and its PID controller, to behave analogously to a muscle. A model of the muscle that has been learned by a NNARX (Neural Network Auto Regressive eXogenous) structure is used. The PID parameters are tuned by an MLP Network with a special indirect online learning algorithm. The calculation of the learning algorithm is performed based on a mathematical equation of the DC motor or with a Neural Network identification of the motor. For each of the two algorithms, the output of the muscle model is used as a reference for the DC motor control loop. The results show that we succeeded in forcing the physical system to behave in the same way as the muscle model with acceptable margin of error. An implementation in the knees of a simulated biped robot is realized. Simulation compares articular trajectories with and without the muscle emulator and shows that with muscle emulator, articular trajectories become closer to the human being ones and that total power consumption is reduced.

  3. Network analysis of surgical innovation: Measuring value and the virality of diffusion in robotic surgery.

    Science.gov (United States)

    Garas, George; Cingolani, Isabella; Panzarasa, Pietro; Darzi, Ara; Athanasiou, Thanos

    2017-01-01

    Existing surgical innovation frameworks suffer from a unifying limitation, their qualitative nature. A rigorous approach to measuring surgical innovation is needed that extends beyond detecting simply publication, citation, and patent counts and instead uncovers an implementation-based value from the structure of the entire adoption cascades produced over time by diffusion processes. Based on the principles of evidence-based medicine and existing surgical regulatory frameworks, the surgical innovation funnel is described. This illustrates the different stages through which innovation in surgery typically progresses. The aim is to propose a novel and quantitative network-based framework that will permit modeling and visualizing innovation diffusion cascades in surgery and measuring virality and value of innovations. Network analysis of constructed citation networks of all articles concerned with robotic surgery (n = 13,240, Scopus®) was performed (1974-2014). The virality of each cascade was measured as was innovation value (measured by the innovation index) derived from the evidence-based stage occupied by the corresponding seed article in the surgical innovation funnel. The network-based surgical innovation metrics were also validated against real world big data (National Inpatient Sample-NIS®). Rankings of surgical innovation across specialties by cascade size and structural virality (structural depth and width) were found to correlate closely with the ranking by innovation value (Spearman's rank correlation coefficient = 0.758 (p = 0.01), 0.782 (p = 0.008), 0.624 (p = 0.05), respectively) which in turn matches the ranking based on real world big data from the NIS® (Spearman's coefficient = 0.673;p = 0.033). Network analysis offers unique new opportunities for understanding, modeling and measuring surgical innovation, and ultimately for assessing and comparing generative value between different specialties. The novel surgical innovation metrics developed may

  4. Robust Kalman Filtering Cooperated Elman Neural Network Learning for Vision-Sensing-Based Robotic Manipulation with Global Stability

    Directory of Open Access Journals (Sweden)

    Xungao Zhong

    2013-10-01

    Full Text Available In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF, in conjunction with Elman neural network (ENN learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained using a new input-output data pair vector (obtained from the KF cycle to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme’s performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.

  5. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  6. Intermediate peer contexts and educational outcomes: Do the friends of students' friends matter?

    Science.gov (United States)

    Carbonaro, William; Workman, Joseph

    2016-07-01

    Sociologists of education have long been interested in the effects of peer relations on educational outcomes. Recent theory and research on adolescence suggest that peers on the boundaries of students' friendship networks may play an important role in shaping behaviors and educational outcomes. In this study, we examine the importance of a key "intermediate peer context" for students' outcomes: the friends of a student's friends. Our findings indicate both friends' and friends' friends' characteristics independently predict students' college expectations and their risk of dropping out of high school (although only friends' characteristics predict GPA). Our models suggest the magnitude of students' friends-of-friends' characteristics are at least as large their friends' characteristics. Together, the association between the peer context and students outcomes is considerably larger when accounting for both the characteristics of students' friends and the friends of their friends.

  7. Underlay-friendly Overlay routing mechanism for IP networks%一种IP网络友好的Overlay路由机制

    Institute of Scientific and Technical Information of China (English)

    徐同亚; 王大彬; 陈超

    2011-01-01

    在现存的多层路由中,上层Overlay网络在路由决策时通常对底层的IP网络性能和状态缺乏有效的协调和感知,致使上层Overlay路由和底层IP路由常常处于非协同、非优化工作状态,产生大量路由抖动和次优路由.为解决这些问题,提出了一种底层IP网络友好的Overlay路由机制,其基本思路为:增加Overlay网络的层感知能力,减少路由抖动,增加Overlay路由的稳定性.Overlay网络根据底层IP网络的节点跳数、链路带宽、丢包率等反映底层IP网络性能的信息作出路由决策.实际网络中,通过调整Overlay网络的链路代价,有效控制Overlay网络的路由决策.仿真结果表明,与传统双重路由(dual routing)相比,此IP网络友好Overlay路由机制在减少Overlay网络路由抖动、降低Overlay网络路径代价膨胀、提高Overlay网络故障恢复成功率和满足Overlay业务需求等方面有优势.%Existent Overlay networks are not IP network-aware enough..The Overlay routing is usually lack of aware of the IP network' s performance and status.So the Overlay network appears sub-optimal routing and has route flaps that have seriously affected the Overlay network applications' performance.This paper proposed an IP network-friendly Overlay routing mechanism.The basic idea was: enhance the Overlay network' s ability of lay awareness and flexibility.Overlay network routes based on the IP.network' s information (e.g.: number of route hops, link bandwidth and packet loss rate).Changing the Overlay network' s linkcost was useful to control the Overlay routing.The simulation results show that: compared to the traditional dual routing, this IP network-friendly Overlay routing mechanism has advantages in reducing the path cost inflation and route flaps, increasing the success rate of recovery, meeting the need of Overlay applications.

  8. Friendly competition.

    Science.gov (United States)

    Chambers, David W

    2006-01-01

    Competition that is characterized by rules, often informal, agreed among mutually accepted participants, and that gives the competitors a special, advantageous status with others is called friendly competition. Dentists have engaged in it deeply and it is good for the profession. Friendly competition offers the advantages of spillover of commonly useful information and technologies, stimulation of innovation, a united and convenient face to customers and suppliers, and standards that promote growth. Friendly competition increases the size of the pie, regardless of market share. Paradoxically, this is even true for the little guy in the shadow of the giant. If carried to extremes, unfriendly competition leads to destroying competitors, the confusion of multiple rules, and encouragement of disruptive change.

  9. A design philosophy for multi-layer neural networks with applications to robot control

    Science.gov (United States)

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  10. Network analysis of surgical innovation: Measuring value and the virality of diffusion in robotic surgery

    Science.gov (United States)

    Cingolani, Isabella; Panzarasa, Pietro; Darzi, Ara; Athanasiou, Thanos

    2017-01-01

    Background Existing surgical innovation frameworks suffer from a unifying limitation, their qualitative nature. A rigorous approach to measuring surgical innovation is needed that extends beyond detecting simply publication, citation, and patent counts and instead uncovers an implementation-based value from the structure of the entire adoption cascades produced over time by diffusion processes. Based on the principles of evidence-based medicine and existing surgical regulatory frameworks, the surgical innovation funnel is described. This illustrates the different stages through which innovation in surgery typically progresses. The aim is to propose a novel and quantitative network-based framework that will permit modeling and visualizing innovation diffusion cascades in surgery and measuring virality and value of innovations. Materials and methods Network analysis of constructed citation networks of all articles concerned with robotic surgery (n = 13,240, Scopus®) was performed (1974–2014). The virality of each cascade was measured as was innovation value (measured by the innovation index) derived from the evidence-based stage occupied by the corresponding seed article in the surgical innovation funnel. The network-based surgical innovation metrics were also validated against real world big data (National Inpatient Sample–NIS®). Results Rankings of surgical innovation across specialties by cascade size and structural virality (structural depth and width) were found to correlate closely with the ranking by innovation value (Spearman’s rank correlation coefficient = 0.758 (p = 0.01), 0.782 (p = 0.008), 0.624 (p = 0.05), respectively) which in turn matches the ranking based on real world big data from the NIS® (Spearman’s coefficient = 0.673;p = 0.033). Conclusion Network analysis offers unique new opportunities for understanding, modeling and measuring surgical innovation, and ultimately for assessing and comparing generative value between different

  11. Close Friends

    Institute of Scientific and Technical Information of China (English)

    ChappellSargent

    2004-01-01

    As my friends ambled out the front door, I ran to the window, called good-bye, and stuck my tongue out at her. She spun around and returned the gesture, and we gave each other a final wave before parting

  12. Exploring the effects of dimensionality reduction in deep networks for force estimation in robotic-assisted surgery

    Science.gov (United States)

    Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia

    2016-03-01

    Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.

  13. Mobile robot nonlinear feedback control based on Elman neural network observer

    Directory of Open Access Journals (Sweden)

    Khaled Al-Mutib

    2015-12-01

    Full Text Available This article presents a new approach to control a wheeled mobile robot without velocity measurement. The controller developed is based on kinematic model as well as dynamics model to take into account parameters of dynamics. These parameters related to dynamic equations are identified using a proposed methodology. Input–output feedback linearization is considered with a slight modification in the mathematical expressions to implement the dynamic controller and analyze the nonlinear internal behavior. The developed controllers require sensors to obtain the states needed for the closed-loop system. However, some states may not be available due to the absence of the sensors because of the cost, the weight limitation, reliability, induction of errors, failure, and so on. Particularly, for the velocity measurements, the required accuracy may not be achieved in practical applications due to the existence of significant errors induced by stochastic or cyclical noise. In this article, Elman neural network is proposed to work as an observer to estimate the velocity needed to complete the full state required for the closed-loop control and account for all the disturbances and model parameter uncertainties. Different simulations are carried out to demonstrate the feasibility of the approach in tracking different reference trajectories in comparison with other paradigms.

  14. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.

    Directory of Open Access Journals (Sweden)

    Yuichi Yamashita

    2008-11-01

    Full Text Available It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties ("multiple timescales". Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms

  15. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.

    Science.gov (United States)

    Yamashita, Yuichi; Tani, Jun

    2008-11-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties ("multiple timescales"). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional

  16. Spi-1, Fli-1 and Fli-3 (miR-17-92 oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Directory of Open Access Journals (Sweden)

    Samer Kayali

    Full Text Available Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  17. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Science.gov (United States)

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  18. My Friends

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    学生习作: I have three friends. They is1 Jack, Gina and Kate. Jack’s favorite subject is P.E.. He likes it because it is interested2. He has P.E. on Monday. Gina’s favorite subject is music. She thinks it is very much3 relaxing. She likes to listen4 music after class. She has music on

  19. Artificial Potential Field Controllers for Robust Communications in a Network of Swarm Robots

    Science.gov (United States)

    2005-05-18

    robots increases. Thus the shallow parabola potential function can be used to maintain range for communication even when the robots are at great ...oscale =25; %obstacle avoidence scaler, oscale*oadx %maxvel = 5; %maximum velocity minsep = 50; %this is devided by 10; gx = 300; gy = 220

  20. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    Science.gov (United States)

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual

  1. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study

    Directory of Open Access Journals (Sweden)

    Nocchi Federico

    2012-07-01

    Full Text Available Abstract Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb and non-biological (abstract object movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes. Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions

  2. A robotic tele-drill system over network using predictive display

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.

  3. "You've got a friend in me": can social networks mediate the relationship between mood and MCI?

    Science.gov (United States)

    Yates, Jennifer A; Clare, Linda; Woods, Robert T

    2017-07-13

    Social networks can change with age, for reasons that are adaptive or unwanted. Social engagement is beneficial to both mental health and cognition, and represents a potentially modifiable factor. Consequently this study explored this association and assessed whether the relationship between mild cognitive impairment (MCI) and mood problems was mediated by social networks. This study includes an analysis of data from the Cognitive Function and Ageing Study Wales (CFAS Wales). CFAS Wales Phase 1 data were collected from 2010 to 2013 by conducting structured interviews with older people aged over 65 years of age living in urban and rural areas of Wales, and included questions that assessed cognitive functioning, mood, and social networks. Regression analyses were used to investigate the associations between individual variables and the mediating role of social networks. Having richer social networks was beneficial to both mood and cognition. Participants in the MCI category had weaker social networks than participants without cognitive impairment, whereas stronger social networks were associated with a decrease in the odds of experiencing mood problems, suggesting that they may offer a protective effect against anxiety and depression. Regression analyses revealed that social networks are a significant mediator of the relationship between MCI and mood problems. These findings are important, as mood problems are a risk factor for progression from MCI to dementia, so interventions that increase and strengthen social networks may have beneficial effects on slowing the progression of cognitive decline.

  4. Understanding the Selection Bias : Social Network Processes and the Effect of Prejudice on the Avoidance of Outgroup Friends

    NARCIS (Netherlands)

    Stark, Tobias H.

    2015-01-01

    Research has found that prejudiced people avoid friendships with members of ethnic outgroups. Results of this study suggest that this effect is mediated by a social network process. Longitudinal network analysis of a three-wave panel study of 12- to 13-year-olds (N = 453) found that more prejudiced

  5. Me and My 400 Friends: The Anatomy of College Students' Facebook Networks, Their Communication Patterns, and Well-Being

    Science.gov (United States)

    Manago, Adriana M.; Taylor, Tamara; Greenfield, Patricia M.

    2012-01-01

    Is there a trade-off between having large networks of social connections on social networking sites such as Facebook and the development of intimacy and social support among today's generation of emerging adults? To understand the socialization context of Facebook during the transition to adulthood, an online survey was distributed to college…

  6. Contextual Student Learning through Authentic Asteroid Research Projects using a Robotic Telescope Network

    Science.gov (United States)

    Hoette, Vivian L.; Puckett, Andrew W.; Linder, Tyler R.; Heatherly, Sue Ann; Rector, Travis A.; Haislip, Joshua B.; Meredith, Kate; Caughey, Austin L.; Brown, Johnny E.; McCarty, Cameron B.; Whitmore, Kevin T.

    2015-11-01

    Skynet is a worldwide robotic telescope network operated by the University of North Carolina at Chapel Hill with active observing sites on 3 continents. The queue-based observation request system is simple enough to be used by middle school students, but powerful enough to supply data for research scientists. The Skynet Junior Scholars program, funded by the NSF, has teamed up with professional astronomers to engage students from middle school to undergraduates in authentic research projects, from target selection through image analysis and publication of results. Asteroid research is a particularly fruitful area for youth collaboration that reinforces STEM education standards and can allow students to make real contributions to scientific knowledge, e.g., orbit refinement through astrometric submissions to the Minor Planet Center. We have created a set of projects for youth to: 1. Image an asteroid, make a movie, and post it to a gallery; 2. Measure the asteroid’s apparent motion using the Afterglow online image processor; and 3. Image asteroids from two or more telescopes simultaneously to demonstrate parallax. The apparent motion and parallax projects allow students to estimate the distance to their asteroid, as if they were the discoverer of a brand new object in the solar system. Older students may take on advanced projects, such as analyzing uncertainties in asteroid orbital parameters; studying impact probabilities of known objects; observing time-sensitive targets such as Near Earth Asteroids; and even discovering brand new objects in the solar system.Images are acquired from among seven Skynet telescopes in North Carolina, California, Wisconsin, Canada, Australia, and Chile, as well as collaborating observatories such as WestRock in Columbus, Georgia; Stone Edge in El Verano, California; and Astronomical Research Institute in Westfield, Illinois.

  7. Orbit Refinement of Asteroids and Comets Using a Robotic Telescope Network

    Science.gov (United States)

    Lantz Caughey, Austin; Brown, Johnny; Puckett, Andrew W.; Hoette, Vivian L.; Johnson, Michael; McCarty, Cameron B.; Whitmore, Kevin; UNC-Chapel Hill SKYNET Team

    2016-01-01

    We report on a multi-semester project to refine the orbits of asteroids and comets in our Solar System. One of the newest fields of research for undergraduate Astrophysics students at Columbus State University is that of asteroid astrometry. By measuring the positions of an asteroid in a set of images, we can reduce the overall uncertainty in the accepted orbital parameters of that object. These measurements, using our WestRock Observatory (WRO) and several other telescopes around the world, are being published through the Minor Planet Center (MPC) and benefit the global community.Three different methods are used to obtain these observations. First, we use our own 24-inch telescope at WRO, located in at CSU's Coca-Cola Space Science Center in downtown Columbus, Georgia . Second, we have access to data from the 20-inch telescope at Stone Edge Observatory in El Verano, California. Finally, we may request images remotely using Skynet, an online worldwide network of robotic telescopes. Our primary and long-time collaborator on Skynet has been the "41-inch" reflecting telescope at Yerkes Observatory in Williams Bay, Wisconsin. Thus far, we have used these various telescopes to refine the orbits of more than 15 asteroids and comets. We have also confirmed the resulting reduction in orbit-model uncertainties using Monte Carlo simulations and orbit visualizations, using Find_Orb and OrbitMaster software, respectively.Before any observatory site can be used for official orbit refinement projects, it must first become a trusted source of astrometry data for the MPC. We have therefore obtained Observatory Codes not only for our own WestRock Observatory (W22), but also for 3 Skynet telescopes that we may use in the future: Dark Sky Observatory in Boone, North Carolina (W38) Hume Observatory in Santa Rosa, California (U54) and Athabasca University Geophysical Observatory in Athabasca, Alberta, Canada (U96).

  8. A system for simulating shared memory in heterogeneous distributed-memory networks with specialization for robotics applications

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.P.; Bangs, A.L.; Butler, P.L.

    1991-01-01

    Hetero Helix is a programming environment which simulates shared memory on a heterogeneous network of distributed-memory computers. The machines in the network may vary with respect to their native operating systems and internal representation of numbers. Hetero Helix presents a simple programming model to developers, and also considers the needs of designers, system integrators, and maintainers. The key software technology underlying Hetero Helix is the use of a compiler'' which analyzes the data structures in shared memory and automatically generates code which translates data representations from the format native to each machine into a common format, and vice versa. The design of Hetero Helix was motivated in particular by the requirements of robotics applications. Hetero Helix has been used successfully in an integration effort involving 27 CPUs in a heterogeneous network and a body of software totaling roughly 100,00 lines of code. 25 refs., 6 figs.

  9. Neural Network Model for Path-Planning of Robotic Rover Systems

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    Today, robotics is an auspicious and fast-growing branch of technology that involves the manufacturing, design, and maintenance of robot machines that can operate in an autonomous fashion and can be used in a wide variety of applications including space exploration, weaponry, household, and transportation. More particularly, in space applications, a common type of robots has been of widespread use in the recent years. It is called planetary rover which is a robot vehicle that moves across the surface of a planet and conducts detailed geological studies pertaining to the properties of the landing cosmic environment. However, rovers are always impeded by obstacles along the traveling path which can destabilize the rover's body and prevent it from reaching its goal destination. This paper proposes an ANN model that allows rover systems to carry out autonomous path-planning to successfully navigate through challenging planetary terrains and follow their goal location while avoiding dangerous obstacles. The propos...

  10. Consensus Formation Control for a Class of Networked Multiple Mobile Robot Systems

    Directory of Open Access Journals (Sweden)

    Long Sheng

    2012-01-01

    for investigating the sufficient conditions to linear control gain design for the system with constant time delays. Simulation results as well as experimental studies on Pioneer 3 series mobile robots are shown to verify the effectiveness of the proposed approach.

  11. Decentralized Identification and Control in Real-Time of a Robot Manipulator via Recurrent Wavelet First-Order Neural Network

    Directory of Open Access Journals (Sweden)

    Luis A. Vázquez

    2015-01-01

    Full Text Available A decentralized recurrent wavelet first-order neural network (RWFONN structure is presented. The use of a wavelet Morlet activation function allows proposing a neural structure in continuous time of a single layer and a single neuron in order to identify online in a series-parallel configuration, using the filtered error (FE training algorithm, the dynamics behavior of each joint for a two-degree-of-freedom (DOF vertical robot manipulator, whose parameters such as friction and inertia are unknown. Based on the RWFONN subsystem, a decentralized neural controller is designed via backstepping approach. The performance of the decentralized wavelet neural controller is validated via real-time results.

  12. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    Science.gov (United States)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  13. Utilizing Social Network Services for Enhanced Communication with Elderly Living at Home

    DEFF Research Database (Denmark)

    Wagner, Stefan

    2009-01-01

    This paper discusses whether social network services, like Facebook and Twitter, may be used by elderly living in their own homes to enhance communication with their relatives and friends. It introduces a prototype solution based on the iRobot Roomba 560, iRobot, USA, robot vacuum cleaner, which...... has been enhanced with Facebook and Twitter communication capabilities. The paper points out a number of other relevant applications where the use of social network services may provide better communication for ambient assisted living solutions and intelligent environments....

  14. Utilizing Social Network Services for Enhanced Communication with Elderly Living at Home

    DEFF Research Database (Denmark)

    Wagner, Stefan

    2009-01-01

    has been enhanced with Facebook and Twitter communication capabilities. The paper points out a number of other relevant applications where the use of social network services may provide better communication for ambient assisted living solutions and intelligent environments.......This paper discusses whether social network services, like Facebook and Twitter, may be used by elderly living in their own homes to enhance communication with their relatives and friends. It introduces a prototype solution based on the iRobot Roomba 560, iRobot, USA, robot vacuum cleaner, which...

  15. Do Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity Using Inferential Network Analysis.

    Science.gov (United States)

    Czarna, Anna Z; Leifeld, Philip; Śmieja, Magdalena; Dufner, Michael; Salovey, Peter

    2016-09-27

    This research investigated effects of narcissism and emotional intelligence (EI) on popularity in social networks. In a longitudinal field study, we examined the dynamics of popularity in 15 peer groups in two waves (N = 273). We measured narcissism, ability EI, and explicit and implicit self-esteem. In addition, we measured popularity at zero acquaintance and 3 months later. We analyzed the data using inferential network analysis (temporal exponential random graph modeling, TERGM) accounting for self-organizing network forces. People high in narcissism were popular, but increased less in popularity over time than people lower in narcissism. In contrast, emotionally intelligent people increased more in popularity over time than less emotionally intelligent people. The effects held when we controlled for explicit and implicit self-esteem. These results suggest that narcissism is rather disadvantageous and that EI is rather advantageous for long-term popularity.

  16. ProofBook: An Online Social Network Based on Proof-of-Work and Friend-Propagation

    NARCIS (Netherlands)

    Biedermann, Sebastian; Karvelas, Nikolaos P.; Katzenbeisser, Stefan; Strufe, Thorsten; Peter, Andreas

    2014-01-01

    Online Social Networks (OSNs) enjoy high popularity, but their centralized architectures lead to intransparency and mistrust in the providers who can be the single point of failure. A solution is to adapt the OSN functionality to an underlying and fully distributed peer-to-peer (P2P) substrate.

  17. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    CERN Document Server

    Eom, Young-Ho

    2014-01-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks...

  18. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.

    Science.gov (United States)

    Wai, Rong-Jong; Yang, Zhi-Wei

    2008-10-01

    This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.

  19. Audio-Visual Tibetan Speech Recognition Based on a Deep Dynamic Bayesian Network for Natural Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2012-12-01

    Full Text Available Audio‐visual speech recognition is a natural and robust approach to improving human-robot interaction in noisy environments. Although multi‐stream Dynamic Bayesian Network and coupled HMM are widely used for audio‐visual speech recognition, they fail to learn the shared features between modalities and ignore the dependency of features among the frames within each discrete state. In this paper, we propose a Deep Dynamic Bayesian Network (DDBN to perform unsupervised extraction of spatial‐temporal multimodal features from Tibetan audio‐visual speech data and build an accurate audio‐visual speech recognition model under a no frame‐independency assumption. The experiment results on Tibetan speech data from some real‐world environments showed the proposed DDBN outperforms the state‐of‐art methods in word recognition accuracy.

  20. Evaluation of a wearable tele-echography robot system: FASTele in a vehicle using a mobile network.

    Science.gov (United States)

    Ito, Keiichiro; Tsuruta, Koichi; Sugano, Shigeki; Iwata, Hiroyasu

    2011-01-01

    This paper shows the focused assessment with sonography for trauma (FAST) performance of a wearable tele-echography robot system we have developed that we call "FASTele". FAST is a first-step way of assessing the injury severity of patients suffering from internal bleeding who may be some time away from hospital treatment. So far, we have only verified our system's effectiveness under constantly wired network conditions. To determine its FAST performance within an emergency vehicle, we extended it to a WiMAX mobile network and performed experiments on it. Experiment results showed that paramedics could attach the system to FAST areas on a patient's body on the basis of the attaching position and procedure. We also assessed echo images to confirm that the system is able to extract the echo images required for FAST under maximum vehicle acceleration.

  1. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    Science.gov (United States)

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller.

  2. New Methods for Kinematic Modelling and Calibration of Robots

    DEFF Research Database (Denmark)

    Søe-Knudsen, Rune

    2014-01-01

    Improving a robot's accuracy increases its ability to solve certain tasks, and is therefore valuable. Practical ways of achieving this improved accuracy, even after robot repair, is also valuable. In this work, we introduce methods that improve the robot's accuracy and make it possible to maintai...... is our contribution to push the boundaries of user-friendly maintenance of industrial robots without expensive equipment....

  3. Distributed, collaborative human-robotic networks for outdoor experiments in search, identify and track

    Science.gov (United States)

    Lee, Daniel; McClelland, Mark; Schneider, Joseph; Yang, Tsung-Lin; Gallagher, Dan; Wang, John; Shah, Danelle; Ahmed, Nisar; Moran, Pete; Jones, Brandon; Leung, Tung-Sing; Nathan, Aaron; Kress-Gazit, Hadas; Campbell, Mark

    2010-10-01

    This paper presents an overview of a human-robotic system under development at Cornell which is capable of mapping an unknown environment, as well as discovering, tracking, and neutralizing several static and dynamic objects of interest. In addition, the robots can coordinate their individual tasks with one another without overly burdening a human operator. The testbed utilizes the Segway RMP platform, with lidar, vision, IMU and GPS sensors. The software draws from autonomous systems research, specifically in the areas of pose estimation, target detection and tracking, motion and behavioral planning, and human robot interaction. This paper also details experimental scenarios of mapping, tracking, and neutralization presented by way of pictures, data, and movies.

  4. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  5. Improving Social Odometry Robot Networks with Distributed Reputation Systems for Collaborative Purposes

    Directory of Open Access Journals (Sweden)

    Zorana Bankovic

    2011-11-01

    Full Text Available The improvement of odometry systems in collaborative robotics remains an important challenge for several applications. Social odometry is a social technique which confers the robots the possibility to learn from the others. This paper analyzes social odometry and proposes and follows a methodology to improve its behavior based on cooperative reputation systems. We also provide a reference implementation that allows us to compare the performance of the proposed solution in highly dynamic environments with the performance of standard social odometry techniques. Simulation results quantitatively show the benefits of this collaborative approach that allows us to achieve better performances than social odometry.

  6. When Sharing Is a Bad Idea: The Effects of Online Social Network Engagement and Sharing Passwords with Friends on Cyberbullying Involvement.

    Science.gov (United States)

    Meter, Diana J; Bauman, Sheri

    2015-08-01

    Every day, children and adolescents communicate online via social networking sites (SNSs). They also report sharing passwords with peers and friends, a potentially risky behavior in regard to cyber safety. This longitudinal study tested the hypotheses that social network engagement in multiple settings would predict more cyberbullying involvement over time, and that youth who reported sharing passwords would also experience an increase in cyberbullying involvement. Data were collected at two time points one year apart from 1,272 third through eighth grade students. In line with the first study hypothesis, participating in more online SNSs was associated with increased cyberbullying involvement over time, as well as sharing passwords over time. Cyberbullying involvement at T1 predicted decreases in sharing passwords over time, suggesting that youth become aware of the dangers of sharing passwords as a result of their experience. Sharing passwords at T1 was unrelated to cyberbullying involvement at T2. Although it seems that youth may be learning from their previous mistakes, due to the widespread use of social media and normality of sharing passwords among young people, it is important to continue to educate youth about cyber safety and risky online behavior.

  7. Comigrants and friends: informal networks and the transmission of traditional ecological knowledge among seminomadic pastoralists of Gujarat, India

    Directory of Open Access Journals (Sweden)

    Matthieu Salpeteur

    2016-06-01

    Full Text Available Previous research has shown that social organization may affect the distribution of traditional ecological knowledge (TEK within local communities of natural resource users in multiple ways. However, in this line of research the potential role of informal relationships has mostly been overlooked. In this article, we contribute toward filling this research gap by studying how two types of informal relationships, namely migration partnership and friendship, affect the distribution of TEK within a community of seminomadic pastoralists from the Kutch area, Gujarat, India. Using social network analysis, we map three networks, migration, men friendship, and women friendship, and compare with similarity-based quantitative approaches the clusters extracted from these networks in relation to four domains of TEK: knowledge about soils, about ethnoveterinary practices, about sheep breeds, and in ethnobotany. Our results show that (1 migration clusters are associated to significant variations in three TEK domains, while (2 friendship clusters are associated to minor variations. We relate these results to the importance of common practical experiences involved by joint migration. Moreover, kin relations are shown to strongly underlie friendship and migration relations, and as such appear as a potential driver of the dynamics of the local TEK system. We conclude by advocating for a better inclusion of such informal relationships in future research on local TEK dynamics, following recent developments in studies on natural resource governance.

  8. 程控自主天文台网络的发展%Robotic Autonomous Observatory Network Review

    Institute of Scientific and Technical Information of China (English)

    崔辰州; 何勃亮; 李长华; 赵永恒; 谌悦; 王传军; 辛玉新; 白金明; 季凯帆; 李建; 蔡栩; 范玉峰; 王锋; 曹子皇; 苏丽颖; 樊东卫; 乔翠兰

    2013-01-01

    Developments in telescopes, detectors and software have greatly enhanced our ability to make astronomical observations. Powerful astronomical observation is very sensitive to its working environment, requiring it to be quiet as much as possible. Rapid urbanization over the past century has impacted this environment such that astronomical observations now suffer from light, air and electromagnetic pollution. To obtain better observational data and generate more scientific discover-ies, astronomical observatories are forced to migrate to remote places or even into space. As a result of the migration, and the global nature of astronomy, observatories and scientific data are widely dis-tributed. Meanwhile, multiband astronomy and time-domain astronomy are becoming popular fields in astronomy in the 21st century, both of which are based on federation of multiband and multi-time scientific datasets. Robotic Autonomous Observatory (RAO) and RAO Network (RAON) provide a science driven and technique enabled way to address the above problem. With the development of information technology and computer science as well as electro-mechanics, the automation of astronomical ob-servation is undergoing rapid development, and consequently long term unsupervised observation is made possible. This becomes what we call “Robotic Autonomous Observatory”. Following from this is the idea of connecting multiple robotic autonomous observatories via a robust computer network and making them interoperate. The connected system, namely “Robotic Autonomous Observatory Network”, will enable observation around the clock in respect to a given object or covering large areas on the sky repeatedly, and the completeness of observations in time and space domains could be largely guaranteed. Time domain astronomy and data intensive astronomy are being enabled by the advent of the new autonomous observation mode and synoptic sky surveys, which brings both new scientific opportunities and fresh

  9. Designing the optimal robotic milking barn by applying a queuing network approach

    NARCIS (Netherlands)

    Halachmi, I.; Adan, I.J.B.F.; Wald, van der J.; Beek, van P.; Heesterbeek, J.A.P.

    2003-01-01

    The design of various conventional dairy barns is based on centuries of experience, but there is hardly any experience with robotic milking barns (RMB). Furthermore, as each farmer has his own management practices, the optimal layout is `site dependent¿. A new universally applicable design methodolo

  10. Advances in Integrating Autonomy with Acoustic Communications for Intelligent Networks of Marine Robots

    Science.gov (United States)

    2013-02-01

    Front Seat Interface Robotic Marine Kayak +ship name : string Topside +name : string = Bobby Kayak +name : string = Dee Kayak #Tracking #Sonar Interface...Computer Bridge Display Computer «executable» Google Earth «executable» Google Earth «wired» ethernet Kayak (Elanor) MOOS Computer Kayak ASC (Dee) MOOS

  11. RBF Nerve Network Tuning PD Control Scheme for Tele-operation Robot Servo System

    Directory of Open Access Journals (Sweden)

    Guang Wen

    2013-11-01

    Full Text Available In the bilateral hydraulic servo control system of a construction tele-robot with in-situ force sensing, the p-f type force feedback architecture is liable to result in an impact on the operator hand, and its high amplitude will cause the control unstable. In order to solve this problem an improved force feedback control method with the feature of a T-S fuzzy feedback coefficient, which could be modified online nonlinearly and continuously, is proposed. And a RBF-PID force controller is also designed, and formed a bilateral hydraulic servo control system. The experimental results indicate that the new improved control method reduced the impact of the feedback force, the compliance and transparency of the tele-operation of construction tele-robot system are enhanced.

  12. Up to what point is loss reduction environmentally friendly?: The LCA of loss reduction scenarios in drinking water networks.

    Science.gov (United States)

    Pillot, Julie; Catel, Laureline; Renaud, Eddy; Augeard, Bénédicte; Roux, Philippe

    2016-11-01

    In a context of increasing water shortage all over the world, water utilities must minimise losses in their distribution networks and draw up water loss reduction action plans. While leak reduction is clearly an important part of sustainable water management, its impacts have to be reconsidered in a broader objective of environmental protection than strictly the avoided losses in cubic metres of water. Reducing the volume of water abstracted reduces also environmental impacts associated to water production (the operation and infrastructure needed for abstraction, treatment, supply). In the mean time, activities for reducing water losses generate their own environmental impacts, notably as a result of the work, equipment, and infrastructures used for this purpose. In this study, Life Cycle Assessment (LCA) was used to assess and compare two sets of environmental impacts: those resulting from the production and supply of water which will never reach subscribers, and those caused by water loss reduction activities. This information can then be used to establish whether or not there is a point beyond which loss reduction is no longer effective in reducing the environmental impacts of drinking water supply. Results show that the improvement actions that start from a low water supply efficiency are clearly beneficial for ecosystems, human health and preservation of resources. When seeking to improve the efficiency beyond certain values (about 65%), the uncertainty makes it impossible to conclude for an environmental benefit on all impact categories.

  13. Distributed, Collaborative Human-Robotic Networks for Outdoor Experiments in Search, Identify and Track

    Science.gov (United States)

    2011-01-11

    design 3.3 Computers Each robot is designed to mount two Mini-ITX form factor custom computers. Each computer is equipped with a Core 2 Duo Mobile...curve built from the output from the A* algorithm The planned paths are then fed into a modified vector polar histogram ( VPH ) controller which...provides motor actuation commands to the Segway platform. The VPH controller continuously aims for a look-ahead point on the path a set distance away

  14. Decentralized Algorithms for 3D Symmetric Formations in Robotic Networks: a Contraction Theory Approach

    OpenAIRE

    Singh, Sumeet; Schmerling, Edward; Pavone, Marco

    2015-01-01

    This paper presents decentralized algorithms for formation control of multiple robots in three dimensions. Specifically, we leverage the mathematical properties of cyclic pursuit along with results from contraction and partial contraction theory to design decentralized control algorithms that ensure global convergence to symmetric formations. We first consider regular polygon formations as a base case, and then extend the results to Johnson solid and other polygonal mesh formations. The algor...

  15. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    Science.gov (United States)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; Morse, Brian J.; Mulac, Brian D.; Reed, Cheryl L.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  16. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    Science.gov (United States)

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.

  17. Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks

    Institute of Scientific and Technical Information of China (English)

    Thang-Long MAI; Yaonan WANG

    2014-01-01

    In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomic-constraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.

  18. Adaptive Task-Space Cooperative Tracking Control of Networked Robotic Manipulators Without Task-Space Velocity Measurements.

    Science.gov (United States)

    Liang, Xinwu; Wang, Hesheng; Liu, Yun-Hui; Chen, Weidong; Hu, Guoqiang; Zhao, Jie

    2016-10-01

    In this paper, the task-space cooperative tracking control problem of networked robotic manipulators without task-space velocity measurements is addressed. To overcome the problem without task-space velocity measurements, a novel task-space position observer is designed to update the estimated task-space position and to simultaneously provide the estimated task-space velocity, based on which an adaptive cooperative tracking controller without task-space velocity measurements is presented by introducing new estimated task-space reference velocity and acceleration. Furthermore, adaptive laws are provided to cope with uncertain kinematics and dynamics and rigorous stability analysis is given to show asymptotical convergence of the task-space tracking and synchronization errors in the presence of communication delays under strongly connected directed graphs. Simulation results are given to demonstrate the performance of the proposed approach.

  19. Friend Recommendation Algorithm Based on Mixed Graph in Online Social Networks%基于混合图的在线社交网络朋友推荐算法

    Institute of Scientific and Technical Information of China (English)

    俞琰; 邱广华; 陈爱萍

    2011-01-01

    针对在线社交网络朋友推荐问题,尝试融合多个社会网络为一个混合图模型,采用基于混合图模型的重启动随机游走算法,为用户提供个性化的朋友推荐,并通过参数调节多个网络的权重。实验表明,该算法提高了在线社交网络朋友推荐的准确性。%Aiming at the friend recommendation in online social networks, this paper tries to fuse multiple social net-works into one mixed graph on which the random walk with restart is implemented to provide personalized friend recomendation for users. The different roles of these networks are adjusted by parameters. Experiment demonstrates that this algorithm can improve the accuracy of friend recommendation in online social networks.

  20. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  1. Cyber Friendly Fire

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

    2011-09-01

    Cyber friendly fire (FF) is a new concept that has been brought to the attention of Department of Defense (DoD) stakeholders through two workshops that were planned and conducted by the Air Force Research Laboratory (AFRL) and research conducted for AFRL by the Pacific Northwest National Laboratory. With this previous work in mind, we offer a definition of cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, a fundamental need in avoiding cyber FF is to maintain situation awareness (SA). We suggest that cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system (and that populate the nodes), the nature of the activities or work performed, and the available defensive (and offensive) countermeasures that may be applied to thwart network attacks. A training implication is to raise awareness and understanding of these critical knowledge units; an approach to decision aids and/or visualizations is to focus on supporting these critical knowledge units. To study cyber FF, we developed an unclassified security test range comprising a combination of virtual and physical devices that present a closed network for testing, simulation, and evaluation. This network offers services found on a production network without the associated costs of a real production network. Containing enough detail to appear realistic, this virtual and physical environment can be customized to represent different configurations. For our purposes, the test range was configured to appear as an Internet-connected Managed Service Provider (MSP) offering specialized web applications to the general public

  2. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  3. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire; Duca, Edward

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  4. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  5. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  6. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  7. Feature-Based Localization in Sonar-Equipped Autonomous Mobile Robots Through Hough Transform and Unsupervised Learning Network,

    Science.gov (United States)

    1998-06-01

    research has focused on the development of autonomous mobile robots - robots that can move about without human supervision. This brings with it several...around it? Various methods of localization in mobile robots have been explored. Most of these methods, however, assume some a priori knowledge of the

  8. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  9. Robot Formations Using Only Local Sensing and Control

    DEFF Research Database (Denmark)

    Fredslund, Jacob; Mataric, Maja J.

    2001-01-01

    , behaviorbased algorithm that solves the problem for N robots each equipped with sonar, laser, camera, and a radio link for communicating with other robots. The method uses the idea of keeping a single friend at a desired angle (by panning the camera and keeping the friend centered in the image), and only...

  10. 不确定性机器人的神经网络自适应控制%Adaptive Control for Uncertain Robot Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    周景雷

    2011-01-01

    A kind of neural network adaptive control for a sort of uncertain robotic system is presented. First,the multi-joint robotic dynamical model based on the lagrange equation is transformed into a two-order system via feedback control technique. Then,combine the two-order system with the neural network adaptive control, finding out a new way to study the robotic systems. This way is to use the RBF neural network adaptive control methods to design the controller,which can guarantee the actual tracks of robot asymptotically tail after the given desired tracks without any error. At last,take a two-joint robot as an example and give its simulation results.%针对一类不确定性机器人轨迹跟踪问题,提出了一种神经网络自适应控制.首先利用反馈控制技术把基于拉格朗日方程的多关节机器人动力学模型转化成二阶系统.其次,将神经网络自适应控制方法和所转化的二阶系统相结合,找到了一种新方法来研究机器人系统,该方法是应用RBF神经网络自适应控制思想来设计控制器,所设计的控制器能够保证机器人的实际运动轨迹渐近无误差地跟踪给定的期望轨迹.最后,以两关节机器人系统为例,给出其仿真试验结果.

  11. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole‐position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro‐mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real‐time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  12. Human-Robot Interface over the Web Based Intelligent System

    Directory of Open Access Journals (Sweden)

    Desa Hazry

    2006-01-01

    Full Text Available This research extends the capability for the new technology platform by Remote Data Inspection System (RDIS server from Furukawa Co., Ltd. Enabling the integration of standard Hypertext Markup Language (HTML programming and RDIS tag programming to create a user-friendly “point-and-click” web-based control mechanism. The integration allows the users to send commands to mobile robot over the Internet. Web-based control enables human to extend his action and intelligence to remote locations. Three mechanisms for web-based controls are developed: Manual remote control, continuous operation event and autonomous navigational control. In the manual remote control the user is fully responsible for the robot action and the robot do not use any sophisticated algorithms. The continuous operation event is the extension of the basic movement of a manual remote control mechanism. In the autonomous navigation control, the user has more flexibility to tell the robot to carry out specific tasks. Using this method, mobile robot can be controlled via the web, from any places connected to the network without constructing specific infrastructures for communication.

  13. 机械手分散CMAC控制器%Decentralized CMAC Neural Network Control of Robot Manipulators

    Institute of Scientific and Technical Information of China (English)

    杨艳丽; 史维祥

    2001-01-01

    针对机械手动力学模型未知情况,采用类似于计算力矩法的控制器结构,设计了基于CMAC神经网络分散控制器作为非线性估计器、PD控制器作为跟踪外环的机械手控制方案。分析了该控制方案的稳定性,通过仿真验证了该控制方法的有效性。结果表明,在未知机械手动力学的情况下,控制系统的运行仍是有效的,并且不同于传统的自适应控制器,不需要计算回归矢量,也不必对系统参数做任何线性假设。由于采用分散CMAC结构,简化了控制器实现的复杂度,易于采用大规模可编程数字逻辑阵列和ASIC数字电路予以硬件实现。%A control scheme of robot manipulator which has CMAC based neural network decentralized controller as inner-loop and a PD controller as outer-loop is presented for a class of robot manipulators with unknown dynamic model. The stability is analyzed, and its validity is also demonstrated by numerical simulation. Under the unknown dynamics of the robot manipulator, the controller is still valid. In contrast to traditional ones, the control scheme does not require the computation of a regression vector and need not make any linearity assumptions on the system parameters. Because of the decentralization,a large-scale logic array and ASIC digital circuit can realize the CMAC controller easily.

  14. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Directory of Open Access Journals (Sweden)

    Peter Stratton

    Full Text Available The head direction (HD system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology, and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  15. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Science.gov (United States)

    Stratton, Peter; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2011-01-01

    The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  16. An Idiotypic Immune Network as a Short Term Learning Architecture for Mobile Robots

    CERN Document Server

    Whitbrook, Amanda; Garibaldi, Jonathan M

    2009-01-01

    A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability

  17. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    DEFF Research Database (Denmark)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin

    2015-01-01

    mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...

  18. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  19. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    OpenAIRE

    Alberto Chávez-Aragón; Rizwan Macknojia; Pierre Payeur; Robert Laganière

    2013-01-01

    This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is position...

  20. TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    CERN Document Server

    White, R R; Davis, H; Galassi, M; Starr, D; Vestrand, W T; Wozniak, P

    2004-01-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescope...

  1. NIH Loses a Friend

    Science.gov (United States)

    ... page please turn Javascript on. NIH Loses a Friend Past Issues / Fall 2009 Table of Contents Donald ... changingthefaceofmedicine/ . Sincerely, Donald West King, M.D., Chairman Friends of the National Library of Medicine Let Us ...

  2. Robotics and ergonomics.

    Science.gov (United States)

    Stylopoulos, Nicholas; Rattner, David

    2003-12-01

    Industrial robotics have proven the benefit of using an untiring machine to perform precise repetitive tasks in uncomfortable or dangerous for humans environments. Highly skilled surgeons are trained to operate and adapt to difficult conditions. They are even capable of developing intelligent mechanisms to exploit a variety of tactile, visual, and other cues. The robotic systems, however, can enhance the surgeon's capability to perform a wide variety of tasks. They cannot replace the surgeon's problem-solving ability. Instead, they will redefine his role. They will significantly enhance the surgeon's skills and dexterity by providing their complementary capabilities and an ergonomically efficient and more user-friendly working environment.

  3. 智能机器人的模糊神经网络避障算法%Obstacle avoidance algorithm designed for mobile robot based on fuzzy neural network

    Institute of Scientific and Technical Information of China (English)

    沈显庆; 汪才杰

    2012-01-01

    Aimed at removing difficulties developing accurate models due to complicated influence factors occurring during the process of obstacle avoidance for robot,this paper describes the adoption of ultrasonic wave sensor and positioning sensor to obtain the input information of environment to which robots are exposed,the fuzzy treatment of the input information,and the development of three-layer BP neural network and proposes the control algorithm of robot fuzzy neural network obstacle avoidance.The simulation shows that this algorithm allows the robot to avoid obstacles accurately in the unknown environment as a result of the robot's demonstrated ability to avoid the obstacles on the way safely and without collision and reach the destination smoothly before realizing the safety obstacle avoidance.%针对机器人避障过程中影响因素复杂及难以建立精确模型的问题,采用超声波传感器和定位传感器获取机器人所处环境的输入信息,对其进行模糊处理,并建立三层BP神经网络,进而提出机器人模糊神经网络避障控制算法。仿真结果表明:机器人能从起点安全、无碰撞地避开途中的障碍物,顺利到达终点,实现了安全避障,进而证明该算法能够使机器人在未知环境中准确地避障。

  4. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  5. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds...... the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input...

  6. 基于生物刺激神经网络的多机器人编队方法%Multi-robot formation based on biological inspired neural network

    Institute of Scientific and Technical Information of China (English)

    仰晓芳; 倪建军

    2013-01-01

    Multi-robot formation control is an important issue in the multi-robot cooperation field. It is a hot and difficult problem to achieve multi-robot dynamic formation while making them move toward the same target. Concerning this problem, a new biological inspired neural network based approach for multi-robot formation was proposed in this paper. In the proposed approach, a leader-referenced formation model was used to calculate the virtual target location for each robot in real-time, and a biological neural network was used to realize multi-robot navigation. Finally, some simulation experiments were carried out. The experimental results show that the proposed approach has some good performances, such as the real-time obstacle avoidance, keeping formation and moving toward the same target. Furthermore, multi-robots can change the formation quickly, which proves the real-time and intelligence of the proposed approach.%多机器人编队控制是多机器人协作领域的重要研究内容之一,如何实现多机器人朝同一目标移动的同时保持队形是多机器人编队的一个热点和难点问题.针对这一问题,提出一种新的基于生物刺激神经网络的多机器人动态编队方法,采用基于leader-referenced编队模型实时计算各机器人的虚拟目标位置,利用生物刺激神经网络进行机器人导航.最后进行仿真实验,实验结果表明该方法在实现多机器人实时避障并保持队形的同时,朝同一目标移动,而且可以很快实现队形变换,具有较好的实时性和灵活性.

  7. A seismic-network mission proposal as an example for modular robotic lunar exploration missions

    Science.gov (United States)

    Lange, C.; Witte, L.; Rosta, R.; Sohl, F.; Heffels, A.; Knapmeyer, M.

    2017-05-01

    In this paper it is intended to discuss an approach to reduce design costs for subsequent missions by introducing modularity, commonality and multi-mission capability and thereby reuse of mission individual investments into the design of lunar exploration infrastructural systems. The presented approach has been developed within the German Helmholtz-Alliance on Robotic Exploration of Extreme Environments (ROBEX), a research alliance bringing together deep-sea and space research to jointly develop technologies and investigate problems for the exploration of highly inaccessible terrain - be it in the deep sea and polar regions or on the Moon and other planets. Although overall costs are much smaller for deep sea missions as compared to lunar missions, a lot can be learned from modularity approaches in deep sea research infrastructure design, which allows a high operational flexibility in the planning phase of a mission as well as during its implementation. The research presented here is based on a review of existing modular solutions in Earth orbiting satellites as well as science and exploration systems. This is followed by an investigation of lunar exploration scenarios from which we derive requirements for a multi-mission modular architecture. After analyzing possible options, an approach using a bus modular architecture for dedicated subsystems is presented. The approach is based on exchangeable modules e.g. incorporating instruments, which are added to the baseline system platform according to the demands of the specific scenario. It will be described in more detail, including arising problems e.g. in the power or thermal domain. Finally, technological building blocks to put the architecture into practical use will be described more in detail.

  8. Friends don't let friends eat cookies: effects of restrictive eating norms on consumption among friends.

    Science.gov (United States)

    Howland, Maryhope; Hunger, Jeffrey M; Mann, Traci

    2012-10-01

    Social norms are thought to be a strong influence over eating, but this hypothesis has only been experimentally tested with groups of strangers, and correlational studies using actual friends lack important controls. We manipulate an eating norm in the laboratory and explore its influence within established friendships. In two studies we randomly assigned groups of three friends to a restrictive norm condition, in which two of the friends were secretly instructed to restrict their intake of appetizing foods, or a control condition, in which the friends were not instructed to restrict their eating. The third friend's consumption was measured while eating with the other two friends and while eating alone. In both studies, participants consumed less food when eating with friends who had been given restricting instructions compared to those who had not been given those instructions. In Study 2, participants who ate with restricting friends also continued to restrict their eating when alone. Experimentally manipulating social norms within established friendships is possible, and these norms can influence consumption in those social groups and carry over into non-social eating situations. These findings may suggest mechanisms through which eating behaviors may spread through social networks, as well as an environmental factor that may be amenable to change.

  9. Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments.

    Science.gov (United States)

    Canedo-Rodriguez, Adrián; Iglesias, Roberto; Regueiro, Carlos V; Alvarez-Santos, Victor; Pardo, Xose Manuel

    2012-12-27

    To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal.

  10. Self-Organized Multi-Camera Network for a Fast and Easy Deployment of Ubiquitous Robots in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Xose Manuel Pardo

    2012-12-01

    Full Text Available To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal.

  11. Closed-loop neuro-robotic experiments to test computational properties of neuronal networks.

    Science.gov (United States)

    Tessadori, Jacopo; Chiappalone, Michela

    2015-03-02

    Information coding in the Central Nervous System (CNS) remains unexplored. There is mounting evidence that, even at a very low level, the representation of a given stimulus might be dependent on context and history. If this is actually the case, bi-directional interactions between the brain (or if need be a reduced model of it) and sensory-motor system can shed a light on how encoding and decoding of information is performed. Here an experimental system is introduced and described in which the activity of a neuronal element (i.e., a network of neurons extracted from embryonic mammalian hippocampi) is given context and used to control the movement of an artificial agent, while environmental information is fed back to the culture as a sequence of electrical stimuli. This architecture allows a quick selection of diverse encoding, decoding, and learning algorithms to test different hypotheses on the computational properties of neuronal networks.

  12. Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.``

  13. An Architecture for the Competitive Networked Robot System%竞争型网络机器人体系结构研究

    Institute of Scientific and Technical Information of China (English)

    李岩; 曹琳; 孙雷; 刘景泰

    2013-01-01

    A hierarchical architecture is developed for the competitive networked robot system,in order to provide a general platform for competitive networked robot systems with strong interaction.In the proposed architecture,the function of strategic layer is to recognize opponent's intention,estimate threat and generate strategy.To deal with the uncertainty in perception caused by the noise and time-delay,and that in action caused by the hostile action from the opponents,the executive layer is adopted in this architecture.The physical interface layer is used to transfer the command from executive layer into bottom command which can control robots.A typical task with high degree of opposition of competitive networked robot,named Tele-LightSaber (TLS),is proposed for the research on competitive networked robots.Finally,experimental results on TLS platform show the practicality and advantages of the proposed method.%为了研究适用于强交互竞争型网络机器人系统的通用体系结构,提出并设计了分层的竞争型网络机器人体系结构.在该体系结构中.策略层的职责是识别对手的意图、评估威胁和生成策略.执行层的功能是克服由于观测噪声和时延等因素而造成的系统状态观测的不确定性,以及处理由于对方的敌意行动造成的己方的行动不确定性.物理接口层可将执行层的指令转化为控制机器人的底层命令.设计实现了一种高对抗度的竞争型网络机器人对弈系统——Tele-LightSaber.通过在实际Tele-LightSaber网络机器人平台上的实验,表明了该体系结构的实用性和优越性.

  14. "Friending" Professors, Parents and Bosses: A Facebook Connection Conundrum

    Science.gov (United States)

    Karl, Katherine A.; Peluchette, Joy V.

    2011-01-01

    The ever-growing popularity of Facebook has led some educators to ponder what role social networking might have in education. The authors examined student reactions to friend requests from people outside their regular network of friends including professors, parents, and employers. We found students have the most positive reactions to friend…

  15. "Friending" Professors, Parents and Bosses: A Facebook Connection Conundrum

    Science.gov (United States)

    Karl, Katherine A.; Peluchette, Joy V.

    2011-01-01

    The ever-growing popularity of Facebook has led some educators to ponder what role social networking might have in education. The authors examined student reactions to friend requests from people outside their regular network of friends including professors, parents, and employers. We found students have the most positive reactions to friend…

  16. Characterizing environment friendly tourists

    OpenAIRE

    Reinsberg, Cicilie; Vinje, Linn Therese

    2010-01-01

    The central aim of sustainable tourism research today is to find tourists that have a low environmental impact on destinations, which can also be defined as environment friendly tourists. The majority of earlier studies on this topic have focused on characteristics of ecotourists, assuming that these are the only tourists that are environment friendly. Few have tried to identify characteristics of environment friendly tourists using a sample from the general tourist population....

  17. Making Humanoid Robots More Acceptable Based on the Study of Robot Characters in Animation

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleki

    2015-03-01

    Full Text Available In this paper we take an approach in Humanoid Robots are not considered as robots who resembles human beings in a realistic way of appearance and act but as robots who act and react like human that make them more believable by people. Regarding this approach we will study robot characters in animation movies and discuss what makes some of them to be accepted just like a moving body and what makes some other robot characters to be believable as a living human. The goal of this paper is to create a rule set that describes friendly, socially acceptable, kind, cute... robots and in this study we will review example robots in popular animated movies. The extracted rules and features can be used for making real robots more acceptable.

  18. Structured Tracking for Safety, Security, and Privacy: Algorithms for Fusing Noisy Estimates from Sensor, Robot, and Camera Networks

    Science.gov (United States)

    2009-07-23

    active interest [71, 204]. Since 9/11/2001, new robotic pan, tilt, and zoom (PTZ) cameras have come on 2 the market with 42x zoom, built in web-servers for...location of robot s at time τ is denoted by xs,τ ∈ R2. We currently model the space as a 1x1 unit square, but our approach can be easily relaxed to...initial locations at t = 0 by randomly placing each robot in a 1x1 unit area. We then simulate each robot’s movements according to the dynamics model

  19. SISTEM PENENTU GERAKAN MOBILE ROBOT YANG BELAJAR SENDIRI CARA UNTUK BERGERAK MAJU DAN MENGINDARI TRABRAKAN MENGGUNAKAN NEURAL NETWORK (NN

    Directory of Open Access Journals (Sweden)

    Eru Puspita

    2013-03-01

    Full Text Available Commonly used for driving mobile robot is by using certain pre defined algorithm. This research will try to develop driving technique using continuous self learning NN while mobile robot on go. This research only observe about how mobile robot by it self can move forward an how to avoid a collision. Program NN will try to learn how to move forward, backward, turn left, turn right or other possibility depend on or by using collision experience. The test results obtained 82% successful runs forward and approximately 90% managed to avoid a collision.

  20. Algorithm of Friend Recommendation in Online Social Networks Based on Local Random Walk%基于局部随机游走的在线社交网络朋友推荐算法

    Institute of Scientific and Technical Information of China (English)

    俞琰; 邱广华

    2013-01-01

    在线社交网络已成为用户交互和分享信息的流行的互联网平台.其中,为用户推荐朋友是在线社交网络的一项重要服务.一方面,目前在线社交网络通常基于社会图的局部特性为用户推荐朋友(即,用户问的共同朋友数目).这种方法仅使用路径长度为2的局部结构信息,没有充分利用社会图中各种不同长度的路径及其它信息.另一方面,基于社会图全局特性的在线社交网络朋友推荐方法虽然侦测了整个社会图的结构,但是对于大规模的在线社交网络来说,这类方法的计算成本相当高.为此,本文提出了一个新的在线社交网络朋友推荐方法.它根据“小世界”假说,随机游走有限范围内的所有路径,为用户提供了既快速又准确的朋友推荐.本文使用两个真实的在线社交网络的数据集对新方法进行评估.实验结果显示提出的方法显著增加了在线社交网络朋友推荐的准确性.%Online social networks (OSNs) have become popular, which provide users with a new communication and information sharing Internet platform. In OSNs, Recommending friends to registered users is a crucial task. On the one hand, OSNs often recommend friends for users based on local-based features of the social graph (i. e. based on the number of common friends that tho users share). This method considers only pathways of lenght 2 between users and does not exploit all different length paths of the network and other information. On the other hand, there are global-based approaches of friend recommendation in OSNs which detect all pathway structures of the network. But its computation cost is quite high for large scale OSNs. In this paper, we propose a new approach of friend recommendation in OSNs which traverses all the paths of limited length through randomwalk based on "small world" hypothesis. This new method provides users with both fast and accurate friend recommendation in OSNs. To demonstrate

  1. Comparison of Aerosol Single Scattering Albedo Derived from the Ozone Monitoring Instrument with Aerosol Robotic Network Observations

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; HONG Yu-Lan

    2012-01-01

    The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but there were no satellite-based SSA measurements available until the advent of advanced remote sensing techniques, such as the Ozone Monitoring Instrument (OMI). Although the overall accuracy of OMI SSA is estimated to approach 0.1, its regional availability is unclear. Four-year SSA daily measurements from three Aerosol Robotic Network (AERONET) sites in China (Xianghe, Taihu, and Hong Kong) are chosen to determine the accuracy of OMI SSA in specific locations. The results show that on a global scale, the OMI SSA is systematically higher (with a mean relative bias of 3.5% and a RMS difference of ~0.06) and has poor correlation with the AERONET observations. In the Xianghe, Taihu, and Hong Kong sites, the correlation coefficients are 0.16, 0.47, and 0.44, respectively, suggesting that the distinct qualities of OMI SSA depend on geographic locations and/or dominant aerosol environments. The two types of SSA data yield the best agreement in Taihu and the worst in Hong Kong; the differing behavior is likely caused by varying levels of cloud contamination. The good consistency of the aerosol variation between the two SSA datasets on a seasonal scale is promising. These findings suggest that the current-version OMI SSA product can be applied to qualitatively characterize climatological variations of aerosol properties despite its limited accuracy as an instantaneous measurement.

  2. Virtual robotics laboratory for research

    Science.gov (United States)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  3. Designing the robot inclusive space challenge

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2015-11-01

    Full Text Available A novel robotic challenge, namely the robot inclusive spaces (RIS challenge, is proposed in this paper, which is a cross disciplinary and design focused initiative. It aims to foster the roboticists, architects, and designers towards realizing robot friendly social spaces. Contrary to conventional robotics competitions focusing on designing robots and its component technologies, robot inclusive spaces challenge adopts an interdisciplinary “design for robots” strategy to overcome the traditional research problem in real world deployments of social robots. In order to realize the RIS, various architectural elements must be adapted including: design principles for inclusive spaces, lighting schemes, furniture choices and arrangement, wall and floor surfaces, pathways among others. This paper introduces the format and design principles of RIS challenge, presents a first run of the challenge, and gives the corresponding analysis.

  4. Gesture Controlled Robot using Image Processing

    Directory of Open Access Journals (Sweden)

    Harish Kumar Kaura

    2013-05-01

    Full Text Available Service robots directly interact with people, so finding a more natural and easy user interface is of fundamental importance. While earlier works have focused primarily on issues such as manipulation and navigation in the environment, few robotic systems are used with user friendly interfaces that possess the ability to control the robot by natural means. To facilitate a feasible solution to this requirement, we have implemented a system through which the user can give commands to a wireless robot using gestures. Through this method, the user can control or navigate the robot by using gestures of his/her palm, thereby interacting with the robotic system. The command signals are generated from these gestures using image processing. These signals are then passed to the robot to navigate it in the specified directions.

  5. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    Science.gov (United States)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  6. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    Science.gov (United States)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  7. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  8. Friends' Discovery Camp

    Science.gov (United States)

    Seymour, Seth

    2008-01-01

    This article features Friends' Discovery Camp, a program that allows children with and without autism spectrum disorder to learn and play together. In Friends' Discovery Camp, campers take part in sensory-rich experiences, ranging from hands-on activities and performing arts to science experiments and stories teaching social skills. Now in its 7th…

  9. Robotic Architectures

    Directory of Open Access Journals (Sweden)

    Mbali Mtshali

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging and complex task. With a number of existing architectures and tools to choose from, a review of the existing robotic architecture is essential. This paper surveys the different paradigms in robotic architectures. A classification of the existing robotic architectures and comparison of different proposals attributes and properties have been carried out. The paper also provides a view on the current state of designing robot architectures. It also proposes a conceptual model of a generalised robotic architecture for mobile autonomous robots.Defence Science Journal, 2010, 60(1, pp.15-22, DOI:http://dx.doi.org/10.14429/dsj.60.96

  10. AN IMPLEMENTATION OF PACMAN GAME USING ROBOTS

    Directory of Open Access Journals (Sweden)

    Madhav. Rao

    2011-12-01

    Full Text Available As the field of robotics are advancing, robotics education needs to consider technological advances and societal level of interest. Realizing computer games in robotic platforms is one such technological advance for educating students in robotics science. Realizing computer games in robotics environment is still a challenge due to high investment factor in developing robot models. However the effort can lead to the enhanced interest in robotics education and further involvement in science and technology careers. Young gaming enthusiasts are aware of different playing strategies used in the computer games. If the course curriculum uses integrated approach bybuilding a game in physical robotic environment, students’ strategy developing skills are tapped and students can get jumpstarted in learning course with interest. Algorithms developed by students to realize the game, could find similar real world applications. One such popular game, Pacman is implemented using two iRobot Roomba robots. One robot is considered as Pacman, which escapes from other robot. The other robot, referred as Ghost, tries to attack Pacman. Network camera was used to find robot localization. Interprocesscommunication was included to share the data among different processes. The programs for Pacman and Ghost robots were built using Player/Stage, an open source package, compatible with iRobot platform. The algorithms were prior tested in Player/Stage simulation platform before implementing with real robots. The partial successof Pacman game in robots is discussed in the paper. This attempt should encourage in realizing more computer games in robotics education curriculum and generate immense interest in robotics education using low cost ready to use robots.

  11. Simulation of Cloud Medical Robotic System Based on Wireless Network%基于无线网络的云医疗机器人系统仿真

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 樊建聪

    2014-01-01

    医疗机器人是一门集医学、仿生学、机械力学、材料学、计算机科学、运筹学、机器人学等学科于一体的新兴交叉学科。随着传感器技术、通信设备,尤其是云计算的发展,云医疗机器人应运而生。一个云医疗机器人只需要少量的硬件和软件配置,它所需的大部分资源和计算过程由连接的云端提供。云医疗机器人从计算或者资源配置密集型转化为效率和功能密集型,从而可以更高效地完成复杂任务。本文设计一种云医疗机器人系统平台,该平台由医疗云平台层和远程云机器人层组成。以系统平台为基础,利用无线网络技术设计2个云医疗机器人系统案例,并进行仿真。仿真结果表明,云医疗机器人系统具有效率高、成本低和应用性强等特点。%Medical robot is an emerging interdisciplinary which contains medicine , bionics, mechanics, materials science, com-puter science, operations research, robotics and other disciplines.It is mainly used in the patient’s surgery, rescue, transporta-tion and rehabilitation .The study and design of cloud robotics become essential trends with the technological developments of sen -sors, actuators, communication devices, and especially cloud computing.A cloud robot only has light-weight hardware and soft-ware configurations , which can offload computation-intensive tasks to be executed in remote cloud .The cloud medical robot trans-forms the intensive allocation of calculation or resources into intensive efficiency and functions , which can complete complex tasks more efficiently.In this paper, a cloud medical robotic system is constructed .The system consists of medical cloud platform layer and remote cloud robot layer .On the basis of system platform , we design two cloud medical robot systems using the wireless net-work technology .The simulation results show that the cloud medical robot system is of the characteristics of

  12. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  13. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  14. Robot's Behavioral Learning Based on Artificial Emotion and CMAC Network%基于人工情感与CMAC网络的机器人行为学习

    Institute of Scientific and Technical Information of China (English)

    祝宇虹; 魏金海

    2012-01-01

    人工情感是一个新兴的研究方向,情感智能是人工智能对人类智能的重要逼近.该文利用模糊情感模型来指导机器人学习,在CMAC网络框架内实现机器人的新的行为学习方式.仿真实验结果表明基于人工情感与CMAC网络的机器人行为学习能够学习到一条好的行为策略,具有良好的学习性能.该方法对于提高机器人在恶劣环境下的生存能力和自主决策能力具有很大理论意义和实际应用价值.%Artificial emotion is a new and developing research area,affective intelligence is an important approach to human intelligence. This paper uses a fuzzy artificial emotion mode! Which is used for guiding robot behavior scheme learning and it is to realize a new behavior schem learning method in the frame of CMAC network. The result of simulation tells that the robot behavior scheme learning based on artificial emotion and CMAC network can generate a sheme good enough and the learning is of good performance. This method has great theoretical significance and high application value for enhancing robot' s survivability and autonomous decision - making capacity in harsh and complex environment.

  15. My Best Friend

    Institute of Scientific and Technical Information of China (English)

    刘清华; 郭克晴

    2002-01-01

    I am a middle school student,study in Yaoxia Middle School. I have a lot of good friends in this school. One of them, Li Kelong is my best friend. We are both fourteen years old. He has a round face and two big bright eyes. He is much stronger than me, but I am taller than him. I often call him Kelong for short.

  16. The most common friend first immunization

    Science.gov (United States)

    Nian, Fu-Zhong; Hu, Cha-Sheng

    2016-12-01

    In this paper, a standard susceptible-infected-recovered-susceptible(SIRS) epidemic model based on the Watts-Strogatz (WS) small-world network model and the Barabsi-Albert (BA) scale-free network model is established, and a new immunization scheme — “the most common friend first immunization” is proposed, in which the most common friend’s node is described as being the first immune on the second layer protection of complex networks. The propagation situations of three different immunization schemes — random immunization, high-risk immunization, and the most common friend first immunization are studied. At the same time, the dynamic behaviors are also studied on the WS small-world and the BA scale-free network. Moreover, the analytic and simulated results indicate that the immune effect of the most common friend first immunization is better than random immunization, but slightly worse than high-risk immunization. However, high-risk immunization still has some limitations. For example, it is difficult to accurately define who a direct neighbor in the life is. Compared with the traditional immunization strategies having some shortcomings, the most common friend first immunization is effective, and it is nicely consistent with the actual situation. Project supported by the National Natural Science Foundation of China (Grant No. 61263019), the Program for International Science and Technology Cooperation Projects of Gansu Province, China (Grant No. 144WCGA166), and the Program for Longyuan Young Innovation Talents and the Doctoral Foundation of Lanzhou University of Technology, China.

  17. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  18. BLACK HOLE ATTACK IN AODV & FRIEND FEATURES UNIQUE EXTRACTION TO DESIGN DETECTION ENGINE FOR INTRUSION DETECTION SYSTEM IN MOBILE ADHOC NETWORK

    Directory of Open Access Journals (Sweden)

    HUSAIN SHAHNAWAZ

    2012-10-01

    Full Text Available Ad-hoc network is a collection of nodes that are capable to form dynamically a temporary network without the support of any centralized fixed infrastructure. Since there is no central controller to determine the reliable & secure communication paths in Mobile Adhoc Network, each node in the ad hoc network has to rely on each other in order to forward packets, thus highly cooperative nodes are required to ensure that the initiated data transmission process does not fail. In a mobile ad hoc network (MANET where security is a crucial issue and they are forced to rely on the neighbor node, trust plays an important role that could improve the number of successful data transmission. Larger the number of trusted nodes, higher successful data communication process rates could be expected. In this paper, Black Hole attack is applied in the network, statistics are collected to design intrusion detection engine for MANET Intrusion Detection System (IDS. Feature extraction and rule inductions are applied to find out the accuracy of detection engine by using support vector machine. In this paper True Positive generated by the detection engine is very high and this is a novel approach in the area of Mobile Adhoc Intrusion detection system.

  19. Army Robotics

    Science.gov (United States)

    2009-10-07

    Army Robotics 07 October 2009 Dr. Grant Gerhart, Senior Research Scientist Bernard Theisen, Joint Center for Robotics DISTRIBUTION STATEMENT A... Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grant Gerhart; Bernard Theisen 5d. PROJECT NUMBER 5e. TASK...CBRNE • IED Defeat Systems • Disarm / Disrupt • Reconnaissance • Investigation • Explosive Sniffer • Common Robotic Kit • EOD • Convoy • Log

  20. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann;

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance i...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  1. Mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, W.J.; Marquina, N.

    1986-01-01

    This book presents papers given at a conference on mobile robots. Topics the conference included are the following: mobility systems for robotic vehicles; detection and control of mobile robot motion by real-time computer vision, obstacle avoidance algorithms for an autonomous land vehicle; hierarchical processor and matched filters for range image processing; asynchronous distributed control system for a mobile robot, and, planning in a hierarchical nested autonomous control system.

  2. Active vision and image/video understanding systems built upon network-symbolic models for perception-based navigation of mobile robots in real-world environments

    Science.gov (United States)

    Kuvich, Gary

    2004-12-01

    To be completely successful, robots need to have reliable perceptual systems that are similar to human vision. It is hard to use geometric operations for processing of natural images. Instead, the brain builds a relational network-symbolic structure of visual scene, using different clues to set up the relational order of surfaces and objects with respect to the observer and to each other. Feature, symbol, and predicate are equivalent in the biologically inspired Network-Symbolic systems. A linking mechanism binds these features/symbols into coherent structures, and image converts from a "raster" into a "vector" representation. View-based object recognition is a hard problem for traditional algorithms that directly match a primary view of an object to a model. In Network-Symbolic Models, the derived structure, not the primary view, is a subject for recognition. Such recognition is not affected by local changes and appearances of the object as seen from a set of similar views. Once built, the model of visual scene changes slower then local information in the visual buffer. It allows for disambiguating visual information and effective control of actions and navigation via incremental relational changes in visual buffer. Network-Symbolic models can be seamlessly integrated into the NIST 4D/RCS architecture and better interpret images/video for situation awareness, target recognition, navigation and actions.

  3. Using Empathy to Improve Human-Robot Relationships

    Science.gov (United States)

    Pereira, André; Leite, Iolanda; Mascarenhas, Samuel; Martinho, Carlos; Paiva, Ana

    For robots to become our personal companions in the future, they need to know how to socially interact with us. One defining characteristic of human social behaviour is empathy. In this paper, we present a robot that acts as a social companion expressing different kinds of empathic behaviours through its facial expressions and utterances. The robot comments the moves of two subjects playing a chess game against each other, being empathic to one of them and neutral towards the other. The results of a pilot study suggest that users to whom the robot was empathic perceived the robot more as a friend.

  4. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi

  5. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2014-11-01

    Full Text Available To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN. The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi

  6. Should We Turn the Robots Loose?

    Science.gov (United States)

    2010-05-02

    interference. Potential sources of electromagnetic interference include everyday signals such as cell phones and Wifi , intentional friendly jamming of IED...might even attempt to hack or hijack our robotic warriors. Our current enemies have proven to be very adaptable and have developed simple counters to our...demonstrates the ease with which robot command and control might be hacked . It is reasonable to suspect that a future threat with a more robust

  7. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  8. Deconstructing Female Friends

    Directory of Open Access Journals (Sweden)

    Adela MATEI

    2014-12-01

    Full Text Available One of Fay Weldon’s early novels, Female Friends (1975, published at the peak of her feminist ’phase’, deconstructs female and feminine stereotypes in order to present the writer’s own views on feminism. It speaks for a generation of women, who struggle to find their place in a male-dominated world, through three protagonists, who are neither happy, nor perfect. Narrated by the character Chloe, the novel revolves around her and her friends, Grace and Marjorie, with an aim at depicting the falsehood and hypocrisy that surround female friendship. It is precisely where Weldon’s specificity as a feminist writer lies: in her rendering the imperfections of women’s characters and relationships. This paper attempts to trace such elements of ‘fayminism’ in Female Friends by resorting to the tools of the feminist critic.

  9. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  10. Some considerations on robotics for environmental friendliness

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1993-12-01

    This paper presents a series of considerations regarding the use and potential of robotic devices for supporting humans in a variety of tasks, while maintaining, if not improving, environmental friendliness. One of the main considerations brought forward here relates to the type of human-support functions which the robots are, or will be, expected to perform, and from this, a clear differentiation appears between robots designed to replace humans in environments that were engineered in the past for best human functionality, and robots designed to take functions in the future, in environments which could be better engineered for large-scale human-robot synergy. Other considerations discussed involve the ``life-cycle`` cleanliness of robotic systems, including the materials needs for their construction, their operation, their disposal and, more importantly, their energy consumption which will impact the cycle of natural resources utilization. These considerations are discussed using a variety of possible robotic systems applications in contexts varied as manufacturing, energy recovery and production, emergency situations handling, traffic improvement, waste management, agriculture, and space exploration. In all these applications, the operation costs and complexity of the robots seem to vary in inverse proportion to the amount of engineering that is feasible to make the task environment more robot-friendly, but with no seemingly direct impact on the potential for environmental friendliness of the robots.

  11. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  12. MAJIC: A Java Application for Controlling Multiple, Heterogeneous Robotic Agents

    Science.gov (United States)

    2007-09-01

    soldiers arrive with a robot, left, to remove explosive devices from a street in the center of Baghdad, Iraq, Sunday, May 9, 2004. (From: AP Photo...document. James Robinson for being a friend, a PT partner, and a constant source of entertainment. Pat Staub for the friendship, the physical training...autonomous robotic surveillance systems to improvised explosive devices (IED) disposal robots (Figure 1). Figure 1. U.S. Army soldiers arrive with

  13. Authentication and Secure Robot Communication

    Directory of Open Access Journals (Sweden)

    Evangelos A. Yfantis

    2014-02-01

    Full Text Available In many cases robots are connected wirelessly with a file server and often with one another, either directly, or via the file server. The network connections form a subnet where the router has the static IP address visible to the outside world and the server along with the robots form a subnet with local IP addresses. Often however, each robot has its own static IP address. In addition, each robot has a NIC card and a unique NIC address, as well as other hardware identifiers depending on the functionality and complexity of the robot. The non-electronic part of the robot hardware usually represents mature technology that has been understood for a long time. The electronic hardware has evolved to the point that the embedded software can provide the needed intelligence for the robot to perform sophisticated tasks previously performed by one or more human beings. However, in previous research emphasis has been placed on the tasks performed by the robots, neglecting any security issues or liabilities that may arise due to lack of security. In this paper, we provide an algorithm for secure key management, and secure communication in an insecure wireless and noisy environment in which the robots operate.

  14. Autonomous caregiver following robotic wheelchair

    Science.gov (United States)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  15. 一种神经网络方法在机械手控制中的应用%A neural network method applying to robot manipulator control

    Institute of Scientific and Technical Information of China (English)

    杨国军; 崔平远

    2000-01-01

    The multilayer forward neural networks are used to establish theinverse kinematic models for robot manipulator. An improved genetic algorithm is presented to update the weights of the networks. In the improved genetic algorithm, the crossover probability is adapted by the fitness values of the solutions and the mutation probability is adjusted by the iteration times. The motivation of this approach is to overcome the shortcomings of traditional back propagation algorithm, such as the low precision of the solutions, the slow search speed and easy convergence to the local minimum points. Simulations show that the proposed method improves considerably the inverse kinematic solutions for robot manipulator and guarantees a rapid global convergence.%采用多层前向神经网络建立机械手逆运动学模型。提出了一种改进遗传算法来学习网络的权系数,其交叉概率根据解的适应度来自适应调整,变异概率根据迭代次数来动态调整。这样可以有效地克服传统的反向传播算法求解精度低、搜索速度慢、易陷于局部极小的缺点。仿真结果表明,所提方法大大提高了机械手逆运动学解的精度,确保快速达到全局收敛。

  16. Nonverbal Communication in "Friends"

    Science.gov (United States)

    Chang, Yanrong

    2006-01-01

    This activity uses video clips from a popular sitcom, "Friends," to help students grasp the relational, rule-governed, and culture-specific nature of nonverbal communication. It opens students' eyes to nonverbal behaviors that are happening on a daily basis so that they not only master the knowledge but are able to apply it. While other popular…

  17. In Canada: Friendly Fire

    Science.gov (United States)

    Robertson, Heather-jane

    2004-01-01

    One of Canada's more frequently quoted political malapropisms is attributed to Robert Thompson, who sternly reminded his fellow parliamentarians in 1973 that "the Americans are our best friends, whether we like it or not." This cross-border friendship is partly expedient, partly geographic, partly genuine, sometimes one-sided, and almost always…

  18. My Beautiful Friend

    Institute of Scientific and Technical Information of China (English)

    雷全

    2004-01-01

    I have many toys in my room.Al-though they can’t speak,I treat them asmy friends.I like playing with them.Among them,my favorite is the beautiful girl-Barbiedoll.Her name is Kelly,same as my English name.She cameto my family a year ago as my birthday gift.

  19. Our Readers and Friends

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In Shanghai,a rapidly-developing modern metropolisthere are a lot of foreign women who have moved with theirfamilies to live and work there.During their leisure time theytake sightseeing trips and study Chinese culture,so theybecome readers and friends of our magazine.Recently,at ourReaders Forum in Shanghai,women from the UK,Belgium,the

  20. Nonverbal Communication in "Friends"

    Science.gov (United States)

    Chang, Yanrong

    2006-01-01

    This activity uses video clips from a popular sitcom, "Friends," to help students grasp the relational, rule-governed, and culture-specific nature of nonverbal communication. It opens students' eyes to nonverbal behaviors that are happening on a daily basis so that they not only master the knowledge but are able to apply it. While other popular…

  1. My Good Friend

    Institute of Scientific and Technical Information of China (English)

    王雨航

    2008-01-01

    @@ I have a good friend. My mother even says that he is a member of our family. His name is Peter. He has two bright eyes, a small nose, a big mouth and a long tail. He is very lovely and looks like a white flowers. He likes drinking milk and eating meat.

  2. Robotic surgery.

    Science.gov (United States)

    Diana, M; Marescaux, J

    2015-01-01

    Proficiency in minimally invasive surgery requires intensive and continuous training, as it is technically challenging for unnatural visual and haptic perceptions. Robotic and computer sciences are producing innovations to augment the surgeon's skills to achieve accuracy and high precision during complex surgery. This article reviews the current use of robotically assisted surgery, focusing on technology as well as main applications in digestive surgery, and future perspectives. The PubMed database was interrogated to retrieve evidence-based data on surgical applications. Internal and external consulting with key opinion leaders, renowned robotics laboratories and robotic platform manufacturers was used to produce state-of-the art business intelligence around robotically assisted surgery. Selected digestive procedures (oesophagectomy, gastric bypass, pancreatic and liver resections, rectal resection for cancer) might benefit from robotic assistance, although the current level of evidence is insufficient to support widespread adoption. The surgical robotic market is growing, and a variety of projects have recently been launched at both academic and corporate levels to develop lightweight, miniaturized surgical robotic prototypes. The magnified view, and improved ergonomics and dexterity offered by robotic platforms, might facilitate the uptake of minimally invasive procedures. Image guidance to complement robotically assisted procedures, through the concepts of augmented reality, could well represent a major revolution to increase safety and deal with difficulties associated with the new minimally invasive approaches. © 2015 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  3. Intelligent networked teleoperation control

    CERN Document Server

    Li, Zhijun; Su, Chun-Yi

    2015-01-01

    This book describes a unified framework for networked teleoperation systems involving multiple research fields: networked control systems for linear and nonlinear forms, bilateral teleoperation, trilateral teleoperation, multilateral teleoperation and cooperative teleoperation. It closely examines networked control as a field at the intersection of systems & control and robotics and presents a number of experimental case studies on testbeds for robotic systems, including networked haptic devices, robotic network systems and sensor network systems. The concepts and results outlined are easy to understand, even for readers fairly new to the subject. As such, the book offers a valuable reference work for researchers and engineers in the fields of systems & control and robotics.

  4. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  5. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  6. Research on Motion Trajectory Control of Fruit and Vegetable Picking Robot Based on RBF Network%基于RBF网络的果蔬采摘机器人运动轨迹控制研究

    Institute of Scientific and Technical Information of China (English)

    薛亮; 樊卫国; 汪小志

    2016-01-01

    In order to improve the accuracy of robot manipulator movement and improve the efficiency of robot movement, a methodis proposed based on genetic algorithm and RBF neural network .The robot manipulator's movement and the whole trajectory are optimized.In order to verify the design of the picking robot reliability, in the experimental green-house on the robot's picking performance were tested, test items include robot path planning of mobile and manipulator path planning.Through the test, we found that using the RBF neural network algorithm can effectively control of manipu-lator motion in the three-dimensional space, in under the control of the genetic algorithm, the robot can with less amount of calculation using neural network algorithm search to get the optimal path, and the calculation precision is above 99%, for its high accuracy, which provides a valuable reference for the fast computational efficiency and effect of high vegetable production picking robot design.%为了提高果蔬采摘机器人机械手运动的精确性,提高机器人移动的效率,提出了一种基于遗传算法和RBF网络的机器人运动轨迹控制方法,并对果蔬机器人机械手的活动和整体的移动轨迹进行优化,有效地提高了果蔬采摘机器人的工作精度和作业效率。为了验证设计的采摘机器人的可靠性,在大棚内对机器人的采摘性能进行了测试,包括机器人移动路径规划和机械手路径规划。通过测试发现:使用 RBF 神经网络算法可以有效地控制机械手在三维空间内的运动;在遗传算法控制下,机器人可以通过较少的计算次数利用神经网络算法搜索得到最优路径,计算精度达到了99%以上。其计算精度及效率高,为高效果蔬采摘机器人的设计提供了较有价值的参考。

  7. Communicating Cooperative Robots with Bluetooth

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Son, L.T.; Madsen, Ole Brun

    2001-01-01

    A generic architecture for system of cooperating communicating mobile robots is presented. An overall structure is defined from a modularity viewpoint, where a number of generic modules are identified; low level communication interface, network layer services such as initial and adaptive network...

  8. Letter from the Friends Chairman

    Science.gov (United States)

    ... Home Current Issue Past Issues Letter from the Friends Chairman Past Issues / Fall 2006 Table of Contents ... FNLM Chairman Paul Rogers converse at a recent Friends function at the National Library of Medicine. Photo ...

  9. User-Friendly Data-Sharing Practices for Fostering Collaboration within a Research Network: Roles of a Vanguard Center for a Community-Based Study

    Directory of Open Access Journals (Sweden)

    Jae Eun Lee

    2015-12-01

    Full Text Available Although various attempts have been made to build collaborative cultures for data sharing, their effectiveness is still questionable. The Jackson Heart Study (JHS Vanguard Center (JHSVC at the NIH-funded Research Centers in Minority Institutions (RCMI Translational Research Network (RTRN Data Coordinating Center (DCC may be a new concept in that the data are being shared with a research network where a plethora of scientists/researchers are working together to achieve their common goal. This study describes the current practices to share the JHS data through the mechanism of JHSVC. The JHS is the largest single-site cohort study to prospectively investigate the determinants of cardiovascular disease among African-Americans. It has adopted a formal screened access method through a formalized JHSVC mechanism, in which only a qualified scientist(s can access the data. The role of the DCC was to help RTRN researchers explore hypothesis-driven ideas to enhance the output and impact of JHS data through customized services, such as feasibility tests, data querying, manuscript proposal development and data analyses for publication. DCC has implemented these various programs to facilitate data utility. A total of 300 investigators attended workshops and/or received training booklets. DCC provided two online and five onsite workshops and developed/distributed more than 250 copies of the booklet to help potential data users understand the structure of and access to the data. Information on data use was also provided through the RTRN website. The DCC efforts led to the production of five active manuscript proposals, seven completed publications, 11 presentations and four NIH grant proposals. These outcomes resulted from activities during the first four years; over the last couple of years, there were few new requests. Our study suggested that DCC-customized services enhanced the accessibility of JHS data and their utility by RTRN researchers and helped to

  10. User-Friendly Data-Sharing Practices for Fostering Collaboration within a Research Network: Roles of a Vanguard Center for a Community-Based Study.

    Science.gov (United States)

    Lee, Jae Eun; Sung, Jung Hye; Barnett, M Edwina; Norris, Keith

    2015-12-22

    Although various attempts have been made to build collaborative cultures for data sharing, their effectiveness is still questionable. The Jackson Heart Study (JHS) Vanguard Center (JHSVC) at the NIH-funded Research Centers in Minority Institutions (RCMI) Translational Research Network (RTRN) Data Coordinating Center (DCC) may be a new concept in that the data are being shared with a research network where a plethora of scientists/researchers are working together to achieve their common goal. This study describes the current practices to share the JHS data through the mechanism of JHSVC. The JHS is the largest single-site cohort study to prospectively investigate the determinants of cardiovascular disease among African-Americans. It has adopted a formal screened access method through a formalized JHSVC mechanism, in which only a qualified scientist(s) can access the data. The role of the DCC was to help RTRN researchers explore hypothesis-driven ideas to enhance the output and impact of JHS data through customized services, such as feasibility tests, data querying, manuscript proposal development and data analyses for publication. DCC has implemented these various programs to facilitate data utility. A total of 300 investigators attended workshops and/or received training booklets. DCC provided two online and five onsite workshops and developed/distributed more than 250 copies of the booklet to help potential data users understand the structure of and access to the data. Information on data use was also provided through the RTRN website. The DCC efforts led to the production of five active manuscript proposals, seven completed publications, 11 presentations and four NIH grant proposals. These outcomes resulted from activities during the first four years; over the last couple of years, there were few new requests. Our study suggested that DCC-customized services enhanced the accessibility of JHS data and their utility by RTRN researchers and helped to achieve the

  11. Books Are Good Friends

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正Books are our friends because they are bridges to knowledge.Knowledge is valuable because it enriches our life and brings us happiness.Almost all great men in the history of mankind loved books.We have every reason to believe it is the knowledge in books that led them to success.There is no genius without books.Because books give them knowledge and knowledge gives them

  12. Intelligent OkiKoSenPBX1 Security Patrol Robot via Network and Map-Based Route Planning

    Directory of Open Access Journals (Sweden)

    Mbaïtiga Zacharie

    2009-01-01

    Full Text Available Problem statement: With an increased demand for security and limited numbers of trained security personnel, some security mangers have a lot of ground to police and limited staff to cover it. To compensate for shortages of security staff and to reduce the stress of security managers, we have developed an intelligent patrol robot system called "OkiKoSenPBX1". The system integrates a variety of sensors to gather environmental information and to detect abnormal events including intruders. Approach: In our approach, the route planning procedure was based on determining a sequence of intermediary goal points or coordinates x and y composing the robot trajectory. Results: A qualitative running experimental evaluation had been performed on the 1st floor of the Okinawa national college of technology as a preliminary practical implementation and its real-time performance was excellent, where a student like-guard can take control of the camera pan and tilt functions remotely. Conclusion: The real-time performance of the developed system that can leave security personnel hands-free for other important tasks is an irresistible system that can be put into practical use in a public offices facility, manufacturing facilities and various construction sites-everywhere there’s a need for advanced frontline security.

  13. My Friends Right Next to Me: A Laboratory Investigation on Predictors and Consequences of Experiencing Social Closeness on Social Networking Sites.

    Science.gov (United States)

    Neubaum, German; Krämer, Nicole C

    2015-08-01

    In the last decade, research has provided a series of insights into how and why the use of social networking sites (SNSs) can be socially and psychologically beneficial for individuals. The present research extends this evidence by focusing on the concept of social closeness as a feeling experienced when using SNSs. In a laboratory setting, participants (N=60) spent 10 minutes on Facebook, and then reported their experiences during this session. Analyses of participants' usage behavior and their experiences revealed that the more time users spent interacting with other users (e.g., commenting on updates), the closer they felt to other people. Interacting with others also predicted users' positive emotional states after Facebook use; this effect may be explained by the perception of social closeness. This study is one of the first to employ momentary measures, offering a further theoretical link between active SNS use and well-being.

  14. Robot umanoidi o robot umani?

    Directory of Open Access Journals (Sweden)

    Domenico Parisi

    2009-01-01

    Full Text Available Che cosa e' un robot? A che cosa serve un robot? Un robot e' qualcosa di fisico, costruito da noi, che somiglia a un organismo vivente e si comporta come un organismo vivente. Gli organismi viventi comprendono gli animali e le piante, ma i robot riproducono gli animali piuttosto che le piante, anche se ci sono tentativi di costruire robotpiante. Comportarsi come un animale significa avere degli organi sensoriali con cui ricevere informazioni dall'ambiente e degli organi motori che permettono di spostarsi nell'ambiente o di muovere una qualche parte del proprio corpo, ad esempio la testa o un braccio, in maniera non programmata, ma autonoma, cioe' rispondendo agli stimoli che arrivano momento per momento ai sensori del robot. Questo risponde alla domanda "Che cosa e' un robot?".

  15. "My friend who bought it for me, she has had an abortion before." The influence of Ghanaian women's social networks in determining the pathway to induced abortion.

    Science.gov (United States)

    Rominski, Sarah D; Lori, Jody R; Morhe, Emmanuel Sk

    2017-07-01

    Even given the liberal abortion law in Ghana, abortion complications are a large contributor to maternal morbidity and mortality. This study sought to understand why young women seeking an abortion in a legally enabling environment chose to do this outside the formal healthcare system. Women being treated for complications arising from a self-induced abortion as well as for elective abortions at three hospitals in Ghana were interviewed. Community-based focus groups were held with women as well as men, separately. Interviews and focus group discussions were conducted until saturation was reached. A total of 18 women seeking care for complications from a self-induced abortion and 11 seeking care for an elective abortion interviewed. The women ranged in age from 13 to 35 years. There were eight focus groups; two with men and six with women. The reasons women self-induce are: (1) abortion is illegal; (2) attitudes of the healthcare workers; (3) keeping the pregnancy a secret; and (4) social network influence. The meta-theme of normalisation of self-inducing' an abortion was identified. When women are faced with an unplanned and unwanted pregnancy, they consult individuals in their social network whom they know have dealt with a similar situation. Misoprostol is widely available in Ghanaian cities and is successful at inducing an abortion for many women. In this way, self-inducing abortions using medication procured from pharmacists and chemical sellers has become normalised for women in Kumasi, Ghana. © Faculty of Sexual and Reproductive Healthcare of the Royal College of Obstetricians and Gynaecologists (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Synchronization and quorum sensing in a swarm of humanoid robots

    CERN Document Server

    Bechon, Patrick

    2012-01-01

    With the advent of inexpensive simple humanoid robots, new classes of robotic questions can be considered experimentally. One of these is collective behavior of groups of humanoid robots, and in particular robot synchronization and swarming. The goal of this work is to robustly synchronize a group of humanoid robots, and to demonstrate the approach experimentally on a choreography of 8 robots. We aim to be robust to network latencies, and to allow robots to join or leave the group at any time (for example a fallen robot should be able to stand up to rejoin the choreography). Contraction theory is used to allow each robot in the group to synchronize to a common virtual oscillator, and quorum sensing strategies are exploited to fit within the available bandwidth. The humanoids used are Nao's, developed by Aldebaran Robotics.

  17. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  18. The Puerto Rico Seismic Network Broadcast System: A user friendly GUI to broadcast earthquake messages, to generate shakemaps and to update catalogues

    Science.gov (United States)

    Velez, J.; Huerfano, V.; von Hillebrandt, C.

    2007-12-01

    The Puerto Rico Seismic Network (PRSN) has historically provided locations and magnitudes for earthquakes in the Puerto Rico and Virgin Islands (PRVI) region. PRSN is the reporting authority for the region bounded by latitudes 17.0N to 20.0N, and longitudes 63.5W to 69.0W. The main objective of the PRSN is to record, process, analyze, provide information and research local, regional and teleseismic earthquakes, providing high quality data and information to be able to respond to the needs of the emergency management, academic and research communities, and the general public. The PRSN runs Earthworm software (Johnson et al, 1995) to acquire and write waveforms to disk for permanent archival. Automatic locations and alerts are generated for events in Puerto Rico, the Intra America Seas, and the Atlantic by the EarlyBird system (Whitmore and Sokolowski, 2002), which monitors PRSN stations as well as some 40 additional stations run by networks operating in North, Central and South America and other sites in the Caribbean. PRDANIS (Puerto Rico Data Analysis and Information System) software, developed by PRSN, supports manual locations and analyst review of automatic locations of events within the PRSN area of responsibility (AOR), using all the broadband, strong-motion and short-period waveforms Rapidly available information regarding the geographic distribution of ground shaking in relation to the population and infrastructure at risk can assist emergency response communities in efficient and optimized allocation of resources following a large earthquake. The ShakeMap system developed by the USGS provides near real-time maps of instrumental ground motions and shaking intensity and has proven effective in rapid assessment of the extent of shaking and potential damage after significant earthquakes (Wald, 2004). In Northern and Southern California, the Pacific Northwest, and the states of Utah and Nevada, ShakeMaps are used for emergency planning and response, loss

  19. Robotic system

    Science.gov (United States)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  20. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  1. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  2. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  3. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating mec

  4. The happiness paradox: your friends are happier than you

    NARCIS (Netherlands)

    Bollen, J.; Leemput, van de I.A.; Goncalves Souza, M.B.; Ruan, G.

    2016-01-01

    Most individuals in social networks experience a so-called Friendship Paradox: they are less popular than their friends on average. This effect may explain recent findings that widespread social network media use leads to reduced happiness. However the relation between popularity and happiness is po

  5. Climate friendly dietary guidelines

    DEFF Research Database (Denmark)

    Trolle, Ellen; Mogensen, Lisbeth; Thorsen, Anne Vibeke

    2014-01-01

    The aim of this study was to investigate how the present Danish diet could be changed in a climate friendly direction that follows the recommendations of a healthy diet. The carbon footprint (CF) of an average Danish diet was calculated and compared to CF of a recommended healthy diet by 1......%, if the healthy diet was eaten instead of the average current diet. However, if the diet was climate optimized by choosing foods with a low CF within the food groups; meat, vegetables and fruit, CF of this diet may be reduced by 23 % compared to CF of the average diet....

  6. Robot phototaxis control based on Boltzmann machine neural network cognitive mechanism%基于Boltzmann机神经网络认知机制的机器人趋光控制

    Institute of Scientific and Technical Information of China (English)

    阮晓钢; 庞涛; 于建均

    2014-01-01

    For mobile robot phototaxis control problems, the human or animal“perception-action”cognitive mechanism is simulated. The structure of mobile robot is designed and the method of phototaxis control is proposed based on the Boltzmann machine neural network. The Boltzmann machine neural network is trained by the knowledge set. The phototaxis control method is implemented by using the Boltzmann machine neural network operation mechanism. Simulation results show that the proposed method can improve the control accuracy and the success rate of robot learning.%针对移动机器人未知环境下的趋光控制问题,模拟人或动物“感知-行动”认知机制,对具有趋光特性的移动机器人进行设计,提出一种基于Boltzmann机神经网络的趋光控制方法。该方法首先应用知识集对机器人趋光控制器的Boltzmann机神经网络进行趋光训练;然后应用Boltzmann机神经网络的运行机制实现趋光控制。仿真实验表明,该方法能够提高机器人学习的控制精度。

  7. Tracking Control of Mobile Robot Based on BP Neural Network%基于 BP 神经网络的移动机器人循迹控制

    Institute of Scientific and Technical Information of China (English)

    雷双江; 肖世德; 熊鹰; 查峰

    2013-01-01

      研制自动控制移动机器人循迹控制系统,通过感测外界黑色指导线的变化来控制电机的实时变化。考虑了运动过程中会遇到的各种情况,通过训练BP神经网络使微控制器能够根据不同的环境做出快速、正确的反映。采用微控制技术对电机进行控制,使自动和无线遥控兼容。实验结果表明:移动机器人能根据室内黑色指导线的变化情况快速做出反映,有效抑制了移动机器人在运动过程中的出轨和静止现象,证明了提出的基于B P神经网络的循迹控制系统可靠性较高。%An intelligent tracking control system based on micro-control unit (MCU)was developed to real-time control the mo-tors by sensing the change of the black guide lines. After training the BP neural network,the MCU was able to make quick and accu-rate decisions for various situations encountered during the robot moving. Using MCU technology to control the motors,the system was compatible for both manual and automatic control. The experiment results show that the mobile robot can follow the change of black guide lines accurately and quickly,and stillness and out-of-orbit phenomena are effectively inhibited during moving. The proposed tracking control system based on BP neural network has been verified to be high reliability.

  8. Analysis about Knowledge Communication Network Based on Friends Link in the Blog Community --A Case Study of the Blog Community in www, sciencenet, cn%基于博客社区好友链接的知识交流状况分析——以科学网博客为例

    Institute of Scientific and Technical Information of China (English)

    邱均平; 王菲菲

    2011-01-01

    本文综合采用链接分析法以及社会网络分析法,从好友链接的基本属性和特点、好友共入链、博主共出链、博主一好友互链等角度深入探讨了科学网博客虚拟社区内基于好友链接关系的学科间以及学科内部直接或间接的知识交流情况,以期对学术型虚拟社区内学术共同体的发掘、知识交流网络的特点以及相关的引导促进机制提供一定的研究参考。%The paper constructed and analyzed the interdisciplinary and intra-disciplinary knowledge communication network based on friends links in the blog Community of the Science net from the aspects of characteristics and attributes of friends links, friends-co-inlink, bloggers-co-outlink and bloggers-friends inter-link using a combination of Hyperlink Analysis and Social Network Analysis, in order to provide some references to the study of exploration of academic community, the characteristics of knowledge communication and mechanisms of the guidance and promotion in the academic virtual community.

  9. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    2013-01-01

    In this paper, we have investigated the concept of "Cultural Robotics" with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  10. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  11. Educational Robotics: Open Questions and New Challenges

    Science.gov (United States)

    Alimisis, Dimitris

    2013-01-01

    This paper investigates the current situation in the field of educational robotics and identifies new challenges and trends focusing on the use of robotic technologies as a tool that will support creativity and other 21st-century learning skills. Finally, conclusions and proposals are presented for promoting cooperation and networking of…

  12. Main Strategies for Autonomous Robotic Controller Design

    OpenAIRE

    Paterega, I.

    2011-01-01

    This review gives an overall introduction to the artificial evolution mechanism. It presents the main strategies for robotic controller design. It gives a review of the pertinent literature, focusing on approaches that use neural networks, evolutionary computing, and fuzzy logic. Various applications of artificial evolution in robotics are surveyed and classified.

  13. Chimpanzees Trust Their Friends.

    Science.gov (United States)

    Engelmann, Jan M; Herrmann, Esther

    2016-01-25

    The identification and recruitment of trustworthy partners represents an important adaptive challenge for any species that relies heavily on cooperation [1, 2]. From an evolutionary perspective, trust is difficult to account for as it involves, by definition, a risk of non-reciprocation and defection by cheaters [3, 4]. One solution for this problem is to form close emotional bonds, i.e., friendships, which enable trust even in contexts where cheating would be profitable [5]. Little is known about the evolutionary origins of the human tendency to form close social bonds to overcome the trust problem. Studying chimpanzees (Pan troglodytes), one of our closest living relatives, is one way of identifying these origins. While a growing body of research indicates that at least some of the properties of close human relationships find parallels in the social bonds of chimpanzees [6-10] and that chimpanzees extend favors preferentially toward selected individuals [11-14], it is unclear whether such interactions are based on trust. To fill this gap in knowledge, we observed the social interactions of a group of chimpanzees and established dyadic friendship relations. We then presented chimpanzees with a modified, non-verbal version of the human trust game and found that chimpanzees trust their friends significantly more frequently than their non-friends. These results suggest that trust within closely bonded dyads is not unique to humans but rather has its evolutionary roots in the social relationships of our closest primate relatives.

  14. Three friendly walkers

    Science.gov (United States)

    Jensen, Iwan

    2017-01-01

    More than 15 years ago Guttmann and Vöge (2002 J. Stat. Plan. Inference 101 107), introduced a model of friendly walkers. Since then it has remained unsolved. In this paper we provide the exact solution to a closely allied model which essentially only differs in the boundary conditions. The exact solution is expressed in terms of the reciprocal of the generating function for vicious walkers which is a D-finite function. However, ratios of D-finite functions are inherently not D-finite and in this case we prove that the friendly walkers generating function is the solution to a non-linear differential equation with polynomial coefficients, it is in other words D-algebraic. We find using numerically exact calculations a conjectured expression for the generating function of the original model as a ratio of a D-finite function and the generating function for vicious walkers. We obtain an expression for this D-finite function in terms of a {{}2}{{F}1} hypergeometric function with a rational pullback and its first and second derivatives. Dedicated to Tony Guttmann on the occasion of his 70th birthday.

  15. Maximizing Friend-Making Likelihood for Social Activity Organization

    Science.gov (United States)

    2015-05-22

    the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that...social networks (OSNs), e.g., Facebook , Meetup, and Skout1, more and more people initiate friend gatherings or group activities via these OSNs. For...example, more than 16 millions of events are created on Facebook each month to organize various kinds of activities2, and more than 500 thousands of face

  16. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  17. Realtime motion planning for a mobile robot in an unknown environment using a neurofuzzy based approach

    Science.gov (United States)

    Zheng, Taixiong

    2005-12-01

    A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.

  18. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  19. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  20. Friends, Depressive Symptoms, and Life Satisfaction Among Older Korean Americans.

    Science.gov (United States)

    Roh, Soonhee; Lee, Yeon-Shim; Lee, Kyoung Hag; Shibusawa, Tazuko; Yoo, Grace J

    2015-08-01

    This study examined the interactive effects of social network support and depressive symptoms on life satisfaction among older Korean Americans (KAs). Using data from a sample of 200 elders in a large metropolitan area (M age = 72.50, SD = 5.15), hierarchical regression analysis was used to examine the interaction between social network support and depressive symptoms on life satisfaction among older KAs. After controlling for demographic variables, both social network support and depressive symptoms were identified as predictors for life satisfaction. Interaction effects indicated strong associations between higher social network support specifically from friends and lower depressive symptoms with higher levels of life satisfaction. Findings highlight the important role that friends play in terms of social network support for the mental health of older KAs, and the need for geriatric practitioners to monitor and assess the quality of social network support-including friendships-when working with older KAs.

  1. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  2. Cleaning Robot Localization Studies Based on Optimization of Heterogeneous BP Neural Network Information Fusion%基于优化异质BP神经网络信息融合的清洁机器人定位研究

    Institute of Scientific and Technical Information of China (English)

    张飞; 耿红琴

    2014-01-01

    清洁机器人的移动定位是个复杂的非线性定位的问题,精密机械结构与路径规划无法补偿定位不精确造成的移动误差,提出一种基于异质 RBF神经网络信息融合的清洁机器人定位技术,设计了智能机器人的控制系统、移动系统和感知系统,设计多个位姿传感器后,实时采集位置信息,在主控芯片中使用粒子群优化神经网络技术对多传感器的信息进行融合,计算清洁机器人的位置信息,解决了位置因素非线性强,定位误差大的问题,并且有效提高了神经网络的局部收敛能力;使用机器人多传感器的实验平台测试证明,这种方法下清洁机器人的移动中定位准确率较传统方法提高13%,具有很强的可靠性与实用性。%The orientation of the movement of the Clean robot is a complex nonlinear problem,structure and path planning can not com-pensate positioning precision machinery movement error caused by inaccurate,put forward a kind of cleaning robot localization based on het-erogeneous RBF neural network information fusion technology,intelligent robot control system is designed and perception system,moving system,design more bits after posture sensor,real-time collecting location information,in the main control chip,using particle swarm opti-mization neural network technology of multi-sensor information fusion,the calculation of the cleaning robot position information,to solve the nonlinear strong location factors,the problem of large positioning error,and effectively improve the local convergence ability of neural network.Using robot multi-sensor experimental platform to test proved that under this kind of method the clean mobile robot positioning accuracy increased by 13%than the traditional methods,have very strong reliability and practicability.

  3. Polish and European SST Assets: the Solaris-Panoptes Global Network of Robotic Telescopes and the Borowiec Satellite Laser Ranging System

    Science.gov (United States)

    Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Litwicki, M.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Helminiak, K.; Borek, R.; Chodosiewicz, P.

    2016-09-01

    We present the assets of the Nicolaus Copernicus Astronomical Center, Space Research Center (both of the Polish Academy of Sciences), two Polish companies Sybilla Technologies, Cillium Engineering and a non-profit research foundation Baltic Institute of Technology. These assets are enhanced by telescopes belonging to The Open University (UK), the Max Planck Institute for Extraterrestrial Physics and in the future the Radboud University. They consist of the Solaris-Panoptes global network of optical robotic telescopes and the satellite laser ranging station in Borowiec, Poland. These assets will contribute to the Polish and European Space Surveillance and Tracking (SST) program. The Solaris component is composed of four autonomous observatories in the Southern Hemisphere. Solaris nodes are located at the South African Astronomical Observatory (Solaris-1 and Solaris-2), Siding Spring Observatory, Australia (Solaris-3) and Complejo Astronomico El Leoncito, Argentina (Solaris-4). They are equipped with 0.5-m telescopes on ASA DDM-160 direct drive mounts, Andor iKon-L cameras and housed in 3.5-m Baader Planetarium (BP) clamshell domes. The Panoptes component is a network of telescopes operated by software from Sybilla Technologies. It currently consists of 4 telescopes at three locations, all on GM4000 mounts. One 0.36-m (Panoptes-COAST, STL- 1001E camera, 3.5 BP clamshell dome) and one 0.43-m (Panoptes-PIRATE, FLI 16803 camera, 4.5-m BP clamshell dome, with planned exchange to 0.63-m) telescope are located at the Teide Observatory (Tenerfie, Canary Islands), one 0.6-m (Panoptes-COG, SBIG STX 16803 camera, 4.5-m BP clamshell dome) telescope in Garching, Germany and one 0.5-m (Panoptes-MAM, FLI 16803 camera, 4.5-m BP slit dome) in Mammendorf, Germany. Panoptes-COAST and Panoptes-PIRATE are owned by The Open University (UK). Panoptes-COG is owned by the Max Planck Institute

  4. Cognitive Robotics

    OpenAIRE

    Levesque, Hector J.; Lakemeyer, Gerhard

    2010-01-01

    This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here.

  5. Thinking with friends:

    DEFF Research Database (Denmark)

    Emmeche, Claus

    2017-01-01

    Can research in situated and embodied cognition inform the study of interpersonal relations like friendship? And conversely, can friendship studies from disciplinary and interdisciplinary perspectives inspire research in cognitive science? These are the guiding questions for this chapter. Compared...... cognitive phenomenon, and bringing together observations and concepts from interdisciplinary studies of interpersonal relationships allows for a notion of relational attention to be developed. At least for some forms of friendships, the agents not merely attend to common interests; their perception...... is shared, mediated by the very relationship as an embodied activity of distributed cognition. An important example of this is collaboration in science and art, as when friends or colleagues work close together to solve problems or develop new forms of creative expression....

  6. My Nepalese Friends

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    NEPAL and China are good neighbors. In the 1980s many Chinese technicians went to Nepal to help build roads and other projects. As an interpreter with a Chinese construction cooperative, I worked there from 1993 to 1994. During my stay in Nepal, I met many different Nepalese women who impressed me deeply. My landlady Sumiyala, was the first Nepalese woman to come into my life. She was over 40 years old, a healthy and good-humored housewife. Whenever Ⅰ had time, I liked to chat with her and gradually we became friends. I remember my landlady was busy in and out of her house all day long— cleaning, cooking and taking care of her grandchildren and her parents-in-laws.

  7. Environmentally friendly road construction

    Directory of Open Access Journals (Sweden)

    A.I. Essawy

    2013-06-01

    Full Text Available Environmental pollution is a major problem in developing countries like Egypt. Reuse of waste polymers is considered an attractive solution for environmental white pollution and reducing of the costs of road pavement and maintenance. This research aims to prepare environmentally friendly hot mix asphalt (HMA for paving using some industrial wastes as polypropylene and polyester fibers. The solid materials in the mix include normal and highly porous aggregates. 5% and 10% of waste polymers by weight of the asphalt were used to prepare special binders. The samples were tested for their physical properties, chemical properties, aging, scanning electron microscopy (SEM and thermo-gravimetric analysis (TGA. The results revealed that the prepared HMA using 5% of waste polymer had high performance as compared to the ordinary one and the waste polymer could be used in road construction.

  8. Caffeine: Friend or Foe?

    Science.gov (United States)

    Doepker, Candace; Lieberman, Harris R; Smith, Andrew Paul; Peck, Jennifer D; El-Sohemy, Ahmed; Welsh, Brian T

    2016-01-01

    The debate on the safety of and regulatory approaches for caffeine continues among various stakeholders and regulatory authorities. This decision-making process comes with significant challenges, particularly when considering the complexities of the available scientific data, making the formulation of clear science-based regulatory guidance more difficult. To allow for discussions of a number of key issues, the North American Branch of the International Life Sciences Institute (ILSI) convened a panel of subject matter experts for a caffeine-focused session entitled "Caffeine: Friend or Foe?," which was held during the 2015 ILSI Annual Meeting. The panelists' expertise covered topics ranging from the natural occurrence of caffeine in plants and interindividual metabolism of caffeine in humans to specific behavioral, reproductive, and cardiovascular effects related to caffeine consumption. Each presentation highlighted the potential risks, benefits, and challenges that inform whether caffeine exposure warrants concern. This paper aims to summarize the key topics discussed during the session.

  9. Robot Rescue

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  10. [Robotic surgery].

    Science.gov (United States)

    Moreno-Portillo, Mucio; Valenzuela-Salazar, Carlos; Quiroz-Guadarrama, César David; Pachecho-Gahbler, Carlos; Rojano-Rodríguez, Martín

    2014-12-01

    Medicine has experienced greater scientific and technological advances in the last 50 years than in the rest of human history. The article describes relevant events, revises concepts and advantages and clinical applications, summarizes published clinical results, and presents some personal reflections without giving dogmatic conclusions about robotic surgery. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) defines robotic surgery as a surgical procedure using technology to aid the interaction between surgeon and patient. The objective of the surgical robot is to correct human deficiencies and improve surgical skills. The capacity of repeating tasks with precision and reproducibility has been the base of the robot´s success. Robotic technology offers objective and measurable advantages: - Improving maneuverability and physical capacity during surgery. - Correcting bad postural habits and tremor. - Allowing depth perception (3D images). - Magnifying strength and movement limits. - Offering a platform for sensors, cameras, and instruments. Endoscopic surgery transformed conceptually the way of practicing surgery. Nevertheless in the last decade, robotic assisted surgery has become the next paradigm of our era.

  11. 'Lump Sugar and Salt Shaker'-Like Nano and Pico Space Devices and Robots

    Science.gov (United States)

    Vizi, P.; Horváth, A.; Hudoba, Gy.; Bérczi, Sz.; Sík, A.

    2012-10-01

    Nano, Pico Space Devices and Robots (NPSDR) with a new strategy, multiple parallel use of these great number of devices allows the covering of larger surfaces on the planet measuring several focused parameters, e.g., DDS. Environmental friendly design.

  12. Do Friends Share and Communicate More than Non-Friends?

    Science.gov (United States)

    Sharabany, Ruth; Hertz-Lazarowitz, Rachel

    1981-01-01

    Observed the social communication and task relevant behaviors of 80 kindergarten and first-grade children, each of whom was assigned to do a task with either a friend or a nonfriend. Results showed that friends exhibited less sharing and communicative behaviors and more task relevant behaviors. An explanatory model is suggested to account for…

  13. Challenges and Opportunities of Evolutionary Robotics

    CERN Document Server

    Sofge, D A; Bugajska, M D; Schultz, A C

    2007-01-01

    Robotic hardware designs are becoming more complex as the variety and number of on-board sensors increase and as greater computational power is provided in ever-smaller packages on-board robots. These advances in hardware, however, do not automatically translate into better software for controlling complex robots. Evolutionary techniques hold the potential to solve many difficult problems in robotics which defy simple conventional approaches, but present many challenges as well. Numerous disciplines including artificial life, cognitive science and neural networks, rule-based systems, behavior-based control, genetic algorithms and other forms of evolutionary computation have contributed to shaping the current state of evolutionary robotics. This paper provides an overview of developments in the emerging field of evolutionary robotics, and discusses some of the opportunities and challenges which currently face practitioners in the field.

  14. Flocking and rendezvous in distributed robotics

    CERN Document Server

    Francis, Bruce A

    2016-01-01

    This brief describes the coordinated control of groups of robots using only sensory input – and no direct external commands. Furthermore, each robot employs the same local strategy, i.e., there are no leaders, and the text also deals with decentralized control, allowing for cases in which no single robot can sense all the others. One can get intuition for the problem from the natural world, for example, flocking birds. How do they achieve and maintain their flying formation? Recognizing their importance as the most basic coordination tasks for mobile robot networks, the brief details flocking and rendezvous. They are shown to be physical illustrations of emergent behaviors with global consensus arising from local interactions. The authors extend the consideration of these fundamental ideas to describe their operation in flying robots and prompt readers to pursue further research in the field.  Flocking and Rendezvous in Distributed Robotics will provide graduate students a firm grounding in the subject, w...

  15. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  16. Robot Task Commander with Extensible Programming Environment

    Science.gov (United States)

    Hart, Stephen W (Inventor); Yamokoski, John D. (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  17. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi......-modal hybrid automata. The notion of bisimulations is used to abstract robots in the network. The result is a network of interacting timed automata which allows coordination among the robots and timing constraints to be considered. The model checker UPPAAL is used for formal symbolic model checking against...

  18. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of "Cultural Robotics" with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  19. My Good Friend and I

    Institute of Scientific and Technical Information of China (English)

    郑志阳; 罗美珍

    2011-01-01

    I have many friends. But I like Sunny best. He is my good friend. Sunny is ten years old. He has two small eyes. He is thin and tall. He like reading picture books, watching TV, and he also likes playing computergames.

  20. Building a safe care-providing robot.

    Science.gov (United States)

    Fotoohi, Leila; Gräser, Axel

    2011-01-01

    A service robot especially a care-providing robot, works in the vicinity of a human body and is sometimes even in direct contact with it. Conventional safety methods and precautions in industrial robotics are not applicable to such robots. This paper presents a safety approach for designing the safe care-providing robot FRIEND. The approach is applied in each step of design iteratively to identify and assess the potential hazards during design. The steps are explained briefly in this work. The main contribution of this paper is verification of safety requirements using the Ramadge-Wonham (RW) framework. The greater complexity of the tasks the robot will perform, the more complex is the identification of safety requirements. Use of this framework led us to analyze the requirements and verify them formally, systematically and on a modular basis. In our approach human-robot interaction (HRI) is also modeled by a set of uncontrolled events that may happen any time during operation. Subsequently the safety requirements are modified to consider these interactions. As a result the safety module behaves like a controller, running in parallel with the system, which maintains the system safe and works according to the safety requirements by enabling the admissible sequences of events.

  1. Robot mother ship design

    Science.gov (United States)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2000-07-01

    Small physical agents will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); chemical and biological agent detection, logistics, sentry; and communications relay will have advanced sensor and mobility characteristics. The mother ship much effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. The mother ship concept presented in this paper includes the case where the mother ship is itself a robot or a manned system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the robot teams. The mother ship must also establish a robust communications network between the agents and is an up-link point for disseminating the intelligence gathered by the smaller agents; and, because of its global knowledge, provides the high-level information fusion, control and planning for the collaborative physical agents. Additionally, the mother ship incorporates battlefield visualization, information fusion, and multi-resolution analysis, and intelligent software agent technology, to support mission planning and execution. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of a robot mother ship. This research includes docking, battlefield visualization, intelligent software agents, adaptive communications, information fusion, and multi- modal human computer interaction.

  2. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  3. Climate-friendly Default Rules

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia A.

    . The underlying reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, climate-friendly defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. In deciding whether to establish...... between climate-friendly products or services and alternatives that are potentially damaging to the climate but less expensive? The answer may well depend on the default rule. Indeed, climate-friendly default rules may well be a more effective tool for altering outcomes than large economic incentives...... climate-friendly defaults, choice architects (subject to legal constraints) should consider both consumer welfare and a wide range of other costs and benefits. Sometimes that assessment will argue strongly in favor of climate-friendly defaults, particularly when both economic and environmental...

  4. Rrsearch of Mobile Robot Obstacle Avoidance in Unkown Environment Based Elman Network Force Control%未知环境下基于Elman网络力控制的移动机器人避障研究

    Institute of Scientific and Technical Information of China (English)

    温淑慧; 郑维

    2013-01-01

    Collision avoidance is always difficult in path planning of mobile robot.A dynamic environment of robots based on neural network method of dynamic obstacle avoidance,is presented while the intelligent hybrid force/position control technology is applied to mobile robot obstacle avoidance control areas.Through the force control algorithm is formed between the mobile robot and obstacles virtual force field,and its setting,so that they can maintain the hope distance between the two.However,in the simulation process,the uncertainty of the mobile robot dynamic model and the obstacles will have impact on the performance of obstacle avoidance.Therefore,Elman neural network tocompensate for the uncertainty caused by the environment,is used while ajusting the exact distance between the mobile robots and the obstacles.Simulation results show that the dynamic obstacle avoidance algorithm is effective.%避障控制一直是移动机器人路径规划的难点.提出了一种未知环境下基于神经网络的机器人动态避障方法,同时把混合力/位置控制结构应用到移动机器人的避障控制中.力控制算法是通过在移动机器人和障碍物之间形成虚拟力场,并对其整定,以使它们两者之间能保持期望距离.由于移动机器人的动力学模型和障碍物的不确定性也会对避障控制的性能造成影响,因此采用Elman神经网络来补偿不确定性,同时整定移动机器人和障碍物之间的精确距离.仿真实验表明该动态避障算法是有效的.

  5. Value-Based Communication Preservation for Mobile Robots

    Science.gov (United States)

    2006-01-01

    Value-Based Communication Preservation for Mobile Robots Matthew Powers and Tucker Balch Borg Lab College of Computing Georgia Institute of...SUBTITLE Value-Based Communication Preservation for Mobile Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...for Mobile Robots 3 to reach nodes in the network and the identities of other nodes in the network. The algorithm explained below relies on this type

  6. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost.

  7. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  8. Rehabilitation robotics

    Science.gov (United States)

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  9. State of the art and future of robot technology; Robot gijutsu no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, A. [Kinki University, Osaka (Japan). Faculty of Biology Oriented Science and Technology

    1995-12-31

    This paper outlines mainly the mechanism and control of robots among various robot technologies. Robot is a mechanical equipment satisfying a part or all of three following conditions: (1) three elements equivalent to brain, hand and foot, (2) external sensors for remote detection and contact detection, and (3) internal sensors for balance sense and proprioceptive sense. Motion functions with the degree of freedom equivalent at least to a part of manipulation actions of human arm and hand are required for the robot which is expected to be an intelligent machine substituted for human beings dislike simple repetitive works. This paper also explains some current examples of robot`s joint drive mechanism and motion control system. On control technology, the autonomous attitude control of plasma spray guns using ultrasonic sensor was studied experimentally, and the reliability and accuracy of location and attitude control were confirmed. On medical and welfare robot, the friendly rehabilitation equipment for finger joint troubles was developed on the basis of a multi-joint robot. 4 refs., 17 figs., 2 tabs.

  10. Friends of science

    Science.gov (United States)

    Ten members of Congress have been presented with the Friends of Science Award by the National Coalition for Science and Technology (NCST). The awards, honoring significant contributions to science, engineering, and science education, are made every 2 years at the end of the congressional session. The recipients this year are Sen. Pete V. Domenici (R-N.M.), Rep. Joseph D. Early (D-Mass.), Rep. Bill Frenzel (R-Minn.), Rep. Albert Gore, Jr. (D-Tenn.), Rep. Judd Gregg (R-N.H.), Sen. Daniel K. Inouye (D-Hawaii), Rep. Stan Lundine (D-N.Y.), Sen. Sam Nunn (D-Ga.), Rep. Henry Waxman (D-Calif.), and Rep. Ed Zschau (R-Calif).Except for Sen. Inouye, whose term expires in 1986, all of this year's recipients were up for reelection in the national elections held November 6. All were successful in securing another term in Congress. In addition, Albert Gore was successful in his bid for a Senate seat, filling the vacancy left by the retiring Senate Majority Leader Howard H. Baker (R-Tenn.)

  11. Friendly units for coldness

    CERN Document Server

    Fraundorf, P

    2006-01-01

    Measures of temperature that center around human experience get lots of use. Of course thermal physics insights of the last century have shown that reciprocal temperature (1/kT) has applications that temperature addresses less well. In addition to taking on negative absolute values under population inversion (e.g. of magnetic spins), bits and bytes turn 1/kT into an informatic measure of the thermal ambient for developing correlations within any complex system. We show here that, in the human-friendly units of bytes and food Calories, water freezes when 1/kT ~200 ZB/Cal or kT ~5 Cal/YB. Casting familiar benchmarks into these terms shows that habitable human space requires coldness values (part of the time, at least) between 0 and 40 ZB/Cal with respect body temperature ~100 degrees F, a range in kT of ~1 Cal/YB. Insight into these physical quantities underlying thermal equilibration may prove useful for budding scientists, as well as the general public, in years ahead.

  12. Environmental friendly nitrogen fertilization

    Institute of Scientific and Technical Information of China (English)

    Avi; Shaviv

    2005-01-01

    With the huge intensification of agriculture and the increasing awareness to human health and natural resources sustainability, there was a shift towards the development of environmental friendly N application approaches that support sustainable use of land and sustain food production.The effectiveness of such approaches depends on their ability to synchronize plant nitrogen demand with its supply and the ability to apply favored compositions and dosages of N-species.They are also influenced by farming scale and its sophistication, and include the following key concepts: (i) Improved application modes such as split or localized ("depot") application; (ii) use of bio-amendments like nitrification and urease inhibitors and combinations of (i) and (ii); (iii) use of controlled and slow release fertilizers; (iv) Fertigation-fertilization via irrigation systems including fully automated and controlled systems; and (v) precision fertilization in large scale farming systems. The paper describes the approaches and their action mechanisms and examines their agronomic and environmental significance. The relevance of the approaches for different farming scales, levels of agronomic intensification and agro-technical sophistication is examined as well.

  13. Hybrid System Design for the Coordination of Multi-Modal Aerial Robots

    DEFF Research Database (Denmark)

    Koo, T. John; Quottrup, Michael Melholt; Clifton, C. A.

    2006-01-01

    In this paper we provide a framework for the coordination of a network of heterogeneous aerial robots by using temporal logic to formulate mission speci¯cations for the network of robots. The full dynamics of the aerial robots are considered, and multiple controllers that can cope with various co...

  14. Parental influences on memories of parents and friends.

    Science.gov (United States)

    Tani, Franca; Bonechi, Alice; Peterson, Carole; Smorti, Andrea

    2010-01-01

    The authors evaluated the role parent-child relationship quality has on two types of memories, those of parents and those of friends. Participants were 198 Italian university students who recalled memories during 4 separate timed memory-fluency tasks about their preschool, elementary school, middle school, high school and university years. Half were instructed to recall memories involving parents and the remainder memories involving friends. Moreover, parent-child relationships were assessed by the Network of Relationships Inventory (NRI; W. Furman & D. Buhrmester, 1985) and Adolescents' Report of Parental Monitoring (D. M. Capaldi & G. R. Patterson, 1989). Results showed that men with positive parent-son relationships had more memories of parents and more affectively positive memories of friends, supporting a consistency model positing similarity between parent-child relationships and memories of friends. Women with positive parental relationship quality had more affectively positive memories of parents but for friends, positive relationship quality only predicted positive memories when young. At older ages, especially middle school-aged children, negative parent-daughter relationships predicted more positive memories of friends, supporting a compensatory model. The gender of parent also mattered, with fathers having a more influential role on affect for memories of friends.

  15. 机械臂轨迹跟踪控制--基于EC-RBF神经网络的机械臂模型参考自适应控制%Trajectory tracking control of robot manipulator-model reference adaptive control for robot manipulator based on EC-RBF neural networks

    Institute of Scientific and Technical Information of China (English)

    杨剑锋; 张翠; 张峰

    2015-01-01

    针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。%According to the problem that the tracking accuracy is not high enough in trajectory tracking control of robot manipulators, a model reference adaptive control scheme based on EC-RBF neural networks is adopted to achieve robot manipulator model identification and trajectory tracking control. This control scheme contains two RBF neural networks which are trained offline and online, using EC-RBF learning algorithm. The one is used to identify the robot manipulator’s model, and the other one is used to achieve its trajectory tracking control. Simulation result of 2-degree-of-freedom robot manipulator demonstrates that using this method for robot manipulator trajectory tracking control has high control accuracy, and the networks which gain high training speed because of the EC-RBF learning algorithm make the control process faster.

  16. Let's Just Be Friends

    Science.gov (United States)

    Goode, Julia

    2008-01-01

    The author discusses her experiences using the "Facebook" social networking website, and the evolution of its use from a window on students' opinions and activities, to an uncomfortable forum where response to grades were visible in real time, and because of the instructor's known potential presence, students may have been intimidated from sharing…

  17. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  18. Cooperating mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  19. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  20. A General Algorithm for Robot Formations Using Local Sensing and Minimal Communication

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Matarić, Maja J

    2002-01-01

    the friend in the sensor's field of view. We also present a general analytical measure for evaluating formations and apply it to the position data from both simulation and physical robot experiments. We used two lasers to track the physical robots to obtain ground truth validation data.......We study the problem of achieving global behavior in a group of distributed robots using only local sensing and minimal communication, in the context of formations. The goal is to have mobile robots establish and maintain some predetermined geo- metric shape. We report results from extensive...... simulation exper- iments, and 40+ experiments with four physical robots, showing the viability of our approach. The key idea is that each robot keeps a single friend at a desired angle , using some appropriate sensor. By panning the sensor by degrees, the goal for all formations be- comes simply to center...