WorldWideScience

Sample records for friendly co2 refrigerant

  1. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  2. Experimental performance evaluation of heat pump by using CO2 as a refrigerant

    Science.gov (United States)

    Venkatesh, V. K.; Basavaraju, M. G.; Sreenivas Rao, K. V.

    2016-09-01

    In this experiment the refrigerant used is CO2 which is naturally available, eco friendly, economical, non toxic, non flammable and non corrosive. Its Ozone Depletion Potential (ODP) is zero and minimum Global Warming Potential (GWP). The performance evaluation of prototype vapor compression heat pump model was performed and evaluated the different parameters like COP (Co-efficient of performance), LMTD (Logarithmic mean temperature difference) and outlet water temperature of condenser. The experiment is carried out for two different condensers by varying mass flow rate and pressure. The water in the shell side was heated by absorbing heat from refrigerants in the tube side of condensers by counter flow heat exchanging method. The experimental result indicates fairly good COP with the use of CO2 refrigerant. These advantages of CO2 as a refrigerant favors the replacement for globally used refrigerant with CO2.

  3. New refrigeration system using CO2 vapor-solid as refrigerant

    Institute of Scientific and Technical Information of China (English)

    Dongping HUANG; Guoliang DING; Hans QUACK

    2008-01-01

    A refrigerant must be in the vapor-liquid phase in a vapor-compression refrigeration system, therefore, CO2 cannot be used as a refrigerant for temperatures lower than -56℃ because solid CO2 will form under the triple point temperature of -56℃. A refrigeration system with CO2 vapor-solid particles as refrigerant is put forward, by which a temperature lower than the triple point is achieved. An adjustable nozzle, a sublimator, a high-pressure regulating valve and a low-pressure regulat-ing valve are used to replace the conventional evaporator. Theoretical cycle analysis of the refrigeration system shows that its COP can be 50% higher than that of the conventional one.

  4. A new environment-friendly refrigerant

    Institute of Scientific and Technical Information of China (English)

    赵晓宇; 史琳; 朱明善; 韩礼钟

    1999-01-01

    CFCs and HCFCs, widely used in refrigeration and air-conditioning equipment, have been or will be phased out according to the revisions of the Montreal Protocol because they deplete the ozone layer. Many substitutes have been proposed, but no one has perfectly replaced the CFC end HCFC refrigerants. New generation alternatives are being investigated worldwide. According to the industrial and environmental requirements, many factors should be considered in the screening and evaluation of refrigerant alternatives. A new method is proposed using the soft algebra method——fuzzy multiple evaluation. The weights for different factors are determined mathematically and criteria values for all the objects are made dimensionless to quantitatively compare the different alternatives. A new long-term drop-in mixture alternative THR02 is developed and evaluated in a series of theoretical and experimental evaluations.THR02 is proved to be an environment-friendly, nontoxic, inflammable, drop-in alternative to CFC-12 a

  5. Analysis of Eco friendly Refrigerants Usage in Air-Conditioner

    Directory of Open Access Journals (Sweden)

    C. Chinnaraj

    2011-01-01

    Full Text Available Problem statement: There are two types of global warming contributions through refrigeration and air conditioning systems. The first one is the Direct Global Warming Potential (DGWP due to the emission of refrigerants and their interaction with heat radiation. The second one is the Indirect Global Warming Potential (IDGWP due to the emission of Carbon Dioxide (CO2 by consuming the energy that is generated through the combustion of fossil fuels. Most of refrigerants used in vapor Compression system were Chlorofluorocarbon (CFCs and Hydro Chlorofluorocarbon (HCFCs which contains chlorine and if any leakage in the system, these gases will go up and reach stratosphere. The chlorine atoms in the gases will act as a catalyst to destroy ozone layer and cause ozone depletion which causes health hazards, global warming, melting of polar ice caps and drought. Hence, it is necessary to minimize the Global warming and Ozone depletion. The refrigerant R22 widely used in the air-conditioners is a major Contributor of Chlorofluorocarbons (CFCs which cause irreparable loss to the ozone layer and has to be replaced. Approach: To conserve the energy and minimize the global warming, the systems should be designed as more energy efficient and also to minimize Ozone depletion, the eco friendly refrigerants are to be selected and tested as alternative refrigerants to R22. Hence, a window air conditioner of 3.5 kW capacity fitted with Electronic Expansion Valve (EEV instead of capillary tube as an expansion device, was tested for its performance with the selected eco friendly refrigerants R407C and R290 as an alternative to R22 under fixed indoor and outdoor chamber temperatures in the experimental set up and varying the EEV opening. Results: It has been observed from the experimental studies that when the smaller capacity R22 window air conditioner with EEV is retrofitted with R407C and R290, compared to the performance given by R22, the Coefficient Of Performance

  6. Research and application of CO2 refrigeration and heat pump cycle

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The environmental problem caused by refrigerant has become the focus all over the world.As the most typical natural refrigerant,CO2,of course,becomes the research focus.This paper introduces the development and application status of CO2 refrigeration and heat pump technology.The researches on CO2 refrigeration and heat pump,carried out by Thermal Energy Research Institute,Tianjin University,also are presented in this paper.

  7. Research and application of CO2 refrigeration and heat pump cycle

    Institute of Scientific and Technical Information of China (English)

    TIAN Hua; YANG Zhao; LI MinXia; MA YiTai

    2009-01-01

    The environmental problem caused by refrigerant has become the focus all over the world. As the most typical natural refrigerant, CO2, of course, becomes the research focus. This paper introduces the develop-ment and application status of CO2 refrigeration and heat pump technology. The researches on CO2 refrig-eration and heat pump, carried out by Thermal Energy Research Institute, Tianjin University, also are pre-sented in this paper.

  8. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  9. Thermodynamic Analysis and Comparison on Low Temperature CO2-NH3 Cascade Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    查世彤; 马一太; 申江; 李敏霞

    2003-01-01

    This paper is focused on the cascade refrigeration cycle using natural refrigerant CO2-NH3. The properties of refrigerants CO2 and NH3 are introduced and analyzed.CO2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO2-NH3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH3-NH3 cascade refrigeration cycles, the mass flow rate ratio of CO2-NH3 is larger than those of R13-R22 and NH3-NH3, the theoretical COP of CO2-NH3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH3-NH3 cascade cycle. But the real COP of CO2-NH3 cascade cycle will be higher than those of R13-R22 and NH3-NH3 because the specific volume of CO2 at low temperature does not change much and its dynamic viscosity is also small.

  10. A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Sharma, Vishaldeep [ORNL; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.

  11. Study of optimal discharge pressure of compressor in CO_2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to pred...

  12. Energy efficient skating rink by heat recovery and CO2 refrigerant; Energiezuinige schaatsbaan door warmteterugwinning en CO2-koudedrager

    Energy Technology Data Exchange (ETDEWEB)

    Mooi, R. [IBK Compac, Houten (Netherlands)

    2009-03-15

    In October 2008 a new indoor skating rink was opened in Enschede, Netherlands. The refrigeration plant for this skating rink was designed, delivered and installed by IBK Compac. CO2 was chosen as the secondary refrigerant; CO2 is easily detectable, sustainable and - above all - very energy efficient, since less pumping energy is required and pipes with a smaller diameter can be used. The waste heat of the refrigeration plant is used for the Zamboni (ice resurfacer), for the central heating system and for the unique floor heating system, which is located under the skating rink. [Dutch] In oktober 2008 werd in Enschede de IJsbaan Twente geopend. Het werd een geheel overdekte schaatsbaan, waarvoor IBK Compac de koude-installatie heeft ontworpen, geleverd en geinstalleerd. Gekozen werd voor CO2 als secundaire koudedrager. CO2 is goed detecteerbaar, duurzaam en vooral zeer energie-efficient doordat er minder pompenergie nodig is en er leidingen met een kleinere diameter kunnen worden gebruikt. De restwarmte van de koelinstallatie wordt o.a. benut voor de dweilmachine (Zamboni), voor het cv-blok en voor het unieke vloerverwarmingssysteem dat onder de ijsbaan ligt.

  13. NH3/CO2 Supermarket Refrigeration System with CO2 in the Cooling and Freezing Section. Technical, Energetic and Economical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Van Riessen, G. J.

    2004-08-01

    The application of the natural refrigerant CO2 in combination with NH3 has shown a large increase in industrial refrigeration over the last few years. Until April 2004, all supermarkets in the Netherlands were still working with systems using the environmentally harmful HFCs (greenhouse gases) or even HCFCs (ozone depleting substances). The advantages of a CO2 supermarket system seem to be overshadowed by fear of owners of supermarkets and installers for an unfamiliar system with higher installation costs. The natural refrigerants NH3 and CO2 are now introduced in the Dutch commercial refrigeration. The first supermarket refrigeration system in the Netherlands with only natural refrigerants has become operational in March 2004 and is located in Bunschoten. The NH3/CO2 cascade system has NH3 as primary refrigerant evaporating at -16C in two parallel cascade heat exchangers, where CO2 is condensing at -12C. One CO2 circuit is used for the cooling, which is an innovation for supermarket refrigeration. From the cascade heat exchanger, CO2 is pumped into the cooling section. In the other CO2 circuit, direct expansion and a CO2 compressor provides the freezing section with CO2 of -30C. The most experiments with CO2 in supermarkets in Europe have been restricted to the application of CO2 in the freezing section. Therefore, the application of CO2 as a phase changing secondary refrigerant in the cooling section is an interesting innovation. The technical, energetic and economical aspects of the installation are considered. The technical operation of the cascade refrigeration system in a supermarket is discussed. The energy savings are calculated and the installation and running costs evaluated. Experiences and problems during the installation and control of the installation will be discussed.

  14. CO2 como refrigerante: del pasado al futuro CO2 as refrigerant: from the past to future

    Directory of Open Access Journals (Sweden)

    Juan Manuel Belman Flores

    2013-05-01

    Full Text Available En años recientes y debido a la problemática que ha originado el calentamiento mundial, en el campo de la refrigeración y climatización se ha incrementado el interés por utilizar refrigerantes naturales e hidrocarburos con bajo potencial de calentamiento mundial, este es el caso de la utilización del CO2 como fluido frigorígeno que ha sido visto como una alter­nativa adecuada a los actuales refrigerantes en la comunidad científica. Hoy en día, el CO2 cada vez está retomando presencia en el campo de la refrigeración y climatización a nivel internacional, así pues, el presente trabajo tiene la finalidad de dar a conocer su potencial como refrigerante natural, las causas por las cuales este fluido fue relevado momentánea­mente por refrigerantes clorofluorocarbonados y su renacer en pleno siglo XXI. Además, se plantea su aplicación en la generación de frío en nuestro país mediante la tecnología de compresión de vapor basado en ciclo transcrítico.  In recent years, and due to problems resulting from global warming, interest has grown in the fields of refrigeration and air conditioning, specifically regarding the use of natural refrigerants and hydrocarbons with low potential for global warming. Such is the case of the use of CO2 as a cold fluid, which has been considered in the scientific community as an adequate alternative to common refrigerants. Nowadays, the use of CO2 in the areas of refrigeration and air conditioning has been recognized at international levels. Therefore, this work aims to show its potential as a natural refrigerant, the causes why this fluid was temporarily replaced by chlorofluorocarbon refrigerants, and its reappearance in the XXI century. It also proposes the use of CO2 in air conditioning in our country by using vapor compression technology, based on the transcritical cycle.

  15. Study of optimal discharge pressure of compressor in CO2 refrigerating trans-critical cycle

    Institute of Scientific and Technical Information of China (English)

    Fu Liehu; Wang Ruixiang; Li Qingdong; Wu Yezheng

    2008-01-01

    In this paper, a carbon dioxide trans-critical refrigerating system which is different from a conventional subcritical refrigerating cycle was studied. The trans-critical carbon dioxide refrigerating systems are based on the Gustav Lorntzen cycle. Emphasis was focused on how to determine the optimal discharge pressure of compressor in CO2 trans-critical cycle. The factors related with the optimal discharge pressure were analyzed. A formula was developed based on cycle simulation, which could be used to predict the optimal discharge pressure of a basic CO2 trans-critical cycle. After further studies on CO2 trans-critical cycles with a regenerator or expander, two more formulas were also developed. These formulas could provide an access to improve the COP of CO2 trans-critical cycle.

  16. CO2-refrigeration. Investment in an energy efficient supermarket; CO2-koeling. Investeren in een energiezuinige supermarkt

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    Modem entrepreneurs invest in an energy-neutral supermarket. By that they are working on corporate social responsibility, sustainability and a green image of their company. The reduction of energy consumption results in an indirect reduction of CO2 emission by electric power stations. That is why more and more transcritical refrigeration plants with the natural refrigerant CO2, with global warming impact of 1, will be applied. The energy investment deduction scheme EIA, executed by NL Agency, stimulates a large number of energy saving measures which result in a financial profit for the investing owner or manager. [Dutch] Moderne ondememers investeren in een energieneutrale supermarkt. Ze zijn immers bezig met maatschappelijk verantwoord ondememen, verduurzaming en een groene uitstraling van hun bedrijf. Het terugdringen van het energiegebruik reduceert de indirecte CO2-uitstoot bij de elektriciteitscentrale aanzienlijk. Daarom worden steeds meer transkritische koel-vriesinstallaties die werken met het natuurlijke koudemiddel CO2, met een GWP-waarde van 1, toegepast. De Energie-investeringsaftrekregeling EIA, uitgevoerd door Agentschap NL, stimuleert een groot aantal energiebesparende maatregelen die ten goede komen aan de eigenaar of beheerder.

  17. CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL; Bansal, Pradeep [ORNL

    2014-01-01

    This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regions of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.

  18. Influence of the superheat associated to a semihermetic compressor of a transcritical CO2 refrigeration plant

    OpenAIRE

    Sánchez, D.; Torrella, E.; Cabello,R; Llopis, R.

    2009-01-01

    Abstract This work evaluates, from an energetic point of view, the effects of the superheat caused in the refrigerant by the electric motor cooling (SHSC) in a semihermetic compressor installed in an experimental refrigerating plant, which operates with CO2 as the working fluid in transcritical conditions. The analysis is based on 84 experimental tests which cover a wide range of operating conditions of the plant: three evaporating levels (0, -10, -17 ?C) at four compressor speeds ...

  19. Theoretical Study on CO2 Transcritical Cycle Combined Ejector Cycle Refrigeration System

    Institute of Scientific and Technical Information of China (English)

    卢苇; 马一太; 李敏霞; 查世彤

    2003-01-01

    Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO2 transcritical cycle with ejector cycle is proposed in this paper. The CO2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH3, H2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.

  20. Energetic, Exergetic and Exergoeconomic Analysis of CO2 Refrigeration Systems Operating in Hot Climates

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2015-01-01

    of the product of a R744 refrigeration solution with auxiliary compressor with those of a R744 conventional system, both of them operating in transcritical conditions. The results pointed out that the adoption of an auxiliary compressor resulted in an increase of the COP by approximately 18.7% over...... conditions. CO2 refrigeration system with parallel compression represents one of the solutions which have been proposed in the last few years in order to enhance the performance of a single-stage refrigeration system. The main target of this study is to compare the thermodynamic efficiency and the final cost...

  1. Performance improvement of double-tube gas cooler in CO2 refrigeration system using nanofluids

    Directory of Open Access Journals (Sweden)

    Sarkar Jahar

    2015-01-01

    Full Text Available The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.

  2. Heat Pump Cycle Performance Analysis and Flammability Study of the CO2/DME Mixture Refrigerant%CO2/DME混合工质热泵循环性能分析及可燃性研究

    Institute of Scientific and Technical Information of China (English)

    刘学武; 覃旭松; 杜永强; 关西文; 陈申

    2015-01-01

    The drying process is energy saving, efficient and environmental friendly. For solving the problem of high pressure in the transcritical CO2 heat pump cycle, the system of a transcritical heat pump drying cycle with an alternative refrigerant CO2/DME for CO2 is proposed. The performance of the system at different mass fractions of CO2 and DME in the mixtures is theoretically calculated and compared to the pure CO2. For the flammability of the DME, the standard test method ASTM E681-09 for concentration limits of flammability of chemicals was made. The results indicated that, at a certain mass ratio of the mixture refrigerant, there is a optimum pressure for the system. At the low concentration of DME, the mixture refrigerant CO2/DME has optimum performance with a mass ratio of 90/10. With the increasing of DME concentration, the COPh deceases slightly and then increases continually. With the mixture refrigerant CO2/DME has a mass ratio of 90/10, the optimized high side pressure of the transcritical CO2/DME decreased by 23 percent verse the pure CO2 heat pump cycle and the heating coefficient of performance (COPh) is increased by about 3.1 percent. DME flammability deceases as the CO2 added. The critical suppression explosion ratio point is reached at a volume ratio (CO2/DME) of 7.2. When the volume ratio larger than the critical point, the mixture refrigerant will not get explosion no matter how much air is added. It can be safely used.%针对跨临界CO2热泵循环压力高的问题,提出了以CO2/DME混合制冷剂替代纯CO2制冷剂的跨临界热泵循环系统。通过理论计算了不同配比下系统循环性能,并与纯CO2工质性能进行对比;为解决DME可燃性问题,实验测试并研究了混合工质爆炸极限。研究结果表明:在确定的混合工质配比下,系统存在最优压力使COPh最大;随DME质量比的增加,系统最优压力下降,而COPh先小幅下降而后持续增加;CO2/DME 质量配比在90

  3. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Directory of Open Access Journals (Sweden)

    Jankovich Dennis

    2015-01-01

    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  4. Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature

    Science.gov (United States)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-11-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials MCE is a warming as the magnetic moments of the atom are aligned by the application of a magnetic field, and the corresponding cooling upon removal of the magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle) where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. In this paper, attention is directed towards the near room-temperature range. We compare the energetic performance of a commercial R134a refrigeration plant to that of a magnetic refrigerator working with an AMR cycle. Attention is devoted to the evaluation of the environmental impact in terms of a greenhouse effect. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. In this paper the AMR cycle works with different magnetic refrigerants: pure gadolinium, second order phase magnetic transition (Pr0.45Sr0.35MnO3) and first order phase magnetic transition alloys (Gd5Si2Ge2, LaFe11.384Mn0.356Si1.26H1.52, LaFe1105Co0.94Si110 and MnFeP0.45As0.55). The comparison, carried out by means of a mathematical model, clearly shows that GdSi2Ge2 and LaFe11.384Mn0.356Si1.26H1.52 has a TEWI index always lower than that of a vapor compression plant. Furthermore, the TEWI of the AMR

  5. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    Science.gov (United States)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  6. Numerical optimization of a transcritical CO2/propylene cascaded refrigeration-heat pump system with economizer in HT cycle

    Indian Academy of Sciences (India)

    Alok Manas Dubey; Suresh Kumar; Ghanshyam Das Agrawal

    2015-04-01

    Use of organic refrigerants such as Hydrochlorofluorocarbons and Chlorofluorocarbons have been criticized for their adverse impact on the Earth's protective ozone layer and for their significant global warming potential (GWP). CO2 has been receiving great concern as an alternative refrigerant. Cascade refrigeration systems employing CO2 are used for low temperature applications. Being a low critical temperature fluid CO2 transcritical cascade systems offer low COP for a given application. Parallel compression economization is one of the promising cycle modifications to improve the COP of transcritical CO2 cascaded systems. In this paper, transcritical CO2/propylene cascade system with parallel compression economization in the HT cycle has been analysed for cooling/heating applications. An enhancement in COP of 9% has been predicted. Thermodynamic analysis on R744-R1270 cascade refrigeration system has been performed to determine the optimal value of the various design parameters of the system. The design parameters included are: gas cooler outlet temperature and intermediate temperature in the high temperature circuit and evaporator temperature and temperature difference in the cascade condenser in the low temperature circuit.

  7. Ice rink installations working with natural refrigerants; Kunst-ijsbanen met NH3 en CO2, natuurlijker kan het niet

    Energy Technology Data Exchange (ETDEWEB)

    Berends, E. [Grenco, Den Bosch (Netherlands)

    2004-07-01

    In a growing number of countries it is not allowed anymore to use big amounts of ammonia in areas occupied by many people. So new skating halls with direct ammonia systems are not built anymore although those systems are the best solution, concerning ice quality and energy consumption. An indirect system NH3/glycol or brine uses circa 20% more energy. By using (H)CFC's instead of NH3 the energy consumption might even be higher. During the last years CO2 has proven itself not only as an excellent refrigerant but also as a very usable secondary refrigerant in stead of brines, etc. In this article the successful application of the newly developed NH3/CO2 system on an existing ice rink is described. [Dutch] Een overzicht wordt gegeven van de voordelen en de nadelen van verschillende koelmiddelen voor kunstijsbanen in Nederland (ammoniak, CO2, glycol)

  8. Thermodynamic Analysis of Double-Stage Compression Transcritical CO2 Refrigeration Cycles with an Expander

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2015-04-01

    Full Text Available Four different double-compression CO2 transcritical refrigeration cycles are studied: double-compression external intercooler cycle (DCEI, double-compression external intercooler cycle with an expander (DCEIE, double-compression flash intercooler cycle (DCFI, double-compression flash intercooler cycle with an expander (DCFIE. The results showed that the optimum gas cooler pressure and optimum intermediate pressure of the flash intercooler cycles are lower than that of the external intercooler cycle. The use of an expander in the DCEI cycle leads to a decrease of the optimum gas cooler pressure and little variation of the optimum intermediate pressure. However, the replacement of the throttle valve with an expander in the DCFI cycle results in little variation of the optimal gas cooler pressure and an increase of the optimum intermediate pressure. The DCFI cycle outperforms the DCEI cycle under all the chosen operating conditions. The DCEIE cycle outperforms the DCFIE cycle when the evaporating temperature exceeds 0 °C or the gas cooler outlet temperature surpasses 35 °C. When the gas cooler exit temperature varies from 32 °C to 48 °C, the DCEI cycle, DCEIE cycle, DCFI cycle and DCFIE cycle yield averaged 4.6%, 29.2%, 12.9% and 22.3% COP improvement, respectively, over the basic cycle.

  9. CO2LD: An Educational Innovation Project for Advanced Vocational Training in Refrigeration

    Science.gov (United States)

    Sánchez, Daniel; Llopis, Rodrigo; Patiño, Jorge; Cabello, Ramón; Torrella, Enrique

    2013-01-01

    Refrigeration is one of the technology sectors that has suffered the most changes in the last twenty years, because of the negative impact of the fluids used in the refrigeration cycles, i.e., refrigerants, due to their impact on the ozone layer and their contribution to global warming. As a result of their negative effects, the European Union has…

  10. CO2跨临界喷射制冷循环计算分析%Calculation and analysis on transcritical ejector refrigeration cycle with CO2

    Institute of Scientific and Technical Information of China (English)

    王菲; 杨勇; 沈胜强

    2013-01-01

    The research on transcritical ejector refrigeration cycle with CO2 is rarely reported.In this study,a thermodynamic model for a transcritical ejector refrigeration cycle is established.The changes of ejector entrainment ratio,the cycle performance coefficient (COP) and effective performance coefficient (COPm) with cooler pressure,cooler outlet temperature,heater pressure,heater outlet temperature and evaporation temperature are presented.As the cooler pressure increases,the entrainment ratio of ejector decrease,the cycle COP and COPm first increase and then decrease,with optimum values at some cooler pressures.As the outlet temperature of cooler increases,both values of COP and COPm decrease.With the increase of heater pressure,heater outlet temperature and evaporation temperature,the ejector entrainment ratio,the cycle COP and COPm are improved,while the cycle COP decreases with the increase of heater outlet temperature.%目前还很少有关于CO2跨临界喷射式制冷循环的研究.本文对CO2跨临界喷射制冷循环建立了热力学模型,计算了在不同的冷却压力、冷却器出口温度、加热器压力、加热器出口温度及蒸发温度下,喷射器的喷射系数、跨临界喷射制冷循环性能系数(COP)和有效性能系数(COPm)的变化趋势.结果表明:随着冷却器压力的升高,喷射器的喷射系数减小,循环的COP和COPm值先增大后减小,在某个冷却压力下存在最优值;提高冷却器的出口温度,循环的COP和COPm值均降低;提高加热器压力、加热器出口温度及蒸发温度均能增大喷射器的喷射系数和循环的COPm值.

  11. Analysis on CO2 Refrigeration Cycle with High Pressure Gas Vortex Expansion for Low Temperature%高压气体涡流膨胀的CO2低温制冷循环分析

    Institute of Scientific and Technical Information of China (English)

    赵家华; 宁静红

    2016-01-01

    通过设计高压气体涡流膨胀的CO2低温制冷循环,对其进行热力性能分析,并与两级节流中间完全冷却的CO2低温制冷循环的性能进行对比,得出高压气体涡流膨胀的CO2低温制冷循环存在获得最大性能系数的最优的高压压力。提高蒸发温度与中间压力,增大冷气流质量比,减少进入蒸发器的冷气流质量比,降低气体冷却器出口温度,均可提高高压气体涡流膨胀的CO2低温制冷循环的性能系数。在冷气流的质量比为0.6,冷气流进入蒸发器的质量比为0.2时,高压气体涡流膨胀的CO2低温制冷循环的最佳的性能系数较两级节流中间完全冷却的CO2低温制冷循环最佳的性能系数提高36.4%。随着气体冷却器出口温度的升高,高压气体涡流膨胀的CO2低温制冷循环的性能系数较两级节流中间完全冷却的CO2低温制冷循环的性能系数降低的幅度小。%The CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature is designed. The thermal performances of this CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature are analyzed and compared with that of the CO2 low temperature refrigeration cycle of two-stage throttle and complete cooling in middle. The following conclusions are obtained. The CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature has the maximum coefficient of performance ( COP) at the optimal high pressure. The coefficient of performances of the CO2 refrigeration cycle with high pressure gas vortex expansion for low temperature can be improved by increasing the evaporation temperature, the middle pressure and the mass ratio of cold gas, by reducing the mass ratio of cold gas into evaporator, as well as by decreasing the temperature of gas-cooler out-let. At the mass ratio of cold gas is 0. 6 and the mass ratio of cold gas into evaporator is 0. 2, the maximum coeffi-cient of performance of

  12. Predicting CO2 Solubility in Imidazole Ionic Liquids for Use in Absorption Refrigeration Systems by Using the Group Contribution Equation of State Method

    Science.gov (United States)

    Wu, Wei-Dong; Wu, Jun; Hou, Yong; Su, Lin; Zhang, Hua

    2017-09-01

    Traditional absorption refrigeration such as H2O-LiBr- and NH3-H2O-based refrigeration has limited applications because of several issues, including crystallization, corrosion, and large volume. CO2-ionic liquids (ILs) as new absorption working pairs were investigated in this study. The objective was to use the group contribution equation of state (GC-EOS) method to predict the solubilities of binary systems containing high-pressure CO2-imidazole bis(trifluoromethanesulfonimide) ILs and to investigate the applicability and accuracy of the GC-EOS model. The results showed that at pressures up to 11.0 MPa and temperatures of 273 K to 400 K, the CO2 solubility in the ILs increased with increasing system pressure but decreased with increasing temperature, and its variation rate was lower at higher pressures or temperatures. Also, CO2 solubility increased in the order of [emim][Tf2N] families resulted in higher CO_{2 } solubility. The model prediction of CO2 solubility in the four different ILs showed reasonable consistency with the corresponding experimental results from the literature; the largest deviation was 5.7 % for CO2-[emim][Tf2N]. Therefore, it can be concluded that the GC-EOS model is a promising theoretical solution that can be used to search for suitable CO2-IL working pairs for absorption refrigeration systems.

  13. Design and Optimization on Simulation System of Mine CO2 Open Loop Cycle Refrigeration%矿用CO2开放式制冷仿真系统设计与优化

    Institute of Scientific and Technical Information of China (English)

    曹利波

    2013-01-01

    According to the importance of the CO2 open loop cycle refrigeration applied to the rescue cabin, the refuge chamber and other limited airtight space, the FLOWMASTER simulation software of the thermal fluid system was applied to design the simulation system of the CO2 open loop cycle refrigeration applied to a limited airtight space. Under the conditions to meet the designed refrigeration value and the pressure drop and temperature drop at the inlet and outlet of the pneumatic blower, the tube length of the evaporator was optimized and the optimum length of the evaporator was obtained. Meanwhile the refrigeration system features and the different refrigeration value under the non designed performances were checked.The test certification was conducted on the refrigeration simulation system.The simulated value and the test value were well fitted and the simulation accuracy and precision of the system were verified.%针对CO2开放式制冷在避难硐室、救生舱等有限密闭空间中应用的重要性,利用FLOWMASTER热流体计算仿真软件,设计了一种用于有限密闭空间的CO2开放式制冷仿真系统,在满足设计制冷量和气动风机进出口压降、温降的条件下,对蒸发器管长进行优化,获得了最佳蒸发器长度,同时对非设计工况下的制冷系统特性及不同制冷量进行校核,并对该制冷仿真系统进行了试验验证,仿真值与试验值吻合良好,验证了系统仿真的准确性和精确性.

  14. Comparative study of cycle modification strategies for trans-critical CO2 refrigeration cycle for warm climatic conditions

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2016-03-01

    Full Text Available This paper presents a comparative study of performance of six prominent modifications on the basic trans-critical CO2 refrigeration system to investigate their suitability to high ambient temperature application (35–55 °C. To explore the application in chiller, domestic refrigeration and air cooling the evaporator temperature chosen are −10 °C, 0 °C and 10 °C respectively. In general the cycle modifications have a positive effect on the overall COP of the system. However, to comprehend practicability of these modifications for three application areas, a few other parameters which affect design and operation are also included in the study. These are compressor discharge pressure and temperature, mass flow rate, interstage pressure for multi-stage operation and exergy destruction. Effect of real time constraints like approach temperature, pressure drop in gas cooler, compressors efficieny, degree of superheat, expanders efficiency and effectivenesss of intermediate heat exchanger are also incorporated. Interrelation between these parameters are brought out from the study.

  15. Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO2 Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The basic transcritical CO2 systems exhibit low energy efficiency due to their large throttling loss. Replacing the throttle valve with an ejector is an effective measure for recovering some of the energy lost in the expansion process. In this paper, a thermodynamic model of the ejector-expansion transcritical CO2 refrigeration cycle is developed. The effect of the suction nozzle pressure drop (SNPD on the cycle performance is discussed. The results indicate that the SNPD has little impact on entrainment ratio. There exists an optimum SNPD which gives a maximum recovered pressure and COP under a specified condition. The value of the optimum SNPD mainly depends on the efficiencies of the motive nozzle and the suction nozzle, but it is essentially independent of evaporating temperature and gas cooler outlet temperature. Through optimizing the value of SNPD, the maximum COP of the ejector-expansion cycle can be up to 45.1% higher than that of the basic cycle. The exergy loss of the ejector-expansion cycle is reduced about 43.0% compared with the basic cycle.

  16. 毛细管在跨临界CO2制冷空调中的数值解析%Numerical Analysis of Capillary in Trans-Critical Co2 Refrigeration Air-Condition System

    Institute of Scientific and Technical Information of China (English)

    焦玉琳; 王新华

    2012-01-01

    In view of trans-critical co2 refrigeration technology, lumped parameter is used to establish the dynamic mathematical model for the trans-critical co2 refrigeration technology according to capillary's energy conservation, mornentum conservation, mass conservation. Matlab is used to carry through calculating and solving, and condenser condensing temperature, condenser outlet temperature and evaporator inlet tem-perature are selected as output parameters. The model simulates the refrigeration system when the length and diameter of capillary change. Af- ter analyzing data and adjusting parameters, the energy efficiency ratio and refrigeration performance of the refrigeration air-condition system are both to be the best which could save time and material resources for designing and developing in industry. The model can reflect integrally the relationship of multiple-input and multiple input of trans critical co2 refrigeration system, research the influence of controlled variable pa rameters to the system performance, and build found well foundation for the system's optimization controlling and designing.%针对跨临界CO2制冷技术,根据毛细管的能量守恒、动量守恒、质量守恒,采用集中参数为跨临界CO2制冷系统建立了动态数学模型,运用Matlab进行数学计算及求解,选取了冷凝器冷凝温度、冷凝器出口温度、蒸发器入口温度作为输出参数,对毛细管长度和直径发生改变时的制冷系统进行了仿真,再对其数据进行分析与参数调整,使得制冷空调系统的能效比和制冷性能达到最佳.从而为工业设计和开发节约时间和物力.且该模型能够完整地反映跨临界CO2制冷系统的多输入多输出关系,研究控制参数对系统性能的影响,为CO2制冷系统的优化设计和优化控制打下了良好的基础.

  17. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  18. 二氧化碳复叠式制冷系统实验研究%Experimental Research on a CO2 Based Cascade Refrigeration System

    Institute of Scientific and Technical Information of China (English)

    陈林; 张信荣

    2013-01-01

    In this paper a novel CO2 based cascade refrigeration system is proposed and experimentally investigated. The system used natural CO2 as working fluid. The cascade system is consisted of a High Temperature Cycle (HTC) and a Low Temperature Cycle (LTC). The two parts are connected by an internal heat exchanger. This is the first cascade refrigeration system proposed. Based on the CO2 solid-gas two phase sublimation flow, stable heat transfer and refrigeration can be achieved. In the present paper the feasibility and fundamental optimizations are discussed. Detailed information on the system behavior and the parameters are also present in the paper.%  本研究提出了一种基于CO2固气两相升华流动的复叠式制冷系统.系统采用环保的天然工质CO2作为冷媒.复叠式制冷系统由高温循环(HTC:High Temperature Cycle)和低温循环(LTC:Low Temperature Cycle)二个部分构成.两部分用一个中间换热器相连接.本文提出 CO2两级复叠式循环概念并进行了实验测试,利用 CO2固气两相升华流动潜热潜力,可以同时实现低于-56.6℃的制冷和80℃以上的制热.通过实验和理论计算,两级系统成功地同时实现了以上功能.此外,本文还总结了基本实验特性并做了相应的系统优化设计和分析.

  19. Performance Analysis of CO2 Transcritical Compression Cycle and Freon Refrigeration Cycle%CO2跨临界循环和氟利昂制冷剂循环性能分析

    Institute of Scientific and Technical Information of China (English)

    曾宪阳; 王洪利; 马一太

    2011-01-01

    Based on refrigerants R134a, R290 and CO2, the performance comparison of three kinds of single stage compression cycle and two stage cycle were employed.The results shows that the performances COP of all cycles are gradually increased with the evaporation temperature and compressor efficiency increasing, and the single stage CO2 transcritical cycle has an optimal discharge pressure.Replace the throttle with an expander can significantly improve the system coefficient of performance of CO2 transcritical cycle.The low stage compressor efficiency has an important effect on the performance of two stage compression cycle than the high stage compressor efficiency and the CO2 transcritical cycle has a higher optimal intermediate pressure than other cycles.Some fundamental data were obtained for improving cycle performance and developing the CO2 refrigeration air-conditioning and heat pump water heater products.%本文以R134a、R290和CO2制冷剂为研究对象,分别对三种单、双级循环的性能进行对比.结果表明,随蒸发温度增加、压缩机效率升高和冷凝器出口温度降低,所有循环性能均提高,单级CO2循环存在最优排气压力;用膨胀机代替节流阀可以显著提高CO2跨临界循环COP;低压级压缩机的效率比高压级压缩机对系统性能影响明显.双级循环中,CO2循环最优中间压力远高于其它两种循环.本研究为高效、节能的空调和热泵产品开发提供基础资料.

  20. Thermodynamic analysis of transcritical CO2 refrigeration cycle with different expansion device%采用不同膨胀机构的跨临界CO2循环性能分析

    Institute of Scientific and Technical Information of China (English)

    马娟丽; 刘昌海; 侯予

    2012-01-01

    运用热力学第一定律和第二定律对跨临界CO2基本循环、膨胀机循环、喷射器循环和涡流管循环进行了分析,计算了各循环各个部件的(火用)损失,比较了各循环性能系数和总(火用)损失.计算结果表明,采用膨胀机、喷射器和涡流管等膨胀设备代替基本循环中的节流阀后,由于这些改进膨胀设备的(火用)损失小于基本循环节流阀的(火用)损失,同时改进循环中压缩机的(火用)损失小于基本循环的压缩机(火用)损失,从而减小了循环总(火用)损失,提高了循环的COP.膨胀机循环的COP远大于其它跨临界CO2循环,其次为喷射器循环和涡流管循环.%A comparative study on transcritical carbon dioxide refrigeration cycle respectively with throttling valve,expander,ejector and vortex tube was performed by the first and second laws of thermodynamics in theory. And these cycles' COP and exergy losses were investigated. It is found that the exergy loss of other expansion devices is less than the exergy loss of throttling valve. The exergy loss of compressor in transcritical carbon dioxide refrigeration cycle with other expansion devices is less than the exergy loss of compressor in transcritical carbon dioxide refrigeration cycle with throttling valve. Thus the total exergy loss of these cycles with other expansion devices is less than the total exergy loss of cycle with throttling valve, and the COP of these cycles with other expansion devices is higher than the COP of cycle with throttling valve. The COP of transcritical carbon dioxide refrigeration cycle with expander is much higher than that of other cycles, then transcritical carbon dioxide refrigeration cycle with ejector and with vortex tube.

  1. Simulation on the Performance of Adiabatic Capillary Tube in CO2 Transcritical Refrigeration System%跨临界CO2制冷系统中绝热毛细管性能模拟研究

    Institute of Scientific and Technical Information of China (English)

    王晶; 赵远扬; 李连生; 王智忠

    2011-01-01

    建立了CO2制冷系统中绝热毛细管一维稳态分布参数模型,以研究跨临界CO2系统中毛细管的性能和流动特性.分别采用3种不同摩擦系数关联式(Churchill、Colebrook、Bittle&Pate关联式)进行模拟和比较,研究了CO2在毛细管内的温度、压力、焓、熵及干度等的沿程分布规律.分析了管径、入口压力、入口温度和背压等4个参数对毛细管质量流量的影响,并考虑了壅塞现象.结果表明:采用Churchill和Colebrook关联式的效果较好,92%的计算值误差在10%以内,而Bittle&Pate关联式不适用于CO2绝热毛细管计算,因为它未考虑毛细管内壁的粗糙度;背压对质量流量影响很小,即使发生壅塞,壅塞质量流量和未壅塞时的质量流量差别也不大.%A one dimension homogeneous steady model of adiabatic capillary tubes in CO2 tran-scritical refrigeration systems was established to evaluate the performance and the flow characteristics of capillary tubes. The simulation results by using three different friction factor correlations (Churchill, Colebrook, Bittle&Pate) were compared with each other. The distributions of temperature, pressure, enthalpy and entropy along the tube length were investigated. The influences of four parameters (inner diameter, inlet pressure, inlet temperature, back pressure) on the mass flow rate were explored, and the chocking phenomenon was analyzed. The results show that the Churchill correlation and the Colebrook correlation predict 92% of the refrigerant mass flow rates with an error of less than 10% while the Bittle&Pate correlation may be unsuitable for simulating the flow in CO2 capillary tubes due to its neglect of the inner wall roughness of capillary tubes. The back pressure has slight influence on the mass flow rate. In addition, the rate of mass flow without chocking is approximately equal to that with chocking.

  2. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    OpenAIRE

    Bon-Min Koo; Jang-Ho Jay Kim; Sung-Bae Kim; Sungho Mun

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is ...

  3. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    OpenAIRE

    Bon-Min Koo; Jang-Ho Jay Kim; Sung-Bae Kim; Sungho Mun

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is ...

  4. Climate-friendly refrigerators for supermarkets. Comparative assessment of supermarket refrigeration systems; Klimafreundlich Kuehlen im Supermarkt. Vergleichende Bewertung von Supermarktkaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-10-15

    On 5 September 2008, a meeting was held at the Federal Environmental Office (Umweltbundesamt, UBA) at Dessau where the results of the research project ''Comparative evaluation of the climate relevance of refrigeration plants and systems for supermarkets'' were presented and discussed among more than 50 experts. Towards the end of the meeting, the discussions became more heated as the underlying data base became the subject of attention. (orig.)

  5. Computer-Aided Chemical Product Design Framework: Design of High Performance and Environmentally Friendly Refrigerants

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Zhang, Lei; Gani, Rafiqul

    a driving force for the industry to continuously seek novel refrigerants as current refrigerants risk phasing out due to environmental regulations. This trend has been seen since the Kyoto Protocol in 1997 and recently from the EU regulations from 2014, which will restrict the use of some known refrigerants...... properties and needs should carefully be selected for a given heat pump cycle to ensure that an optimum refrigerant is found? How can cycle performance and environmental criteria be integrated at the product design stage and not in post-design analysis? Computer-aided product design methods enable...... the possibility of designing novel molecules, mixtures and blends, such as refrigerants through a systematic framework (Cignitti et al., 2015; Yunus et al., 2014). In this presentation a computer-aided framework is presented for chemical product design through mathematical optimization. Here, molecules, mixtures...

  6. 跨临界CO2引射制冷循环运行稳定性研究%The Operation Stability Research on the Transcritical CO2 Ejector Expansion Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    邓建强

    2011-01-01

    Present work analyzed the operation stability of the transcritical CO2 ejector expansion refrigeration cycle. Thermodynamic models of two kinds adjusting schemes which maintain cycle stable, i.e. feedback vapor and two-stage evaporation were set up. The simulation result shows that cycle with vapor feedback adjusting control has highly similar refrigeration effect with the basic ejector expansion cycle which controlled by the entrainment ratio. The cycle with two-stage evaporation improves the refrigeration performance obviously. The adjustable district of vapor feedback control becomes narrower with the entrainment ratio decreasing. By contrast, the adjustable district of the two-stage evaporation control broadens. With regards to the vapor feedback adjusting control, considering the optimize of the COP and the wider adjustable working condition, the ejector coefficient is suitable in 0.6-0.7.%分析了跨临界CO2引射制冷循环的运行稳定性问题,对蒸气反馈和两级蒸发两种致引射系统稳定的调控方案构建了热力学模型。模拟研究表明蒸气反馈调控系统具有与基本引射循环调控引射系数致系统稳定非常相似的制冷效果。而两级蒸发调控可明显提高系统的制冷性能。引射系数越小,蒸气反馈调控的可调工况区间越窄,两级蒸发方案的可调工况区间越宽。对于蒸气反馈调控,同时考虑COP优化和具较宽的可调工况,引射系数在0.6-0.7间较合适。

  7. 太阳能水蒸气引射冷却的CO2低温制冷循环%CO2 Refrigeration Cycle of Solar Energy Water Vapor Entrainment Cooling for Low Temperature

    Institute of Scientific and Technical Information of China (English)

    宁静红; 刘圣春; 郭宪民

    2012-01-01

    为需要较低温度的用冷空间提供冷源,设计由太阳能集热循环,水蒸气喷射制冷循环,CO2低温制冷循环组成的太阳能辅助热源水蒸气喷射引射冷却的CO2低温制冷的组合循环,通过热力计算得出随着蒸发温度的升高,太阳能辐射强度的增大,集热器面积的增大,组合循环的性能提高.蒸发温度每升高1℃,组合循环的性能系数增大4.3%,太阳能辐射强度每增加1 W/m2,组合循环的性能系数增大2.8%,太阳能集热器面积每增加1 m2,组合循环的性能系数增大约6%.发生器内水蒸气温度对组合循环的性能影响不大,太阳能辐射强度、集热器面积以及喷射器引射率对组合循环的影响较大.组合循环节省运行费用,节约能源,有很好的发展前景.%The combined cycle of solar energy - driven water vapor ejector entrainment cooling CO2 refrigeration cycle is designed for providing low temperature space. This combined cycle is composed of solar energy heat-collecting cycle, water vapor e-jector refrigeration cycle and CO2 low temperature refrigeration cycle. By thermodynamic calculation, the results are obtained that the COP of combined cycle increase as the enhancing of evaporation temperature, solar energy radiant intensity and solar collector area. When the evaporation temperature increase 1℃ , the COP of combined cycle enhance about 4.3% , the radiant intensity of solar energy increase 1 W/m2, the COP of combined cycle enhance about 2. 8% , and the solar collector area increase lm2, the COP of combined cycle enhance about 6% . However, the effect of water vapor temperature in generator on the performance of combined cycle is not obvious. Moreover the effect of the solar energy radiant intensity, the solar collector area and the ejector entrainment ratio are higher on the COP of combined cycle. It is gained that the performance of combined system has obvious advantage for reducing running cost and saving energy, so

  8. Numerical analysis on transcritical CO2 vapor compression/ejection refrigeration cycle%跨临界CO2蒸气压缩/喷射制冷循环的数值分析

    Institute of Scientific and Technical Information of China (English)

    黄惠兰; 韩美健; 李刚; 郑克敏

    2014-01-01

    为了更合理的描述喷射器扩压室内的压力变化特性,对已有的跨临界CO2蒸气压缩/喷射制冷循环的热力学模型做了改进,并对扩压室新定义了一种压力系数ηd。建立了相应的数学模型并进行数值模拟,考察了该压力系数ηd 对制冷循环喷射系数和系统性能系数COP的影响,其结果与常规的扩压效率ηk 的影响作用有很好的一致性,说明所改进的热力学模型是可行的;应用该模型分析了压力系数对相关重要参数的影响,结果表明:随压力系数的增大,喷射系数基本不变;COP、压缩机进口温度、喷射器的增压比和喷射器效率增大;压缩机出口温度和压缩比减小;当工作流体压力为9 MPa时,相关参数发生了显著的变化。该压力系数取决于系统喷射器扩压室进出口的压力,方便测量确定。研究方法能够为跨临界CO2蒸气压缩/喷射制冷循环的性能分析提供有益参考。%A thermodynamic model of transcritical CO2 vapor-compression/ejection refrigeration cy-cle was modified to display the pressure variation in diffuser chamber of the ejector. A new pressure coefficient ηd for diffuser chamber was defined. And the corresponding mathematical model was es-tablished for calculated analysis. The effects of the pressure coefficientηd to the ejector entrainment ratio and the coefficient of performance ( COP) of the refrigeration cycle were studied. The results are in good agreement with the effects of common diffuser efficiencyηk . It is shown that the modified thermodynamic model is feasible. The influences of the pressure coefficient on several important pa-rameters were investigated. The results show that the ejector entrainment ratio almost unchanged with the increasing pressure coefficient. And the cycle COP, compressor inlet temperature, ejector pres-sure ratio and ejector efficiency increase with the increasing pressure coefficient. The compressor

  9. CO2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench

    Directory of Open Access Journals (Sweden)

    Biagio Bianchi

    2015-03-01

    Full Text Available In order to define design criteria for CO2 refrigeration systems to be used for agricultural products and foodstuff storage, a variable geometrical system was realized, with the goal of meeting a wide range of environmental and process conditions, such as producing low environmental impact and maintaining the highest Coefficient of Performance (COP, at the same time. This test-bench, at semi-industrial scale, was designed as a result of experimental tests carried out on Arugula. The storage tests showed that all samples stored in cold rooms with R.H. control showed a slight increase of weight but also small rot zones in all the boxes due to an excessive accumulation of water condensation; thus, the system may not have achieved conditions that RH requires in a given range, without reaching saturation condition. At the same time, the use of CO2 must be adequately tested along its thermodynamic cycle, during steady state and/or transient conditions, imposing variable working conditions that can simulate plant starting phase or some striking conservation process, like those that characterize sausages. The designed plant will allow studying these specific performances and evaluate COP variation, according to environmental and plant operating conditions.

  10. Friends

    Institute of Scientific and Technical Information of China (English)

    邝群

    2002-01-01

    A life without a friend is a life without a sun. This is no doubt a truthful saying. Everybody needs friends. Without a friend, you will feel lonely and sad. Suppose you are in trouble , whom will you turn to for help if yo have no friends ?So it is necessary for all of us to make friends.

  11. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball during Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Gurbuz Gunes

    2012-01-01

    Full Text Available Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21% and CO2 (0, 50% on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  12. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone)

    Science.gov (United States)

    Robbins, L.L.; Hansen, M.E.; Kleypas, J.A.; Meylan, S.C.

    2010-01-01

    A user-friendly, stand-alone application for the calculation of carbonate system parameters was developed by the U.S. Geological Survey Florida Shelf Ecosystems Response to Climate Change Project in response to its Ocean Acidification Task. The application, by Mark Hansen and Lisa Robbins, USGS St. Petersburg, FL, Joanie Kleypas, NCAR, Boulder, CO, and Stephan Meylan, Jacobs Technology, St. Petersburg, FL, is intended as a follow-on to CO2SYS, originally developed by Lewis and Wallace (1998) and later modified for Microsoft Excel? by Denis Pierrot (Pierrot and others, 2006). Besides eliminating the need for using Microsoft Excel on the host system, CO2calc offers several improvements on CO2SYS, including: An improved graphical user interface for data entry and results Additional calculations of air-sea CO2 fluxes (for surface water calculations) The ability to tag data with sample name, comments, date, time, and latitude/longitude The ability to use the system time and date and latitude/ longitude (automatic retrieval of latitude and longitude available on iPhone? 3, 3GS, 4, and Windows? hosts with an attached National Marine Electronics Association (NMEA)-enabled GPS) The ability to process multiple files in a batch processing mode An option to save sample information, data input, and calculated results as a comma-separated value (CSV) file for use with Microsoft Excel, ArcGIS,? or other applications An option to export points with geographic coordinates as a KMZ file for viewing and editing in Google EarthTM

  13. CO2 refrigeration technology and its application into freeze and cold storage%CO2制冷技术及其在冷冻冷藏中的应用

    Institute of Scientific and Technical Information of China (English)

    王明明; 马国远; 许树学

    2014-01-01

    CO2制冷剂的应用历史、物性及其热力循环的类型和特点进行介绍.以CO2为制冷剂的系统包括CO2单一工质系统、CO2复叠式系统、CO2自复叠系统及CO2载冷剂系统4种形式,本文结合工程实例比较分析这4种系统各自的优缺点、适宜的应用场合和地域.

  14. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly

  15. CO2在食品加工和冷藏业中的应用前景%Application of natural refrigerant carbon dioxied (CO2) for the food processing and cold storage industries

    Institute of Scientific and Technical Information of China (English)

    施骏业; 翟晓华; 谢晶; 徐世琼

    2005-01-01

    目前CO2在超临界、跨临界和亚临界范围都有应用,现在99%的低温制冷系统可以由NH3/CO2复叠式低温制冷系统完成,事实上任何蒸发温度高于-55℃的系统都可以采用CO2.本文将讨论CO2制冷剂的优点、缺点,以及CO2在食品加工和冷藏业中应用前景.

  16. Thermodynamic Analysis of Actual Vapour Compression System with R12 and Its Eco-Friendly Alternatives Refrigerants

    Directory of Open Access Journals (Sweden)

    Vijay Singh Bisht

    2014-04-01

    Full Text Available This paper presents a theoretical performance study of a vapour compression refrigeration system with refrigerants R-12, R134a and R1234yf. A computational model based on energy first law analysis is presented for the investigation of the effects of evaporating temperatures, degree of subcooling, dead state temperatures and effectiveness of the liquid vapour heat exchanger on the relative capacity change index, coefficient of performance of the vapour compression refrigeration cycle. RCI (relative capacity change index of the system is highest for R1234yf and with increase in degree of subcooling; R1234yf has the highest percentage increase in COP. The total compressor work requirement for system is highest with R134a. R1234yf is the only refrigerants of all the refrigerants used in present work that satisfy MAC directive (2006/40/EG because of GWP value less than 150. From these results, it is indicated that R1234yf is the refrigerant for future.

  17. 以捕集CO2、风电制氢和CO2加氢反应构建绿色煤化工之探讨%CO2 Capture, Wind Power for Hydrogen Production and CO2 and H2 Reaction Help Make Coal Chemical Industry Eco-friendly

    Institute of Scientific and Technical Information of China (English)

    何铮

    2013-01-01

    分析了煤化工和风电产业发展面临的问题,指出应转换角度来看待产业发展中的瓶颈制约,提出了把捕集CO2、风电制氢和CO2加氢反应研究相结合的绿色煤化工的发展思路,供业界参考、探讨.

  18. Impact of Oil Solubility and Refrigerant Flashing on the Performance of Transcritical CO2 Vapor Compression Systems with Oil Flooding and Regeneration

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Braun, James; Horton, W. Travis

    2010-01-01

    Flooding the compressor of a vapor compression system with oil can allow for a more isothermal compression process. This can lead to significant improvements in performance, particularly when combined with a regenerative heat exchanger. For CO2 cycles with supercritical heat rejection, the superheat horn and throttle are major sources of irreversibility. The combination of flooding and regeneration attacks both of these losses with a relatively small impact on system costs. The improveme...

  19. Thermodynamic Analysis on Sub-cooling Process in CO2 Trans-critical Refrigeration Cycle%二氧化碳跨临界制冷循环过冷却过程热力学分析

    Institute of Scientific and Technical Information of China (English)

    邓帅; 王如竹; 代彦军

    2013-01-01

    The feasibility of applying the sub-cooling technology to the CO2 trans-critical cycle was discussed, and the performance of new cycle was analyzed as well. Particularly, sub-cooling conversed from solar thermal energy was analyzed through simulation for possible applications. The calculation results show that cooling COP of the cycle reached to 4.00 and can be increased by 45.0%when temperature difference of sub-cooling is 5℃ in summer. While sub-cooling is realized by a solar-driven absorption refrigeration cycle and the driving temperature is 94℃, the assisted cooling capacity transformed from regenerative energy reached to 33%of the total cooling capacity. The difference in the sub-cooling process between conventional refrigerants subcritical cycle and CO2 trans-critical cycle was also discussed briefly.%本文探讨了过冷却技术应用于二氧化碳跨临界制冷循环的可行性,并对更新后的循环进行了性能分析,特别对太阳能应用于过冷却过程进行了模拟分析,最后通过现场实验对性能提升效果进行了验证。理论循环计算显示夏季5℃过冷可使循环COP达到4.00,制冷性能提升45%;当使用太阳能驱动的吸收式制冷循环产生过冷时,驱动温度为94℃时,可再生能源转化的辅助制冷量占总制冷量的比例可达33%。过冷热力过程在二氧化碳跨临界制冷循环中与在常规制冷剂亚临界制冷循环中有所不同,故本文对这种异同进行了适当的讨论。

  20. Magnetic Refrigeration and the Magnetocaloric Effect

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2006-01-01

    Magnetic refrigeration at room temperature is an emerging technology for refrigeration, which promises low energy consumption and is environmentalle friendly. Magnetic refrigeration is based on the magnetocaloric effect, which manifests itself as a reversibel increase in temperature when magnetic...... material are plased in a magnetic field. This paper introduces and describes magnetic refrigeration cycles and the magnetocaloric effect, and shows how magnetic refrigeration can be an alternative to vapour-compression refrigeration,. A review of the Danish research on magnetic refrigeration at Risø...

  1. Refrigeration plants using carbon dioxide as refrigerant: measuring and modelling the solubility and diffusion of carbon dioxide in polymers used as sealing materials

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Kristensen, Jakob

    2010-01-01

    Because of increased environmental pressure, there is currently a movement away from more traditional refrigerants such as HCFC's toward refrigerants with lower global warming potential such as carbon dioxide (CO2). However, the use of CO2 as a refrigerant requires a refrigeration cycle...

  2. Upgrading biogas by a low-temperature CO2 removal techni

    Directory of Open Access Journals (Sweden)

    Ahmed M.I. Yousef

    2016-06-01

    Full Text Available Biogas, a renewable energy source, is primarily composed of methane and carbon dioxide and other gaseous species. Biogas upgrading for removing CO2 from raw biogas is a necessary step before the biogas to be used as vehicle fuel or injected into the natural gas grid. Therefore, the present work aimed to propose a low-temperature CO2 removal process as an alternative to the conventional biogas upgrading technologies (water scrubbing, chemical and physical scrubbing, membranes and Pressure swing adsorption. A typical model biogas mixture of 60 mol.% CH4 and 40 mol.% CO2 is considered. The present process showed that a product purity of 94.5 mol.% CH4 is obtained from compressed biogas by combining distillation, flash separation, auxiliary refrigeration and internal heat recovery with a potential specific energy consumption of 0.26 kW h/Nm3 raw biogas. The process has been simulated in Aspen HYSYS with avoiding the occurrence of CO2 freeze-out. The process delivers the captured CO2 in liquid form with a purity of 99.7 mol.% as a by-product for transport at 110 bar. It is concluded that the proposed upgrading process can serve as a new environmentally friendly approach to CO2 removal with an interesting energy-efficient alternative to the conventional upgrading techniques.

  3. Experimental investigation of the ecological hybrid refrigeration cycle

    Science.gov (United States)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  4. Experimental investigation of the ecological hybrid refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2014-09-01

    Full Text Available The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  5. 50 years of CO2 experience

    Energy Technology Data Exchange (ETDEWEB)

    Tyree, L. Jr [Liquid Carbonic Corp., PRAXAIR Inc., Kyongnam (Korea, Republic of)

    1998-12-31

    An overview is given of the experiences with the use of CO2 as a refrigerant at the Liquid Carbonic Corporation, now owned by PRAXAIR Inc. The overview is presented in the form of copies of overhead sheets, presented in Session 2 on Applications

  6. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  7. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  8. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  9. Rare Earths and Magnetic Refrigeration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.

  10. CO2 -Responsive polymers.

    Science.gov (United States)

    Lin, Shaojian; Theato, Patrick

    2013-07-25

    This Review focuses on the recent progress in the area of CO2 -responsive polymers and provides detailed descriptions of these existing examples. CO2 -responsive polymers can be categorized into three types based on their CO2 -responsive groups: amidine, amine, and carboxyl groups. Compared with traditional temperature, pH, or light stimuli-responsive polymers, CO2 -responsive polymers provide the advantage to use CO2 as a "green" trigger as well as to capture CO2 directly from air. In addition, the current challenges of CO2 -responsive polymers are discussed and the different solution methods are compared. Noteworthy, CO2 -responsive polymers are considered to have a prosperous future in various scientific areas.

  11. CO2 laser modeling

    Science.gov (United States)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  12. Malone refrigeration

    Science.gov (United States)

    Swift, G. W.

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as the working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and we describe two Malone refrigerators. The first, which was completed several years ago, established the basic principles of use for liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  13. THE RESULTS OF THE STUDY BOILING POINT OUT OZONE-SAFE REFRIGERANT R410A IN THE EVAPORATORS OF REFRIGERATING MACHINES

    Directory of Open Access Journals (Sweden)

    V. G. Bukin

    2012-01-01

    Full Text Available The results of experimental research boiling heat transfer of ozone-friendly R410A refrigerant in evaporators machines and the possibility of its use in place of the prohibited refrigerant R22.

  14. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  15. Wearable CO2 sensor

    OpenAIRE

    Radu, Tanja; Fay, Cormac; Lau, King-Tong; Waite, Rhys; Diamond, Dermot

    2009-01-01

    High concentrations of CO2 may develop particularly in the closed spaces during fires and can endanger the health of emergency personnel by causing serious physiological effects. The proposed prototype provides real-time continuous monitoring of CO2 in a wearable configuration sensing platform. A commercially available electrochemical CO2 sensor was selected due to its selectivity, sensitivity and low power demand. This was integrated onto an electronics platform that performed signal capture...

  16. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum ... Many medicines can interfere with blood test results. Your health care provider will tell you if you need to stop taking any medicines before you have this test. DO ...

  17. CO2 laser resurfacing.

    Science.gov (United States)

    Fitzpatrick, R E

    2001-07-01

    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  18. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  19. An innovative ecological hybrid refrigeration cycle for high power refrigeration facility

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2015-09-01

    Full Text Available Searching for new refrigerants is one of the most significant scientific problems in refrigeration. There are ecological refrigerants commonly known: H2O and CO2. H2O and CO2 known as natural refrigerants, but they have problems:a high freezing point of H2O and a low triple point of CO2. These problems can be solved by the application of a hybrid sorption-compression refrigeration cycle. The cycle combines the application possibility of H2O in the high temperature sorption stage and the low temperature application of CO2 in the compression stage. This solution gives significant energy savings in comparison with the two-stage compressor cycle and with the one-stage transcritical CO2 cycle. Besides, the sorption cycle may be powered by low temperature waste heat or renewable heat. This is an original idea of the authors. In the paper an analysis of the possible extension of this solution for high capacity industrial refrigeration is presented. The estimated energy savings as well as TEWI (Total Equivalent Warming Impact index for ecological gains are calculated.

  20. Refrigeration Showcases

    Science.gov (United States)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  1. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...... Naturfredningsforening’s lokalkomité for Lyngby blev en del af samarbejdet for at få borgerne i kommunen involveret i arbejdet med at udvikle strategier for reduktion af CO2. Siden sommeren 2007 har Videnskabsbutikken DTU, Lyngby-Taarbæk kommune og Danmarks Naturfredningsforening i Lyngby-Taarbæk samarbejdet om analyse...... og innovation i forhold til CO2-strategier....

  2. Refrigeration Servicing.

    Science.gov (United States)

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  3. CO2-neutral fuels

    Science.gov (United States)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  4. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  5. Modelling distribution of evaporating CO2 in parallel minichannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2010-01-01

    -known empirical correlations for calculating frictional pressure drop and heat transfer coefficients. An investigation of different correlations for boiling two-phase flow shows that the choice of correlation is insignificant regarding the overall results. It is shown that non-uniform airflow leads...... to maldistribution of the refrigerant and considerable capacity reduction of the evaporator. Uneven inlet ualities to the different channels show only minor effects on the refrigerant distribution and evaporator capacity as long as the channels are vertically oriented with CO2 flowing upwards. For horizontal...

  6. Refrigeration and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... Viewer (JSR 286) Actions ${title} Loading... Refrigeration and Food Safety History of Refrigeration Importance of Refrigeration Types of ...

  7. Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2011-01-01

    Magnetic refrigeration is a potentially environmentally-friendly alternative to vapor compression technology because it has a potentially higher coefficient of performance and does not use a gaseous refrigerant. The active magnetic regenerator refrigerator is currently the most common magnetic re...

  8. Managing Refrigerant Emissions

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  9. CO2 laser preionisation

    Science.gov (United States)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  10. REACH. Refrigeration Units.

    Science.gov (United States)

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  11. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  12. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  13. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  14. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  15. Compassionate Friends

    Science.gov (United States)

    ... The services provided by the... Help Support Compassionate Friends Rest assured, every donation we receive is used ... remembered.... Read More... Sign Up for the Compassionate Friends Newsletter Find Support Chapters To The Newly Bereaved ...

  16. Forecasting global atmospheric CO2

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda

    2014-05-01

    Full Text Available A new global atmospheric carbon dioxide (CO2 real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF Integrated Forecasting System (IFS. One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they

  17. India Co2 Emissions

    Science.gov (United States)

    Sharan, S.; Diffenbaugh, N. S.

    2010-12-01

    created a balance in between the “developed” and developing countries. If India was producing the same amounts of emissions per capita as the it would have a total of 20 billion metric tons of CO2 emissions annually.

  18. Refrigerating machine oil

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  19. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  20. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. Energy Optimization for Transcritical CO2 Heat Pump for Combined Heating and Cooling and Thermal Storage Applications

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Blarke, Morten; Yazawa, Kazuaki

    2012-01-01

    A transcritical heat pump (THP) cycle using carbon dioxide (CO2) as the refrigerant is known to feature an excellent coefficient of performance (COP) as a thermodynamic system. Using this feature, we are designing and building a system that combines a water-to-water CO2 heat pump with both hot an...

  2. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  3. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  4. Development of Magnetic Refrigerator

    Science.gov (United States)

    Ogiwara, Hiroyasu; Nakagome, Hideki; Kuriyama, Tohru

    A series of R & D of magnetic refrigerators has been done in order to realize an advanced type cryocooler for superconducting magnets of maglev trains and MRI medical system. As a result of efforts on both the magnetic refrigerator and superconducting magnets, a parasitic type magnetic refrigeration system was proposed.

  5. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  6. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy

    Institute of Scientific and Technical Information of China (English)

    LI TingXian; WANG RuZhu; WANG LiWei

    2009-01-01

    Thermochemical sorption refrigeration powered by low-grade thermal energy is one of the en ergy-saving and environment friendly green refrigeration technologies. The operation principle of sorption refrigeration system is based on the thermal effects of reversible physicochemical reaction processes between sorbents and refrigerants. This paper presents the developing study on the differ ent thermochemical sorption refrigeration cycles, and some representative high-efficient thermo chemical sorption refrigeration cycles were evaluated and analyzed based on the conventional single-effect sorption cycle. These advanced sorption refrigeration cycles mainly include the heat and mass recovery sorption cycle, double-effect sorption cycle, multi-effect sorption cycle, combined douhie-way sorption cycle, and double-effect and double-way sorption cycle with internal heat recovery.Moreover, the developing tendency of the thermochemical sorption refrigeration is also predicted in this paper.

  7. Magnetic refrigeration materials

    Institute of Scientific and Technical Information of China (English)

    戴闻; 沈保根; 高政祥

    2001-01-01

    Magnetic refrigeration has drawn much attention because of its greater efficiency and higher reliability than the traditional gas-cycle refrigeration technology. Recently, a kind of new materials with a giant magnetocaloric effect in the subroom temperature range, Gd5 (Six Ge1- x)4, was discovered, which boosts the search for high-performance magnetic refrigerants. However, the intermetallic compounds Gd5 (SixGe1 - x )4 belong to the first order transition materials; their performance in practical magnetic refrigeration cycles remains controversial. In this paper the developing tendency of the refrigerants are discussed on the basis of our work.

  8. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  9. Supermarket refrigeration on the way to sustainability; Supermarktkaelte auf dem Weg zur Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, H. [FKW-Forschungszentrum fuer Kaeltetechnik und Waermepumpen GmbH, Hannover (Germany)

    2006-07-01

    Technical developments so far in supermarket refrigeration are presented in view of the current environmental challenges. Systems, refrigerants, energy consumption and CO2 emissions are presented. System assessment on the basis of eco-efficiency is gone into, and the current situation on the way to sustainable power supply is described. (orig.)

  10. EXERGETIC PERFORMANCE OF A DOMESTIC REFRIGERATOR USING R12 AND ITS ALTERNATIVE REFRIGERANTS

    Directory of Open Access Journals (Sweden)

    BUKOLA O. BOLAJI

    2010-12-01

    Full Text Available Production and use of R12 and other chlorofluorocarbon refrigerants will be prohibited completely all over the world in the year 2010 due to their harmful effects on the earth’s protective ozone layer. Therefore, in this study, the exergetic performance of a domestic refrigerator using two environment-friendly refrigerants (R134a and R152a was investigated and compared with the performance of the system when R12 (an ozone depleting refrigerant was used. The effects of evaporator temperature on the coefficient of performance (COP, exergy flow destruction, exergetic efficiency and efficiency defect in the four major components of the cycle for R12, R134a and R152a were experimentally investigated. The results obtained showed that the average COP of R152a was very close to that of R12 with only 1.4% reduction, while 18.2% reduction was obtained for R134a in comparison with that of R12. The highest average exergetic efficiency of the system (41.5% was obtained using R152a at evaporator temperature of -3.0oC. The overall efficiency defect in the refrigeration cycle working with R152a is consistently better (lower than those of R12 and R134a. Generally, R152a performed better than R134a in terms of COP, exergetic efficiency and efficiency defect as R12 substitute in domestic refrigeration system.

  11. ACCURACY OF CO2 SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  12. Magnetocaloric effect in ErCo2 compound

    Institute of Scientific and Technical Information of China (English)

    Zou Jun-Ding; Shen Bao-Gen; Sun Ji-Rong

    2007-01-01

    The ErCo2 compound is prepared by arc-melting and its entropy changes are calculated using Maxwell relation.Its entropy change reaches 38 J/(kg·K) and its refrigerant capacity achieves 291 J/kg at 0-5 T. The mean field approximation is used to calculate the magnetic entropy of ErCo2 compound. Results estimated by using the Maxwell relation deviate from mean field approximation calculations in ferrimagnetic state; however, the data obtained by the two ways are consistent in the vicinity of phase transition or at higher temperatures. This indicates that entropy changes are mainly derived from magnetic degree of freedom, and the lattice has almost no contribution to the entropy change in the vicinity of phase transition but its influence is obvious in the ferrimagnetic state below TC.

  13. About Solar Refrigeration

    Directory of Open Access Journals (Sweden)

    Laura Coroiu

    2008-05-01

    Full Text Available This paper has the purpose to unfold the results of all researches which proved before that the solar energy constitutes itself as an ideal resource for heating application that necessitate lower temperature,e.g. the heating of a certain space or the preparation ofthe domestic hot water. The refrigeration systems, which are based on the nontoxic refrigerants for the environment, offer a sustained advantage when compared to the other types of the refrigerants. But, whichever might be the case, the use of the energy associated to the operation of the refrigeration system and with the impact that it has upon the environment, as well as the association with its production and distribution, have often a bigger importance than the selection of the refrigerant. In order to minimize the impact which the operation of the refrigeration systems exerts upon the environment, it is recommended that there should be checked all thepossibilities of using a pure source of energy.

  14. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  15. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  16. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  17. A new technology for fishing vessels: the use of ejector expansion refrigeration cycle

    Science.gov (United States)

    Memet, Feiza; Mitu, Daniela Elena

    2015-02-01

    A challenge that fishing industry is facing is the improvement of the refrigeration technology on board of fishing vessels. This paper deals with vapor compression refrigeration systems included on board of these ships. In these systems, significant thermodynamic losses are encountered in the expansion valve, during throttling process. Because it is possible to improve a thermodynamic process by decreasing irreversibility, in this paper it is used an ejector in order to reduce throttling irreversibility. A new technology results, the use of an ejector as a refrigerant expander leading to the ejector expansion refrigeration cycle. The theoretical study developed here will reveal a performance improvement of the new cycle. Also, because the traditional refrigerant used in marine refrigeration is R 134a, which presents a high value of its Global Warming Potential, the performance analysis is extended for the case of the use of other more environmentally friendly refrigerants: propane and isobutane.

  18. Friendly competition.

    Science.gov (United States)

    Chambers, David W

    2006-01-01

    Competition that is characterized by rules, often informal, agreed among mutually accepted participants, and that gives the competitors a special, advantageous status with others is called friendly competition. Dentists have engaged in it deeply and it is good for the profession. Friendly competition offers the advantages of spillover of commonly useful information and technologies, stimulation of innovation, a united and convenient face to customers and suppliers, and standards that promote growth. Friendly competition increases the size of the pie, regardless of market share. Paradoxically, this is even true for the little guy in the shadow of the giant. If carried to extremes, unfriendly competition leads to destroying competitors, the confusion of multiple rules, and encouragement of disruptive change.

  19. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  20. Monitoring subsurface CO2 storage

    NARCIS (Netherlands)

    Winthaegen, P.; Arts, R.; Schroot, B.M.

    2005-01-01

    An overview is given of various currently applied monitoring techniques for CO2 storage. Techniques are subdivided in correspondence to their applicability for monitoring three distinct realms. These are: - the atmosphere and the near-surface; - the overburden (including faults and wells); - the

  1. Energy efficient refrigeration. CO{sub 2} in Supermarket Refrigeration. Project 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Samer; Suleymani, Arash [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Energy Technology; Rogstam, Joergen [IUC, Sveriges energi- och kylcentrum, Katrineholm (Sweden)

    2006-06-15

    The objective of this project is to develop, test, and evaluate an energy efficient supermarket system working with CO{sub 2} as the refrigerant. Based on the experience in designing the system, running and evaluating it, modifications should be applied in order to conclude an efficient optimized CO{sub 2} system for a medium size supermarket in Sweden. Emphasize is on using environmentally friendly refrigerants and the choice was to use natural fluids. A refrigeration system solution for a medium size Swedish supermarket has been built in IUC laboratory in Katrineholm. The system is equipped with extensive instrumentations to collect data and perform online diagnosis. Several variations of the system solution are applied for validation and possible modifications. In this report we present the system under investigation and some of the experimental results that have been obtained under the project period. Overall system validation and evaluations of the main components are described.

  2. Excitation of CO2/+/ by electron impact on CO2

    Science.gov (United States)

    Mentall, J. E.; Coplan, M. A.; Kushlis, R. J.

    1973-01-01

    Consideration of a discrepancy concerning the correct value of the cross section for excitation of the CO2(+) B state by electron impact on CO2. It is suggested that the reason for the disparate results obtained by various authors for the B state can be traced to a calibration error due to scattered light. In particular, the tungsten filament lamps used in the experiments cited have very low intensity at wavelengths below 3000 A where the B state emissions occur, so that even a small amount of scattered light in the spectrometer will produce a large error in the measured cross section. In a remeasurement of the cross section for excitation of the B state at an energy of 150 eV it was found that at 2900 A the scattered light signal, if uncorrected for, would introduce an error of about 50%.

  3. 高密度CO2杀菌蛋清液贮藏期间抗氧化物活性以及过敏源特性变化分析%The changes of antioxidation parameters and antigenicity characteristics of ovalbumin in refrigerated-storage liquid egg white samples during dense phase carbon dioxide sterilization treatments

    Institute of Scientific and Technical Information of China (English)

    戴妍; 范蓓; 卢嘉; 侯猛; 韩兆鹏; 卢晓明

    2016-01-01

    研究高密度CO2杀菌和巴氏杀菌处理对贮藏期间蛋清液抗氧化物活性和过敏原特性变化的影响.将蛋清液分对照组、巴氏杀菌处理组(55℃水浴杀菌3.5 min)和高密度CO2处理组(分别在10、20、30 MPa压力下杀菌10 min),然后放置于4℃恒温贮藏,检测4周贮藏期间蛋白质羟自由基清除能力、DPPH自由基抑制率、还原力以及过敏源特性的变化情况.实验结果显示:高密度CO2杀菌(DPCD) 10 MPa处理组蛋清液在1周储藏期间中羟自由基清除率和还原力显著高于(p<0.05)对照处理组.SDS-PAGE实验结果表明,储藏期间DPCD处理并没破坏蛋清液中的重要过敏源——卵白蛋白.

  4. CO2在超临界区管内冷却的换热关联式%Heat Transfer Correlations for In-tube Cooling of Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    周子成

    2015-01-01

    自然制冷剂CO2 的应用日益广泛, 尤其是在跨临界循环的热泵热水器中. 本文综述了超临界CO2 在管内冷却传热关联式的比较和验证.%The natural refrigerant CO2 is used widely, especially in trans -critical cycle heat pump water heat-ers. In this paper, the comparison and validation of heat transfer correlations for in-tube cooling of supercritical CO2 is discussed.

  5. Close Friends

    Institute of Scientific and Technical Information of China (English)

    ChappellSargent

    2004-01-01

    As my friends ambled out the front door, I ran to the window, called good-bye, and stuck my tongue out at her. She spun around and returned the gesture, and we gave each other a final wave before parting

  6. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  7. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  8. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Bansal, Pradeep [ORNL; Zha, Shitong [Hillphoenix

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  9. Modelling refrigerant distribution in minichannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke

    to be equal, results in a cooling capacity very close to the optimum. A sensitivity study considering parameter changes shows that the course of the pressure gradient in the channel is significant, considering the magnitude of the capacity reductions due to non-uniform liquid and vapour distribution and non......This thesis is concerned with numerical modelling of flow distribution in a minichannel evaporator for air-conditioning. The study investigates the impact of non-uniform airflow and non-uniform distribution of the liquid and vapour phases in the inlet manifold on the refrigerant mass flow...... distribution and on the cooling capacity of the evaporator. A one dimensional, steady state model of a minichannel evaporator is used for the study. An evaporator consisting of two multiport minichannels in parallel is used as a test case and two different refrigerants, R134a and R744 (CO2), are applied...

  10. Evaluation of Alternative Refrigerants for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2017-01-01

    The phase-out of hydrochlorofluorocarbons (HCFC) refrigerants in developing countries is currently underway according to the Montreal Protocol. R-22 is one of the most commonly used HCFCs in the developing nations. It is extremely well suited for air conditioning and refrigeration (AC&R) in high ambient temperature environments. Non-Article 5 countries have already gone through the phase-out of HCFCs and settled on using R-410A as the refrigerant of choice for AC applications. Previous studies have shown that R-410A results in significant capacity and performance degradation at higher ambient temperature conditions. As such, there is a growing concern on finding alternative refrigerants to R-22 that would have zero ODP, lower GWP, and at the same time maintain acceptable performance at higher ambient temperatures. Furthermore, the developed world s transition through higher global warming potential (GWP) refrigerants like HFC and HFC blends resulted in significant direct CO2 equivalent emissions. It is imperative to develop a bridge for developing nations to avoid the transition from HCFC to HFC and then from HFC to alternative lower GWP refrigerants. This paper summarizes data from an experimental campaign on alternative refrigerant evaluation for R-22 and R-410A substitutes for mini-split air conditioners designed for high ambient environments. The experimental evaluation was performed according to ANSI/ASHRAE Standard 37 and the performance was rated at test conditions specified by ANSI/AHRI 210-240 and ISO 5151. Additional tests were conducted at outdoor ambient temperatures of 52 C (125.6 F) and 55 C (131 F) to evaluate their performance at high ambient conditions. Alternative refrigerants, some of which are proprietary, included R-444B, DR-3, N-20b, ARM-20b, R-290, and DR-93 as alternatives to R-22 and R-32, DR-55, L41-2, ARM-71A, and HPR-2A as alternatives to R-410A. The units performances were first verified using the baseline refrigerant and then drop

  11. Functional Nanomaterials Useful for Magnetic Refrigeration Systems

    Science.gov (United States)

    Aslani, Amir

    Magnetic refrigeration is an emerging energy efficient and environmentally friendly refrigeration technology. The principle of magnetic refrigeration is based on the effect of varying a magnetic field on the temperature change of a magnetocaloric material (refrigerant). By applying a magnetic field, the magnetic moments of a magnetic material tend to align parallel to it, and the thermal energy released in this process heats the material. Reversibly, the magnetic moments become randomly oriented when the magnetic field is removed, and the material cools down. The heating and the cooling of a refrigerant in response to a changing magnetic field is similar to the heating and the cooling of a gaseous medium in response to an adiabatic compression and expansion in a conventional refrigeration system. One requirement to make a practical magnetic refrigerator is to have a large temperature change per unit of applied magnetic field, with sufficiently wide operating temperature. So far, no commercially viable magnetic refrigerator has been built primarily due to the low temperature change of bulk refrigerants, the added burden of hysteresis, and the system's low cooling capacity. The purpose of this dissertation is to explore magnetic refrigeration system. First, the Active Magnetic Regenerator (AMR) system built by Shir et al at the GWU's Institute for Magnetics Research (IMR) is optimized by tuning the heat transfer medium parameters and system's operating conditions. Next, by reviewing literature and works done so far on refrigerants, a number of materials that may be suitable to be used in magnetic refrigeration technology were identified. Theoretical work by Bennett et al showed an enhancement in magnetocaloric effect of magnetic nanoparticles. Research was performed on functional magnetic nanoparticles and their use in magnetic refrigeration technology. Different aspects such as the size, shape, chemical composition, structure and interaction of the nanoparticle with

  12. My Friends

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    学生习作: I have three friends. They is1 Jack, Gina and Kate. Jack’s favorite subject is P.E.. He likes it because it is interested2. He has P.E. on Monday. Gina’s favorite subject is music. She thinks it is very much3 relaxing. She likes to listen4 music after class. She has music on

  13. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  14. The toxicity of refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  15. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  16. Surface Condensation of CO2 onto Kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.; Ramprasad, Sudhir; Martin, Paul F.; McGrail, B. Peter

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He or N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.

  17. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  18. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  19. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  20. Anomalous Brownian Refrigerator

    OpenAIRE

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2015-01-01

    We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the particle cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown ...

  1. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  2. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  3. SHELF-LIFE OF REFRIGERATED SAUSAGE PACKAGED IN MODIFIED ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    F. De Filippo

    2013-02-01

    Full Text Available Different lots of refrigerated sausage variously prepared and packaged under modified atmosphere were examined. The results of microbiological controls and sensory characteristic demonstrate that the shelf life of refrigerated sausage , produced using Leuconostoc carnosum 4010, as culture starter, and different levels of CO2, during the mixing step might be longer in comparison to control samples. In particular we had better colour and a good flavour until 7 days post production and lower level of contaminant flora. All lots were conforms to microbiological criteria for foodstuffs fixed by COMMISSION REGULATION (EC No 2073/2005 of 15 November 2005.

  4. CyclicCO2R: production of cyclic carbonates from CO2 using renewable feedstocks

    NARCIS (Netherlands)

    Kimball, E.; Schuurbiers, C.A.H.; Zevenbergen, J.F.; Håkonsen, S.F.; Heyn, R.; Offermans, W.; Leitner, W.; Ostapowicz, T.; Müller, T. E.; Mul, G.; North, M.; Ngomsik-Fanselow, A.F.; Sarron, E.; Sigurbjörnsson, O.; Schäffner, B.

    2013-01-01

    The consortium behind CyclicCO2R wants to kick-start the implementation of CO2 utilization technologies by converting CO2 into a high value-added product, thus providing a showcase that inspires industry to further develop technologies utilizing CO2 as a sustainable raw material and valorizing CO2

  5. CyclicCO2R: production of cyclic carbonates from CO2 using renewable feedstocks

    NARCIS (Netherlands)

    Kimball, E.; Schuurbiers, C.A.H.; Zevenbergen, J.F.; Håkonsen, S.F.; Heyn, R.; Offermans, W.; Leitner, W.; Ostapowicz, T.; Müller, T. E.; Mul, G.; North, M.; Ngomsik-Fanselow, A.F.; Sarron, E.; Sigurbjörnsson, O.; Schäffner, B.

    2013-01-01

    The consortium behind CyclicCO2R wants to kick-start the implementation of CO2 utilization technologies by converting CO2 into a high value-added product, thus providing a showcase that inspires industry to further develop technologies utilizing CO2 as a sustainable raw material and valorizing CO2 i

  6. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  7. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.

  8. CO2 Virtual Science Data Environment API

    Data.gov (United States)

    National Aeronautics and Space Administration — The CO2 Virtual Data Environment is a comprehensive effort at bringing together the models, data, and tools necessary to perform research on atmospheric CO2.This...

  9. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  10. Calculating subsurface CO2 storage capacities

    NARCIS (Netherlands)

    Meer, B. van der; Egberts, P.

    2008-01-01

    Often we need to know how much CO2 we can store in a certain underground space, or how much such space we need to store a given amount of CO2. In a recent attempt (Bradshaw et al., 2006) to list various regional and global estimates of CO2 storage capacity (Figure 1), the estimates reported are ofte

  11. Calculating subsurface CO2 storage capacities

    NARCIS (Netherlands)

    Meer, B. van der; Egberts, P.

    2008-01-01

    Often we need to know how much CO2 we can store in a certain underground space, or how much such space we need to store a given amount of CO2. In a recent attempt (Bradshaw et al., 2006) to list various regional and global estimates of CO2 storage capacity (Figure 1), the estimates reported are

  12. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  13. Approach to novel design of CO2 based centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Kura Tomasz

    2016-01-01

    Full Text Available Even though turbomachinery design issues have been investigated almost since the beginning of engineering, its optimization process is still important. With the development of refrigeration devices and ORC based distributed generation facilities, a need for efficient and low-energy compressors and turbines became even more demanding. Such machines working with typical fluid, like air, are well described, but there is a room regarding the fluids like CO2, vapour of organic fluids, etc. The main objective of present studies is to propose a numerical model of the centrifugal compressor, with CO2 as the working fluid. Such unit may be a part of refrigeration cycle. Commonly, the scroll or piston compressors are used in such cases, however some discussed disadvantages show that the novel designs should be looked for. Properly designed centrifugal compressors can have higher efficiency than the presently used. Three dimensional analyses of proposed geometries were conducted – using a model including heat, mass and momentum conservation laws as well as ideal gas law. Verification of the proposed mesh and results was performed in the basis of values obtained using theoretical and empirical equations. With about 700 000 control volumes in the validated model, error of the results was no higher than 5%, with only about 1% in regards to the thermal parameters. Two design proposals were analysed, with performance maps as the main comparison factor. Apart from performance characteristics, the pressure and velocity fields were presented, showing the process of flow structure optimization. The main goal was to reduce negative effects of pressure and velocity gradients on the performance. Proposed precursory design might be a good starting point for further development of compressors. The results of numerical analysis were promising and shows the possibility of proposed design usage in practical applications, however to obtain deep understanding of the

  14. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    Science.gov (United States)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  15. Energetic and exergetic analyses of carbon dioxide transcritical refrigeration systems for hot climates

    Directory of Open Access Journals (Sweden)

    Fazelpour Farivar

    2015-01-01

    Full Text Available In the last two decades many scientific papers and reports have been published in the field of the application of the carbon dioxide as a refrigerant for refrigeration systems and heat pumps. Special attention has been paid to the transcritical cycle. However, almost no papers discussed such cycles for hot climates, i.e., when the temperature of the environment is higher than 40ºС during a long period of time. This paper deals with the energetic and exergetic evaluation of a CO2 refrigeration system operating in a transcritical cycle under hot climatic conditions. The performance and exergy efficiency of the CO2 refrigeration system depend on the operation conditions. The effect of varying these conditions is also investigated as well as the limitations associated with these conditions.

  16. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  17. Downhole pulse tube refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  18. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. [Calm (James M.), Great Falls, VA (United States)

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  19. CO2 Capture for Cement Technology

    OpenAIRE

    2013-01-01

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310 ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is ...

  20. Forest succession at elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  1. Pulse tube refrigerator; Parusukan reitoki

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Yoshikazu [University of Tsukuba, Tsukuba (Japan); Shiraishi, Masao [Hiroshima University, Hiroshima (Japan)

    1999-06-05

    In the cryogenic field, high temperature superconductivity and research and development of the peripheral technology are popular. Refrigerating machine development of the very low temperature is also one of the results. Research and development are mainly advanced as a refrigerating machine of the center for the aerospace plane installation. There is special and small very low temperature refrigerating machine called 'the pulse tube refrigerating machine' of which the practical application is also recently being attempted for the semiconductor cooling using high temperature superconductivity. At present, the basic research of elucidation of refrigeration phenomenon of pulse tube refrigerating machine and development of high-performance pulse tube refrigerating machine is carried out by experiment in the Ministry of International Trade and Industry Mechanical Engineering Lab., Agency of Industrial Sci. and Technology and numerical simulation in Chiyoda Corp. In this report, the pulse tube refrigerating machine is introduced, and the application in the chemical engineering field is considered. (NEDO)

  2. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  3. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  4. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    Science.gov (United States)

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases.

  5. Amine scrubbing for CO2 capture.

    Science.gov (United States)

    Rochelle, Gary T

    2009-09-25

    Amine scrubbing has been used to separate carbon dioxide (CO2) from natural gas and hydrogen since 1930. It is a robust technology and is ready to be tested and used on a larger scale for CO2 capture from coal-fired power plants. The minimum work requirement to separate CO2 from coal-fired flue gas and compress CO2 to 150 bar is 0.11 megawatt-hours per metric ton of CO2. Process and solvent improvements should reduce the energy consumption to 0.2 megawatt-hour per ton of CO2. Other advanced technologies will not provide energy-efficient or timely solutions to CO2 emission from conventional coal-fired power plants.

  6. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    In this paper, a fault tolerant control (FTC) strategy is proposed for evaporator superheat control in supermarket refrigeration systems. Conventional control uses a pressure and temperature sensor for this purpose, however, the pressure sensor can fail to function. A contingency control strategy......, based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...... in a plug & play fashion. The strategy is outlined by means of procedural steps as well as a flow chart that also illustrates the process of automatic tuning of the maximum slope-seeking controller. Test results are furthermore presented for a display case in a full scale CO2 supermarket refrigeration...

  7. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4°C.

    Science.gov (United States)

    Huang, Shirong; Liu, Bin; Ge, Du; Dai, Jiehui

    2017-03-01

    The effect of combined treatment with supercritical CO2 (2000psi, 35°C for 2h) and rosemary powder (2.5% and 5.0% (w/w)) on microbiological and physicochemical properties of ground pork stored at 4°C was investigated. The changes in total viable count, pH, total volatile base nitrogen (TVB-N), lipid oxidation and instrumental color (CIE L(⁎), a(⁎), b(⁎)) were analyzed during a week period of refrigerated storage. It was found that microbial populations were reduced by supercritical CO2 treatment, with the more pronounced effect being achieved by combined treatment with supercritical CO2 and 5.0g rosemary powder/100g meat. Supercritical CO2 treatment for 2h could accelerate lipid oxidation of ground pork during refrigerated storage, whereas combination with rosemary can significantly slow down the increase of oxidation rate. Combined treatment of supercritical CO2 and rosemary significantly increased L(⁎) and b(⁎) values of the ground pork, while the a(⁎), pH and TVB-N value were not affected as compared to the treatment with supercritical CO2 alone. The results of this study indicate that combined treatment of supercritical CO2 and rosemary may be useful in the meat industry to enhance the storage stability of ground pork treated with long time exposure of supercritical CO2 during refrigerated storage.

  8. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  9. Energy efficiency in refrigerated transport

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Sluis, S.M. van der; Schiphouwer, H.

    1998-01-01

    In refrigerated road transport, 10 to 40 `)/0 of the total energy consumption is related to refrigeration. However, energy consumption and energy efficiency of refrigerated transport equipment is rarely mentioned in the discussions about energy saving, potentials in road transport. Two main approach

  10. Exergy analysis of magnetic refrigeration

    CERN Document Server

    Lucia, Umberto

    2010-01-01

    One of the main challenges of the industry today is to face its impact on global warming considering that the greenhouse effect problem is not be solved completely yet. Magnetic refrigeration represents an environment-safe refrigeration technology. The magnetic refrigeration is analysed using the second law analysis and introducing exergy in order to obtain a model for engineering application.

  11. The vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pannkoke, T.

    1995-11-01

    This article is a review of the basic principles of a cycle widely used to create the refrigeration effect that provides both human comfort and process cooling. While a semantic differentiation often is made for cooling and dehumidifying air for human comfort (air conditioning) and cooling for products and processes (refrigeration), all mechanical cooling applications depend on the previously mentioned refrigeration effect.

  12. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  13. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  14. Fundamental study of CO2 control technologies and policies in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The technical roadmap and policies for CO2 mitigation suitable for China are a common center of attention in the fields of energy, environment, and management science in the country. Emphasizing interaction between technical research and policy research, this work discovers the potential breakthrough in the integrated field. The technical difficulties of recovering CO2 are pointed out, the mechanism of combining CO2 recovery with energy conversion is investigated, and the basic principle for integrating an environmental-friendly energy system is discussed. Moreover, the formulation of a new energy system that can recover CO2 with very low or even zero energy penalty is proposed, while the assessment methodology and model system for the technical roadmap of CO2 emission control are developed. Finally, a new technical roadmap constructing an energy network suitable for China is proposed, which may provide a new way for the development of sustainable energy and environment technologies.

  15. Motive flow calculation through ejectors for transcritical CO2 heat pumps. Comparison between new experimental data and predictive methods

    Science.gov (United States)

    Boccardi, G.; Lillo, G.; Mastrullo, R.; Mauro, A. W.; Pieve, M.; Trinchieri, R.

    2017-01-01

    The revival of CO2 as refrigerant is due to new restrictions in the use of current refrigerants in developed countries, as consequence of environmental policy agreements. An optimal design of each part is necessary to overcome the possible penalty in performance, and the use of ejectors instead of throttling valves can improve the performance. Especially for applications as CO2 HPs for space heating, the use of ejectors has been little investigated. The data collected in a cooperation project between ENEA (C.R. Casaccia) and Federico II University of Naples have been used to experimentally characterize several ejectors in terms of motive mass flow rate, both in transcritical CO2 conditions and not. A statistical comparison is presented in order to assess the reliability of predictive methods available in the open literature for choked flow conditions.

  16. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion.

    Science.gov (United States)

    Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu; Kim, Daeok; Coskun, Ali

    2017-03-01

    The quest for the development of new porous materials addressing both CO2 capture from various sources and its conversion into useful products is a very active research area and also critical in order to develop a more sustainable and environmentally-friendly society. Here, we present the first charged covalent triazine framework (cCTF) prepared by simply heating nitrile functionalized dicationic viologen derivatives under ionothermal reaction conditions using ZnCl2 as both solvent and trimerization catalyst. It has been demonstrated that the surface area, pore volume/size of cCTFs can be simply controlled by varying the synthesis temperature and the ZnCl2 content. Specifically, increasing the reaction temperature led to controlled increase in the mesopore content and facilitated the formation of hierarchical porosity, which is critical to ensure efficient mass transport within porous materials. The resulting cCTFs showed high specific surface areas up to 1247 m(2) g(-1), and high physicochemical stability. The incorporation of ionic functional moieties to porous organic polymers improved substantially their CO2 affinity (up to 133 mg g(-1), at 1 bar and 273 K) and transformed them into hierarchically porous organocatalysts for CO2 conversion. More importantly, the ionic nature of cCTFs, homogeneous charge distribution together with hierarchical porosity offered a perfect platform for the catalytic conversion of CO2 into cyclic carbonates in the presence of epoxides through an atom economy reaction in high yields and exclusive product selectivity. These results clearly demonstrate the promising aspect of incorporation of charged units into the porous organic polymers for the development of highly efficient porous organocatalysts for CO2 capture and fixation.

  17. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  18. Refrigerating machine operating characteristics under various mixed refrigerant mass charges

    Energy Technology Data Exchange (ETDEWEB)

    Rozhentsev, Andrey [Far Eastern State Transport University of the Russian Federation, Seryshev street, 47, 680021 Khabarovsk (Russian Federation)

    2008-11-15

    This paper reports the results of experimental investigation of a low-temperature Joule-Thomson refrigerating machine, working by use of a non-azeotropic mixture of refrigerants and with a single-stage hermetic compressor. The temperature, hydraulic and power performance of the machine are determined experimentally in relation to the mixed refrigerant (MR) mass charge. Variations of the MR refrigerating machine operating performance with the working mixture mass charge are found to be considerably different from the analogous performance variations of a refrigerating machine charged with a pure refrigerant. The peculiarities of those relationships are analyzed theoretically. The specific value of a minimum acceptable MR mass charge for the investigated system and its correlation with internal processes in the machine loop are established as well. If the refrigerant mixture mass charges are below the minimum ones, the temperature and power performance of the MR machine differ essentially from the design performance and such operating modes are considered inadmissible. (author)

  19. Covalent Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-20

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

  20. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  1. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    Science.gov (United States)

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2.

  2. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    Science.gov (United States)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  3. Artificial neural network analysis of triple effect absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  4. Investigations on a Thermoacoustic Refrigerator

    CERN Document Server

    Dhuley, Ram C

    2016-01-01

    Thermoacoustic Refrigerators use acoustic power for generating cold temperatures. Development of refrigerators based on the thermoacoustic technology is a novel solution to the present day need of cooling, without causing environmental hazards. With added advantages such as minimal moving parts and absence of CFC refrigerants, these devices can attain low temperatures maintaining a compact size. The present work describes an in-depth theoretical analysis of standing wave thermoacoustic refrigerators. This consists of detailed parametric studies, transient state analysis, and a design using an available simulation software. Design and construction of a thermoacoustic refrigerator using a commercially available electro-dynamic motor is also presented.

  5. Fundamentals of Refrigeration.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  6. Education in Helium Refrigeration

    Science.gov (United States)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  7. Foreign Examples of Energy Saving in Refrigerating Machine

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Yongin (Korea)

    2001-07-01

    Gram A/S Company of Denmark developed the low energy-consuming refrigerator for house, LER200. This refrigerator achieved lots of energy saving through improving insulation and cooling devices. As results from the research for one year and the field-testing for 120 housings, this refrigerator saved energy 70% more than the ordinary refrigerator and 40% more than most energy efficient refrigerators in Danish market. Such a type of household refrigerator consumes less than 0.3kWh of electricity at average for 24 hours. An energy saving refrigerating equipment that had been awarded a prize was established in Albany Port Authority Cold of Western Australia. The energy saving features in this equipment is under-floor heating system using heat recovery, an evaporative condenser, low energy consuming hot gas thawing devices, and computer control system. This is one of the first low temperature refrigerating systems using environment-friendly refrigerant. The refrigerating warehouse, which is located in the south 450km from Peth, has a stock of agricultural products for export. The energy saving characteristics of this project is to be applicable to other equipment and to have possibilities of a great energy saving in the application of refrigerating. Mitsubishi Heavy Industries, LTD and Miratomirai Geothermal Supply have collaborated the project that developed the absorption chiller, which had the same steam-consuming rate (3.9kg/h frozen ton) of the largest capacity (5000 frozen ton) of a steam turbine turbo chiller in the world through reexamining a heat reservoir since 1996. The new absorption chiller has begun to be operated after August 1999. Though actual test after operating, its freezing capacity and efficiency were validated to be more than the design specification. Asakawa sewage disposal plant of Hino in Tokyo Japan established a waste heat recovery system for scrubber water. This system has a heat exchanger to treat hot wastewater and an adsorption chiller to

  8. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  9. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  10. Experimental Study on Flow Boiling of CO2 and CO2-PAG Oil Mixture in Smooth and Micro-fin Tubes

    Science.gov (United States)

    Koyama, Shigeru; Ito, Daisuke; Lee, Sang-Mu; Kuwahara, Ken; Saeki, Chikara

    In this study, experiments on the flow boiling of nearly pure CO2 and CO2-PAG oil mixture are carried out using a 2.064 m long double-pipe counter-flow heat exchanger, in which the refrigerant flows inside the inner tube and the heat source water flows counter-currently in the outer annulus. A smooth copper tube and a micro-fin copper tube are used as the inner tube. In case of nearly pure CO2, the present experimental results of heat transfer coefficient in smooth tube with rough surface agree well with the predicted results using Yu et al. correlation [5], in which the surface roughness effect is taken into account. It is also confirmed that the values of heat transfer coefficient for both smooth and micro-fin tubes are almost analogous, while the values of pressure drop for micro-fin tube are slightly higher than those of smooth tube. By comparing the experimental results between nearly pure CO2 and CO2-oil mixture, it is confirmed that the oil concentration effects on heat transfer coefficient and pressure drop in micro-fin tube have different characteristics from those of smooth tube.

  11. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  12. [A new colorimetric CO2 indicator Colibri].

    Science.gov (United States)

    Nishiyama, T; Hanaoka, K

    1996-06-01

    A new colorimetric carbon dioxide (CO2) indicator Colibri is a disposable, compact and light weighted device. Colibri does not need to be calibrated and is easily usable in an emergency. It indicates blue with CO2 below 4 mmHg and becomes yellow with CO2 above 40 mmHg. In comparison with EASY CAP, Colibri functions for a longer period and it has a humidifier and a bacterial filter. Colibri is useful for emergency situations and anesthetic care.

  13. Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

    Directory of Open Access Journals (Sweden)

    CHENNUCHETTY CHINNARAJ,

    2010-09-01

    Full Text Available A window air conditioner of 3.5 K.W capacity fitted with expansion devices such as capillary tube, thermostatic expansion valve and Electronic expansion valve was tested for its coefficient of performance, power required and refrigeration effect with respect to the refrigerants R22 and R407C under different operating conditions .Initially evaporator temperature was maintained at 279 K and condenser temperature was varied and then the test was conducted again in the same window air conditioner with electronic expansion valve alone as expansion device and by varying the refrigerant super heat temperature at inlet to the compressor from 273K to 293K for the refrigerants R 22, R 407C and R 290 The performance of electronic expansion valve with eco friendly refrigerants shows a positive effect and enable the industry to favorably displace the R22 and other types of expansion devices.

  14. CO2 Emissions and Cost by Floor Types of Public Apartment Houses in South Korea

    Directory of Open Access Journals (Sweden)

    Hyoung Jae Jang

    2016-05-01

    Full Text Available In each country in the world, there is a strong need for all industries to reduce CO2 emissions for sustainable development as a preparation for climatic change. The biggest issue in many developed countries, including the United States, is to reduce CO2 emissions for the upcoming implementation of Carbon Emissions Trading. The construction industry, in particular, which accounts for up about 30% of CO2 emissions, will need studies on the amount of CO2 emissions. The purpose of this study is to present the most environmentally friendly and economical apartment house plan types according to the increasing number of layers by evaluating the amount of CO2 emissions and economic efficiency. The results indicated that flat and Y-shaped types are more eco-friendly and economical in lower levels of less than 20 stories. However, the L-shaped type is more highly eco-friendly and economically efficient in higher levels of more than 20 stories. The results of this paper would help to make a decision on the building types and the number of stories in the early stages of construction.

  15. CO2 capture in different carbon materials.

    Science.gov (United States)

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya

    2012-07-03

    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  16. Synthetic biology for CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Cai, Zhen; Li, Yin

    2016-11-01

    Recycling of carbon dioxide (CO2) into fuels and chemicals is a potential approach to reduce CO2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO2-derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO2-fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO2-fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO2-fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO2.

  17. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  18. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  19. CO2 Interaction with Geomaterials (Invited)

    Science.gov (United States)

    Romanov, V.; Howard, B. H.; Lynn, R. J.; Warzinski, R. P.; Hur, T.; Myshakin, E. M.; Lopano, C. L.; Voora, V. K.; Al-Saidi, W. A.; Jordan, K. D.; Cygan, R. T.; Guthrie, G. D.

    2010-12-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas #3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or “geopolymer”) theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2

  20. CO 2池沸腾换热关联式理论分析%Theoretical Analysis on Correlation of CO2 Pool Boiling Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    刘圣春; 刘江彬; 宁静红

    2013-01-01

    The common heat transfer correlations of pool boiling is summarized,and a correlation of CO2 heat transfer is at-tained after analyzing heat transfer performance.The deviation within 16% of CO2 fitting formula value compared to prediction values of theoretical pool boiling correlation of conventional refrigerants and experimental fitting correlation of CO2 is obtained, which shows that it is of universal.The effects on pool boiling heat transfer and the variation law are pointed out by analyzing the process of CO2 pool boiling heat transfer,and the common methods,using to enhance pool boiling heat transfer,are summarized in the paper.%总结了常见的池沸腾换热关联式。通过对池沸腾换热过程分析得出CO2在小热流密度和大热流密度范围下的一种分段的换热关联式。将新的拟合公式值和预测关联式值进行比较,得出CO2的拟合公式值与理论关联式及实验拟合关联式的预测值的偏差在±16%之内,具有一定的通用性。通过对CO2池沸腾换热过程的分析,得出池沸腾换热的影响因素及其变化规律,并总结了常用的强化池沸腾换热方法。

  1. Determination of a Vapor Compression Refrigeration System Refrigerant Charge

    Institute of Scientific and Technical Information of China (English)

    YangChun-Xin; DangChao-Bin

    1995-01-01

    A physical model is established in this paper to describe the heat transfer and two phase flow of a refrigerant in the evaporator and condenser of a vapor compression refrigeration system.The model in then used to determine the refrigerant charge in vapor compression units.The model is used for a sensitivity analysis to determine the effect that varing design parameters on the refrigerant charge,The model is also used to evaluate the effect of refrigerant charge and the thermal physical properties on the refrigeration cycle,The predicted value of the refigerant charge and experimental data agree well The model and the method presented in this paper could be used to design vapour compression units such as domestic refrigeratirs and air conditioners.

  2. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...

  3. Monitoring Options for CO2 Storage

    NARCIS (Netherlands)

    Arts, R.; Winthaegen, P.

    2005-01-01

    This chapter provides an overview of various monitoring techniques for CO2 storage that is structured into three categories-instrumentation in a well (monitoring well); instrumentation at the (near) surface (surface geophysical methods); and sampling at the (near) surface measuring CO2 concentration

  4. CO2 capture research in the Netherlands

    NARCIS (Netherlands)

    Meerman, J.C.; Kuramochi, T.; Egmond, S. van

    2008-01-01

    The global climate is changing due to human activities. This human‑induced climate change is mainly caused by global emissions of carbon dioxide (CO2) into the atmosphere. Most scientists agree that in order to mitigate climate change, by 2050, global CO2 emissions must be reduced by at least 50% co

  5. Photocatalytic CO2 Activation by Water

    NARCIS (Netherlands)

    Yang, Chieh-Chao

    2011-01-01

    Photocatalytic activation of CO2 and water has potential for producing fuels by conversion of photon energy. However, the low productivity still limits practical application. In this study, the goal was to gain more fundamental insight in CO2 activation, and to provide guidelines for rational design

  6. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  7. Capturing CO2 via reactions in nanopores.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team members expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  8. CO2 Rekentool voor Tuinbouw: Handleiding

    NARCIS (Netherlands)

    Hiller, S.R.C.H.; Danse, M.G.

    2009-01-01

    Dit document is een handleiding bij de online CO2 Rekentool voor Tuinbouw Ketens. De CO2 tool is mogelijk gemaakt door de financiële bijdrage van Productschap Tuinbouw en het Ministerie van Landbouw, Natuur en Voedselkwaliteit (LNV). De tool is ontwikkeld door het onderzoeksconsortium WUR, BMA en AI

  9. CO2 capture, transport, storage and utilisation

    NARCIS (Netherlands)

    Brouwer, J.H.

    2013-01-01

    Reducing CO2 emissions requires an integrated CO2 management approach. The dependency between the different industry sectors is higher than commonly acknowledged and covers all areas; capture, transport, storage and utilisation. TNO is one of Europe’s largest independent research organisations and p

  10. Synthesis of Environmentally Friendly Magnesium Linoleate Detergent

    Institute of Scientific and Technical Information of China (English)

    Wang Yonglei; Li Haiyun; Fang Hongxia; Ni Zhifei; Zhao Lele

    2014-01-01

    This paper mainly covers a method for preparing a highly alkaline magnesium linoleate solution with a total base number (TBN) value of 328 mg KOH/g using linoleic acid as the biodegradable raw material, which can substitute for traditional lubricant detergents as an environmentally friendly detergent. Reaction conditions, including the molar ratio of magnesium oxide to linoleic acid, the molar ratio of methanol to magnesium oxide, the carbonation temperature, the molar ratio of water to magnesium oxide, the lfow rate of CO2 gas and the duration for injection of CO2 to magnesium oxide sys-tem, were optimized.

  11. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    Science.gov (United States)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  12. Geophysical monitoring technology for CO2 sequestration

    Science.gov (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  13. Exergetic analysis of the transcritical cycle of an bottle cooler operating with CO2

    Directory of Open Access Journals (Sweden)

    Igor Marcel Gomes Almeida

    2009-10-01

    Full Text Available The second law of thermodynamics deals with the quality of energy. More specifically, it is concerned with the degradation of energy during a process, the entropy generation, and the lost opportunities to do work; and it offers plenty of room for improvement. This paper aims to identify key factors that affect refrigeration system performance with CO2. Due to the impact of global warming of CFC´s and HFC's, the use of natural refrigerants has received worldwide attention. The natural refrigerant, carbon dioxide (CO2/R744 is promising for use in cooling systems, especially in the transcritical cycle. An exergetic analysis through the cycle of a bottle cooller (exposer adapted for commercial use with carbon dioxide was carried out so that the effectiveness of the system components can be estimated and classified, allowing direct efforts to improve performance of components to the transcritical cycle. The analysis revealed that the compressor and expansion valve are the largest sources of losses in the system, and therefore, efforts should focus on improving these components.

  14. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  15. Testing Refrigeration Trucks for the Emergency Evacuation of Companion Animals.

    Science.gov (United States)

    Langman, Vaughan A; Ellifrit, Nancy; Sime, Debra; Rowe, Mike; Hogue, Allan

    2015-01-01

    The purpose of this study was to quantify the changes in oxygen (O2) and carbon dioxide (CO2) in sealed refrigerator trucks scheduled to be used for transporting companion animals (dogs and cats) during an emergency evacuation. A total of 122 nonhuman animals (total weight = 1,248 kg) housed in individual crates were loaded into a 16-m refrigeration truck. Once they were loaded, the doors were closed and the percentages of O2 and CO2 were measured every 5 min by O2 and CO2 analyzers, and they were used to quantify the changes in gas pressure in the sealed truck. CO2 had a much higher-than-predicted increase, and O2 had a higher-than-predicted decrease. These 2 pressures in combination with the functionality of the respiratory system will limit the animal's ability to load O2, and over time, they will initiate asphyxia or suffocation. Over time, the partial pressure of oxygen (PO2) in the sealed truck will decrease, causing hypoxia, and the partial pressure of carbon dioxide (PCO2) will increase, causing hypercapnia.

  16. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  17. Multilayer Thermionic Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  18. Autonomous solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Bougard, J.; Vokaert, D. (Faculte Polytechnique de Mons, Universite Libre de Bruxelles (Belgium))

    1982-11-01

    A compression refrigerator, fed by a flat solar pannel and composed of two thermal machines, working on a Rankine-Hirn cycle, is described. Mechanical energy is transferred by a double effect free-piston which is at the same time engine, pump, compressor and electric generator for auxiliaries. Freon R12 or R114 is used as the working fluid. Performances of a prototype are given. Investment for a classical unit, fed by a photovoltaic pannel would be more than twice.

  19. Japanese activities in refrigeration technology

    Science.gov (United States)

    Fujita, T.; Ohtsuka, T.; Ishizaki, Y.

    This paper reviews recent activities in refrigeration technology in Japan. The projects described are stimulated by growing industrial needs or form part of large national projects. The JNR project on the MAGLEV train is currently the most powerful activity and it demands knowledge in all the different disciplines of cryogenics in particular on various scales of refrigeration. Research activities are also directed towards the development of Stirling cycle and magnetic refrigerators for applications in a wider area.

  20. ALTERNATIVE REFRIGERANT R-134A

    Directory of Open Access Journals (Sweden)

    Rasim KARABACAK

    1997-03-01

    Full Text Available Because of the big damages on the ozone layer given by the refrigerants cloroflorocarbons that has been used up to now, new alternative gases should be developped and product at once. In this study, some informations about alternative to presently used CFCs, R-134A refrigerant's characteristics and its suitability to cooling systems is given. As it would be understood from these informations there is no objection on using alternative R-134A refrigerant

  1. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    Science.gov (United States)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed

  2. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    Science.gov (United States)

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-01

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies.

  3. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  4. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    Science.gov (United States)

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes.

  5. Glacial CO2 Cycles: A Composite Scenario

    Science.gov (United States)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  6. Elevated CO2 and Soil Nitrogen Cycling

    Science.gov (United States)

    Hofmockel, K.; Schlesinger, W.

    2002-12-01

    Although forests can be large terrestrial carbon sinks, soil fertility can limit carbon sequestration in response to increased atmospheric CO2. During five years of CO2 fertilization (ambient + 200ppm) at the Duke Free-Air CO2 Enrichment (FACE) site, net primary production increased significantly by an average of 25% in treatment plots. Total nitrogen in the foliar canopy increased by 16%, requiring an additional 1.3 g N m-2yr-1 to be taken up from soils under elevated CO2. Mechanisms supporting increased nitrogen acquisition have not been identified. Here we report on biological N-fixation rates, using the acetylene reduction assay, in litter and mineral soil during three years of the CO2 enrichment experiment. Lack of a significant CO2 treatment effect on acetylene reduction indicates that carbon is not directly limiting biological N fixation. Nutrient addition experiments using a complete block design with glucose, Fe, Mo and P indicate biological N fixation is co-limited by molybdenum and carbon. These results suggest even if elevated atmospheric CO2 enhances below-ground carbon availability via root exudation, biological nitrogen fixation may not be stimulated due to micronutrient limitations. Assessment of future carbon sequestration by forest stands must consider limitations imposed by site fertility, including micronutrients.

  7. Ultrapure ZBLAN glass for optical refrigerators

    Science.gov (United States)

    Hehlen, Markus P.; Epstein, Richard I.

    2007-02-01

    A quantitative description of optical refrigeration in Yb 3+-doped ZBLAN glass in the presence of transition-metal and OH impurities is presented. The model includes the competition of radiative processes with energy migration, energy transfer to transition-metal ions, and multiphonon relaxation. The cooling efficiency is sensitive to the presence of both 3d metal ions with absorption in the near infrared and high-frequency vibrational impurities such as OH. The calculation establishes maximum impurity concentrations for different operating temperatures and finds Cu 2+, Fe 2+, Co 2+, Ni 2+, and OH to be the most problematic species. Cu 2+ in particular has to be reduced to ZBLAN:Yb 3+ optical cryocooler to operate at 100-150 K.

  8. Electron Donor-Acceptor Nature of the Ethanol-CO2 Dimer

    Science.gov (United States)

    McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael A.

    2017-08-01

    Supercritical CO2 is an appealing nontoxic, environmentally friendly solvent for the industrial extraction of many classes of compounds, from caffeine to natural product drug precursors to petrochemical impurities. Apolar in isolation, the ability of supercritical CO2 to dissolve polar species has been empirically shown to be greatly enhanced by the addition of a small molar percentage of a polar cosolvent, often ethanol. Computational work predicts that the isolated ethanol-CO2 complex can exist either in an electron-donor configuration or through a hydrogen-bonding one; yet, neither has been previously experimentally observed. Here, we demonstrate by rotational spectroscopy that the isolated, gas-phase ethanol-CO2 dimer is an electron donor-acceptor complex.

  9. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... nature of demand response from refrigeration is identified as the key consideration when considering participation in the regulating power market. It is demonstrated that by restricting the operating regions of the supermarket refrigeration system, a simple relationship can be found between the available...

  10. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  11. CO2 laser in vitreoretinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Karlin, D.B.; Patel, C.K.; Wood, O.R.; Llovera, I.

    1980-01-01

    Radiation from a CO2 laser has the dual effect of phototransection and photocoagulation. Incisions have been made in scleral-chorioretinal tissue, lens tissue, and the vitreous body (with and without membrane formation). Results indicate that the CO2 laser may be useful in intravitreal surgery. Its simultaneous cutting and coagulating properties may make the experimental transvitreal chorioretinal biopsy and the full-thickness ocular wall resection for small melanosarcomas of the choroid clinical possibilities in the not too distant future. Finally, the effects of CO2 laser radiation on the normal human lens suggests the possibility of the dissolution of cataracts by laser irradiation.

  12. Spin polarization effect for Co2 molecule

    Institute of Scientific and Technical Information of China (English)

    Yan Shi-Ying; Bao Wen-Sheng

    2007-01-01

    The density functional theory (DFT)(b3p86) of Gaussian 03 has been used to optimize the structure of the Co2molecule, a transition metal element molecule. The result shows that the ground state for the Co2 molecule is a 7-multiple state, indicating a spin polarization effect in the Co2 molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state is not mingled with wavefunctions of higher-energy states. So for the ground state of Co2 molecule to be a 7-multiple state is the indicative of spin polarization effect of the Co2molecule, that is, there exist 6 parallel spin electrons in a Co2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacial orbitals so that the energy of the Co2 molecule is minimized. It can be concluded that the effect of parallel spin in the Co2 molecule is larger than the effect of the conjugated molecule,which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and the other states of the Co2 molecule are derived. The dissociation energy De for the ground state of Co2 molecule is 4.0489eV, equilibrium bond length Re is 0.2061 nm, and vibration frequency 11.2222 aJ.nm-4respectively(1 a.J=10-18 J). The other spectroscopic data for the ground state of Co2 molecule ωexe,Be, and αe are 0.7202 cm-1, 0.1347 cm-1, and 2.9120× 10-1 cm-1 respectively. And ωexe is the non-syntonic part of frequency, Be is the rotational constant, αe is revised constant of rotational constant for non-rigid part of Co2 molecule.

  13. Structurally simple complexes of CO2

    OpenAIRE

    Murphy, Luke J.; Robertson, Katherine N.; Richard A. Kemp; TUONONEN, Heikki; Clyburne, Jason A. C.

    2015-01-01

    The ability to bind CO2 through the formation of low-energy, easily-broken, bonds could prove invaluable in a variety of chemical contexts. For example, weak bonds to CO2 would greatly decrease the cost of the energy-intensive sorbent-regeneration step common to most carbon capture technologies. Furthermore, exploration of this field could lead to the discovery of novel CO2 chemistry. Reduction of complexed carbon dioxide might generate chemical feedstocks for the preparation of value-added p...

  14. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective...... control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  15. In vitro Effects of Ice, Skin Refrigerant, and CO2 Snow on Intra-Pulpal Temperature.

    Science.gov (United States)

    1980-06-11

    Seltzer , Bender , and Ziontz 5 showed that both electrical pulp tests and thermal tests using ice or ethyl chloride were unreliable based upon...1968. 5. Seltzer , S.; Bender , I.B.; and Ziontz, M. The dynamics of pulp inflanuuation:correlations between diagnostic data and actual histologic findings

  16. Refrigerator-freezer energy testing with alternative refrigerants

    Science.gov (United States)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  17. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    Science.gov (United States)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  18. CO2 emissions in the steel industry

    Directory of Open Access Journals (Sweden)

    M. Kundak

    2009-07-01

    Full Text Available Global CO2 emissions caused by the burning of fossil fuels over the past century are presented. Taking into consideration the total world production of more than 1,3 billion tons of steel, the steel industry produces over two billion tons of CO2. Reductions in CO2 emissions as a result of technological improvements and structural changes in steel production in industrialized countries during the past 40 years are described. Substantial further reductions in those emissions will not be possible using conventional technologies. Instead, a radical cutback may be achieved if, instead of carbon, hydrogen is used for direct iron ore reduction. The cost and the ensuing CO2 generation in the production of hydrogen as a reducing agent from various sources are analysed.

  19. Hoeveel CO2 kostte deze paprika?

    NARCIS (Netherlands)

    Smit, P.X.

    2011-01-01

    Ondernemers in de tuinbouwsector kunnen dankzij een nieuw protocol de CO2-voetafdruk van hun product van zaaigoed tot supermarktschap berekenen. Daarbij zit een tool die de telers, handelaren en transporteurs kan laten zien waar de uitstoot plaatsvindt.

  20. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  1. Translucent CO2 ice on Mars ?

    Science.gov (United States)

    Schmidt, Frederic; Andrieu, Francois; Douté, Sylvain; Schmitt, Bernard

    2016-10-01

    The Martian climate is driven by the condensation/sublimation of CO2 representing 95% of the atmosphere. Many active surface features (such dark spot, dark flows), have been potentially linked to CO2 exchange. Understanding the surface/atmosphere interactions is a major issue, for both atmospheric but also surface science. This study aims at estimating the physical properties of the seasonal CO2 ice deposits. Are these deposits granular or compact? What is the thickness of the ice? How much impurities are included within the ice? These questions have been highly debated in the literature, in particular the presence of a translucent slab ice, the link with the H2O cycle. In particular the cold jet geyser model requires translucent CO2 ice. We use radiative transfer models to simulate spectroscopic data from the CRISM instrument and perform an inversion to estimate model's parameters though time. We then discuss the consistency of the results with other datasets.

  2. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  3. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  4. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  5. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  6. CO2 phytotron established in Ailaoshan Mountains

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Understanding the Uinteractions between ecological systems and the environment is a priority for the studies of global change, evolutionary biology, and functional genomics.Controlled environment facilities,like CO2 phytotrons, are necessary for acquiring such an understanding.

  7. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  8. Combustion of hythane diluted with CO2

    Directory of Open Access Journals (Sweden)

    Hraiech Ibtissem

    2015-01-01

    Full Text Available With increasing concern about energy shortage and environmental protection, improving engine fuel economy and reducing exhaust emissions have become major research topics in combustion and engine development. Hythane (a blend of hydrogen H2 and natural gas NG has generated a significant interest as an alternative fuel for the future. This paper describes an experimental study of the effects of CO2 addition on the stability of a turbulent jet diffusion NG-H2 flame. The mole fraction of hydrogen (% H2 in NG-H2 mixture was varied from 0% to 50%. The equivalence ratio of the hythane/CO2/air mixture was kept at stoichiometry. The results show that the lift-off height increases with the addition of CO2 at various % H2 content in hythane. However, we observe that with 20% H2, we can obtain a stable flame diluted with 40% CO2, while for 0% H2, the flame is blown out above 20% CO2. This means that the limits of flame blowing out are pushed with the additions of H2. Moreover, the results show that for %H2 content in NG-H2 fuel up to 10%, the addition of CO2 could produce lifted flame if the % CO2 is low. At higher % CO2 dilution, flame would remain attached until blow-out. This is mainly due to the fact that the dilution leads to ejection velocities very high but reactivity of the mixture does not change so the flame tends to stretch.

  9. Udvikling af CO2 neutralt byrumsarmatur

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Corell, Dennis Dan

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt.......Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt....

  10. The Twelve Principles of CO2 CHEMISTRY.

    Science.gov (United States)

    Poliakoff, Martyn; Leitner, Walter; Streng, Emilia S

    2015-01-01

    This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector.

  11. The twelve principles of CO2 Chemistry

    OpenAIRE

    Poliakoff, Martyn; Leitner, Walter; Streng, Emelia S.

    2015-01-01

    This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector.

  12. Trapping atmospheric CO2 with gold.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-07

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  13. Supercritical CO2 Extraction of Ethanol

    OpenAIRE

    GÜVENÇ, A.; MEHMETOĞLU, Ü.; ÇALIMLI, A.

    1999-01-01

    Extraction of ethanol was studied from both synthetic ethanol solution and fermentation broth using supercritical CO2 in an extraction apparatus in ranges of 313 to 333 K and 80 to 160 atmospheres, for varying extraction times. The experimental system consists mainly of four parts: a CO2 storage system, a high-pressure liquid pump, an extractor and a product collection unit. Samples were analyzed by gas chromatography. Effects of temperature, pressure, extraction time, initial ethan...

  14. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  15. Reducing CO2 emission from bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2011-07-15

    The treatment of sand oil can result in significant CO2 emission. Ceramatec Inc. has developed a technology to reduce the emission of CO2 during the upgrading of feedstocks bearing heteroatoms. This technology can be applied to kerogen derived oil (shale oil) and heavy oil as well as to bitumen from oil sands. Metallic sodium is used as the reducing and heteroatom scavenging agent. Hydrogen, methane or other hydrocarbons may be used to cap radicals formed in the process. But using methane can lead to lower material and capital costs, greater product yield, and lower CO2 emission. During the upgrading process, the aromatic constituents remain in the product, after treatment with sodium and removal of sulphur, nitrogen and metals. Aromatic saturation is not required with sodium, so less hydrogen is needed which leads to reduced CO2 emission. The reason is that CO2 is emitted in the steam methane reforming (SMR) process where hydrogen is produced. An example is introduced to demonstrate the reduction of CO2 emission from hydrogen production. Another advantage of the sodium/methane upgrading process is the incorporation of methane into the fuel. In addition, the total acid number, TAN, becomes negligible in the sodium upgrading processes. Ceramatec has also developed a process for the recovery of sodium from the sodium salts generated in the sodium/methane upgrading process.

  16. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  17. On the Vertical Gradient in CO2

    Science.gov (United States)

    Stine, A. R.; Fung, I. Y.

    2008-12-01

    Attempts to constrain surface fluxes of carbon from atmospheric measurements of carbon dioxide have primarily focused on surface boundary layer measurements, because information about surface fluxes is least diluted close to the locations where the fluxes occur. However, errors in model ventilation of air in the vertical can be misinterpreted as local surface fluxes. Satellites which measure column integrated CO2 are expected to represent a major advance in part because they observe the entire atmospheric column. Recent work has highlighted the fact that vertical gradients in carbon concentrations can give us information about where vertical mixing errors are likely to be misinterpreted as local surface fluxes, but passive tracer evidence suggests that models that capture vertical profiles on the ocean do poorly on the land (and vice versa), suggesting that the problem of correctly treating vertical mixing in inverse studies is more fundamental than picking the "best" model. We consider observations of the vertical gradient in CO2 from aircrafts and from a comparison of satellites that observe in the near infrared (which observe the column integrated CO2 field) and the thermal infrared (which observe the upper troposphere). We evaluate the feasibility of using these satellites for determining the vertical gradient in CO2. We examine how observations of the vertical gradient of CO2 allow us to differentiate the imprint of vertical mixing and the imprint in surface fluxes on the observed field of atmospheric CO2.

  18. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available BACKGROUND: CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days. CONCLUSIONS/SIGNIFICANCE: Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  19. Cycling Joule Thomson refrigerator

    Science.gov (United States)

    Tward, E.

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  20. Discussion on coolants often too limited. The importance of CO2 emission and safety aspects; Discussie over koudemiddelen vaak te beperkt. CO2-uitstoot en veiligheidsaspecten niet uit het oog verliezen

    Energy Technology Data Exchange (ETDEWEB)

    Kranenberg, H. [Daikin Airconditioning Netherlands, Capelle a/d IJssel (Netherlands)

    2011-05-15

    The application of various kinds of synthetic refrigerants is subject of debate since the Montreal Protocol (on Substances that Deplete the Ozone Layer). This resulted in the prohibition of CFCs and the phase-out of HCFCs. These refrigerants had a direct impact on the damaging of the ozone layer. This led to new refrigerants being introduced to the market that are widely deployed today: the so-called HFCs such as R410a and R134a. Next to Ozone Depletion (ODP) and the Global Warming Potential (GWP), the discussion on the environmental effect of refrigerants should also include the CO2 emission and the safety aspects. [Dutch] Over de toepassing van verschillende soorten synthetische koudemiddelen wordt sinds het protocol van Montreal (on Substances that Deplete the Ozone Layer) discussie gevoerd. Dit resulteerde in het verbieden van CFK's en de uitfasering van HCFK'S. Deze koudemiddelen hadden een direct effect op de beschadiging van de ozonlaag. Hierdoor kwamen nieuwe koudemiddelen op de markt die al breed worden toegepast, de zogeheten HFK's, zoals R410a en R134a. Naast de Ozone Depletion (ODP) en de Global Warming Potential (GWP) moeten in de discussie over de milieueffecten van koudemiddelen echter ook de CO2-uitstoot en de veiligheidsaspecten worden meegenomen.

  1. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  2. The cooling heat transfer characteristics of the supercritical CO2 in micro-fin tube

    Science.gov (United States)

    Lee, Ho-Saeng; Kim, Hyeon-Ju; Yoon, Jung-In; Choi, Kwang-Hwan; Son, Chang-Hyo

    2013-02-01

    This study intended to verify the cooling heat transfer characteristics of supercritical gas for refrigerating and air-conditioning devices that use CO2, a natural refrigerant, as the operating fluid. Experiments were performed with a gas cooler, which was the test part. The gas cooler was a heat exchanger made of a micro-fin tube with an inner diameter of 4.6 mm and an outer diameter of 5.0 mm. The experiment results are summarized as follows. The heat transfer coefficient, according to the mass flux, peaked at the low cooling pressure of 8.0 MPa in the gas cooler, and reached its minimum at the high pressure of 10.0 MPa. Furthermore, when the mass flux of the refrigerant increased, the coefficient increased faster with the lower cooling pressure in the gas cooler. The heat transfer coefficient, according to the shape of the heat transfer tube, showed that the maximum values of the CO2 cooling heat transfer coefficients of the smooth tube and the micro-fin tube were found at 44.7 °C, which were the pseudo-critical temperatures for the entrance pressures. It was found that the cooling heat transfer coefficient of the micro-fin tube increased by 12-39 % more than that of the smooth tube. The experiment results for the CO2 heat transfer coefficients of the smooth tube and the micro-fin tube were compared with the results estimated from previous correlations. It was found that the experiment values generally significantly differed from and the experiment values greater than the estimated values. The differences were especially greater in the vicinity of the critical temperature points. Based on these results, a new correlation was suggested that includes the density ratio and the specific heat ratio.

  3. Energy Optimization for Transcritical CO2 Heat Pump for Combined Heating and Cooling and Thermal Storage Applications

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Blarke, Morten; Yazawa, Kazuaki

    2012-01-01

    A transcritical heat pump (THP) cycle using carbon dioxide (CO2) as the refrigerant is known to feature an excellent coefficient of performance (COP) as a thermodynamic system. Using this feature, we are designing and building a system that combines a water-to-water CO2 heat pump with both hot...... and cold thermal storages know as Thermal Battery (TB) (Blarke, 2012). Smart and effective use of intermittent renewable energy resources (for example solar and wind power) is obtained supplying water heating (>70 oC) and cooling services (

  4. Energy optimisation of domestic refrigerators

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    This paper describes the main results of a research project with the objective of reducing the energy consumption of domestic refrigerators by increasing the efficiency of the refrigeration system. The improvement of the system efficiency was to be obtained by:1) Introducing continuous operation...

  5. Application of CO2 in BOF%转炉应用CO2技术

    Institute of Scientific and Technical Information of China (English)

    万雪峰; 曹东; 刘祥; 朱晓雷; 廖相巍

    2015-01-01

    By the thermodynamic analysis of top blowing CO2 in the converter,combined with laboratory simulation re-sult of top blowing O2+CO2 mixture gas in converter,some key parameters of CO2 used in converter were established. It is concluded that although pure CO2 injected in the converter could achieve decarburize,the drop of temperature was rath-er large. When the CO2 supplying intensity was 3.0 m3/(t·min),the reduction of temperature was 15.1℃/min;By blow-ing O2+CO2 mixture gas,temperature balance could be realized,but the largest theoretical proportion of CO2 in mixture gas was 79.1%;with the increase of CO2 proportion,the carbon and oxygen product of molten steel at the blowing end was reduced,under the condition of φ(CO2)∶φ(O2)=1∶1,the carbon and oxygen product could be controlled in the range of (25~32)×10-8.%通过对转炉顶吹CO2的热力学分析,结合实验室模拟转炉顶吹O2+CO2混合气体试验结果,确立了CO2在转炉中应用的关键参数。得出在转炉中顶吹纯CO2虽可脱碳,但温降较大,顶吹CO2供气强度为3.0 m3/(t·min)时,钢液温降速率为15.1℃/min;通过喷吹O2+CO2混合气体可实现温度平衡,但CO2配比的最大理论比例为79.1%;随着混合气体中CO2比例增大,吹炼终点钢液碳氧积降低,当φ(CO2)∶φ(O2)=1∶1时可控碳氧积为(25~32)×10-8。

  6. Precursory volcanic CO2 signals from space

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  7. NIH Loses a Friend

    Science.gov (United States)

    ... page please turn Javascript on. NIH Loses a Friend Past Issues / Fall 2009 Table of Contents Donald ... changingthefaceofmedicine/ . Sincerely, Donald West King, M.D., Chairman Friends of the National Library of Medicine Let Us ...

  8. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING

    2009-01-01

    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  9. Performance modeling of optical refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.; Mord, A. [Ball Aerospace and Technologies Corp., Boulder, CO (United States). Cryogenic and Thermal Engineering

    2006-02-15

    Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN. (author)

  10. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    Science.gov (United States)

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket".

  11. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  12. Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

    Directory of Open Access Journals (Sweden)

    Renato eBaciocchi

    2016-01-01

    Full Text Available This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry phase (L/S=5 l/kg, T=100 °C and Ptot=10 bar and the thin film (L/S =0.3-0.4 l/kg, T=50 °C and Ptot=7-10 bar routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis the energy requirements associated to each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW. For the slurry phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a and 29.2% (BOF-b at 40% CO2 and 32.5% (BOF-a and 40.3% (BOF-b at 100% CO2. For the thin film route, maximum uptakes of 13% (BOF-c and 19.5% (BOF-d at 40% CO2, and 17.8% (BOF-c and 20.2% (BOF-d at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e. 1400-1600 MJ/t CO2 for the slurry phase and 2220-2550 MJ/t CO2 for the thin film route.

  13. Transport-related CO2 effects of online and brick-and-mortar shopping

    DEFF Research Database (Denmark)

    Wiese, Anne; Toporowski, Waldemar; Zielke, Stephan

    2012-01-01

    This paper compares transport-related CO2 emissions of online and brick-and-mortar shopping based on supply, delivery, order and travel data related to one multi-channel clothing retailer. A sensitivity analysis sheds more light on how situational factors, such as the customers’ travel distances......, returns, the use of public transport modes and information behavior via different channels influence the outcome of this comparison. The results show that online retailing causes lower CO2 emissions under many conditions. Nevertheless, the brick-and-mortar channel is more environmentally friendly when...

  14. Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 transcritical power cycle study

    OpenAIRE

    Yang, Chen

    2011-01-01

    The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades). Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozo...

  15. Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    In this paper an innovative micro-trigeneration system composed of a cogeneration system and a cascade refrigeration cycle is proposed. The cogeneration system is a combined heat and power system for electricity generation and heat production. The cascade refrigeration cycle is the combination of a CO2 mechanical compression refrigerating machine (MCRM), powered by generated electricity, and an ejector cooling machine (ECM), driven by waste heat and using refrigerant R600. Effect of the cycle operating conditions on ejector and ejector cycle performances is studied. Optimal geometry of the ejector and performance characteristics of ECM are determined at wide range of the operating conditions. The paper also describes a theoretical analysis of the CO2 sub-critical cycle and shows the effect of the MCRM evaporating temperature on the cascade system performance. The obtained data provide necessary information to design a small-scale cascade system with cooling capacity of 10 kW for application in micro-trigeneration systems. © 2010 Elsevier Ltd and IIR. All rights reserved.

  16. Anomalous Brownian refrigerator

    Science.gov (United States)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-02-01

    We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.

  17. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO2 cannot percolate), (2) residual trapping (where the CO2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO2 through the rock are strongly influenced by the CO2-brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO2-wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO2-wet. Note that CO2-wet surfaces dramatically reduce CO2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO2-wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO2-wettability and the ability to

  18. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13

    Science.gov (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.

    2011-06-01

    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  19. Flow Boiling of Pure and Oil Contaminated Carbon Dioxide as Refrigerant

    DEFF Research Database (Denmark)

    Mohamed, A.-R. Mohamed

    2003-01-01

    of benefit of the environment. The main challenge for CO2 based refrigerant systems is to increase the performance of the heat exchangers. Especially there is a need for information concerning heat transfer and pressure drop in evaporator and condenser with CO2 as refrigerant. The reason this is the very...... high reduced pressure with CO2 compared to the reduced pressure using CFC, HCFC and HFC. CO2 has greater heat conductivity than CFC, HCFC and HFC so the influence of oil in the refrigeration system is expected to have a greater influence on the system performance. The main result of the project...... described in the present report is measured heat transfer coefficient and pressure drop for flow boiling of oil free and oil contaminated CO2. Measurements have been done on tube with internal diameter of 10 mm and 4 mm- The mass flux has been varied from 90 kg/m2s to 750 kg/m2s, heat flux from 5 kW/m2...

  20. THERMODYNAMIC ANALYSIS OF REFRIGERANT MIXTURES IN VAPOR COMPRESSION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Erol ARCAKLIOĞLU

    2003-02-01

    Full Text Available In this study, performance analysis of vapor-compression refrigeration system with suction/liquid line heat exchanger has been realized with the calculations of the coefficient of performance, and volumetric refrigeration capacity values using different refrigerant mixtures. Refrigerants R12, R22, and R502 of CFCs, R134a, R152a, R125, R143a, and R32 of HFCs, R600a, and R290 of HCs, and their binary, ternary, and mixtures of different mass ratios have been used as working fluids. In order to decrease global pollution due to CFCs in accordance with Montreal Protocol in 1987, it is considered to use the refrigerant mixtures of HFCs, and HCs instead of CFCs (R12, R22, and R502. For this reason, the performance comparison of the new mixtures with CFC refrigerants has been done in the frame of this study. To compare the performance values, constant temperature method has been used. Thermodynamic properties of refrigerants that were used in the performance calculations have been taken from REFPROP 6.01. For this aim, new software has written in FORTRAN programing language using sub-programs of REFPROP, and all related calculations of performance have been achieved by this software.

  1. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2

    Science.gov (United States)

    Kawa, Randy; Huisheng, Bian

    2004-01-01

    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  2. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...... profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future.......The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  3. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost-effective co...... not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future.......The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  4. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily......, a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...

  5. Infrared absorption spectroscopy of CO2-HX complexes using the CO2 asymmetric stretch chromophore: CO2HF(DF) and CO2HCl(DCl) linear and CO2HBr bent equilibrium geometries

    Science.gov (United States)

    Sharpe, S. W.; Zeng, Y. P.; Wittig, C.; Beaudet, R. A.

    1990-01-01

    Infrared absorption spectra associated with the CO2 asymmetric stretch vibration have been recorded for weakly bonded gas-phase complexes of CO2 with HF, DF, HCl, DCl, and HBr, using tunable diode laser spectroscopy and a pulsed slit expansion (0.15×38 mm2) that provides >20 MHz overall resolution. Results obtained with CO2-HF are in agreement with earlier studies, in which the HF-stretch region near 3900 cm-1 was examined. In both cases, broad linewidths suggest subnanosecond predissociation. With CO2-DF, the natural linewidths are markedly narrower than with CO2-HF (e.g., 28 vs 182 MHz), and this difference is attributed to slower predissociation, possibly implicating resonances in the case of CO2-HF. Both CO2-HF and CO2-DF exhibited overlapping features: simple P and R branches associated with a linear rotor, and P and R branches containing doublets. As in earlier studies, the second feature can be assigned to either a slightly asymmetric rotor with Ka=1, or a hot band involving a low-frequency intermolecular bend mode. Results obtained with CO2-HCl are in excellent agreement with earlier microwave measurements on the ground vibrational state, and the vibrationally excited state is almost identical to the lower state. Like CO2-DF, linewidths of CO2-HCl and CO2-DCl are much sharper than those of CO2-HF, and in addition, CO2-HCl and CO2-DCl exhibited weak hot bands, as were also evident with CO2-HF and CO2-DF. Upon forming complexes with either HF or HCl, the asymmetric stretch mode of CO2 underwent a blue shift relative to uncomplexed CO2. This can be understood in terms of the nature of the hydrogen bonds, and ab initio calculations are surprisingly good at predicting these shifts. Deuteration of both HF and HCl resulted in further blue shifts of the band origins. These additional shifts are attributed to stronger intermolecular interactions, i.e., deuteration lowers the zero-point energy, and in a highly anharmonic field this results in a more compact average

  6. Investigation into optimal CO2 concentration for CO2 capture from aluminium production

    OpenAIRE

    Mathisen, Anette; Sørensen, Henriette; Melaaen, Morten Christian; Müller, Gunn-Iren

    2013-01-01

    Capture of CO2 from aluminum production has been simulated using Aspen Plus and Aspen Hysys. The technology used for aluminum production is the Hall-Héroult and the current cell design necessitates that large amounts of false air is supplied to the cells. This results in a CO2 concentration in the process gas at around 1 vol%, which is considered uneconomical for CO2 capture. Therefore, the aim of this investigation is to evaluate the CO2 capture from aluminum production when the process g...

  7. Measuring Nitrous Oxide Mass Transfer into Non-Aqueous CO2BOL CO2 Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Freeman, Charles J.; Zwoster, Andy; Heldebrant, David J.

    2016-03-28

    This paper investigates CO2 absorption behavior in CO2BOL solvents by decoupling the physical and chemical effects using N2O as a non-reactive mimic. Absorption measurements were performed using a wetted-wall contactor. Testing was performed using a “first generation” CO2 binding organic liquid (CO2BOL), comprised of an independent base and alcohol. Measurements were made with N2O at a lean (0.06 mol CO2/mol BOL) and rich (0.26 mol CO2/mol BOL) loading, each at three temperatures (35, 45 and 55 °C). Liquid-film mass transfer coefficients (kg') were calculated by subtracting the gas film resistance – determined from a correlation from literature – from the overall mass transfer measurement. The resulting kg' values for N2O in CO2BOLs were found to be higher than that of 5 M aqueous MEA under comparable conditions, which is supported by published measurements of Henry’s coefficients for N2O in various solvents. These results suggest that the physical solubility contribution for CO2 absorption in CO2BOLs is greater than that of aqueous amines, an effect that may pertain to other non-aqueous solvents.

  8. Behavior of CO2/water flow in porous media for CO2 geological storage.

    Science.gov (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin(-1). For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO2 and water became miscible in the beginning of CO2 injection. CO2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO2 and water to invade into small pore spaces more easily. The study also showed CO2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO2 slightly decreases with the increase of capillary number.

  9. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism

    Science.gov (United States)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-03-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  10. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source.

    Science.gov (United States)

    Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen

    2017-01-20

    Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O2 batteries. In the study of CO2 contamination on metal-O2 batteries, it has been gradually found that CO2 can be utilized as the reactant gas alone; namely, metal-CO2 batteries can work. On the other hand, investigations on CO2 fixation are in focus due to the potential threat of CO2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed.

  11. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper

    2017-03-01

    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  12. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  13. Membraneless water filtration using CO2

    Science.gov (United States)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick; Stone, Howard

    2016-11-01

    Water purification technologies such as ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles, or so-called diffusiophoresis. Due to the large diffusion potential built up by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Our findings suggest a means to separate particles without membranes or filters, thus reducing operating and maintenance costs. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits very low pressure drop and is essentially free from fouling.

  14. The ATLAS IBL CO2 cooling system

    Science.gov (United States)

    Verlaat, B.; Ostrega, M.; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-02-01

    The ATLAS Pixel detector has been equipped with an extra pixel layer in the space obtained by a smaller radius beam pipe. This new pixel layer called the Insertable B-Layer (IBL) was installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the expected high radiation dose received at an integrated luminosity of 550 fb1. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  15. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... promising mass transfer rate promoter for CCS. This process has been previously been tested successfully in lab scale and in some rare cases in pilot scale, but no validated process model for this technology has been published yet. This PhD thesis presents an investigation of the feasibility of enzyme...... enzyme kinetic model and validating it against in-house pilot plant experiments. The work consisted of identifying a suitable enzyme-solvent system and the ideal process conditions by comparing mass transfer rates of different solvents and enzyme enhanced solvents in a lab scale wetted wall column...

  16. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...... monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated...

  17. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  19. A Case Study of a Low Power Vapour Adsorption Refrigeration System

    Science.gov (United States)

    Dinesh, Banala; Sai Manikanta, M.; Dishal Kumar, T.; Sahu, Debjyoti

    2016-09-01

    Industrial refrigeration is one of the most energy consuming sector. In conventional Vapor Compression refrigeration system, compressor is the major power consuming element. Vapor Adsorption refrigeration system is one of the best replacement for the Vapor Compression refrigeration system. Our main objective is to analyze, design and develop a Vapor Adsorption refrigeration system which is cost effective and environmental friendly. A prototype model that is capable of producing a temperature drop in closed evaporator chamber was designed, fabricated and tested. Activated carbon/Methanol pair is chosen as Adsorbent/Refrigerant pair. The system is analyzed in ANSYS 14.5 using the inlet conditions obtained from the experimental setup. The performances and effectiveness of the unit was studied by determining Refrigeration Effect (RE), Coefficient of Performance (COP) and explaining operational issues of the unit. The results obtained from the analysis and experiments have marginal difference in COP i.e. with an error percentage of 5.94%. The overall COP obtained is 0.34 through experiments and from analysis the COP obtained is approximately 0.32.

  20. CO2 sequestration in basalts: laboratory measurements

    Science.gov (United States)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  1. Local CO2-induced swelling of shales

    Science.gov (United States)

    Pluymakers, Anne; Dysthe, Dag Kristian

    2017-04-01

    In heterogeneous shale rocks, CO2 adsorbs more strongly to organic matter than to the other components. CO2-induced swelling of organic matter has been shown in coal, which is pure carbon. The heterogeneity of the shale matrix makes an interesting case study. Can local swelling through adsorption of CO2 to organic matter induce strain in the surrounding shale matrix? Can fractures close due to CO2-induced swelling of clays and organic matter? We have developed a new generation of microfluidic high pressure cells (up to 100 bar), which can be used to study flow and adsorption phenomena at the microscale in natural geo-materials. The devices contain one transparent side and a shale sample on the other side. The shale used is the Pomeranian shale, extracted from 4 km depth in Poland. This formation is a potential target of a combined CO2-storage and gas extraction project. To answer the first question, we place the pressure cell under a Veeco NT1100 Interferometer, operated in Vertical Scanning Interferometry mode and equipped with a Through Transmissive Media objective. This allows for observation of local swelling or organic matter with nanometer vertical resolution and micrometer lateral resolution. We expose the sample to CO2 atmospheres at different pressures. Comparison of the interferometry data and using SEM-EDS maps plus optical microscopy delivers local swelling maps where we can distinguish swelling of different mineralogies. Preliminary results indicate minor local swelling of organic matter, where the total amount is both time- and pressure-dependent.

  2. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Directory of Open Access Journals (Sweden)

    Mishra Shubham

    2016-12-01

    Full Text Available Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%, which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle. Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  3. Do Tree Stems Recapture Respired CO2?

    Science.gov (United States)

    Hilman, B.; Angert, A.

    2016-12-01

    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  4. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... concerns of the potential measures within those intervention areas: • Reductions in the need to travel • Improved efficiency of the transport system • Improved fuel efficiency of transport activities • Reduced CO2 intensity of the fuels Within each area a number of measures were analysed. The measures...

  5. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  6. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110°C...

  7. Leak Path Development in CO2 Wells

    Science.gov (United States)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.

    2014-12-01

    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  8. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  9. Carbon monoxide : A quantitative tracer for fossil fuel CO2?

    NARCIS (Netherlands)

    Gamnitzer, Ulrike; Karstens, Ute; Kromer, Bernd; Neubert, Rolf E. M.; Meijer, Harro A. J.; Schroeder, Hartwig; Levin, Ingeborg

    2006-01-01

    Carbon monoxide (CO), carbon dioxide (CO2), and radiocarbon ((CO2)-C-14) measurements have been made in Heidelberg from 2001 to 2004 in order to determine the regional fossil fuel CO2 component and to investigate the application of CO as a quantitative tracer for fossil fuel CO2 (CO2(foss)). The obs

  10. Multi-technique monitoring of CO2 leakage from an engineered CO2 leakage experiment

    Science.gov (United States)

    Zhou, X.; Apple, M. E.; Dobeck, L.; Cunningham, A. B.; Spangler, L.

    2012-12-01

    Monitoring of canopy and soil geophysical and geochemical properties in vadose zone by multiple techniques were carried out from 1999 to 2012 using an engineered CO2 release to simulate the CO2 leakage from CO2 storage at an agricultural plot at Bozeman, MT. The CO2 release was based on a horizontally-drilled well of 100 m at a depth of about 2.0-2.3m (Fig.1). Techniques utilized include hyperspectral and infrared radiation of various vegetations, electric conductivity in soil, magnetic field at the ground surface, and soil gas composition and dynamics using various gas sensors and soil moisture sensors. Measurements were made at several sites along a transect perpendicular to the releasing well, along which the soil CO2 concentration attenuated from high to normal condition at control site. The response of the canopy hyperspectral reflectance, infrared radiation, soil geophysical properties such as soil electric conductivity, top soil magnetic susceptibility and magnetic field, soil gas composition such as CO2 and O2 concentration to CO2 release at different rates were quantified and will be shown at this presentation. Fig.2 shows some examples of the results. The different responses at the impact and control sites are used to assess the effectiveness for CO2 surface and near-surface detection when a possible CO2 leakage occurs.ig.1. A schematic showing the injection and release of CO2 at an agricultral plot in Bozeman, MT. ig.2. Some examples of results showing the response of vegetation, hyperspectral reflectance, soil electric conductivity, soil O2 concentration to the release of CO2.

  11. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  12. Supermarket refrigerators with natural refrigerants; Supermarktkaelteanlagen mit natuerlichen Kaeltemitteln. Erfahrungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, S.; Heinbokel, B. [Linde AG, Koeln (Germany). Gechaeftsbereich Linde Kaeltetechnik

    2002-09-01

    In view of the high contribution to global warming of H-CFC refrigerants, substitution has been a key concern for several years now. Leakage protection measures were enhanced, and Linde also installed many supermarket refrigerators with natural refrigerants, i.e. ammonia, propene and carbon dioxide. The environmental and economic aspects are assessed on the basis of the experience gained, and the systems are compared with H-CFC refrigeration systems. [German] Wegen des betraechtlichen Treibhauspotentials von HFKW-Kaeltemitteln werden seit Jahren Anstrengungen unternommen, um den von diesen Stoffen ausgehenden Treibhauseffekt zu reduzieren. Neben Massnahmen zur Verminderung von Leckagen sowie zur Verringerung von Kaeltemittel-Fuellmengen wurden im Laufe der letzten 10 Jahre von Linde auch zahlreiche Kaelteanlagen mit den natuerlichen Kaeltemitteln Ammoniak, Propen und Kohlendioxid in Supermaerkten installiert. Auf Basis der gesammelten Erfahrungen wird eine Einschaetzung der umweltspezifischen und wirtschaftlichen Aspekte im Vergleich zu Anlagen mit HFKW-Kaeltemitteln vorgenommen. (orig.)

  13. New age water chillers with water as refrigerant

    CERN Document Server

    Kühnl-Kinel, J

    1998-01-01

    Vacuum-process technology producing chilled water needs no refrigerant of the conventional kind, but water from the process itself is used to generate cooling. This eye-catching novelty incorporates many of the considerations about the future of refrigerants: "ozone friendly", no extra demands for safety measures or for skilful operators, no special requirements concerning the installation's components, lower maintenance costs since leakages can be accommodated from the system. Vacuum-process technology may be used not only for production of chilled water but also for Binary Ice - pumpable suspension of minute ice crystals in an aqueous solution. This means that all the advantages related to a latent heat system may become available.

  14. Industrial ammonia absorption refrigeration plants in combination with gas engines; Groupes de refrigeration industriels a absorption d'ammoniac combines avec des moteurs a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Bassols, J. [Colibri bv (Netherlands); Sahu, J. [Gas Natural SDG, S.A. (Spain)

    2000-07-01

    In many industrial sectors, co-generation systems with gas turbines or engines and ammonia absorption refrigeration plants are being introduced for the simultaneous production of electricity and refrigeration in order to meet the energy requirements inherent to each process and to reduce the operating costs. The different possibilities to link the absorption refrigeration plant to the cogeneration system and to the consumers are described. Different examples of realised projects are used to illustrate the different systems. Despite the fact that, compared to compression refrigeration machines, ARP's have lower COP (coefficient of performance) and higher investment costs, the advantage of using thermal energy as a driving energy instead of electricity makes the combination cogeneration-ARP very attractive. The plants can easily be integrated into an existing refrigeration installation. The full automatic control systems provide a trouble-free operation. Because most of the components of an ARP are heat exchangers, the plants only need little maintenance and are not susceptible to trouble. For their maintenance, no special knowledge is necessary. Plants working with NH{sub 3}-H{sub 2}O use ammonia as a refrigerant, which is a natural and environment-friendly fluid. (authors)

  15. WEB-GIS Decision Support System for CO2 storage

    Science.gov (United States)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  16. CO2热泵热水器的实验室评估%Laboratory Assessment of CO2 Heat Pump Water Heater

    Institute of Scientific and Technical Information of China (English)

    周子成

    2015-01-01

    本文叙述一台带有室外热交换器的变速CO2热泵热水器的实验室测定结果。测试包括在室外环境温度为-8.3℃至35℃下进行的标准24小时和第1小时的额定等级试验的热泵效率;室外机的噪声水平测定;和对输送水量测定以及室外机组在10℃环境条件下运行时的高效率淋浴水量测定。%This paper describes the results of a CO 2 Heat pump water heaters test with an outdoor heat exchang-er.The project conducted lab tests of a variable -speed, CO2 refrigerant HPWH with the heat exchanger located in the outdoor unit.The testing plan included observing heat pump efficiency at a range of outdoor ambient temperatures from -8.3℃to 35℃; conducting the standard 24-hour and 1-hour rating tests; measuring outdoor unit noise levels; and quantifying the number of efficient showers delivered with the outdoor unit operating at 10℃ ambient conditions.

  17. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr

  18. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the inferr

  19. The Abundance of Atmospheric CO2 in Ocean Exoplanets: A Novel CO2 Deposition Mechanism

    CERN Document Server

    Levi, Amit; Podolak, Morris

    2016-01-01

    We consider super-Earth sized planets which have a water mass fraction that is large enough to form an external mantle composed of high pressure water ice polymorphs and that lack a substantial H/He atmosphere. We consider such planets in their habitable zone so that their outermost condensed mantle is a global deep liquid ocean. For these ocean planets we investigate potential internal reservoirs of CO2; the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that in steady state the abundance of CO2 in the atmosphere has two possible states. When the wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is esta...

  20. Projecting human development and CO2 emissions

    CERN Document Server

    Costa, Luís; Kropp, Jürgen P

    2012-01-01

    We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

  1. The mechanical impact of CO2 injection

    NARCIS (Netherlands)

    Orlic, B.; Schroot, B.

    2005-01-01

    The mechanical impact of CO2 injection into a depleted hydrocarbon field or aquifer is caused by changes in the stress field, resulting from changes in the pore pressure and volume of the rock. Mechanical processes can lead to the loss of reservoir and caprock integrity, and the reactivation of exis

  2. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...

  3. Kosten en baten CO2-emissiereductie maatregelen

    NARCIS (Netherlands)

    Daniels, B.; Tieben, B.; Weda, J.; Hekkenberg, M.; Smekens, K.; Vethman, P.

    2012-01-01

    The Dutch Ministry of Infrastructure and the Environment has requested the Energy Research Centre of the Netherlands (ECN) and SEO Economic Research (SEO) to investigate the costs and benefits of a broad range of technical measures to realise CO2 emission reductions. The research aims to identify th

  4. Harvesting Energy from CO2 Emissions

    NARCIS (Netherlands)

    Hamelers, H.V.M.; Schaetzle, O.; Paz-García, J.M.; Biesheuvel, P.M.; Buisman, C.J.N.

    2014-01-01

    When two fluids with different compositions are mixed, mixing energy is released. This holds true for both liquids and gases, though in the case of gases, no technology is yet available to harvest this energy source. Mixing the CO2 in combustion gases with air represents a source of energy with a to

  5. CO2 laser used in cosmetology

    Science.gov (United States)

    Su, Chenglie

    1993-03-01

    Cases of various kinds of warts, nevi, papillomas, skin angiomas, ephilises, skin vegetation, scars and brandy noses were vaporized and solidified with a 2.5 - 8 W low power CO2 laser with an overall satisfaction rate up to 99.8% and the satisfaction rate for one time 92%.

  6. Warming the early Earth - CO2 reconsidered

    CERN Document Server

    Von Paris, P; Grenfell, L; Patzer, B; Hedelt, P; Stracke, B; Trautmann, T; Schreier, F

    2008-01-01

    Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called "faint young Sun problem" have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geological evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 ...

  7. Agriculture waste and rising CO2

    Science.gov (United States)

    Currently, there are many uncertainties concerning agriculture’s role in global environmental change including the effects of rising atmospheric CO2 concentration. A viable and stable world food supply depends on productive agricultural systems, but environmental concerns within agriculture have to...

  8. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  9. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    carbonate and ethylene carbonate are just some of the possible products that can be formed. Each of these involves CO2 and a co-reactant, such as hydrogen, which may also be captured from process purge streams. The process network evolves as some of the reactions involve products from other reactions...

  10. Economic optimization of CO2 pipeline configurations

    NARCIS (Netherlands)

    Knoope, M.M.J.; Ramirez, C.A.; Faaij, A.P.C.

    2013-01-01

    In this article, an economic optimization tool is developed taking into account different steel grades, inlet pressure, diameter and booster stations for point-to-point pipelines as well as for simple networks. Preliminary results show that gaseous CO2 transport is cost effective for relatively smal

  11. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.

    2001-01-01

    treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album...

  12. Rhizosphere Responses to Elevated CO2

    NARCIS (Netherlands)

    Drigo, B.; Kowalchuk, G.A.; de Bruijn, F.J.

    2013-01-01

    Rising atmospheric CO2 levels are predicted to have major consequences on C cycling and the functioning of terrestrial ecosystems. Experimentation during the last two to three decades using a large variety of approaches have provided sufficient information to conclude that the enrichment of atmosphe

  13. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  14. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    L. Ammoura

    2012-10-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI and urban-rural contrasts. Boundary layer heights (BLH at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical

  15. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    Science.gov (United States)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  16. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Science.gov (United States)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in

  17. Effects of dissolved CO2 on Shallow Freshwater Microbial Communities simulating a CO2 Leakage Scenario

    Science.gov (United States)

    Gulliver, D. M.; Lowry, G. V.; Gregory, K.

    2013-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2

  18. Scenario Formation of Energy Demand and CO2 Emissions for Sustainable China

    Institute of Scientific and Technical Information of China (English)

    Wei Baoren; Yagita Hiroshi

    2008-01-01

    Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tee) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO 2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.

  19. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  20. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    Science.gov (United States)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  1. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2.

    Science.gov (United States)

    Paudel, Ashok; Jessop, Michael J; Stubbins, Spencer H; Champagne, Pascale; Jessop, Philip G

    2015-05-01

    The use of CO2-expanded methanol (cxMeOH) and liquid carbon dioxide (lCO2) is proposed to extract lipids from Botryococcus braunii. When compressed CO2 dissolves in methanol, the solvent expands in volume, decreases in polarity and so increases in its selectivity for biodiesel desirable lipids. Solid phase extraction of the algal extract showed that the cxMeOH extracted 21 mg of biodiesel desirable lipids per mL of organic solvent compared to 3mg/mL using either neat methanol or chloroform/methanol mixture. The non-polar lCO2 showed a high affinity for non-polar lipids. Using lCO2, it is possible to extract up to 10% neutral lipids relative to the mass of dry algae. Unlike extractions using conventional solvents, these new methods require little to no volatile, flammable, or chlorinated organic solvents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A cross-association model for CO2-methanol and CO2-ethanol mixtures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A cross-association model was proposed for CO2-alcohol mixtures based on the statistical associating fluid theory (SAFT).CO2 was treated as a pseudo-associating molecule and both the self-association between alcohol hydroxyls and the cross-association between CO2 and alcohol hydroxyls were considered.The equilibrium properties from low temperature-pressure to high temperature-pressure were investigated using this model.The calculated p-x and p-p diagrams of CO2-methanol and CO2-ethanol mixtures agreed with the experimental data.The results showed that when the cross-association was taken into account for Helmholtz free energy,the calculated equilibrium properties could be significantly improved,and the error prediction of the three phase equilibria and triple points in low temperature regions could be avoided.

  3. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  4. CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability.

    Science.gov (United States)

    Spijkerman, Elly; Stojkovic, Slobodanka; Beardall, John

    2014-09-01

    The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3-3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CAext) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CAext activity and expressed a protein cross-reacting with CAH1 (the CAext from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CAext activity and high affinity CO2 utilization were the highest under low CO2 conditions. C. acidophila accumulated Ci and expressed the CAH1 protein under all conditions tested, and C. reinhardtii also contained substantial amounts of CAH1 protein under Pi-limitation. In conclusion, Ci utilization is optimized in C. acidophila under ecologically relevant conditions, which may enable optimal survival in its extreme Ci- and Pi-limited habitat. The exact physiological and biochemical acclimation remains to be further studied.

  5. Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2014-06-01

    Full Text Available Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Finite grid resolution can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. We test these mismatches by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are: (1 a commonly-used method that allocates emissions to gridcells with no attempt to ensure dynamical consistency with atmospheric transport; (2 an improved method that reallocates emissions to gridcells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 Tg C gridcell−1 yr−1 (−3.39 kg C m−2 yr−1 to +30.0 Tg C gridcell−1 yr−1 (+2.6 kg C m−2 yr−1 along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential

  6. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R. [CIAT, 01 - Culoz (France)

    1997-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  7. High Efficiency Refrigeration Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A refrigeration cycle is proposed for development which can reduce compressor work and increase cooling effect, by eliminating a portion of the irreversabilities...

  8. On the coupled system performance of transcritical CO2 heat pump and rankine cycle

    Science.gov (United States)

    Wang, Hongli; Tian, Jingrui; Hou, Xiujuan

    2013-12-01

    As one of the natural refrigerants, CO2 is a potential substitute for synthesized refrigerants with favorable environmental properties. In order to improve the performance of rankine cycle (RankC), the coupled system cycle (CSC) was designed and the performance was analyzed in this paper, which the CSC is combined by the RankC and the transcritical CO2 heat pump cycle with an expander. Based on thermodynamic principles, the performance analysis platform was designed and the performance analysis was employed. The results show that the average efficiency of the RankC is about 30 %, and the extraction cycle is about 32 %, while the CSC is about 39 %, and the last one is better than the others at the same parameters. With increasing of the boiler feed water temperature, the efficiencies of the three kinds of cycles show increasing trend. With increasing of pressure in conderser-evaporator or outlet temperature of gas cooler, the efficiency of the CSC shows a downward trend. Some fundamental data were obtained for increasing the RankC efficiency by waste heat recovery, and play an active role in improvement the efficiency of power plants.

  9. Explaining Dutch emissions of CO2; a decomposition analysis

    OpenAIRE

    Alex Hoen; Machiel Mulder

    2003-01-01

    Decomposition of CO2 data of the Netherlands shows that much progress has been made with reduction of CO2 emissions by changing to less CO2 intensive technologies. Moreover, demand shifted to products that are produced with less CO2 emission. Further, shifts in the inputs needed in the production process also managed to decrease the CO2 emissions. These effects, however, were more than compensated by increased CO2 emission due to economic growth. Especially growth in exports led to substantia...

  10. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    Science.gov (United States)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  11. Short-Cycle Adsorption Refrigerator

    Science.gov (United States)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  12. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  13. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Science.gov (United States)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without

  14. Characterizing environment friendly tourists

    OpenAIRE

    Reinsberg, Cicilie; Vinje, Linn Therese

    2010-01-01

    The central aim of sustainable tourism research today is to find tourists that have a low environmental impact on destinations, which can also be defined as environment friendly tourists. The majority of earlier studies on this topic have focused on characteristics of ecotourists, assuming that these are the only tourists that are environment friendly. Few have tried to identify characteristics of environment friendly tourists using a sample from the general tourist population....

  15. Tillage, mulch and N fertilizer affect emissions of CO2 under the rain fed condition.

    Science.gov (United States)

    Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng

    2013-01-01

    A two year (2010-2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010-11 relative to the year 2011-12. During cropping year 2010-11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011-12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options.

  16. Tillage, mulch and N fertilizer affect emissions of CO2 under the rain fed condition.

    Directory of Open Access Journals (Sweden)

    Sikander Khan Tanveer

    Full Text Available A two year (2010-2012 study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage, T2: (zero-tillage, T3: (rotary tillage and T4: (mold board plow tillage, 2 mulch levels i.e., M0 (no corn residue mulch and M1 (application of corn residue mulch and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha. A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010-11 relative to the year 2011-12. During cropping year 2010-11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011-12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options.

  17. CO2 Emissions Generated by a Fall AGU Meeting

    Science.gov (United States)

    osborn, G.; Malowany, K. S.; Samolczyk, M. A.

    2011-12-01

    The process of reporting on and discussing geophysical phenomena, including emissions of greenhouse gases, generates more greenhouse gases. At the 2010 fall meeting of the AGU, 19,175 delegates from 81 countries, including, for example, Eritrea, Nepal, and Tanzania, traveled a total of 156,000,000 km to congregate in San Francisco for five days. With data on home bases of participants provided by AGU, we estimated the CO2 emissions generated by travel and hotel stays of those participants. The majority of the emissions from the meeting resulted from air travel . In order to estimate the footprint of such travel, (a) distances from the largest airport in each country and American state (except Canada and California) to San Francisco were tabulated , (b) basic distances were converted to emissions using the TerraPass (TRX Travel Analytics) carbon calculator, (c) it was assumed that half the California participants would fly and half would drive, (d) it was assumed that half of Canadians would fly out of Toronto and half out of Vancouver, and (e) a fudge factor of 10% was added to air travel emissions to account for connecting flights made by some participants to the main airports in the respective countries (connecting flights are disproportionately significant because of high output during takeoff acceleration). Driving impacts were estimated with a Transport Direct/RAC Motoring Services calculator using a 2006 Toyota Corolla as a standard car. An average driving distance of 50 km to the departure airport, and from the airport upon return, was assumed. Train impacts were estimated using the assumption that all flying participants would take BART from SFO. Accomodation impacts were estimated using an Environmental Protection Agency calculator, an assumed average stay of 3 nights, and the assumption that 500 participants commuted from local residences or stayed with friends. The above assumptions lead to an estimate, which we consider conservative, of 19 million kg of

  18. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  19. From Consumption to Prosumption - Operational Cost Optimization for Refrigeration System With Heat Waste Recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Garcia, Jesus Lago; Bendtsen, Jan Dimon;

    2017-01-01

    Implementation of liquid cooling transforms a refrigeration system into a combined cooling and heating system. Reclaimed heat can be used for building heating purposes or can be sold. Carbon dioxide based refrigeration systems are considered to have a particularly high potential for becoming ecient...... heat energy producers. In this paper a CO2 system that operates in the subcritical region is examined. Modelling approach is presented, and used for operation optimisation by way of non-linear model predictive control techniques. Assuming that the heat is sold when using both objective functions...

  20. CO2-helium and CO2-neon mixtures at high pressures.

    Science.gov (United States)

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  1. On using radon-222 and CO2 to calculate regional-scale CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. I. Hirsch

    2006-11-01

    Full Text Available Because of its ubiquitous release on land and well-characterized atmospheric loss, radon-222 has been very useful for deducing fluxes of greenhouse gases such as CO2, CH4, and N2O. It is shown here that the radon-tracer method, used in previous studies to calculate regional-scale greenhouse gas fluxes, returns a weighted-average flux (the flux field F weighted by the sensitivity of the measurements to that flux field, f rather than an evenly-weighted spatial average flux. A synthetic data study using a Lagrangian particle dispersion model and modeled CO2 fluxes suggests that the discrepancy between the sensitivity-weighted average flux and evenly-weighted spatial average flux can be significant in the case of CO2, due to covariance between F and f for biospheric CO2 fluxes during the growing season and also for anthropogenic CO2 fluxes in general. A technique is presented to correct the radon-tracer derived fluxes to yield an estimate of evenly-weighted spatial average CO2 fluxes. A new method is also introduced for correcting the CO2 flux estimates for the effects of radon-222 radioactive decay in the radon-tracer method.

  2. On using radon-222 and CO2 to calculate regional-scale CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. I. Hirsch

    2007-07-01

    Full Text Available Because of its ubiquitous release on land and well-characterized atmospheric loss, radon-222 has been very useful for deducing fluxes of greenhouse gases such as CO2, CH4, and N2O. It is shown here that the radon-tracer method, used in previous studies to calculate regional-scale greenhouse gas fluxes, returns a weighted-average flux (the flux field F weighted by the sensitivity of the measurements to that flux field, f rather than an evenly-weighted spatial average flux. A synthetic data study using a Lagrangian particle dispersion model and modeled CO2 fluxes suggests that the discrepancy between the sensitivity-weighted average flux and evenly-weighted spatial average flux can be significant in the case of CO2, due to covariance between F and f for biospheric CO2 fluxes during the growing season and also for anthropogenic CO2 fluxes in general. A technique is presented to correct the radon-tracer derived fluxes to yield an estimate of evenly-weighted spatial average CO2 fluxes. A new method is also introduced for correcting the CO2 flux estimates for the effects of radon-222 radioactive decay in the radon-tracer method.

  3. CO2驱油与埋存研究进展%Advances in CO2 Displacing Oil and CO2 Sequestrated Researches

    Institute of Scientific and Technical Information of China (English)

    陈欢庆; 胡永乐; 田昌炳

    2012-01-01

    The current situation of CO2 displacing oil and CO2 sequestrated researches was reviewed. Nowadays, CO2 displacing oil had got good economic benefits outside and was carried out oil field experiment inside. And CO2 sequestrated researches were in exploring stage all over the world. The key problems in CO2 displacing oil and CO2 sequestrated researches contained five parts, such as enlarging sweep volume of EOR, carrier and medium choice of CO2 sequestrated, the formation damage in the process of CO2 displacing oil, air source, industrial coordination and overall planning. Finally, several development directions of CO2 displacing oil and CO2 sequestrated researches were proposed.%详细介绍了CO2驱油与埋存研究的现状。目前CO2驱油在国外已取得较好的经济效益,在国内正在进行矿场先导试验。而CO2埋存在国内外均处于探索阶段。CO2驱油与埋存研究中存在的问题主要包括提高采收率方面的扩大波及体积等关键问题、CO2埋存介质和方法的选择、CO2驱油对地层的伤害、CO2驱油与埋存的气源问题、CO2驱油与埋存产业协调和整体规划5大方面。指出了该项研究的发展趋势。图2表2参38

  4. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  5. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    M. Torn

    2013-02-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land-sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source-sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  6. The Relationship Between CO2 Levels and CO2 Related Symptoms Reported on the ISS

    Science.gov (United States)

    VanBaalen, M.; Law, J.; Foy, M.; Wear, M. L.; Mason, S.; Mendez, C.; Meyers, V.

    2014-01-01

    Medical Operations, Toxicology, and the Lifetime Surveillance of Astronaut Health collaborated to assess the association of CO2 levels on board the International Space Station and USOS crew reported symptoms inflight, i.e. headache and vision changes. Private Medical Conference (PMC) documents and the weekly Space Medicine Operations Team (SMOT) Notes were used to provide a robust data set of inflight medical events. All events and non-events were documented independent of CO2 levels and other potential contributors. Average (arithmetic mean) and single point maximum ppCO2 was calculated for the 24 hours and 7 days prior to the PMC or SMOT date and time provided by LSAH. Observations falling within the first 7 days of flight (147) were removed from the datasets analyzed to avoid confounding with Space Adaptation Syndrome. The final analysis was based on 1716 observations. For headache, 46 headaches were observed. CO2 level, age at launch, time inflight, and data source were all significantly associated with headache. In particular, for each 1 mmHg increase in CO2, the odds of a crewmember reporting a headache doubled. For vision changes, 29 reports of vision changes were observed. These observations were not found to be statistically associated with CO2 levels as analyzed. While the incidence of headache has was not high (3%), headaches may be an indicator of underlying increases in intracranial pressure, which may result likely from the synergy between CO2-induced cerebral vasodilatation and decreased venous drainage in microgravity. Vision changes were inconsistently reported and as a result did not align appropriately with the CO2 levels. Further analysis is needed. Our results support ongoing efforts to lower the CO2 exposure limits in spacecraft.

  7. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    OpenAIRE

    Bouallou, Chakib

    2010-01-01

    PDF file available for free at http://pubs.ub.ro/?pg=revues&rev=cscc6&num=201011&vol=1&aid=2975; International audience; This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give so...

  8. CO2 mineralization-bridge between storage and utilization of CO2.

    Science.gov (United States)

    Geerlings, Hans; Zevenhoven, Ron

    2013-01-01

    CO2 mineralization comprises a chemical reaction between suitable minerals and the greenhouse gas carbon dioxide. The CO2 is effectively sequestered as a carbonate, which is stable on geological timescales. In addition, the variety of materials that can be produced through mineralization could find applications in the marketplace, which makes implementation of the technology more attractive. In this article, we review recent developments and assess the current status of the CO2 mineralization field. In an outlook, we briefly describe a few mineralization routes, which upon further development have the potential to be implemented on a large scale.

  9. Refrigerant recycling apparatus, method and system

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.P.; Gordon, R.F.

    1993-07-13

    A refrigerant recycling apparatus for recovery and purification of refrigerant is described comprising: (a) an input conduit system for connecting a refrigerant source to the refrigerant recycling apparatus; (b) a first disposable filter capable of removing moisture and particulates from the refrigerant, said disposable filter being located such that the filter is easily accessible for service; (c) a primary heat exchanger configured so as to provide heat to the refrigerant thereby causing the refrigerant to be vaporized; (d) a secondary heat exchanger for further heating of the refrigerant to further assist in vaporization of the refrigerant; (e) an expansion valve located prior in line to said primary and secondary heat exchangers for controlling the flow of the refrigerant and reducing the pressure of the refrigerant, thereby allowing the refrigerant to expand to a predominantly gaseous state; (f) a separator for removing oil from the refrigerant; (g) a compressor pump having a vacuum producing inlet and a pressure producing outlet, the pump being a hermetically sealed, lubricated-for-life positive displacement pump; (h) a condenser for cooling the refrigerant; (i) a second disposable filter for removing moisture, acids, and other particulates from the refrigerant passing there through, said disposable filter being located in an area easily accessible for servicing; (j) an interconnecting conduit system for interconnecting the input conduit system, the first and second disposable filters, the heat exchangers, the compressor pump, the condenser, the expansion valve, and the refrigerant source; (k) a moisture indicator located after the second disposable filter, for measuring the degree of moisture present within the refrigerant after the refrigerant has flowed through the second disposable filter.

  10. Dynamic breathing of CO2 by hydrotalcite.

    Science.gov (United States)

    Ishihara, Shinsuke; Sahoo, Pathik; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Labuta, Jan; Hill, Jonathan P; Ariga, Katsuhiko; Watanabe, Ken; Yamauchi, Yusuke; Suehara, Shigeru; Iyi, Nobuo

    2013-12-04

    The carbon cycle of carbonate solids (e.g., limestone) involves weathering and metamorphic events, which usually occur over millions of years. Here we show that carbonate anion intercalated layered double hydroxide (LDH), a class of hydrotalcite, undergoes an ultrarapid carbon cycle with uptake of atmospheric CO2 under ambient conditions. The use of (13)C-labeling enabled monitoring by IR spectroscopy of the dynamic exchange between initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. Exchange is promoted by conditions of low humidity with a half-life of exchange of ~24 h. Since hydrotalcite-like clay minerals exist in Nature, our finding implies that the global carbon cycle involving exchange between lithosphere and atmosphere is much more dynamic than previously thought.

  11. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    performed satisfactorily and predicted the general behavior of the systems, but qCPA used fewer adjustable parameters to achieve similar predictions. It has been demonstrated that qCPA is a promising model which, compared to CPA, systematically improves the predictions of the experimentally determined phase......, accurate predictions of the thermodynamic properties and phase equilibria of mixtures containing CO2 are challenging with classical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is believed to be due to the fact, that CO2 has a large quadrupole moment which the classical models...... do not explicitly account for. In this thesis, in an attempt to obtain a physically more consistent model, the cubicplus association (CPA) EoS is extended to include quadrupolar interactions. The new quadrupolar CPA (qCPA) can be used with the experimental value of the quadrupolemoment...

  12. Streamer parameters and breakdown in CO2

    Science.gov (United States)

    Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T.

    2017-01-01

    CO2 is a promising gas for the replacement of SF6 in high-voltage transmission and distribution networks due to its lower environmental impact. The insulation properties of CO2 are, therefore, of great interest. For this, the properties of streamers are important, since they determine the initial discharge propagation and possibly the transition to a leader. The present experimental investigation addresses the streamer inception and propagation at ambient temperature in the pressure range 0.05-0.5 MPa at both polarities. Streamer parameters, namely the stability field, radius and velocity, were deduced in uniform and in strongly non-uniform background fields. The measured breakdown fields can then be understood by streamer propagation and streamer-to-leader transition.

  13. CO2 Impacts on the Martian Atmosphere

    Science.gov (United States)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  14. Continuous CO2 extractor and methods

    Energy Technology Data Exchange (ETDEWEB)

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  15. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  16. CO2 enhanced oil recovery economics

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, C.W.

    1983-01-01

    Realistic estimates of potential enhanced oil recovery (EOR) reserve additions range from 15 to 50 billion bbl. Oil price, technical advancements, and taxation will strongly influence how much of this potential can be realized. EOR can be implemented on a large scale in the near term, and can contribute significantly to domestic oil production by the late 1980s. The contribution of CO2 injection recovery processes to this enhancement of oil reserves is examined with regard to economics and technology.

  17. Inbound Logistics Cost and CO2 Calculations

    OpenAIRE

    Kökler, Cihan

    2010-01-01

    Business has globalized rapidly during the last decades. Distances between point of origin and point of consumption have increased as a result of globalization. Today’s increased distances mean that companies require faster logistic responses. Air transportation is preferred because it’s worldwide lead-time, of just 1-2 day, fulfill business expectations. However, transportation operation costs have risen dramatically and there are growing concerns about the high CO2 emission levels associate...

  18. Pulpotomies with CO2 laser in dogs

    Science.gov (United States)

    Figueiredo, Jose A. P.; Chavantes, Maria C.; Gioso, Marco A.; Pesce, Hildeberto F.; Jatene, Adib D.

    1995-05-01

    The aim of this study was to evaluate the clinical aspects of dental pulps submitted to shallow pulpotomy followed by CO2 laser radiation at five different procedures. For this purpose, initially 66 dogs' teeth were opened and about 2 or 3 mm of coronal dental pulp was removed. Continuous irrigation with saline solution was implemented. The teeth were randomly divided into 6 groups of 11 each. After cessation of bleeding, in group I, CO2 laser (Xanar-20, USA) was irradiated for 1 second at a power of 5 watts; in group II, 2 seconds at 3 watts; in Group III, 2 seconds at 5 watts; in Group IV, 1 second at 3 watts; in Group V, a continuous mode at 3 watts; Group VI served as a control, with no laser irradiation. The results showed no clinical differences between the 3 W and 5 W powers. Time period of irradiation exposition influenced definitively the clinical appearance of the dental pulps. Groups I and IV (1 second) were unable to stop the bleeding, which persisted over 15 minutes for all teeth. This may be due to the intense heat generated by CO2 laser, causing vasodilatation. Groups II and III displayed a similar appearance, but bleeding stopped in about 10 minutes. Group V (continuous mode) had no bleeding after irradiation, but a plasma-like liquid would come out for almost 2 minutes. When comparing to the control (Group VI), all the pulps would assume a jelly-like aspect, with black granulated tissue on the surface, covering totally the pulps of Group V and partially the other groups. The histological results will be discussed in a further study. From the data obtained, it seems that CO2 laser irradiation for pulpotomies should be done in a continuous mode, for clinical convenience in terms of time taken and effective irradiation.

  19. CO2 cooling for HEP experiments

    CERN Document Server

    Verlaat; Van Lysebetten, A

    2008-01-01

    The new generation silicon detectors require more efficient cooling of the front-end electronics and the silicon sensors themselves. To minimize reverse annealing of the silicon sensors the cooling temperatures need to be reduced. Other important requirements of the new generation cooling systems are a reduced mass and a maintenance free operation of the hardware inside the detector. Evaporative CO2 cooling systems are ideal for this purpose as they need smaller tubes than conventional systems. The heat transfer capability of evaporative CO2 is high. CO2 is used as cooling fluid for the LHCb-VELO and the AMS-Tracker cooling systems. A special method for the fluid circulation is developed at Nikhef to get a very stable temperature of both detectors without any active components like valves or heaters inside. This method is called 2-phase Accumulator Controlled Loop (2PACL) and is a good candidate technology for the design of the future cooling systems for the Atlas and CMS upgrades.

  20. Towards Overhauser DNP in supercritical CO2

    Science.gov (United States)

    van Meerten, S. G. J.; Tayler, M. C. D.; Kentgens, A. P. M.; van Bentum, P. J. M.

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for 1H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in 1H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4 ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4 T on high pressure superheated water and model systems such as toluene in high pressure CO2.

  1. CO2 flux geothermometer for geothermal exploration

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.

    2017-09-01

    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  2. Towards Overhauser DNP in supercritical CO2.

    Science.gov (United States)

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2.

  3. Friends' Discovery Camp

    Science.gov (United States)

    Seymour, Seth

    2008-01-01

    This article features Friends' Discovery Camp, a program that allows children with and without autism spectrum disorder to learn and play together. In Friends' Discovery Camp, campers take part in sensory-rich experiences, ranging from hands-on activities and performing arts to science experiments and stories teaching social skills. Now in its 7th…

  4. CO2-neutral cities. Apeldoorn, Heerhugowaard, Tilburg [Netherlands]; CO2-neutrale steden. Apeldoorn, Heerhugowaard, Tilburg

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J.; Braber, K.; Voskuilen, Th.; Manders, H.; Rovers, V.

    2007-11-16

    The three Dutch cities of Apeldoorn, Heerhugowaard and Tilburg asked BuildDesk to undertake a survey of the options for realizing a CO2 neutral energy supply in their cities. In principle, this entails direct energy consumption for living, working (incl. industry) and mobility. With the developed 'Road maps towards CO2 neutral' each city holds their own guideline with which they can suit the action to the word. [mk]. [Dutch] De drie steden Apeldoorn, Heerhugowaard en Tilburg hebben BuildDesk de opdracht gegeven een verkenning uit te voeren naar de mogelijkheid om een CO2-neutrale energievoorziening in hun stad te realiseren. Daarbij gaat het in principe om het directe energiegebruik voor wonen, werken (incl. industrie) en mobiliteit. Met de ontwikkelde 'Roadmaps naar CO2-neutraal' heeft elke stad een eigen richtsnoer in handen waarmee ze actief de daad bij het woord kan voegen.

  5. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    Science.gov (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.

  6. Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design

    Science.gov (United States)

    Andrews, A. E.; Ryerson, T. B.; Peischl, J.; Parrish, D. D.; Trainer, M.; Tans, P. P.

    2011-12-01

    Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design A. Andrews, T. Ryerson, J. Peischl, D. Parrish, M. Trainer, P. Tans An extensive dataset of CO2 concentrations including enhancements in point and area source plumes is available from in situ measurements collected using the NOAA P-3 and NCAR Electra research aircraft during seven major field projects from 1999 through 2010. Research flights sampled emission plumes from coal-, oil-, and natural gas-fired electric utility power plants, industrial facilities, and urban areas. Plume sampling often included horizontal transects at several altitudes and multiple distances downwind. CO2 data from crosswind transects upwind and downwind, coupled with ancillary measurements of co-emitted nitric oxide, nitrogen dioxide and sulfur dioxide, along with plume location, and wind speed and direction permit unambiguous attribution and quantification of atmospheric plumes from individual sources. Certain point sources were revisited on multiple flights over the course of 1-2 month long field projects and on successive field projects spanning several years. Sampling occurred primarily in the summertime, daytime continental boundary layer, with some plume studies performed after dark and in the spring, fall, and winter seasons. The data provide rigorously calibrated, measurement-based constraints on the expected range of atmospheric CO2 plume enhancements that can be used to assess satellite sensor concepts. Crosswind near-field (~5 km) transects in the summer daytime mixed-layer downwind of the strongest point sources were characterized by peak plume CO2 mixing ratio enhancements >100 ppm above background for the 100-m spatial averages reported from the moving aircraft. On many flights, the aircraft tracked such emissions plumes beyond 150 km downwind, or up to 10 hours of transport time, until plume enhancements were indistinguishable from background variability in CO2

  7. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  8. Entornos Agroambientales: Almacenes Naturales De Co2.

    Directory of Open Access Journals (Sweden)

    Juan Isidro Sánchez Leyva

    2005-01-01

    Full Text Available Cultivos únicos eternos y la extinción de especies; contaminaciones atmosféricas, edáficas e hídricas; la ampliación del agujero de la capa de Ozono, etc. unido al mal uso de la tierra contribuyen al empobrecimiento de comunidades y naciones. Se evaluaron sistemas de cultivos múltiples como sumideros naturales o bancos de CO2. Y se intercalaron leguminosas por sus conocidos y probados beneficios y otras especies anuales en árboles y arbustos conducidos desde 1988-90 en el macizo montañoso Sagüa-Baracoa, Gran Tierra de Sabaneta, El Salvador y valle Guaso provincia Guantánamo; Calabaza de Sagüa de Tánamo y Mayarí, Holguín. Diseñándose 3 ó 4 réplicas según las variantes y laderas y utilizados rangos múltiples de Newman-Kell (P<1%. Para el cálculo de biomasa vegetal se aplicaron fórmulas midiéndose la necromasa bajo el arbolado y el C orgánico edáfico. Se determinó el valor o índice relativo de biomasa, el índice relativo de banco de CO2 y el potencial mínimo de retención del CO2 en el sistema según la edad del cultivo; observándose el suelo erosionado en el predio mediante simple fórmula propuesta. Se observaron formas ecológicas de labor y cultivo. La canavalia fue el cultivo más efectivo considerando la respuesta del C edáfico. Se tuvo en cuenta la productividad y el banco de CO2 por el efecto positivo de ambos factores sobre el medio y dada la relevancia creciente de la reducción de las emisiones de CO2, a la vez que se evita la sobre-explotación y la deforestación. Se significó la necesidad de fajas interarboladas en monocultivos anuales.

  9. Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology☆

    Institute of Scientific and Technical Information of China (English)

    Jianghua Ling; Penny Xiao; Augustine Ntiamoah; Dong Xu; Paul Webley; Yuchun Zhai

    2016-01-01

    Different VSA (Vacuum Swing Adsorption) cycles and process schemes have been evaluated to find suitable process configurations for effectively separating CO2 from flue gases from different industrial sectors. The cycles were studied using an adsorption simulator developed in our research group, which has been suc-cessfully used to predict experimental results over several years. Commercial zeolite APGIII and granular ac-tivated carbon were used as the adsorbents. Three-bed VSA cycles with-and without-product purge and 2-stage VSA systems have been investigated. It was found that for a feed gas containing 15%CO2 (representing flue gas from power plants), high CO2 purities and recoveries could be obtained using a three-bed zeolite APGIII VSA unit for one stage capture, but with more stringent conditions such as deeper vacuum pressures of 1–3 kPa. 2-stage VSA process operated in series allowed us to use simple process steps and operate at more realistic vacuum pressures. With a vacuum pressure of 10 kPa, final CO2 purity of 95.3%with a recov-ery of 98.2%were obtained at specific power consumption of 0.55 MJ·(kg CO2)−1 from feed gas containing 15%CO2. These numbers compare very well with those obtained from a single stage process operating at 1 kPa vacuum pressure. The feed CO2 concentration was very influential in determining the desorption pressure necessary to achieve high separation efficiency. For feed gases containing N30%CO2, a single-stage VSA capture process operating at moderate vacuum pressure and without a product purge, can achieve very high product purities and recoveries.

  10. CO2 for enhanced oil recovery and secure storage of CO2 in reservoirs

    OpenAIRE

    Li, Yunhang

    2015-01-01

    CO2-EOR(Enhanced Oil Recovery) is an effective and useful technology that can not only increase the oil production to meet the increasing need for energy around the world, but also mitigate the negtive influence of global green house effect. Different categories of oil recovery methods including primary recovery, secondary recovery, and EOR technologies are introduced at first. Then the history, global distribution, screening criteria, mechanisms, advantages and disadvantages of CO2-EOR are d...

  11. CO2 Sequestration within Spent Oil Shale

    Science.gov (United States)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  12. Characterization of CO2 leakage into the freshwater body

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Shao, H.

    2013-01-01

    urrent research into CO2 capture and storage is dominated by improving the CO2 storage capacity. In this context, risk related to CO2 leakage is an important issue which may cause environmental problems, particularly when freshwater resources nearby are intruded by the CO2 plume. In this work, th...

  13. Characterization of CO2 leakage into the freshwater body

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Shao, H.

    2013-01-01

    urrent research into CO2 capture and storage is dominated by improving the CO2 storage capacity. In this context, risk related to CO2 leakage is an important issue which may cause environmental problems, particularly when freshwater resources nearby are intruded by the CO2 plume. In this work...

  14. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Potential Improvements of Supercritical CO2 Brayton Cycle by Modifying Critical Point of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    A Sodium-cooled Fast Reactor (SFR) is one of strong candidates for a next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a sodium water reaction, which can deteriorate the safety of a SFR. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Helium or Supercritical Carbon dioxide (S-CO2) as working fluids can be an alternative approach to improve the current SFR design. As in a helium cycle, there has been an investigation to modify thermo-physical properties to increase the efficiency of the cycle and reduce the size of turbomachineries. Particularly, He-Xe or He-N2 binary mixture were successful to decrease the stages of turbomachines due to the increment of molecular weight of gas mixture than that of pure helium. Similar to the case of helium, CO2 has a potential to modify its thermo-physical properties by mixing with other gases. For instance, it was reported that critical point of CO2 can be shifted by mixing with different gases. Since, the efficiency of a S-CO2 cycle is limited to the critical point of CO2, the shift in critical point implies that there is a possibility of improving the cycle efficiency than the current design. This paper presents the results of a preliminary analysis to identify the effects of CO2 critical point modification on the Brayton cycle performance.

  16. CO2 transport in normovolemic anemia: complete compensation and stability of blood CO2 tensions.

    Science.gov (United States)

    Deem, S; Alberts, M K; Bishop, M J; Bidani, A; Swenson, E R

    1997-07-01

    Isovolemic hemodilution does not appear to impair CO2 elimination nor cause CO2 retention despite the important role of red blood cells in blood CO2 transport. We studied this phenomenon and its physiological basis in eight New Zealand White rabbits that were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Isovolemic anemia was induced by simultaneous blood withdrawal and infusion of 6% hetastarch in sequential stages; exchange transfusions ranged from 15-30 ml in volume. Variables measured after each hemodilution included hematocrit (Hct), arterial and venous blood gases, mixed expired PCO2 and PO2, and blood pressure; also, O2 consumption, CO2 production, cardiac output (Q), and physiological dead space were calculated. Data were analyzed by comparison of changes in variables with changes in Hct and by using the model of capillary gas exchange described by Bidani (J. Appl. Physiol. 70: 1686-1699, 1991). There was complete compensation for anemia with stability of venous and arterial PCO2 between Hct values of 36 +/- 3 and 12 +/- 1%, which was predicted by the mathematical model. Over this range of hemodilution, Q rose 50%, and the O2 extraction ratio increased 61% without a decline in CO2 production or a rise in alveolar ventilation. The dominant compensations maintaining CO2 transport in normovolemic anemia include an increased Q and an augmented Haldane effect arising from the accompanying greater O2 extraction.

  17. CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor.

    Science.gov (United States)

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan

    2016-08-16

    Metallic nanoparticles (NPs) coated with stimuli-responsive polymers (SRPs) exhibit tunable optical properties responding to external stimuli and show promising sensing applications. We present a new CO2-responsive polymer, poly(N-(3-amidino)-aniline) (PNAAN), coated gold NPs (AuNPs) synthesized by directly reducing HAuCl4 with a CO2-responsive monomer N-(3-amidino)-aniline (NAAN). The amidine group of PNAAN can be protonated into a hydrophilic amidinium group by dissolved CO2 (dCO2). This induces the PNAAN to swell and detach from the AuNP surface, resulting in AuNP aggregation and color change. By monitoring the UV absorbance change of AuNPs, a sensitive dCO2 sensor with a linear range of 0.0132 to 0.1584 hPa and a limit of detection (LOD) of 0.0024 hPa is developed. This method shows dramatic improvement in sensitivity and convenience of sample preparation compared with the previously reported dCO2 sensor.

  18. Fundamental study of CO2 control technologies and policies in China

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; ZHANG XiLiang; GAO Lin; YUE Li; HE JianKun; CAI RuiXian

    2008-01-01

    The technical roadmap and policies for CO2 mitigation suitable for China are a common center of attention in the fields of energy,environment,and management science in the country.Emphasizing interaction between technical research and policy research,this work discovers the potential breakthrough in the integrated field.The technical difficulties of recovering CO2 are pointed out,the mechanism of combining CO2 recovery with energy conversion is investigated,and the basic principle for integrating an environmental-friendly energy system is discussed.Moreover,the formulation of a new energy system that can recover CO2 with very low or even zero energy penalty is proposed,while the assessment methodology and model system for the technical roadmap of CO2 emission control are devel-oped.Finally,a new technical roadmap constructing an energy network suitable for China is proposed,which may provide a new way for the development of sustainable energy and environment technologies.

  19. Theoretical analysis of a CO-NH cascade refrigeration system for cooling applications at low-temperatures

    OpenAIRE

    2009-01-01

    Theoretical analysis of a CO2-NH3 cascade refrigeration system for cooling applications at low-temperatures correspondance: Corresponding author. Tel.: +34 986 812605; fax: +34 986 811995. (Fernandez-Seara, Jose) (Fernandez-Seara, Jose) Area de Maquinas y Motores Termicos--> , E.T.S. de Ingenieros Industriales--> , University of Vigo--> , Campus Lagoas-Marcosende No 9--> , 36310 Vigo--> ...

  20. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    OpenAIRE

    2016-01-01

    The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydr...

  1. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    Directory of Open Access Journals (Sweden)

    Upadhyay Praveenkumar

    2016-10-01

    Full Text Available The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

  2. Process-dependent residual trapping of CO2 in sandstone

    Science.gov (United States)

    Zuo, Lin; Benson, Sally M.

    2014-04-01

    This paper demonstrates that the nature and extent of residual CO2 trapping depend on the process by which the CO2 phase is introduced into the rock. We compare residual trapping of CO2 in Berea Sandstone by imbibing water into a core containing either exsolved CO2 or CO2 introduced by drainage. X-ray computed tomography measurements are used to map the spatial distribution of CO2 preimbibition and postimbibition. Unlike during drainage where the CO2 distribution is strongly influenced by the heterogeneity of the rock, the distribution of exsolved CO2 is comparatively uniform. Postimbibition, the CO2 distribution retained the essential features for both the exsolved and drainage cases, but twice as much residual trapping is observed for exsolved CO2 even with similar preimbibition gas saturations. Residually trapped exsolved gas also disproportionately reduced water relative permeability. Development of process-dependent parameterization will help better manage subsurface flow processes and unlock benefits from gas exsolution.

  3. The Werkendam natural CO2 accumulation: An analogue for CO2 storage in depleted oil reservoirs

    Science.gov (United States)

    Bertier, Pieter; Busch, Andreas; Hangx, Suzanne; Kampman, Niko; Nover, Georg; Stanjek, Helge; Weniger, Philipp

    2015-04-01

    The Werkendam natural CO2 accumulation is hosted in the Röt (Early Triassic) sandstone of the West Netherlands Basin, at a depth of 2.8 km, about 20 km south-east of Rotterdam (NL). This reservoir, in a fault-bound structure, was oil-filled prior to charging with magmatic CO2 in the early Cretaceous. It therefore offers a unique opportunity to study long-term CO2-water-rock interactions in the presence of oil. This contribution will present the results of a detailed mineralogical and geochemical characterisation of core sections from the Werkendam CO2 reservoir and an adjacent, stratigraphically equivalent aquifer. X-ray diffraction combined with X-ray fluorescence spectrometry revealed that the reservoir samples contain substantially more feldspar and more barite and siderite than those from the aquifer, while the latter have higher hematite contents. These differences are attributed to the effects hydrocarbons and related fluids on diagenesis in the closed system of the CO2 reservoir versus the open-system of the aquifer. Petrophysical analyses yielded overall higher and more anisotropic permeability for the reservoir samples, while the porosity is overall not significantly different from that of their aquifer equivalents. The differences are most pronounced in coarse-grained sandstones. These have low anhydrite contents and contain traces of calcite, while all other analyzed samples contain abundant anhydrite, dolomite/ankerite and siderite, but no calcite. Detailed petrography revealed mm-sized zones of excessive primary porosity. These are attributed to CO2-induced dissolution of precompactional, grain-replacive anhydrite cement. Diagenetic dolomite/ankerite crystals are covered by anhedral, epitaxial ankerite, separated from the crystals by bitumen coats. Since these carbonates were oil-wet before CO2-charging, the overgrowths are interpreted to have grown after CO2-charging. Their anhedral habit suggests growth in a 2-phase water-CO2 system. Isotopic

  4. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    Directory of Open Access Journals (Sweden)

    Saravana Periaswamy Sivagnanam

    2015-05-01

    Full Text Available The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri was extracted by using environmentally friendly supercritical CO2 (SC-CO2 with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v. The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  5. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction.

    Science.gov (United States)

    Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-05-29

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  6. THERMODYNAMIC ANALYSIS OF CO2 DIRECT HYDROGENATION REACTIONS

    Institute of Scientific and Technical Information of China (English)

    Cao Fahai; Liu Dianhua; Hou Qiushi; Fang Dingye

    2001-01-01

    CO2 hydrogenation is one of important routes for the activation and effective utilization of CO2. In this paper, eighteen CO2 direct hydrogenation reactions are listed and their reaction heats and equilibrium constants are calculated. On the assumption that the reactions of CO2 and H2 are in stoichiometric ratio and the amount of whole reactants is one mole, the equilibrium conversions of CO2 are obtained.

  7. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  8. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  9. Refrigeration system having dual suction port compressor

    Science.gov (United States)

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  10. A review of pulse tube refrigeration

    Science.gov (United States)

    Radebaugh, Ray

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  11. Method for tracing simulated CO2 leak in terrestrial environment with a 13CO2 tracer

    Science.gov (United States)

    Moni, Christophe; Rasse, Daniel

    2013-04-01

    Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, developing regulations and guidance throughout the world (e.g. the EC Directive and the USEPA Vulnerability Evaluation Framework) recognize the importance of assessing the potential for environmental impacts from CO2 storage. RISCS, a European (FP7) project, aims to improve understanding of those impacts that could plausibly occur in the hypothetical case that unexpected leakage occurs. As part of the RISCS project the potential impacts that an unexpected CO2 leaks might have on a cropland ecosystems was investigated. A CO2 exposure field experiment based on CO2 injection at 85 cm depth under an oats culture was designed. To facilitate the characterization of the simulated leaking zone the gas used for injection was produced from natural gas and had a δ13C of -46‰. The aim of the present communication is to depict how the injected gas was traced within the soil-vegetation-atmosphere continuum using 13CO2 continuous cavity ring-down spectrometry (CRDS). Four subsurface experimental injection plots (6m x 3m) were set up. In order to test the effects of different intensity of leakage, the field experiment was designed as to create a longitudinal CO2 gradient for each plot. For this purpose gas supply pipes were inserted at one extremity of each plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under the clayey plough layer of Norwegian moraine soils. Soil CO2 concentration and isotopic signature were punctually recorded: 1) in the soil at 20 cm depth at 6 positions distributed on the central transect, 2) at the surface following a (50x50 cm) grid sampling pattern, and 3) in the canopy atmosphere at 10, 20, 30 cm along three longitudinal transects (seven sampling point per transect). Soil CO2 fluxes and isotopic signature were finally

  12. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  13. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes.

    Science.gov (United States)

    Lv, Bihong; Guo, Bingsong; Zhou, Zuoming; Jing, Guohua

    2015-09-01

    Though the mechanism of MEA-CO2 system has been widely studied, there is few literature on the detailed mechanism of CO2 capture into MEA solution with different CO2 loading during absorption/desorption processes. To get a clear picture of the process mechanism, (13)C nuclear magnetic resonance (NMR) was used to analyze the reaction intermediates under different CO2 loadings and detailed mechanism on CO2 absorption and desorption in MEA was evaluated in this work. The results demonstrated that the CO2 absorption in MEA started with the formation of carbamate according to the zwitterion mechanism, followed by the hydration of CO2 to form HCO3(-)/CO3(2-), and accompanied by the hydrolysis of carbamate. It is interesting to find that the existence of carbamate will be influenced by CO2 loading and that it is rather unstable at high CO2 loading. At low CO2 loading, carbamate is formed fast by the reaction between CO2 and MEA. At high CO2 loading, it is formed by the reaction of CO3(-)/CO3(2-) with MEA, and the formed carbamate can be easily hydrolyzed by H(+). Moreover, CO2 desorption from the CO2-saturated MEA solution was proved to be a reverse process of absorption. Initially, some HCO3(-) were heated to release CO2 and other HCO3(-) were reacted with carbamic acid (MEAH(+)) to form carbamate, and the carbamate was then decomposed to MEA and CO2.

  14. Anthropogenic CO2 emissions in Africa

    Directory of Open Access Journals (Sweden)

    R. A. Houghton

    2008-11-01

    Full Text Available An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2 emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y−1 for the period 2000–2005. These emissions resulted from the combustion of fossil fuels (260 TgC y−1 and land use change (240 TgC y−1. Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000–2005 growth rate in African fossil fuel emissions was 3.2% y−1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y−1 compared to the global average of 1.2 tC y−1. The average amount of carbon (C emitted as CO2 to produce 1 US $ of Gross Domestic Product (GDP in Africa in 2005 was 187 gC/$, close to the world average of 199 gC/$. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  15. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  16. CO2刺激响应聚合物%CO2-Stimuli Responsive Polymers

    Institute of Scientific and Technical Information of China (English)

    冯岸超; 闫强; 袁金颖

    2012-01-01

    CO2刺激响应性聚合物是新近发展起来的一类智能型刺激响应聚合物,是指在通入和排出CO2后,聚合物性质能够发生可逆性变化的新型聚合物。由于调控过程中仅仅涉及CO2以及一些惰性气体而不引入其他杂质,因此具有多方面的潜在应用价值。本文调研了这方面的工作,综述了几类CO2刺激响应聚合物的合成及其自组装,并指出了CO2刺激响应聚合物的应用前景和发展方向。%CO2-stimuli responsive polymers are a class of newly developed smart stimuli responsive polymers, which usually refers to the polymers possessing reversible changes upon admission and emission of C02. Since the regulation process only involves CO2 and inert gases, without the introduction of other impurities, there are many potential applications in this field. This article summarized recent research progress on the preparation of C02- stimuli responsive polymers, followed by the discussion of their self-assembly, classifying in accordance with the C02-switchable groups, such as primary amine, amide and some specific polymer chains. The development prospect of this research field and its potential applications are also discussed.

  17. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...... the hourly load for refrigeration for the following 42 hours is forecasted. The forecast models are adaptive linear time-series models which are fitted with a computationally efficient recursive least squares scheme. The dynamic relations between the inputs and the load is modeled by simple transfer...

  18. Energy efficient Supermarket Refrigeration with Ejectors

    OpenAIRE

    Calvo Hoyas, Raul

    2014-01-01

    Nowadays, the use of R744 or carbon dioxide has been increased as a working fluid in many refrigerant systems. Nevertheless, one disadvantage for use this refrigerant is the thermodynamic losses produced in the refrigerant system when the fluid is throttled. These losses are increased if the refrigerant system is working in transcritical operation conditions. But, there is an option and it consists of using an ejector instead of the conventional expansion valve in order to reduce the energy l...

  19. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  20. Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture.

    Science.gov (United States)

    Russo, Maria Elena; Olivieri, Giuseppe; Capasso, Clemente; De Luca, Viviana; Marzocchella, Antonio; Salatino, Piero; Rossi, Mosè

    2013-09-10

    Biomimetic CO2 capture includes environmentally friendly solutions based on carbonic anhydrase (CA), an enzyme that increases CO2 absorption rate in conventional acid-gas scrubbing processes. The present contribution reports the characterization of a new recombinant carbonic anhydrase, SspCA, isolated from the thermophile bacterium Sulphurhydrogenibium yellowstonense sp. YO3AOP1. The kinetics of SspCA was characterized in terms of first order CO2 hydration rate according to a procedure based on CO2 absorption tests in a stirred cell apparatus. The first order kinetic constant at 25°C was 9.16 × 10(6) L/(mols). An appropriate investigation on SspCA stability was carried out to assess its long-term resistance to high temperatures as in all capture processes based on absorption/vacuum-desorption cycles. Its half-life was 53 and 8 days at 40 °C and 70 °C, respectively.

  1. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...

  2. Novel materials for laser refrigeration

    Science.gov (United States)

    Hehlen, Markus P.

    2009-02-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which hωmax 100 ppb are believed to be the main reason for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF3-LiF are considered as alternatives to ZBLAN, and the crystalline system KPb2Cl5 :Dy3+ is identified as a prime candidate for high-efficiency laser cooling.

  3. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels

    Science.gov (United States)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert

    2017-04-01

    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2

  4. Solar Refrigerators Store Life-Saving Vaccines

    Science.gov (United States)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  5. Heat driven refrigeration cycle at low temperatures

    Institute of Scientific and Technical Information of China (English)

    HE Yijian; HONG Ronghua; CHEN Guangming

    2005-01-01

    Absorption refrigeration cycle can be driven by low-grade thermal energy, such as solar energy, geothermal energy and waste heat. It is beneficial to save energy and protect environment. However, the applications of traditional absorption refrigeration cycle are greatly restricted because they cannot achieve low refrigeration temperature. A new absorption refrigeration cycle is investigated in this paper, which is driven by low-grade energy and can get deep low refrigeration temperature. The mixture refrigerant R23+R134a and an absorbent DMF are used as its working fluid. The theoretical results indicate that the new cycle can achieve -62℃ refrigeration temperature when the generation temperature is only 160℃. This refrigeration temperature is much lower than that obtained by traditional absorption refrigeration cycle. Refrigeration temperature of -47.3℃ has been successfully achieved by experiment for this new cycle at the generation temperature of 157℃, which is the lowest temperature obtained by absorption refrigeration system reported in the literature up to now. The theoretical and experimental results prove that new cycle can achieve rather low refrigeration temperature.

  6. 超临界CO2与润滑油体系的分子动力学研究%Molecular Dynamics Simulation on the Hybrid System of Supercritical CO2 with Lubricating Oil

    Institute of Scientific and Technical Information of China (English)

    雷佩玉; 李赵; 刘东来; 王永庆; 靳遵龙

    2016-01-01

    应用平衡分子动力学模拟的方法,研究了CO2流体在超临界状态下的微观结构和宏观性能。结果表明,超临界CO2的键长和键角分布基本符合高斯分布规律,超临界CO2系统中二聚体的比例随着压力的增加而发生变化。当系统内压力大于9 MPa时,T形二聚体的比例较大,推断出T形二聚体的存在使得CO2在超临界状态下的物理性质变化剧烈。同时研究了润滑油对超临界CO2的微观特性和传热的影响,结果表明,一定含量的润滑油的混入,改变了CO2团簇体的分布比例,从而给制冷循环系统的流动与换热带来负面影响。%Equilibrium molecular dynamics ( EMD) simulations were carried out to investigate the micro-mechanism and macro performance of CO2 fluid in the supercritical state. The results showed that the bond length and bond angle distributions of supercritical CO2 were Gaussian distribution basically. The dimers’ proportion of supercritical CO2 system changed with the increase of pressure. T-type dimer had high share within the system when pressure was higher than 9 MPa. It could be inferred that T-type dimer led to CO2 physical properties changing violently in supercritical state. The effect that lubricating oil made on microstructure and heat transfer of supercritical CO2 was also investigated. The results showed that a certain concentration of lubricating oil would change the distribution ratio of CO2 cluster body. Then it would have a negative impact on flow and heat transfer of the refrigeration cycle system.

  7. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...... simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  8. Translating crustacean biological responses from CO2 ...

    Science.gov (United States)

    Many studies of animal responses to ocean acidification focus on uniformly conditioned age cohorts that lack complexities typically found in wild populations. These studies have become the primary data source for predicting higher level ecological effects, but the roles of intraspecific interactions in re-shaping biological, demographic and evolutionary responses are not commonly considered. To explore this problem, I assessed responses in the mysid Americamysis bahia to bubbling of CO2-enriched and un-enriched air into the seawater supply in flow-through aquariums. I conducted one experiment using isolated age cohorts and a separate experiment using intact populations. The seawater supply was continuously input from Narragansett Bay (Rhode Island, USA). The 28-day cohort study was maintained without resource or spatial limitations, whereas the 5-month population study consisted of stage-structured populations that were allowed to self-regulate. These differences are common features of experiments and were intentionally retained to demonstrate the effect of methodological approaches on perceptions of effect mechanisms. The CO2 treatment reduced neonate abundance in the cohort experiment (24% reduction due to a mean pH difference of −0.27) but not in the population experiment, where effects were small and were strongest for adult and stage 1 survival (3% change due to a mean pH difference of −0.25). I also found evidence of competition in the population exper

  9. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  10. On Leakage from Geologic Storage Reservoirs of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  11. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  12. CO(2) Inhibits Respiration in Leaves of Rumex crispus L.

    Science.gov (United States)

    Amthor, J S; Koch, G W; Bloom, A J

    1992-02-01

    Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO(2) partial pressure of about 35 pascals. Apparent respiration rate (CO(2) efflux in the dark) of expanded leaves was then measured at ambient CO(2) partial pressure of 5 to 95 pascals. Calculated intercellular CO(2) partial pressure was proportional to ambient CO(2) partial pressure in these short-term experiments. The CO(2) level strongly affected apparent respiration rate: a doubling of the partial pressure of CO(2) typically inhibited respiration by 25 to 30%, whereas a decrease in CO(2) elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO(2) (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated.

  13. Investigation of CO2 precursors in roasted coffee.

    Science.gov (United States)

    Wang, Xiuju; Lim, Loong-Tak

    2017-03-15

    Two CO2 formation pathways (chlorogenic acid (CGA) degradation and Maillard reaction) during coffee roasting were investigated. CGA is shown not a major contributor to CO2 formation, as heating of this compound under typical roasting conditions did not release a large quantity of CO2. However, heating of a CGA moiety, caffeic acid, resulted in high yield of CO2 (>98%), suggesting that CGA hydrolysis could be the rate limiting step for CO2 formation from CGA. A large amount of CO2 was detected from glycine-sucrose model system under coffee roasting conditions, implying the importance of Maillard reactions in CO2 formation. Further studies on the heating of various components isolated from green coffee beans showed that CO2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO2 was formed from thermal reactions of lower molecular weight compounds that represent ∼25% by weight in green coffee.

  14. My Best Friend

    Institute of Scientific and Technical Information of China (English)

    刘清华; 郭克晴

    2002-01-01

    I am a middle school student,study in Yaoxia Middle School. I have a lot of good friends in this school. One of them, Li Kelong is my best friend. We are both fourteen years old. He has a round face and two big bright eyes. He is much stronger than me, but I am taller than him. I often call him Kelong for short.

  15. Reducing CO2 from shipping – do non-CO2 effects matter?

    Directory of Open Access Journals (Sweden)

    M. S. Eide

    2013-04-01

    Full Text Available Shipping is a growing sector in the global economy, and it contributions to global CO2 emissions are expected to increase. CO2 emissions from the world shipping fleet will likely be regulated in the near future, and studies have shown that significant emission reductions can be achieved at low cost. Regulations are being discussed for both existing ships as well as for future additions to the fleet. In this study a plausible CO2 emission reduction inventory is constructed for the cargo fleet existing in 2010, as well as for container ships, bulk ships and tankers separately. In the reduction inventories, CO2 emissions are reduced by 25–32% relative to baseline by applying 15 technical and operational emission reduction measures in accordance with a ship-type-specific cost-effectiveness criterion, and 9 other emission compounds are changed as a technical implication of reducing CO2. The overall climate and environmental effects of the changes to all 10 emission components in the reduction inventory are assessed using a chemical transport model, radiative forcing (RF models and a simple climate model. We find substantial environmental and health benefits with up to 5% reduction in surface ozone levels, 15% reductions in surface sulfate and 10% reductions in wet deposition of sulfate in certain regions exposed to heavy ship traffic. The major ship types show distinctly different contributions in specific locations. For instance, the container fleet contributes 50% of the sulfate decline on the west coast of North America. The global radiative forcing from a 1 yr emission equal to the difference between baseline and reduction inventory shows an initial strong positive forcing from non-CO2 compounds. This warming effect is due to reduced cooling by aerosols and methane. After approximately 25 yr, the non-CO2 forcing is balanced by the CO2 forcing. For the global mean temperature change, we find a shift from warming to cooling after approximately 60

  16. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    CERN Document Server

    Bouallou, Chakib

    2010-01-01

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  17. Reducing CO2 from shipping - do non-CO2 effects matter?

    Science.gov (United States)

    Eide, M. S.; Dalsøren, S. B.; Endresen, Ø.; Samset, B.; Myhre, G.; Fuglestvedt, J.; Berntsen, T.

    2013-04-01

    Shipping is a growing sector in the global economy, and it contributions to global CO2 emissions are expected to increase. CO2 emissions from the world shipping fleet will likely be regulated in the near future, and studies have shown that significant emission reductions can be achieved at low cost. Regulations are being discussed for both existing ships as well as for future additions to the fleet. In this study a plausible CO2 emission reduction inventory is constructed for the cargo fleet existing in 2010, as well as for container ships, bulk ships and tankers separately. In the reduction inventories, CO2 emissions are reduced by 25-32% relative to baseline by applying 15 technical and operational emission reduction measures in accordance with a ship-type-specific cost-effectiveness criterion, and 9 other emission compounds are changed as a technical implication of reducing CO2. The overall climate and environmental effects of the changes to all 10 emission components in the reduction inventory are assessed using a chemical transport model, radiative forcing (RF) models and a simple climate model. We find substantial environmental and health benefits with up to 5% reduction in surface ozone levels, 15% reductions in surface sulfate and 10% reductions in wet deposition of sulfate in certain regions exposed to heavy ship traffic. The major ship types show distinctly different contributions in specific locations. For instance, the container fleet contributes 50% of the sulfate decline on the west coast of North America. The global radiative forcing from a 1 yr emission equal to the difference between baseline and reduction inventory shows an initial strong positive forcing from non-CO2 compounds. This warming effect is due to reduced cooling by aerosols and methane. After approximately 25 yr, the non-CO2 forcing is balanced by the CO2 forcing. For the global mean temperature change, we find a shift from warming to cooling after approximately 60 yr. The major ship

  18. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  19. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    measured at 2 m above the ground by the monitoring station. Air is pumped through a 9.5-mm-diameter plastic tube (PFA, Swagelok) to a CO2 analyser located in a container box. Container box (Containex) is 1.5 m wide, 1.2 m deep and 2.2 m high, designed as a mobile measuring room which is field deployable, only electric power is required. A 15 micron pore size stainless steel Tee-Type (Swagelok) particle filter is located at the inlet of the sampler tube. Diaphragm pump (KNF) is used to draw air continuously through the sampling tube from monitoring level at flow rate of ~ 2 L/min. After leaving the pump, the air at 5 psig overpressure enters a glass trap for liquid water that is cooled in a regular household refrigerator, to dry the air to a dew point of 3°-4°C. Liquid water is forced out through an orifice at the bottom of the trap. The air sample inlet tube and the standard gases (Linde Hungary) are connected to miniature solenoid valves (S Series, ASCO Numatics) in a manifold which are normally closed and controlled by the CO2 analyser, which selects which gas is sampled. The air leaving the manifold through its common outlet is further dried to a dew point of about -25°C by passage through a 360-cm-long Nafion drier (Permapure), so that the water vapour interference and dilution effect are rate of 300 cm3/min is maintained by a mass flow controller (Aalborg). The reference cell of the CO2 analyzer is continuously flushed with a compressed reference gas of 350 ppm CO2 in synthetic air (Messer Hungarogáz). The basic calibration cycle is 2 hours, consisting of a zero-point calibration and a span calibration. Each calibration is consisting of 2 min flushing and 20 sec signal integration. The usual change of the response function is below 0.2 ppm after 2 hours following a previous calibration. The analyser measures the CO2 mixing ratio in the sample gas in every 3 seconds. Output data are registered by a data logger developed for this application (Special Control Devices

  20. Factors affecting the direct mineralization of CO2 with olivine

    Institute of Scientific and Technical Information of China (English)

    Soonchul Kwon; Maohong Fan; Herbert F. M. DaCosta; Armistead G. Russell

    2011-01-01

    Olivine,one of the most abundant minerals existing in nature,is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas.Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage.Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities.Other operation conditions including reaction temperature,initial CO2 concentration,residence time corresponding to the flow rate of CO2 gas stream,and water vapor concentration also considerably affect the performance of the technology.

  1. Factors affecting the direct mineralization of CO2 with olivine.

    Science.gov (United States)

    Kwon, Soonchul; Fan, Maohong; DaCosta, Herbert F M; Russell, Armistead G

    2011-01-01

    Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage. Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Other operation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2 gas stream, and water vapor concentration also considerably affect the performance of the technology.

  2. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1994-01-01

    -tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  3. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Pryds, Nini; Bahl, Christian Robert Haffenden

    2011-01-01

    materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project...... refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric......Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype...

  4. Evaluation of the Super Efficient Refrigerator Program (SERP) in the Bonneville Power Administration service territory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Conger, R.L.

    1996-06-01

    The Super Efficient Refrigerator Program (SERP) is a collaborative utility program intended to transform the market for energy-efficient and environmentally friendly refrigerators. it is one of the first examples of large-scale {open_quotes}market transformation{close_quotes} energy efficiency program. This report documents the evaluation of SERP ({open_quotes}the Program{close_quotes}) in the Bonneville Power Administration`s (Bonneville`s) service territory. Pacific Northwest National Laboratory (PNNL) conducted this evaluation for Bonneville. This study includes the process evaluation, preliminary impact evaluation, and market transformation assessment. It is based on site visits and interviews with refrigerator dealers and manufacturers, industry data, and Bonneville information. Results from this study are compared with those from a parallel study that examines the Program across the 24 participating utilities.

  5. Super-Efficient Refrigerator Program (SERP) evaluation volume 2: Preliminary impact and market transformation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Conger, R.L.

    1996-08-01

    The Super Efficient Refrigerator Program (SERP) is a collaborative utility program intended to transform the market for energy-efficient and environmentally friendly refrigerators. It is one of the first examples of a large-scale {open_quotes}market transformation{close_quotes} energy efficiency program. This report documents the preliminary impact and market transformation evaluation of SERP ({open_quotes}the Program{close_quotes}). Pacific Northwest National Laboratory (PNNL) conducted this evaluation for the U.S. Department of Energy. This study focuses on the preliminary impact evaluation and market transformation assessment, but also presents limited process evaluation information. It is based on interviews with refrigerator dealers and manufacturers, interviews with utility participants, industry data, and information from the Program administrators. Results from this study complement those from prior process evaluation also conducted by PNNL. 42 refs., 5 figs., 4 tabs.

  6. Supercritical CO2 as a substitute of volatile hydrocarbons; Superkritisch CO2 vervangt vluchtige koolwaterstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, G. (ed.)

    2006-05-15

    In many cases supercritical carbon dioxide can replace volatile hydrocarbons in extraction processes. Currently gaseous or liquid CO2 is already used for industrial purification processes, extraction of caffeine from coffee and as a solvent for paint. Although supercritical extraction s a batch process the technique can be applied as a continuous process. [Dutch] In processen waar vluchtige koolwaterstoffen worden ingezet om stoffen te extraheren, biedt superkritisch CO2 een milieuvriendelijk alternatief. Het koolzuur dat zowel in de vloeistof- als gasfase zit, wordt dan ook steeds meer ingezet in extractieprocessen.

  7. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration

    Science.gov (United States)

    Balogh, János; de Luca, Giulia; Mészáros, Ádám; Trieber, Júlia; Gecse, Bernadett; Fóti, Szilvia; Pintér, Krisztina; Nagy, Zoltán

    2017-04-01

    Biotic drivers of soil respiration represent a significant supply-side (plant) control of the process. Those biotic drivers that integrate over longer time periods are useful in describing the phenological changes and physiological state of the vegetation, but they are not suitable to explain the diel variability of soil respiration. Two plant physiological processes, acting in opposite directions, could be relevant at diel timescale: (1) photosynthesis, and (2) transpiration. Firstly, it was recently found that photosynthesis has a time-lagged (a few hours) positive effect on the respiration of roots and root-associated microbes. This can be explainedby an increase in easily accessible non-structural hydrocarbon sources for the roots and root-associated organisms within this period. Secondly, it was found that the effect of transpiration could reduce root respiration due to CO2 transport through the transpiration stream, and this effect is expected to be immediate. Removing the effect of the abiotic drivers from the soil efflux signal could help to clarify the role of other driving variables. In the present study, we conducted manipulation measurements in lab environment to be able to detect the effects of the plant physiological variables (CO2 uptake, transpiration) on soil CO2 efflux. Plant individuals were planted into field soil samples in small pots. Transpiration manipulation was done by regulating vapour pressure of the air around the plant canopy and by inhibitors. Photosynthesis manipulation consisted of programmed absence of light. Isotopic signatures of soil respiration were used for estimating the contribution of the autotrophic and heterotrophic soil respiration components. 13CO2 concentration of the CO2 efflux of the different soil components was measured continuously in open system by cavity ring-down spectroscopy (Picarro G1101-i gas analyser). Keeling-plot approach was also used to calculate the isotopic signals of the sources. According to the

  8. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  9. Low-temperature magnetic refrigerator

    Science.gov (United States)

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  10. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  11. CO2 Sequestration and Recycle by Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Steven S.C. Chuang

    2004-02-01

    Visible light-photocatalysis could provide a cost-effective route to recycle CO2 to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O. The year two research focus catalyst screening and IR studies. Key research results show Pd/TiO2 exhibits the highest activity for hydrocarbon synthesis from photocatalytic reactions. The in situ IR could successfully monitor the adsorbate hydrocarbon species on Cu/TiO2. Year III research will focus on developing a better understanding of the key factors which control the catalyst activity.

  12. Beam profile analyzer for CO2 lasers

    Directory of Open Access Journals (Sweden)

    Rubén López

    2015-12-01

    Full Text Available The development of an optoelectronic system to analyze the beam intensity profile of CO2 lasers is presented herein. The device collects the beam profile with a LiTaO3 pyroelectric detector and uses a sampling technique based on the acquisition of horizontal sections at different levels. The digital signal processing includes subroutines that drop down two dimensional and three dimensional beam profile displays to determine the laser beam parameters of optical power, peak pixel location, centroid location and width of the laser beam, with algorithms based on the ISO 11146 standard. With the systematic calibration of the analyzer was obtained in the measurement of power an error under 5%, for a 20–200 W range and an error under 1.6% for spatial measurements of a TEM00 laser. By design, the analyzer can be used during the laser process.

  13. Application of magnetic refrigeration and its assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, Andrej [University of Applied Sciences of Western Switzerland, Hesso, Institute of Thermal Sciences IGT-SIT, Route de Cheseaux 1, CH 1401 Yverdon-les-Bains (Switzerland)], E-mail: andrej.kitanovski@heig-vd.ch; Egolf, Peter W. [University of Applied Sciences of Western Switzerland, Hesso, Institute of Thermal Sciences IGT-SIT, Route de Cheseaux 1, CH 1401 Yverdon-les-Bains (Switzerland)

    2009-04-15

    Magnetic refrigeration has the potential to replace conventional refrigeration-with often problematic refrigerants-in several niche markets or even some main markets of the refrigeration domain. Based on this insight, for the Swiss Federal Office of Energy a list of almost all existing refrigeration technologies was worked out. Then an evaluation how good magnetic refrigeration applies to each of these technologies was performed. For this purpose a calculation tool to determine the coefficient of performance (COP) and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary-type magnetic refrigerator was developed. The evaluation clearly shows that some application domains are more ideal for a replacement of conventional refrigerators by their magnetic counterparts than others. In the pre-study, four good examples were chosen for a more comprehensive investigation and working out of more detailed results. In this article, the calculation method is briefly described. COP values and exergy efficiencies of one very suitable technology, namely the magnetic household refrigerator, are presented for different operation conditions. Summarizing, it is stated that magnetic refrigeration is a serious environmentally benign alternative to some conventional cooling, refrigeration and air-conditioning technologies.

  14. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  15. CO2 chemoreception in cardiorespiratory control.

    Science.gov (United States)

    Putnam, Robert W

    2010-06-01

    Considerable progress has been made elucidating the cellular signals and ion channel targets involved in the response to increased CO2/H+ of brain stem neurons from chemosensitive regions. Intracellular pH (pHi) does not exhibit recovery from an acid load when extracellular pH (pHo) is also acid. This lack of pHi recovery is an essential but not unique feature of all chemosensitive neurons. These neurons have pH-regulating transporters, especially Na+/H+ exchangers, but some may also contain HCO3--dependent transporters as well. Studies in locus ceruleus (LC) neurons have shown that firing rate will increase in response to decreased pHi or pHo but not in response to increased CO2 alone. A number of K+ channels, as well as other channels, have been suggested to be targets of these pH changes with a fall of pH inhibiting these channels. In neurons from some regions it appears that multiple signals and multiple channels are involved in their chemosensitive response while in neurons from other regions a single signal and/or channel may be involved. Despite the progress, a number of key issues remain to be studied. A detailed study of chemosensitive signaling needs to be done in neurons from more brain stem regions. Fully describing the chemosensitive signaling pathways in brain stem neurons will offer new targets for therapies to alter the strength of central chemosensitivity and will yield new insights into the reason why there are multiple central chemoreceptive sites.

  16. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have be

  17. Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.

    2011-06-08

    This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

  18. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran

    2014-01-01

    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  19. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have be

  20. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  1. Novel Long-Term CO2 Removal System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current Technology for CO2 removal from enclosed air of spacecraft utilizes LiOH canisters for CO2 absorption. This absorption is irreversible so longer flights...

  2. Monitoring solid oxide CO2 capture sorbents in action.

    Science.gov (United States)

    Keturakis, Christopher J; Ni, Fan; Spicer, Michelle; Beaver, Michael G; Caram, Hugo S; Wachs, Israel E

    2014-12-01

    The separation, capture, and storage of CO2 , the major greenhouse gas, from industrial gas streams has received considerable attention in recent years because of concerns about environmental effects of increasing CO2 concentration in the atmosphere. An emerging area of research utilizes reversible CO2 sorbents to increase conversion and rate of forward reactions for equilibrium-controlled reactions (sorption-enhanced reactions). Little fundamental information, however, is known about the nature of the sorbent surface sites, sorbent surface-CO2 complexes, and the CO2 adsorption/desorption mechanisms. The present study directly spectroscopically monitors Na2 O/Al2 O3 sorbent-CO2 surface complexes during adsorption/desorption with simultaneous analysis of desorbed CO2 gas, allowing establishment of molecular level structure-sorption relationships between individual surface carbonate complexes and the CO2 working capacity of sorbents at different temperatures.

  3. Understanding and predicting trends in north Atlantic CO2 uptake

    Science.gov (United States)

    Halloran, Paul; Lebehot, Alice; Watson, Andy; McNeall, Doug; Ford, David; Schuster, Ute

    2017-04-01

    To determine the maximum carbon dioxide (CO2) emissions society must commit to, to remain below a given atmospheric CO2 threshold, the scientific community must robustly quantify what proportion of human emitted CO2 will be taken up by the land and marine carbon reservoirs. The North Atlantic Ocean is the most intense marine sink of anthropogenic CO2 on the planet, accounting for about a fifth of the global oceanic anthropogenic CO2 uptake, despite covering just 15% of the global ocean area. Carefully assessing uncertainties, we quantify the real-world trend in North Atlantic CO2 uptake over the past two decades. Comparing this to results from state-of-the-art climate models, we find that models are systematically underestimating the observed CO2 uptake trend. By performing a set of targeted climate model simulations, we diagnose and account for this bias, and produce the first set of observation-informed future ocean CO2 uptake predictions.

  4. Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Luca; Corradi, Marco; Fornasieri, Ezio; Zamboni, Lorenzo [Dipartimento di Fisica Tecnica, Universita degli Studi di Padova, Via Venezia, 1 I-35131 Padova (Italy)

    2005-12-01

    Increased concern about the environmental impact of the refrigeration technology is leading toward design solutions aimed at improving the energy efficiency of the related applications, using eco-friendly refrigerants, i.e. ozone-friendly and with the least possible global warming potential (GWP). In this respect, carbon dioxide (ASHRAE R744) is seen today as one of the most promising refrigerants and is raising great interest in industrial and scientific fields. In the present work, the plant options are investigated, which are related to the design of air/water heat pumps for tap water using CO{sub 2}. A comparison is made, in terms of energy efficiency, between a system working with CO{sub 2} and a similar one working with HFC R134a; such a comparison is carried out by means of a simulation model of a refrigerating machine/heat pump, characterized by a detailed representation of the heat exchangers, based on their subdivision into elementary volumes. Results show that carbon dioxide is an interesting substitute for synthetic fluids, if the design of the system is focused to take advantage of its properties. (author)

  5. H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    Han Minfang; Fan Hui; Peng Suping

    2014-01-01

    A solid oxide electrolysis cell (SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational princi-ple of an SOEC for co-electrolyzing H2O and CO2 to generate syngas was reviewed. The recent development of high temperature H2O/CO2 co-electrolysis from solid oxide single electrolysis cell was introduced. Also investi-gated was H2O/CO2 co-electrolysis research using hydrogen electrode-supported nickel (Ni)-yttria-stabilized zir-conia (YSZ)/YSZ/Sr-doped LaMnO3 (LSM)-YSZ cells in our group. With 50%H2O,15.6%H2 and 34.4%CO2 inlet gas to Ni-YSZ electrode,polarization curves (I-U curves) and electrochemical impedance spectra (EIS) were measured at 800℃and 900℃. Long-term durability of electrolysis was carried out with the same in-let gas at 900℃and 0.2 A/cm2. In addition,the improvement of structure and development of novel materials for increasing the electrolysis efficiency of SOECs were put forward as well.

  6. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  7. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates

    Institute of Scientific and Technical Information of China (English)

    Xiaowen ZHANG; Weili DAI; Shuangfeng YIN; Shenglian LUO; Chak-Tong AU

    2009-01-01

    In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new appli-cations of organobismuth compounds, cationic organo-bismuth complex with 5,6,7,12-tetrahydrodibenz[c,f] [ 1,5 ]azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using ter-minal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the max-imum turnover frequency was up to 10740 h-1 at 120℃ and 3 MPa CO2 pressure when tetrabutylammonium iod-ide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity,demonstrating a potential in industrial application.

  8. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  9. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration.

    Science.gov (United States)

    Chiu, Sheng-Yi; Kao, Chien-Ya; Tsai, Ming-Ta; Ong, Seow-Chin; Chen, Chiun-Hsun; Lin, Chih-Sheng

    2009-01-01

    In order to produce microalgal lipids that can be transformed to biodiesel fuel, effects of concentration of CO(2) aeration on the biomass production and lipid accumulation of Nannochloropsis oculata in a semicontinuous culture were investigated in this study. Lipid content of N. oculata cells at different growth phases was also explored. The results showed that the lipid accumulation from logarithmic phase to stationary phase of N. oculata NCTU-3 was significantly increased from 30.8% to 50.4%. In the microalgal cultures aerated with 2%, 5%, 10% and 15% CO(2), the maximal biomass and lipid productivity in the semicontinuous system were 0.480 and 0.142 g L(-1)d(-1) with 2% CO(2) aeration, respectively. Even the N. oculata NCTU-3 cultured in the semicontinuous system aerated with 15% CO(2), the biomass and lipid productivity could reach to 0.372 and 0.084 g L(-1)d(-1), respectively. In the comparison of productive efficiencies, the semicontinuous system was operated with two culture approaches over 12d. The biomass and lipid productivity of N. oculata NCTU-3 were 0.497 and 0.151 g L(-1)d(-1) in one-day replacement (half broth was replaced each day), and were 0.296 and 0.121 g L(-1)d(-1) in three-day replacement (three fifth broth was replaced every 3d), respectively. To optimize the condition for long-term biomass and lipid yield from N. oculata NCTU-3, this microalga was suggested to grow in the semicontinuous system aerated with 2% CO(2) and operated by one-day replacement.

  10. CO2 emissions from Super-light Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2011-01-01

    rise to a substantial reduction of the CO2 emission in the construction phase. The present paper describes how the CO2 emission is reduced when using Super-light technology instead of traditional structural components. Estimations of the CO2 emissions from a number of projects using various...... construction methods suggest that building with Super-light structures may cut the CO2 emission in half, compared to traditional concrete structures, and reduce it to 25% compared to traditional steel structures....

  11. Simulation of CO2-Distribution in Fractured Oil Reservoir

    OpenAIRE

    Furuvik, Nora; Halvorsen, Britt

    2015-01-01

    Deep geologic injections and storage of Carbon dioxide (CO2) for enhanced oil recovery (EOR) are an upcoming combination due to the potential for increased oil production from depleted oilfields at the same time reducing the carbon footprint from industrial sources. CO2-EOR refers to a technique for injection of supercritical-dense CO2 into an oil reservoir. Remaining oil, not producible by primary and secondary techniques, has been successfully produced using EOR with CO2 since early 1970??....

  12. Time-course of ventilation, arterial and pulmonary CO(2) tension during CO (2) increase in humans.

    Science.gov (United States)

    Satoh, Toru; Okada, Yasumasa; Hara, Yasushi; Sakamaki, Fumio; Kyotani, Shingo; Tomita, Takeshi; Nagaya, Noritoshi; Nakanishi, Norifumi

    2012-01-01

    A change of ventilation (VE), PaCO( 2 ) (arterial CO( 2 ) tension) and PvCO( 2 ) (pulmonary arterial CO( 2 ) tension) with time was not evaluated precisely during exercise or CO( 2 ) rebreathing in humans. In this study, changes of these variables with time were fitted to exponential curves {y = Exp ( x/ T + A ) + k} and compared. When exercise pulmonary hemodynamics was examined in 15 cardiac patients to decide therapies, we asked the patients to undergo CO( 2 ) rebreathing using air with supplementation of consumed O( 2 ). Arterial and pulmonary blood was drawn every minute. During exercise, T was 28.2 ± 8.4 and 26.8 ± 12.4, and A was 0.80 ± 0.50 and 0.50 ± 0.90 in VE and PvCO( 2 ), respectively, with no statistical differences. During CO( 2 ) rebreathing, T was 18.6 ± 5.8, 41.8 ± 38.0 and 21.6 ± 9.7 and A was 0.39 ± 0.67, 1.64 ± 1.35 and 0.17 ± 0.83 in VE, PaCO( 2 ) and PvCO( 2 ), respectively, with statistical difference of PaCO( 2 ) from other variables, suggesting that VE and PvCO( 2 ) showed same mode of change according to time but PaCO( 2 ) did not.

  13. CO2-adapted legumes ameliorate but do not prevent the negative effect of elevated CO2 on nitrogen fixation

    Science.gov (United States)

    Newton, P.; Bowatte, S.; Lieffering, M.; Li, F.

    2015-12-01

    The response of biological nitrogen fixation (BNF) to climate and elevated CO2 (eCO2) is a key uncertainty in modelling C cycle projections. In addition, as BNF provides 50% of the nitrogen (N) input to agricultural production and as ecosystem responses to eCO2 are strongly influenced by N availability then the eCO2 impact on BNF is central to modelling legume-based system responses to climate change. Greater photoassimilate production under eCO2 should lead to enhanced BNF and this response is a feature of ecosystem models thus providing the N inputs necessary to provide continuing stimulation of NPP. FACE experiments provide a 'realistic' environment for eCO2 studies; however, even if run for multiple years, they still may not capture adaptation to eCO2 particularly in ecosystems dominated by perennial species. We tested the effect of eCO2 on BNF and the potential importance of adaption by growing legumes that had been exposed to high or ambient CO2 concentrations at a natural CO2 spring in a long-running (16 year) FACE experiment on grassland. BNF was significantly lower under eCO2 but the reduction was less marked where plants had originated in a high CO2 environment. An ecosystem model run with reduced BNF proved a better fit to the experimental data for the FACE experiment than where BNF was enhanced or unchanged under eCO2.

  14. Activation of CO2 by phosphinoamide hafnium complexes.

    Science.gov (United States)

    Sgro, Michael J; Stephan, Douglas W

    2013-04-04

    Hf-phosphinoamide cation complexes behave as metal-based frustrated Lewis pairs and bind one or two equivalent of CO2 and in as well can activate CO2 in a bimetallic fashion to give a pseudo-tetrahedral P2CO2 fragment linking two Hf centres.

  15. A general method for calculating subsurface CO2 storage capacity

    NARCIS (Netherlands)

    Meer, L.G.H. van der; Egberts, P.J.P.

    2008-01-01

    In the past, lists of potential CO2 storage locations have been compiled purely on the basis of the capacity of the locations in terms of their CO2 solubility. However, in some of these locations, the injection of CO2 is commercially unfeasible because of their small average permeability. During the

  16. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  17. Impacts: economic trade-offs for CO2 impurity specification

    NARCIS (Netherlands)

    Eickhoff, C.; Neele, F.P.; Hammer, M.; DiBiagio, M.; Hofstee, C.; Koenen, M.; Fischer, S.; Isaenko, A.; Brown, A.; Kovacs, T.

    2014-01-01

    The IMPACTS project has a stated broad objective to develop the knowledge base of CO2 quality required for establishing norms and regulations to ensure safe and reliable design, construction and operation of CO2 pipelines and injection equipment, and safe long-term geological storage of CO2. More sp

  18. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natur

  19. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natur

  20. Modeling of CO2 absorber using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2006-01-01

    Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2 ab...

  1. A general method for calculating subsurface CO2 storage capacity

    NARCIS (Netherlands)

    Meer, L.G.H. van der; Egberts, P.J.P.

    2008-01-01

    In the past, lists of potential CO2 storage locations have been compiled purely on the basis of the capacity of the locations in terms of their CO2 solubility. However, in some of these locations, the injection of CO2 is commercially unfeasible because of their small average permeability. During the

  2. Suppression of CO2-plasticization by semiinterpenetrating polymer network formation

    NARCIS (Netherlands)

    Bos, A.; Punt, Ineke G.M.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example,

  3. Ventilation in Sewers Quantified by Measurements of CO2

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    2012-01-01

    H, alkalinity and sewer-air CO2 concentrations. An intercepting sewer was studied and an average sewer-air retention time of approximately 1.5-2.5 hours was found at CO2 levels around 4-6 times the natural background. Also an upstream sub-catchment was studied. In this part of the sewer system the level of CO2...

  4. Applied stress reduces the CO2 sorption capacity of coal

    NARCIS (Netherlands)

    Hol, S.; Peach, C.J.; Spiers, C.J.

    2011-01-01

    Though the adsorption of CO2 by coal has been extensively studied in experiments, few systematic studies have been done on the effects of the stress state within the coal on CO2 sorption. To investigate whether or not the CO2 sorption capacity of coal is influenced by the application of an effective

  5. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  6. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    Science.gov (United States)

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  7. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  8. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Accelerated weathering of limestone appears to provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 mitigation method that could be applied to about 200 fossil fuel fired power plants and about eight cement plants located in coastal areas in the conterminous U.S. This approach could also help solve the problem of disposal of limestone waste fines in the crushed stone industry. Research and implementation of this technology will require new collaborative efforts among the crushed stone and cement industries, electric utilities, and the science and engineering communities.

  9. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  10. Deconstructing Female Friends

    Directory of Open Access Journals (Sweden)

    Adela MATEI

    2014-12-01

    Full Text Available One of Fay Weldon’s early novels, Female Friends (1975, published at the peak of her feminist ’phase’, deconstructs female and feminine stereotypes in order to present the writer’s own views on feminism. It speaks for a generation of women, who struggle to find their place in a male-dominated world, through three protagonists, who are neither happy, nor perfect. Narrated by the character Chloe, the novel revolves around her and her friends, Grace and Marjorie, with an aim at depicting the falsehood and hypocrisy that surround female friendship. It is precisely where Weldon’s specificity as a feminist writer lies: in her rendering the imperfections of women’s characters and relationships. This paper attempts to trace such elements of ‘fayminism’ in Female Friends by resorting to the tools of the feminist critic.

  11. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  12. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  13. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Omer, S.A. [Nottingham Univ., School of the Built Environment, Nottingham (United Kingdom)

    2001-07-01

    This paper presents results of computational fluid dynamic (CFD) analysis and experimental investigation of an ejector refrigeration system using methanol as the working fluid. The CFD modelling was used to investigate the effect of the relative position of the primary nozzle exit within the mixing chamber on the performance of the ejector. The results of the CFD were used to obtain the optimum geometry of the ejector, which was then used to design, construct and test a small-scale experimental ejector refrigeration system. Methanol was used as the working fluid, as it has the advantage of being an 'environmentally friendly' refrigerant that does not contribute to global warming and ozone layer depletion. In addition, use of methanol allows the ejector refrigeration system to produce cooling at temperatures below the freezing point of the water, which of course would not be possible with a water ejector refrigeration system. CFD results showed that positioning the nozzle exit at least 0.21 length of the mixing chamber throat's diameter upstream of the entrance of the mixing chamber gave better performance than pushing it into the mixing chamber. Experimental values of coefficient of performance (COP) between 0.2 and 0.4 were obtained at operating conditions achievable using low-grade heat such as solar energy and waste heat. (Author)

  14. CO2 storage capacity estimation: Methodology and gaps

    Science.gov (United States)

    Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd

  15. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-15

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  16. CO 2 Capture Rate Sensitivity Versus Purchase of CO 2 Quotas. Optimizing Investment Choice for Electricity Sector

    OpenAIRE

    Coussy Paula; Raynal Ludovic

    2014-01-01

    International audience; Carbon capture technology (and associated storage), applied to power plants, reduces atmospheric CO2 emissions. This article demonstrates that, in the particular case of the deployment phase of CO2 capture technology during which CO2 quota price may be low, capturing less than 90% of total CO2 emissions from power plants can be economically attractive. Indeed, for an electric power company capture technology is interesting, only if the discounted marginal cost of captu...

  17. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions

    Science.gov (United States)

    Zickfeld, Kirsten; MacDougall, Andrew H.; Damon Matthews, H.

    2016-05-01

    Recent research has demonstrated that global mean surface air warming is approximately proportional to cumulative CO2 emissions. This proportional relationship has received considerable attention, as it allows one to calculate the cumulative CO2 emissions (‘carbon budget’) compatible with temperature targets and is a useful measure for model inter-comparison. Here we use an Earth system model to explore whether this relationship persists during periods of net negative CO2 emissions. Negative CO2 emissions are required in the majority of emissions scenarios limiting global warming to 2 °C above pre-industrial, with emissions becoming net negative in the second half of this century in several scenarios. We find that for model simulations with a symmetric 1% per year increase and decrease in atmospheric CO2, the temperature change (ΔT) versus cumulative CO2 emissions (CE) relationship is nonlinear during periods of net negative emissions, owing to the lagged response of the deep ocean to previously increasing atmospheric CO2. When corrected for this lagged response, or if the CO2 decline is applied after the system has equilibrated with the previous CO2 increase, the ΔT versus CE relationship is close to linear during periods of net negative CO2 emissions. A proportionality constant—the transient climate response to cumulative carbon emissions (TCRE)- can therefore be calculated for both positive and net negative CO2 emission periods. We find that in simulations with a symmetric 1% per year increase and decrease in atmospheric CO2 the TCRE is larger on the upward than on the downward CO2 trajectory, suggesting that positive CO2 emissions are more effective at warming than negative emissions are at subsequently cooling. We also find that the cooling effectiveness of negative CO2 emissions decreases if applied at higher atmospheric CO2 concentrations.

  18. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    Science.gov (United States)

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  19. Available energy analysis of new tandem double-capillary tube refrigeration system for refrigerator-freezers

    Institute of Scientific and Technical Information of China (English)

    Maogang HE; Xinzhou SONG; Ying ZHANG; Jiantao ZHANG

    2008-01-01

    A new tandem double-capillary tube refri-geration system for refrigerator-freezers is proposed. A capillary tube was added between the two evaporators in the fresh and frozen food storage chests to raise the evaporation temperature of the refrigerating chamber, and reduce the heat exchange temperature difference and the available energy loss. Peng-Robinson (P-R) equation of state was adopted to calculate the thermodynamic properties of the refrigerants, and the available energy analysis of the vapor compression refrigeration cycle was programmed to calculate the thermodynamic perfor-mances of the new and the conventional refrigeration cycle of the refrigerator-freezer. The calculation results show that the available energy efficiency of the conven-tional refrigeration cycle of the refrigerator-freezer is 21.20% and 20.57%, respectively when the refrigerant is R12 and R134a, while that of the double-capillary tube refrigeration cycle of the refrigerator-freezer is 23.97% and 23.44%, respectively. By comparison, the available energy efficiency of the new refrigeration system increases by 13.07% and 13.95%, respectively.

  20. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    OpenAIRE

    Mohammad, Muneer; Ehsani, Mehrdad

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon c...