WorldWideScience

Sample records for frictional force measurement

  1. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  2. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  3. Measurements of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and friction stresses in the deformation zone has been developed. The transducer consists of a strain gauge equipped insert embedded in the surface of the roll. The length ...

  4. Measurements of normal and frictional forces in a rolling process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2006-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and frictional stresses in the deformation zone has been developed. The transducer consists of a strain-gauge-equipped insert embedded in the surface of the roll. The length...

  5. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    For the rolling process, knowledge about interface conditions is important since it directly influences the maximum reduction ratio and thereby the num-ber of steps required for a given reduction. The mechanical properties of the produced sheet and the surface quality of it are also influenced...... by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  6. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  7. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.

    Science.gov (United States)

    Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X

    2007-10-01

    Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.

  8. Lock-in technique for concurrent measurement of adhesion and friction with the scanning force microscope

    Science.gov (United States)

    Krotil, H.-U.; Stifter, Th.; Marti, O.

    2001-01-01

    Regardless of all the great progress in new scanning probe microscopy techniques, the concurrent measurement of adhesive and frictional forces with local resolution using scanning force microscopy (SFM) has not been possible until now. In this paper, we present a novel scanning probe microscopy mode, called combined dynamic x mode or CODYMode®. In CODYMode® SFM at least two oscillations with sufficiently different frequencies and amplitudes are superimposed and interact with the sample surface. This enables the concurrent measurement of the topography, adhesive and frictional forces beside further mechanical surface properties of the sample. By means of the characterization of plasma treated biaxially oriented polypropylene foils the benefits of the new modulation technique are pointed out where common SFM techniques are not adequate. As second application high-velocity friction experiments (in the range of several centimeters per second) on silicon under controlled environmental conditions are introduced and the role of the native water film on it is discussed under friction and viscoelastic aspects.

  9. Low temperature friction force microscopy

    Science.gov (United States)

    Dunckle, Christopher Gregory

    The application of friction force techniques within atomic force microscopy (AFM) allows for direct measurements of friction forces at a sliding, single-asperity interface. The temperature dependence of such single-asperity contacts provides key insight into the comparative importance of dissipative mechanisms that result in dry sliding friction. A variable temperature (VT), ultrahigh vacuum (UHV) AFM was used with an interface consisting of a diamond coated AFM tip and diamond-like carbon sample in a nominal sample temperature range of 90 to 275K. The results show that the coefficient of kinetic friction, mu k, has a linear dependence that is monotonically increasing with temperature varying from 0.28 to 0.38. To analyze this data it is necessary to correlate the sample temperature to the interface temperature. A detailed thermal model shows that the sample temperature measured by a macroscopic device can be very different from the temperature at the contact point. Temperature gradients intrinsic to the design of VT, UHV AFMs result in extreme, non-equilibrium conditions with heat fluxes on the order of gigawatts per squared meter through the interface, which produce a discontinuous step in the temperature profile due to thermal boundary impedance. The conclusion from this model is that measurements acquired by VT, UHV AFM, including those presented in this thesis, do not provide meaningful data on the temperature dependence of friction for single-asperities. Plans for future work developing an isothermal AFM capable of the same measurements without the introduction of temperature gradients are described. The experimental results and thermal analysis described in this thesis have been published in the Journal of Applied Physics, "Temperature dependence of single-asperity friction for a diamond on diamondlike carbon interface", J. App. Phys., 107(11):114903, 2010.

  10. Measurement of oil film thickness and friction force on a guide shoe bearing

    DEFF Research Database (Denmark)

    Vølund, Anders

    2002-01-01

    An experimental program was carried out in order to reveal oil film thickness, and friction force of the guide shoe bearing of a large two stroke marine diesel engine. The experiment was conducted on a full size engine located at the research facility at MAN B&W Diesel A/S. The experiment was con...

  11. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-09-01

    Full Text Available Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  12. A micro-force sensor with slotted-quad-beam structure for measuring the friction in MEMS bearings.

    Science.gov (United States)

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-09-30

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  13. CAM/LIFTER forces and friction

    Science.gov (United States)

    Gabbey, D. J.; Lee, J.; Patterson, D. J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force, and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria such as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.

  14. A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study.

    Science.gov (United States)

    Seo, Na Jin; Armstrong, Thomas J; Drinkaus, Philip

    2009-01-01

    This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as the pull force required to begin moving a flat object over the surface of the hand, divided by object weight. Both methods were used to estimate friction coefficients for 12 subjects and three materials (cardboard, aluminium, rubber) against a flat hand and against fingertips. No differences in static friction coefficients were found between the two methods, except for that of rubber, where friction coefficient was 11% greater for the tilt method. As with previous studies, the friction coefficients varied with contact force and contact area. Static friction coefficient data are needed for analysis and design of objects that are grasped or manipulated with the hand. The tilt method described in this study can easily be used by ergonomic practitioners to estimate static friction coefficients in the field in a timely manner.

  15. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne;

    2013-01-01

    by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...... the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging...... air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related...

  16. Design and development of fixture and force measuring system for friction stir welding process using strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Biswajit; Vishwakarma, Shiv Dayal; Pal, Sukhomay [IIT Guwahati, Guwahati (India)

    2015-02-15

    We developed a clamping system and an instrumented setup for a vertical milling machine for friction stir welding (FSW) operations and measuring the process forces. Taking into account the gap formation (i.e., lateral movement) and transverse movement of the workpiece, a new type of adjustable fixture was designed to hold the workpiece being welded. For force measurement, a strain gauge based force dynamometer was designed, developed and fabricated. The strain gauges were fitted into the specially designed octagonal members to support the welding plates. When the welding force was applied onto the plates, the load was transferred to the octagonal members and strain was induced in the member. The strains of the strain gauges were measured in terms of voltages using a Wheatstone bridge. To acquire forces in FSW operations, a data acquisition system with the necessary hardware and software was devised and connected to the developed setup. The developed setup was tested in actual welding operations. It is found that the proposed setup can be used in milling machine to perform FSW operations.

  17. Tool Forces Developed During Friction Stir Welding

    Science.gov (United States)

    Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.

    2003-01-01

    This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.

  18. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  19. Conduction electrons as dissipation channel in friction experiments at the metal-metal transition of LSMO measured by contact-resonance atomic force microscopy

    Science.gov (United States)

    Pfahl, V.; Phani, M. K.; Büchsenschütz-Göbeler, M.; Kumar, A.; Moshnyaga, V.; Arnold, W.; Samwer, K.

    2017-01-01

    We report on friction measurements on a La0.6Sr0.4MnO3 (LSMO) thin film using atomic force microscopy cantilever contact-resonances. There is a contribution to the damping of the cantilever oscillations, which is caused by micro-sliding of the cantilever tip on the surface of the thin film. This frictional part decreases with temperature parallel to the increase in the resistivity of the thin film. The LSMO is well-known for a ferromagnetic to paramagnetic phase transition that occurs without changes in the rhombohedral (R-3c) crystalline structure. The magnetic transition at the Curie temperature TC ˜ 360 K is accompanied by a metal-to-metal transition with a large increase in electrical resistivity. The behavior of the cantilever damping constant demonstrates that there is a direct coupling between mechanical friction and the mobility of the electrons in the LSMO film.

  20. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool...... and a freely rotating tool respectively, an approach, which inevitably implies large uncertainties due to scatter in the experimental conditions. In order to avoid this problem a new draw bead test is proposed by the authors measuring the friction force acting on the tool radius directly by a build......-in piezoelectric torque transducer. This technique results in a very sensitive measurement of friction, which furthermore enables recording of lubricant film breakdown as function of drawing distance. The proposed test is validated in an experimental investigation of the influence of lubricant viscosity...

  1. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    The application of draw beads in sheet metal stamping ensures controlled drawing-in of flange parts. Lubrication conditions in draw beads are severe due to sliding under simultaneous bending. Based on the original draw bead test design by Nine [1] comprehensive studies of friction in draw beads...... have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool...... and a freely rotating tool respectively, an approach, which inevitably implies large uncertainties due to scatter in the experimental conditions. In order to avoid this problem a new draw bead test is proposed by the authors measuring the friction force acting on the tool radius directly by a build...

  2. High-resolution friction force microscopy under electrochemical control

    Science.gov (United States)

    Labuda, Aleksander; Paul, William; Pietrobon, Brendan; Lennox, R. Bruce; Grütter, Peter H.; Bennewitz, Roland

    2010-08-01

    We report the design and development of a friction force microscope for high-resolution studies in electrochemical environments. The design choices are motivated by the experimental requirements of atomic-scale friction measurements in liquids. The noise of the system is analyzed based on a methodology for the quantification of all the noise sources. The quantitative contribution of each noise source is analyzed in a series of lateral force measurements. Normal force detection is demonstrated in a study of the solvation potential in a confined liquid, octamethylcyclotetrasiloxane. The limitations of the timing resolution of the instrument are discussed in the context of an atomic stick-slip measurement. The instrument is capable of studying the atomic friction contrast between a bare Au(111) surface and a copper monolayer deposited at underpotential conditions in perchloric acid.

  3. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  4. Device for Measuring Sliding Friction on Highloft Nonwovens

    Directory of Open Access Journals (Sweden)

    Stephen Michielsen

    2006-08-01

    Full Text Available When measuring the sliding friction on highly compliant materials such as fabric batting and foam rubber, a substantial portion of the apparent friction is due to the deformation of the substrate. A new friction instrument consisting of a sled within a sled has been developed that eliminates the contribution of this deformation and provides the true sliding friction as well as the force required to deform the substrate. The friction coefficient as measured using a conventional steel sled sliding on high loft polyester batts increased as the number of polyester batts increased. Using the new, guarded friction sled, the friction coefficient was independent of the number of supporting batts, thus separating the deformation forces from the sliding forces.

  5. Quantifying the Frictional Forces between Skin and Nonwoven Fabrics

    Science.gov (United States)

    Jayawardana, Kavinda; Ovenden, Nicholas C.; Cottenden, Alan

    2017-01-01

    When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region. PMID:28321192

  6. Measurement of friction coefficient in aluminum sheet warm forming

    Institute of Scientific and Technical Information of China (English)

    GUO Zheng-hua; LI Zhi-gang; HUANG Chong-jiu; DONG Xiang-huai

    2005-01-01

    Aluminum alloy sheets are used more and more to manufacture auto panels. Because the friction behavior is very complicated, it is necessary to study the friction during the aluminum sheet warm forming process. The author has designed a new probe sensor based on an online tribotest method which directly measures friction coefficient in the forming process. Experiments of cup drawing have been conducted and the friction coefficients under different forming conditions have been measured. The results indicate that the forming parameters, such as forming temperature, blankholding force and lubrication status have great effect upon the friction coefficient.

  7. Friction force reduction triggers feet grooming behaviour in beetles.

    Science.gov (United States)

    Hosoda, Naoe; Gorb, Stanislav N

    2011-06-01

    In insects, cleaning (grooming) of tarsal attachment devices is essential for maintaining their adhesive ability, necessary for walking on a complex terrain of plant surfaces. How insects obtain information on the degree of contamination of their feet has remained, until recently, unclear. We carried out friction force measurements on walking beetles Gastrophysa viridula (Coleoptera, Chrysomelidae) and counted grooming occurrence on stiff polymer substrata with different degrees of nanoroughness (root mean square: 28-288 nm). Since nanoscopically, rough surfaces strongly reduced friction and adhesion without contaminating feet, we were able to demonstrate, for the first time to our knowledge, that friction force between tarsal attachment pads and the substrate provides an insect with information on the degree of contamination of its attachment structures. We have shown that foot grooming occurrence correlates not only with the degree of contamination but also with the decrease of friction force. This result indicates that insects obtain information about the degree of contamination, not statically but rather dynamically and, presumably, use mechanoreceptors monitoring either tensile/compressive forces in the cuticle or tensile forces between leg segments.

  8. Paradoxical stabilization of forced oscillations by strong nonlinear friction

    Science.gov (United States)

    Esirkepov, Timur Zh.; Bulanov, Sergei V.

    2017-08-01

    In a dissipative dynamic system driven by an oscillating force, a strong nonlinear highly oscillatory friction force can create a quasi-steady tug, which is always directed opposite to the ponderomotive force induced due to a spatial inhomogeneity of oscillations. When the friction-induced tug exceeds the ponderomotive force, the friction stabilizes the system oscillations near the maxima of the oscillation spatial amplitude of the driving force.

  9. Nanotribology at single crystal electrodes: Influence of ionic adsorbates on friction forces studied with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, Florian; Nielinger, Michael; Ernst, Siegfried [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany); Baltruschat, Helmut [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany)], E-mail: baltruschat@uni-bonn.de

    2008-09-01

    We present friction force measurements on Au(1 1 1) single crystal electrode surfaces performed under electrochemical conditions using an atomic force microscope (AFM). At monoatomic steps friction is increased in both scan directions. In 0.05 M sulfuric acid an increase of friction is observed with the increase of adsorbed sulfate. Friction force increases non-linearly with load. Cu UPD also increases friction in presence of sulfate. However, in presence of 4 x 10{sup -4} M chloride friction is much smaller for all deposited Cu coverages - ranging from a submonolayer up to bulk copper compared to the solution without chloride. After dissolution of bulk copper clusters deposited on Au(1 1 1) we observed an area with higher friction forces due to the formation of an alloy between gold and copper.

  10. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.

    Science.gov (United States)

    Kitt, Alexander L; Qi, Zenan; Rémi, Sebastian; Park, Harold S; Swan, Anna K; Goldberg, Bennett B

    2013-06-12

    Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly proportional to the applied load, but the friction for monolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

  11. Dynamical friction force exerted on spherical bodies

    CERN Document Server

    Esquivel, O

    2007-01-01

    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.

  12. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  13. Controlling Force and Depth in Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  14. The Prediction of the Work of Friction Force on the Arbitrary Path

    Science.gov (United States)

    Matehkolaee, Mehdi Jafari; Majidian, Kourosh

    2013-01-01

    In this paper we have calculated the work of friction force on the arbitrary path. In our method didn't use from energy conservative conceptions any way. The distinction of this procedure is that at least do decrease measurement on the path once. Thus we can forecast the amount of work of friction force without information about speed of…

  15. Work-energy theorem and friction forces: two experiments

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.

    2016-11-01

    Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton’s laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not recognise friction as a force, and for this reason they may believe that a motion with a constant speed needs as a necessary condition the presence of a constant force in the same direction of the motion. In order to face these ‘intuitive ways of reasoning’, in this paper we propose two sequential experiments that can allow undergraduate students to clarify the role of friction forces through the use of the work-energy theorem. This is a necessary first step on the way to a deeper understanding of Newton’s second law. We have planned our experiments in order to strongly reduce quantitative difficult calculations and to facilitate qualitative comprehension of observed phenomena. Moreover, the proposed activities represent two examples of the recurring methodology used in experimental practices, since they offer the possibility to measure very small physical quantities in an indirect way with a higher accuracy than the direct measurements of the same quantities.

  16. Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts

    Science.gov (United States)

    Sirghi, L.

    2003-05-01

    A single nanoasperity contact in ambient air is usually wetted by capillary condensation of water vapor and is surrounded by a water meniscus. This phenomenon strongly affects the contact friction, not only by the effect of meniscus loading force (superficial tension and capillary forces), but also by a friction force that accounts for the energy loss in the meniscus movement along with the sliding contact. Occurrence of the water-meniscus-generated friction is experimentally proved by atomic force microscopy measurements of the tip-sample friction force at minimum possible external load (before pull-off). A qualitative explanation for the observed dependence of the friction force on air humidity and solid surface wettability is proposed.

  17. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.

    2005-01-01

    . The thicknesses of the parallel and perpendicular layers that we measured with the AFM agree with those inferred from previous x-ray specular reflectivity measurements on similarly prepared samples. We also observe bulk dotriacontane particles and, in contrast with our previous measurements, are able to determine...

  18. Laboratory experiment for the study of friction forces using rotating apparatus

    Science.gov (United States)

    Kladivová, Mária; Kovaľaková, Mária; Gibová, Zuzana; Fričová, Oľga; Hutníková, Mária; Kecer, Ján

    2016-11-01

    The standard experimental set-up enabling observation of rotational motion of a bar around its centre of mass, which is set into motion due to the external torque generated by the small weight, was extended with an optical gate and position sensor and connected to a computer with software, which made it possible to display measured values of bar half-rotations during accelerated and decelerated motion as well as to process the data immediately. The detailed analysis of experimental data obtained for decelerated rotational motion due to frictional torque only (without small weight) showed that, besides the constant term due to dry friction at an axle, the expression for friction forces in the system has to include terms depending on the first and/or second power of angular speed, which is evidence that viscous forces influence the motion of a bar. The frictional torque due to viscous forces can be evaluated as the difference between the effective frictional torque acting on the system and the frictional torque due to dry friction at an axle. The data obtained in the experiment in which the bar performed damped oscillatory motion provided the values of effective frictional torque and the moment of inertia of rotating bodies. The frictional torque due to dry friction can be obtained as a minimum torque (calculated using minimum mass of weight) needed to start rotational motion. The last two proposed experiments can be included in undergraduate laboratory practicals.

  19. Effect of dental arch convexity and type of archwire on frictional forces

    NARCIS (Netherlands)

    Fourie, Zacharias; Ozcan, Mutlu; Sandham, John

    2009-01-01

    Introduction: Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex

  20. Effect of dental arch convexity and type of archwire on frictional forces

    NARCIS (Netherlands)

    Fourie, Zacharias; Ozcan, Mutlu; Sandham, John

    Introduction: Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex

  1. Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force

    CERN Document Server

    Yastrebov, Vladislav A

    2015-01-01

    An elastic layer slides on a rigid flat governed by Coulomb's friction law. We demonstrate that if the coefficient of friction is high enough, the sliding localizes within stick-slip pulses, which transform into opening waves propagating at intersonic speed in the direction of sliding or, for high Poisson's ratios, at supersonic speed in the opposite one. This sliding mode, characterized by small frictional dissipation, rapidly relaxes the shear elastic energy via stress waves and enables the contact surface slide ahead of the top one, resulting in inversion of the frictional force direction.

  2. Skin Friction Gage for Measurements in Hypersonic Flow

    Institute of Scientific and Technical Information of China (English)

    Francois Falempin; Marat Goldfeld; Roman Nestoulia

    2003-01-01

    A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper. The gage design provides separated measurement of longitudinal and transversal component of friction force. Application of this scheme provides high sensitivity and necessary high-frequency response of the gage. The tests of the gage were carried out in a blow down wind tunnel at Mach numbers of 2 and 4 within the range of Reynolds numbers Rex from 0.8 to 5 million and in the hot-shot wind tunnel at Mach number 6 and Reynolds numbers Rex= 2.5-10 million. The measurements of skin friction were carried out on a flat plate and on a ramp beyond the shock wave. Simultaneously with the direct measurement of friction in the blow down wind tunnel, the measurements of profiles of average velocities and mass flow rate pulsations were realised. Analysis of measurement errors has shown that the friction gage permits to measure skin friction coefficient on a flat plate with mistake not more than 10%.

  3. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    Science.gov (United States)

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  4. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Vito Crincoli

    2013-01-01

    Full Text Available Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3 and low-friction (Synergy brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA was carried out to investigate whether the following factors affect the values of friction force: (i degree of malalignment, (ii diameter of the orthodontic wire, and (iii bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance.

  5. OPTIMAL CONVERGENCE RATE OF THE LANDAU EQUATION WITH FRICTIONAL FORCE

    Institute of Scientific and Technical Information of China (English)

    Liu Shuangqian; Liu Hongxia

    2012-01-01

    The Cauchy problem of the Landau equation with frictional force is investigated.Based on Fourier analysis and nonlinear energy estimates,the optimal convergence rate to the steady state is obtained under some conditions on initial data.

  6. Frictional forces required for unrestrained locomotion in dairy cattle.

    Science.gov (United States)

    van der Tol, P P J; Metz, J H M; Noordhuizen-Stassen, E N; Back, W; Braam, C R; Weijs, W A

    2005-02-01

    Most free-stall housing systems in the Netherlands are equipped with slatted or solid concrete floors with manure scrapers. A slipping incident occurs when the required coefficient of friction (RCOF) exceeds the coefficient of friction (COF) at the claw-floor interface. An experiment was conducted to measure ground reaction forces (GRF) of dairy cows (n = 9) performing various locomotory behaviors on a nonslippery rubber-covered concrete floor. The RCOF was determined as the ratio of the horizontal and vertical components of the GRF. It was shown that during straight walking and walking-a-curve, the RCOF reached values up to the COF, whereas for sudden stop-and-start responses, the RCOF reached values beyond the maximum COF that concrete floors can provide. Our results indicate that concrete floors do not provide enough friction to allow natural locomotory behavior and suggest that tractional properties of floors should be main design criteria in the development of better flooring surfaces for cattle.

  7. Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction

    Energy Technology Data Exchange (ETDEWEB)

    Lekkala, Swapna; Marohn, John A.; Loring, Roger F., E-mail: roger.loring@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2013-11-14

    An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

  8. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    The physical condition at the work-piece/die boundary, in both bulk forming and sheet forming is, arguably, the single most important physical parameter influencing the processing of metals, yet it remains the least understood. Hence the need for basic research into metal-die interface mechanisms....... To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...

  9. Friction, force chains, and falling fruit

    Science.gov (United States)

    Krim, Jacqueline; Behringer, Robert

    2010-03-01

    Friction is of great concern from both a national security and quality-of-life point of view, and the economic impact of energy efficiency, wear, and manufacturing cannot be underestimated. Theorists have always believed that friction plays a great role in avalanche-like collapse of a granular piles, but the predictions have proven difficult to test. We devised an experimentally controlled way to prove it, accessible to all who dare try, and report on it here [1,2]. With the aid of a middle school assistant, we studied and filmed piles of apples, oranges, and onions as one or more pieces of fruit were removed. Among other things, we discovered that increasing the friction of the onions (by peeling them) vastly decreased the likelihood of collapse. Our work includes videos written by, produced, and starring our seventh grade assistant, some of which are posted on the Physics Today YouTube channel [1] and featured in the Sept. 2009 issue of Physics Today [2]. [4pt] [1] Youtube.com, keywords ``unpeeled onions'', with full set at www.dukefruit.info. [0pt] [2] J. Krim and R.P. Berhinger, Physics Today (Sept., 2009) volume 62, pp.66-67

  10. Stability of sliding frictional surfaces with varying normal force

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, P.E.; Bapna, D. (Boston Univ., MA (United States))

    1994-04-01

    This paper presents the stability analysis of a single degree-of-freedom elastic system following a rate- and state-dependent friction law. Normal force is assumed to depend on the displacement, velocity, and acceleration of the sliding interface. The history dependence of friction on normal force is included in the analysis. It is shown that to achieve steady sliding, system stiffness must exceed a critical value which depends on the expression for normal force. A system in which normal force depends on spring displacement is analyzed in detail. These results indicate that the functional dependence of normal force on system state can have a significant effect on the stability of low-velocity motion. 15 refs.

  11. Work-Energy Theorem and Friction Forces: Two Experiments

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.

    2016-01-01

    Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton's laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not…

  12. Atomic-Scale Friction and Microfriction of Graphite and Diamond Using Friction Force Microscopy

    Science.gov (United States)

    1993-10-07

    19), 2642-2645 (1991). 21 [12] R. M. Overney, E. Meyer, J. Frommer , D. Brodbeck, R. Luithi, L. Howald, H. -J. GUntherodt, M. Fuji.,La, H. Takano, and Y...Meyer, R. Overney, D. Brodbeck, L. Howard, R. Luithi, J. Frommer , and H. -J. Guntherodt, "Friction and Wear of Langmuir-Blodgett Films Observed by...Friction Force Microscopy", Phys. Rev. Lett., Vol. 69(12), 1777-1780 (1992). [14] E. Meyer, R. Overney, R. Luthi, D. Brodbeck, L. Howald, J. Frommer , H

  13. Research on measurement and modeling of the gastro intestine's frictional characteristics

    Science.gov (United States)

    Wang, Kun Dong; Yan, Guo Zheng

    2009-01-01

    The frictional characteristics of an intestine are required basically for the development of a noninvasive endoscope for the human intestine. The frictional force is tested by measuring the current of the motor hauling the frictional coupons at an even speed. A multifunction data acquisition device with model NI-6008 USB is used and the data process is performed on the Labview software. Two kinds of materials with aluminum and copper are used. The surfaces are designed as triangle, rectangular, cylindrical and plane forms. The tested results indicate that the frictional resistance force includes the nominal frictional force and the visco-adhesive force. When the surface contour changes from the triangle to the rectangular, to the cylindrical and finally to the plane, the nominal frictional coefficients will decrease and the visco-adhesive force will increase. The nominal frictional force is related to the elastic restoring force, the real frictional force and the contact angle. The cohesive force is determined by the contact area and the contact angle. This research will provide some preliminary references to the design and the parameter selection of locomotion devices in the human gastro-intestine.

  14. Relationship between friction force and orthodontic force at the leveling stage using a coated wire.

    Science.gov (United States)

    Murayama, Masaki; Namura, Yasuhiro; Tamura, Takahiko; Iwai, Hiroaki; Shimizu, Noriyoshi

    2013-01-01

    The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  15. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Directory of Open Access Journals (Sweden)

    Masaki MURAYAMA

    2013-12-01

    Full Text Available The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective: The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti wire. Material and Methods: Five esthetic wires (three coated and two plated and two small, plain Ni-Ti wires (0.012 and 0.014 inches were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm, and evaluated the relationship between them. Results: Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions: A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  16. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Science.gov (United States)

    MURAYAMA, Masaki; NAMURA, Yasuhiro; TAMURA, Takahiko; IWAI, Hiroaki; SHIMIZU, Noriyoshi

    2013-01-01

    The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Material and Methods Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Results Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement. PMID:24473722

  17. Methods and devices used to measure friction in rolling

    DEFF Research Database (Denmark)

    Jeswiet, J.; Arentoft, Mogens; Henningsen, Poul

    2006-01-01

    a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure frictional stress in metal working has been pursued by many researchers. This paper surveys methods that have been used...... to measure friction in rolling in the past and discusses some of the recent sensor designs that can now be used to measure friction both in production situations and for research purposes....

  18. Asymptotic behavior of a weakly forced dry friction oscillator

    Directory of Open Access Journals (Sweden)

    J. Ildefonso Diaz

    2007-05-01

    Full Text Available This note is devoted to stick-slip aspects of the motion of a dry friction damped oscillator under weak irregular forcing. Our main result complements [10, Theorem 3.(a] and is also related to [1], where a non-Lipschitz model for Coulomb friction was consider in the unforced case. We provide sufficient conditions guaranteeing that solutions stabilizing in finite time, but observe also an infinite succession of ``stick-slip'' behavior. The last section discusses an extension to certain systems of such oscillators.

  19. INFLUENCING OF FRICTION IN HINGES FORCE SIZE OF BARS

    Directory of Open Access Journals (Sweden)

    BOHOMAZ V. N.

    2016-04-01

    Full Text Available Formulation of the problem. The size of critical force of bar on the traditional method of calculation is determined in supposition of ideal hinge in the place of fixing of bar. There are both a hinge resistance at the turn of bar ends and their moving in the real hinges. Thus, there is the necessity of influencing character determination of these hinge imperfections on the size of critical force. In the existent scientific labours is devoted the alike problems, influencing of friction in the hinges of bar fastening on the size of critical force was not taken into account. At determination of bars stability with no ideality of hinges friction in them it is possible to take into account by the eccentric appendix of loading or appendix of moment. However at such approach it is difficult enough to define the size of attached force or moment. Purpose. To set influencing of friction in the hinge of bar fastening on of his critical force size in sense of Euler, and also build dependences for determination of bar critical force taking into account mechanical descriptions of hinges materials. Conclusion. For the task of determination the size of bar critical force with the joint fastening on ends are got the dependences which take into account mechanical descriptions of material hinge. The received dependences allow to define more exact meaning of critical force for bars. The examples of calculation of whole bar and bar with undercuting in the middle are resulted that values of critical force, certain on a traditional method are overpriced.

  20. Quantifying Stream Bed Gravel Mobility from Friction Angle Measurements

    Science.gov (United States)

    Meyers, M. A.; Dunne, T.

    2012-12-01

    A method to measure friction angles using force gauges was field tested to determine its utility at quantifying critical shear stress in a gravel bedded reach of the San Joaquin River in California. Predictions of mobility from friction angles were compared with observations of the movement of tagged particles from locations for which local shear stress was quantified with a validated 2-D flow model. The observations of movement, distance of travel, and location of the end of travel were made after extended flow releases from Friant dam. Determining the critical shear stress for gravel bed material transport currently depends upon bedload sampling or tracer studies. Often, such measurements can only be made during occasional and untimely flow events, and at limited, suboptimal locations. Yet, theoretical studies conclude that the friction angle is an important control on the critical shear stress for mobility of any grain size, and therefore of the excess shear stress which strongly influences bedload transport rate. The ability to predict bed mobility at ungauged and unmonitored locations is also an important requirement for planning of flow regimes and channel design. Therefore, a method to measure friction angles that can be performed quickly in low flow conditions would prove useful for river management and research. To investigate this promising method friction angle surveys were performed at two riffle sites where differences in bed material size and distribution, and channel slope were observed. The friction angle surveys are sensitive enough to detect differences between the sites as well as spatially and temporally within a single riffle. Low friction angles were observed along the inside of a long bend where sand content was greater (by ~20%) than other surveyed locations. Friction angles decreased slightly after a depositional event associated with transient large woody debris and bank erosion, and increased again after a 5 year return interval flow

  1. Ultracompact Planar Positioner Driven by Unbalanced Frictional Forces

    Directory of Open Access Journals (Sweden)

    Mikio Muraoka

    2015-08-01

    Full Text Available This paper proposes a new ultracompact planar positioner driven by unbalanced frictional forces. The prototype of the designed positioner is 17 mm × 17 mm × 9 mm in size, and is simply constructed using lead zirconate titanate piezoelectric elements, neodymium magnetic feet, and junction pieces. Alternating static and kinetic frictional forces are utilized to control the motion of the positioner. The working principle is illustrated, and the performance of the positioner is evaluated under atmospheric and vacuum conditions. Under atmospheric conditions, the positioner had a minimum step size of approximately 17 nm at 55 V, a maximum step size of approximately 1.6 μm, and a moving speed of approximately 4 μm/s at 138 V. However, the step size significantly decreased in vacuum. The step size can be controlled by adjusting the frictional forces on the magnetic feet. In addition, the positioner showed instability caused by the wear of the stainless plate. This problem was resolved by using a borosilicate glass that was fixed on the stainless plate, and the position accuracy was obviously improved.

  2. Advanced adhesion and friction measurement system

    Science.gov (United States)

    Li, Meng; Huang, Wei; Wang, Xiaolei

    2017-03-01

    An advanced micro-force tester for investigating the micromechanical behavior of various patterned surfaces in dry and wet conditions is presented in this paper. The parallel slice-beam configuration of the tester not only eliminates the large load-dependent slope and tangential displacement at the free end that is found in a single beam system, but also performs a trans-scale deflection with high sensitivity and linearity for force sensing. Meanwhile, the simple structure is characterized by low cost, high efficiency, and ease of fabrication. An integrated nano- and micro-stage comprise the mobile table to produce a large stroke with high resolution, which is specifically required in wet adhesion testing because of the formation of a long liquid bridge. Preliminary experiments of adhesion and friction conducted using PDMS pillars with a plano-convex lens validated the feasibility of this setup.

  3. Friction in total hip joint prosthesis measured in vivo during walking.

    Directory of Open Access Journals (Sweden)

    Philipp Damm

    Full Text Available Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06 at contralateral toe off to 0.06 (0.04 to 0.08 at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23 at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W. Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  4. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee [Hanyang University, Seoul (Korea, Republic of)

    2015-09-15

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  5. Friction-controlled traction force in cell adhesion.

    Science.gov (United States)

    Pompe, Tilo; Kaufmann, Martin; Kasimir, Maria; Johne, Stephanie; Glorius, Stefan; Renner, Lars; Bobeth, Manfred; Pompe, Wolfgang; Werner, Carsten

    2011-10-19

    The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Will a decaying atom feel a friction force?

    CERN Document Server

    Sonnleitner, Matthias; Barnett, Stephen M

    2016-01-01

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is yet more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  7. Will a Decaying Atom Feel a Friction Force?

    Science.gov (United States)

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M.

    2017-02-01

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v /c . At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  8. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    2013-01-01

    This paper estimates individual-level matching functions to measure search frictions in the Japanese labour market and presents the determinants of search duration. We employ administrative microdata that track the job search process of job seekers who left or lost their job in August 2005...... and subsequently registered at their local public employment service. Our finding is that the matching function exhibits decreasing rather than constant returns-to-scale for job seekers and vacancies. We also find that after controlling for the benefits period, job seekers who lost their job involuntarily were...

  9. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    This paper estimates matching functions to measure search frictions in the Japanese labor market and presents determinants of search duration to explain the effect of unemployment benefits on a job seeker’s behavior. We employ administrative micro data that track the job search process...... unemployment benefits lengthen (shorten) the duration of job search for job seekers who voluntarily (involuntarily) leave employment....... of individuals who left or lost their job in August 2005 and subsequently registered at their local public employment service. Our finding is that the matching function would exhibit decreasing returns-to-scale for job seekers and vacancies, rather than constant return-to-scale. We also find that generous...

  10. High Precise Internal Friction Calculation for Force Vibration Mode

    Institute of Scientific and Technical Information of China (English)

    LIANG Li-Min; FEI Guang-Tao; SHUI Jia-Peng; CUI Ping; WU Bing; CHEN Xiao-Ming; LUI Ke-Tao

    2005-01-01

    @@ For the necessity of measuring the small phase difference of internal friction, a detailed comparison is carried out among the fast Fourier transformation (FFT), correlation function and three-parameter sine wave curve-fit methods. The comparison shows that the three-parameter sine wave curve-fit method can obtain more precise phase angle difference than correlation methods. Compared with the FFT algorithm, the three-parameter sine wave curve-fit method can obtain more precise frequency values.

  11. Calculating frictional force with considering material microstructure and potential on contact surfaces

    Institute of Scientific and Technical Information of China (English)

    XU Zhongming; HUANG Ping

    2007-01-01

    A method based on the energy dissipation mechanism of an Independent Oscillator model is used to calculate the frictional force and the friction coefficient of interfacial friction. The friction work is calculated with considering the potential change of contact surfaces during sliding. The potential change can be gained by a universal adhesive energy function. The relationships between frictional force and parameters of a tribo-system, such as surface energy and microstructure of interfacial material, are set up. The calculation results of the known experimental data denote that the frictional force is nearly proportional to the surface energy of the material, nearly inversely proportional to the scaling length, and independent of the lattice constant. The results agree with that of adhesion friction equations. They also agree with the experimental results performed with an atomic-force microscope under the ultra high vacuum condition.

  12. Subsurface contrast due to friction in heterodyne force microscopy

    Science.gov (United States)

    Verbiest, G. J.; Oosterkamp, T. H.; Rost, M. J.

    2017-02-01

    The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.

  13. Effect of dental arch convexity and type of archwire on frictional forces.

    Science.gov (United States)

    Fourie, Zacharias; Ozcan, Mutlu; Sandham, Andrew

    2009-07-01

    Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex dental arch setups, and to evaluate the effect of different archwires on friction in both dental arch models. Two stainless steel models were designed and manufactured simulating flat and convex maxillary right buccal dental arches. Five stainless steel brackets from the maxillary incisor to the second premolar (slot size, 0.22 in, Victory, 3M Unitek, Monrovia, Calif) and a first molar tube were aligned and clamped on the metal model at equal distances of 6 mm. Four kinds of orthodontic wires were tested: (1) A. J. Wilcock Australian wire (0.016 in, G&H Wire, Hannover, Germany); and (2) 0.016 x 0.022 in, (3) 0.018 x 0.022 in, and (4) 0.019 x 0.025 in (3M Unitek GmbH, Seefeld, Germany). Gray elastomeric modules (Power O 110, Ormco, Glendora, Calif) were used for ligation. Friction tests were performed in the wet state with artificial saliva lubrication and by pulling 5 mm of the whole length of the archwire. Six measurements were made from each bracket-wire combination, and each test was performed with new combinations of materials for both arch setups (n = 48, 6 per group) in a universal testing machine (crosshead speed: 20 mm/min). Significant effects of arch model (P = 0.0000) and wire types (P = 0.0000) were found. The interaction term between the tested factors was not significant (P = 0.1581) (2-way ANOVA and Tukey test). Convex models resulted in significantly higher frictional forces (1015-1653 g) than flat models (680-1270 g) (P model, significantly lower frictional forces were obtained with wire types 1 (679 g) and 3 (1010 g) than with types 2 (1146 g) and 4 (1270 g) (P model, the lowest friction was obtained with wire types 1 (1015 g) and 3 (1142 g) (P >0.05). Type 1 wire

  14. pH dependence of friction forces between silica surfaces in solutions.

    Science.gov (United States)

    Taran, Elena; Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko

    2006-05-01

    The pH dependence of the friction between a silica particle and a silica wafer was investigated using lateral force microscopy. Measurements were done in the range of 3.6 < or = pH < or = 10.6 and the effect of high loading force was also examined. It is found that the friction is independent of the pH of solutions and increases linearly with the applied load, when the pH is between 3.6 and 8.6. On the other hand, once the pH is above 9.0, the friction becomes extremely small and the dependence on the applied load becomes nonlinear. It is postulated that this transition is due to the development of a gel layer composed of polymer-like segments of silicilic acid anchored on the surface; at the lower applied load, this layer acts as a boundary lubricant between the surfaces, but, at the higher applied load, the entanglements of these segments and more direct contact between two solid surfaces leads to the increase of the friction. The effects found here are expected to play an important role in elucidating the basic mechanism of the planarization process of silica wafers.

  15. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study

    Science.gov (United States)

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Introduction: Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. Objectives: To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. Materials and Methods: As-received rectangular 0.019” × 0.025” stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t-test and Pearson correlation tests were used for statistical analysis (P orthodontic archwires after their intraoral exposure. Significant positive correlations (P orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended. PMID:27843884

  16. Manipulation of polystyrene nanoparticles on a silicon wafer in the peak force tapping mode in water: pH-dependent friction and adhesion force

    Energy Technology Data Exchange (ETDEWEB)

    Schiwek, Simon; Stark, Robert W., E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian, E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de [Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Heim, Lars-Oliver [Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany)

    2015-03-14

    The friction force between nanoparticles and a silicon wafer is a crucial parameter for cleaning processes in the semiconductor industry. However, little is known about the pH-dependency of the friction forces and the shear strength at the interface. Here, we push polystyrene nanoparticles, 100 nm in diameter, with the tip of an atomic force microscope and measure the pH-dependency of the friction, adhesion, and normal forces on a silicon substrate covered with a native silicon dioxide layer. The peak force tapping mode was applied to control the vertical force on these particles. We successively increased the applied load until the particles started to move. The main advantage of this technique over single manipulation processes is the achievement of a large number of manipulation events in short time and in a straightforward manner. Geometrical considerations of the interaction forces at the tip-particle interface allowed us to calculate the friction force and shear strength from the applied normal force depending on the pH of an aqueous solution. The results clearly demonstrated that particle removal should be performed with a basic solution at pH 9 because of the low interaction forces between particle and substrate.

  17. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    Directory of Open Access Journals (Sweden)

    Philipp Damm

    Full Text Available Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  18. Roughness effects on the sliding frictional force of submonolayer liquid films on solid substrates

    NARCIS (Netherlands)

    Palasantzas, G.; Widom, A.

    1998-01-01

    The sliding frictional force of a liquid submonolayer in contact with a random rough surface in an oscillatory motion is considered. The frictional force is proportional to the square of the sliding velocity v, Ff~v^2, with a proportionality factor that depends on the particular roughness configurat

  19. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  20. Analysis of the moment caused by friction of cardan joint. Cardan joint no friction kishinryoku kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Yagi, Shida, T. (Atsugi Unisia Corp., Kanagawa (Japan))

    1990-10-01

    Analyzing the vibromotive force, generated by the friction, in generation morphology, level, dynamical characteristics, etc., through measurement of joint unit friction simulation of frictional vibromotive force and on-platform measurement of propeller shaft in vibromotive force, the present report investigated the influence of friction on the vehicle in sound vibration performance. By a vibromotive force measurement system, internally equipped with a piezoelectric type force meter, frictional vibromotive force could be quantitatively grasped. The friction must be appropriately controlled, because the moment, generated by it, is expected to be put in the vehicle by intermediation of a supporting point and adversely influence the sound vibration performance. Apart from the above, elucidation was made of relation between the ordinal number components of rotation of vibromotive force and friction, calculation of reaction force at the supporting point by the frictional measurement, relation between the joint angle and frictional vibromotive force, second couple force due to the friction, etc. 3 refs., 15 figs.

  1. Methods and devices used to measure friction in rolling

    DEFF Research Database (Denmark)

    Jeswiet, J.; Arentoft, Mogens; Henningsen, Poul

    2006-01-01

    Friction at the workpiece-die boundary, in both bulk forming and sheet forming is, arguably, the single most important physical parameter influencing the processing of metals; yet it remains the least understood. Hence there is a need for basic research into metal-die interface mechanisms. To gain...... a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure frictional stress in metal working has been pursued by many researchers. This paper surveys methods that have been used...

  2. Prediction and determination of both friction coefficient and forming force on sheet metal deep—drawing

    Institute of Scientific and Technical Information of China (English)

    Junxiang; YonglinKang; 等

    2002-01-01

    On the basis of the criterion of no-wrinkle,the principle and method of prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing are put forward,and proved it's expedience and practicability.They are suitable for as sessment of lubricant properties.Friction coefficient and forming force are a function of material parameter,design parameter and process parameter,especially relative prevent wrinkle blank-holder force.Product of both friction coefficient and prevent wrinkle blank-holder force is only function of process parameter η after determining material parameter and design parameter.

  3. Prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of the criterion of no-wrinkle, the principle and method of prediction and determination of both friction coefficientand forming force on sheet metal deep-drawing are put forward, and proved it's expedience and practicability. They are suitable for assessment of lubricant properties. Friction coefficient and forming force are a function of material parameter, design parameter and process parameter, especially relative prevent wrinkle blank-holder force. Product of both friction coefficient and prevent wrinkle blank-holder force isonly function of process parameter after determining material parameter and design parameter.

  4. Comparison of friction force between corroded and noncorroded titanium nitride plating of metal brackets.

    Science.gov (United States)

    Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien

    2011-05-01

    Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P TiN-coated brackets groups showed a statistically significant difference (P TiN-coated brackets showed a statistical difference (P TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Friction measurement in MEMS using a new test structure

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, B.T.; De Boer, M.P.; Redmond, J.M.; Bahr, D.F.; Michalske, T.A.

    1999-12-09

    A MEMS test structure capable of measuring friction between polysilicon surfaces under a variety of test conditions has been refined from previous designs. The device is applied here to measuring friction coefficients of polysilicon surfaces under different environmental, loading, and surface conditions. Two methods for qualitatively comparing friction coefficients ({mu}) using the device are presented. Samples that have been coated with a self-assembled monolayer of the lubricating film perfluorinated-decyltrichorosilane (PFTS) have a coefficient of friction that is approximately one-half that of samples dried using super-critical CO{sub 2} (SCCO{sub 2}) drying. Qualitative results indicate that {mu} is independent of normal pressure. Wear is shown to increase {mu} for both supercritically dried samples and PFTS coated samples, though the mechanisms appear to be different. Super critically dried surfaces appear to degrade continuously with increased wear cycles, while PFTS coated samples reach a steady state friction value after about 10{sup 4} cycles.

  6. Frictional Forces Required for unrestrained locomotion in dairy cattle

    NARCIS (Netherlands)

    Tol, van der P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.

    2005-01-01

    Most free-stall housing systems in the Netherlands are equipped with slatted or solid concrete floors with manure scrapers. A slipping incident occurs when the required coefficient of friction (RCOF) exceeds the coefficient of friction (COF) at the claw–floor interface. An experiment was conducted t

  7. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai;

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task ...

  8. Experimental study of error sources in skin-friction balance measurements

    Science.gov (United States)

    Allen, J. M.

    1977-01-01

    An experimental study has been performed to determine potential error sources in skin-friction balance measurements. A floating-element balance, large enough to contain the instrumentation needed to systematically investigate these error sources has been constructed and tested in the thick turbulent boundary layer on the sidewall of a large supersonic wind tunnel. Test variables include element-to-case misalignment, gap size, and Reynolds number. The effects of these variables on the friction, lip, and normal forces have been analyzed. It was found that larger gap sizes were preferable to smaller ones; that small element recession below the surrounding test surface produced errors comparable to the same amount of protrusion above the test surface; and that normal forces on the element were, in some cases, large compared to the friction force.

  9. Experimental quantification of contact forces with impact, friction and uncertainty analysis

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar

    2013-01-01

    During rotor-stator contact dry friction plays a significant role in terms of reversing the rotor precession. The frictional force causes an increase in the rotor's tangential velocity in the direction opposite to that of the angular velocity. This effect is crucial for defining ranges of dry whip...

  10. Elastic Films for Cyrogenic Skin Friction Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Here we introduce a new sensor for measurement of skin friction and pressure, Surface Stress Sensitive Film (S3F). This technique can operate over a range of...

  11. An Improved Algorithm for Calculating Friction Force and Torque in Involute Helical Gears

    Directory of Open Access Journals (Sweden)

    Lin Han

    2013-01-01

    Full Text Available Time varying frictional force and torque are one of the main exciting sources of vibration in helical gears. This paper presents an approach to determine the friction force and torque in involute helical gears considering nonuniform load distribution along contact lines. An analytical load distribution model is employed and extended to obtain the load per unit of length along contact lines. Friction force and torque models under nonuniform assumption are derived. Comparisons of the determined friction force and torque with the results from uniform assumption are made. In addition, the differences between constant friction coefficient and varying coefficient are revealed. Moreover, two typical design cases of helical gears are studied. Results show that the fluctuations of friction force and torque under uniform assumption are more significant than those under nonuniform assumption in sample I for a single tooth, but less significant for the sum of those of the three teeth, while in sample II, the fluctuations under uniform assumption are less significant than those under nonuniform assumption. The friction coefficient induced difference is negligible compared with the difference induced by load distribution assumptions.

  12. Friction Experiments for Dynamical Coefficient Measurement

    Directory of Open Access Journals (Sweden)

    J. J. Arnoux

    2011-01-01

    Full Text Available An experimental study, including three experimental devices, is presented in order to investigate dry friction phenomena in a wide range of sliding speeds for the steel on steel contact. A ballistic setup, with an air gun launch, allows to estimate the friction coefficient between 20 m/s and 80 m/s. Tests are completed by an adaptation of the sensor on a hydraulic tensile machine (0.01 m/s to 3 m/s and a pin-on-disk tribometer mounted on a CNC lathe (1 to 30 m/s. The interactions at the asperity scale are characterized by a white light interferometer surface analysis.

  13. A new method for in-situ measurement of nano-friction and nano-wear of thin films by using the Triboindenter TI-950

    OpenAIRE

    Broitman, Esteban

    2014-01-01

    The Triboindenter present many advantages for the measurement of friction and wear at the nanoscale. A reciprocating multi-cycle linear test can be programmed, from where it is possible to obtain simultaneously the friction force and wear rate from the lateral force and vertical displacement sensors, respectively. The friction values have high precision but the wear data is usually wrong in long duration tests because the drift rate is only measured just before the test start. Alternatively, ...

  14. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.

    Science.gov (United States)

    Kohale, Swapnil C; Khare, Rajesh

    2010-06-21

    Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.

  15. The nature of the frictional force at the macro-, micro-, and nano-scales

    OpenAIRE

    Broitman, Esteban

    2014-01-01

    Nowadays it is accepted that the friction force is a combined effect arising from various phenomena: adhesive forces, capillary forces, contact elasticity, topography, surface chemistry, and generation of a third body, etc. Any of them can dominate depending on the experimental force and length scales of the study. Typical forces in macro-tribology are in the Newtons, while are reduced to milli-/micro-Newtons, and nano-Newtons in micro- and nano-tribology, respectively. In this paper, experim...

  16. MEASUREMENT OF FRICTIONAL PRESSURE DIFFERENTIALS DURING A VENTILATION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    B.S. Prosser, PE; I.M. Loomis, PE, PhD

    2003-11-03

    During the course of a ventilation survey, both airflow quantity and frictional pressure losses are measured and quantified. The measurement of airflow has been extensively studied as the vast majority of ventilation standards/regulations are tied to airflow quantity or velocity. However, during the conduct of a ventilation survey, measurement of airflow only represents half of the necessary parameters required to directly calculate the airway resistance. The measurement of frictional pressure loss is an often misunderstood and misapplied part of the ventilation survey. This paper compares the two basic methods of frictional pressure drop measurements; the barometer and the gauge and tube. Personal experiences with each method will be detailed along with the authors' opinions regarding the applicability and conditions favoring each method.

  17. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    Science.gov (United States)

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  18. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...... in drawing of stainless steel showing the influence of varying process conditions and the performance of different lubricants....

  19. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2004-01-01

    A special BUT-transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all measured directly, thus...... enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication in drawing of stainless steel...... showing the influence of varying process conditions and the performance of different lubricants....

  20. Optical skin friction measurement technique in hypersonic wind tunnel

    Science.gov (United States)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  1. Investigation into Piston-Slap Force under Friction and Connecting Rod Effects of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuadi Noor Balia

    2011-01-01

    Full Text Available In this paper, a dynamics analysis of diesel engine through investigation of the piston-slap force by considering the friction and connecting rod effects is presented. A single-cylinder of 500 cc Diesel Engine’s mechanism was examined. The position, velocity and acceleration of the pins and the center of mass for each linkage were calculated by using vector analysis principles. The governing equations of the forces and moments were derived based on the Cartesian coordinate principles, and solved by using Gauss elimination method. Hence, the piston-slap force onto the cylinder wall under friction and connecting rod effects were determined. Favourable comparison with previously published work was performed and excellent agreement between the results was obtained. The result shows that the friction and connecting rod effects significantly influence to the piston-slap force.

  2. Normal and friction stabilization techniques for interactive rigid body constraint-based contact force computations

    DEFF Research Database (Denmark)

    2010-01-01

    We present a novel, yet simple, method for stabilization of normal forces. A normal stabilization term, carefully designed from hypotheses about interactive usability, is added to the contact force problem. Further, we propose friction stabilization as a completely new stabilization paradigm in i...

  3. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2004-01-01

    A special BUT-transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all measured directly, thus enab...

  4. Ex situ and in situ characterization of patterned photoreactive thin organic surface layers using friction force microscopy.

    Science.gov (United States)

    Shen, Quan; Edler, Matthias; Griesser, Thomas; Knall, Astrid-Caroline; Trimmel, Gregor; Kern, Wolfgang; Teichert, Christian

    2014-01-01

    Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction.

  5. Measurement of local internal friction in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, H.; Büchsenschütz-Göbeler, M.; Luo, Y.; Samwer, K. [I. Physikalisches Institut, Georg-August Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Kumar, A. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Arnold, W., E-mail: w.arnold@mx.uni-saarland.de [I. Physikalisches Institut, Georg-August Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Department of Materials and Materials Technology, Saarland University, Campus D 2.2, D-66123 Saarbrücken (Germany)

    2014-04-07

    Atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has been used to measure local elastic properties with a spatial resolution given by the tip-sample contact radius. AFAM is based on inducing out-of-plane vibrations in the specimen. The vibrations are sensed by the AFM cantilever from by the photodiode signal when its tip is in contact with the material under test. To measure local damping, the inverse quality factor Q{sup −1} of the resonance curve is usually evaluated. Here, from the contact-resonance spectra obtained, we determine the real and imaginary part of the contact stiffness k* and from these two quantities the local damping factor Q{sub loc}{sup −1} is obtained which is proportional to the imaginary part γ of the contact stiffness. The evaluation of the data is based on the cantilever's mass distribution with damped flexural modes and not on an effective point-mass approximation for the cantilever’s motion. The given equation is simple to use and has been employed to study the local Q{sub loc}{sup −1} of amorphous PdCuSi metallic glass and its crystalline counterpart as a function of position of the AFM tip on the surface. The width of the distribution changes dramatically from the amorphous to the crystalline state as expected from the consequences of the potential-energy landscape picture. The center value of the distribution curve for Q{sub loc}{sup −1} coincides very well with published data, based on global ultrasonic or internal friction measurements. This is compared to Q{sub loc}{sup −1} measured in crystalline SrTiO{sub 3}, which exhibits a narrow distribution, as expected.

  6. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... experimentally friction stress at various normal pressures, reductions in area, billet heights and lubrications. Tested materials include aluminium alloy, low carbon steel and stainless steel. Two lubrication methods are applied, conversion coating followed by either alkaline soap or molybdenum disulphide...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...

  7. Nanotribological characterization of human head hair by friction force microscopy in dry atmosphere and aqueous environment.

    Science.gov (United States)

    Nikogeorgos, Nikos; Fletcher, Ian W; Boardman, Christopher; Doyle, Peter; Ortuoste, Nerea; Leggett, Graham J

    2010-06-01

    Friction force microscopy was employed for the tribological investigation of human head hair in two different environments: a dry atmosphere and de-ionized water. The fibers were immobilized by embedding them in indium. The effects of bleaching, conditioning, and immersion in methanolic KOH were quantified in terms of the relative coefficient of friction (μ). The virgin fibers were clearly distinguished in terms of friction coefficient from the chemically damaged ones in both environments, while all categories of hair exhibited higher friction coefficients in the aqueous environment. Secondary ion mass spectroscopy was used as a complementary technique to examine the presence of fatty acids on the cuticular surface of the different categories of hair as well as the conditioner distribution. Neither bleaching nor 30 min treatment in methanolic KOH was found adequate to completely remove the fatty acids from the fibers' surface. Conditioner species were detected along the whole cuticular surface.

  8. Simultaneous optimization of force and placement of friction dampers under seismic loading

    Science.gov (United States)

    Fleck Fadel Miguel, Letícia; Fleck Fadel Miguel, Leandro; Holdorf Lopez, Rafael

    2016-04-01

    It is known that the use of passive energy-dissipation devices, such as friction dampers, reduces considerably the dynamic response of a structure subjected to earthquake ground motions. Nevertheless, the parameters of each damper and the best placement of these devices remain difficult to determine. Some articles on optimum design of tuned mass dampers and viscous dampers have been published; however, there is a lack of studies on optimization of friction dampers. The main contribution of this article is to propose a methodology to simultaneously optimize the location of friction dampers and their friction forces in structures subjected to seismic loading, to achieve a desired level of reduction in the response. For this purpose, the recently developed backtracking search optimization algorithm (BSA) is employed, which can deal with optimization problems involving mixed discrete and continuous variables. For illustration purposes, two different structures are presented. The first is a six-storey shear building and the second is a transmission line tower. In both cases, the forces and positions of friction dampers are the design variables, while the objective functions are to minimize the interstorey drift for the first case and to minimize the maximum displacement at the top of the tower for the second example. The results show that the proposed method was able to reduce the interstorey drift of the shear building by more than 65% and the maximum displacement at the top of the tower by approximately 55%, with only three friction dampers. The proposed methodology is quite general and it could be recommended as an effective tool for optimum design of friction dampers for structural response control. Thus, this article shows that friction dampers can be designed in a safe and economic way.

  9. The Friction Force Determination of Large-Sized Composite Rods in Pultrusion

    Science.gov (United States)

    Grigoriev, S. N.; Krasnovskii, A. N.; Kazakov, I. A.

    2014-08-01

    Nowadays, the simple pull-force models of pultrusion process are not suitable for large sized rods because they are not considered a chemical shrinkage and thermal expansion acting in cured material inside the die. But the pulling force of the resin-impregnated fibers as they travels through the heated die is essential factor in the pultrusion process. In order to minimize the number of trial-and-error experiments a new mathematical approach to determine the frictional force is presented. The governing equations of the model are stated in general terms and various simplifications are implemented in order to obtain solutions without extensive numerical efforts. The influence of different pultrusion parameters on the frictional force value is investigated. The results obtained by the model can establish a foundation by which process control parameters are selected to achieve an appropriate pull-force and can be used for optimization pultrusion process.

  10. Investigation on frictional characteristics and drawbead restraining force of steel with/without coating

    Science.gov (United States)

    Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun

    2013-12-01

    Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.

  11. Within-trial modulation of multi-digit forces to friction.

    Science.gov (United States)

    Zhang, Wei; Gordon, Andrew M; McIsaac, Tara L; Santello, Marco

    2011-05-01

    Tactile signals from the fingertips play a crucial role in the planning and control of object manipulations. Specifically, subjects adapt their digit forces to the object physical properties, including the friction at the object surface, to perform object manipulation while preventing slipping or dropping. This study addressed the adaptation of multi-digit forces to friction that occurs within a trial (from contact to onset of object manipulation) and across trials. Ten healthy participants were instructed to grasp, lift, hold, and release a grip device with five digits under four texture conditions: (1) all digits on rayon (R-R), (2) all digits on sandpaper (S-S), (3) thumb on sandpaper and fingers on rayon (S-R), and (4) thumb on rayon and fingers on sandpaper (R-S). Changing the texture conditions elicited significant changes from object contact to lift onset on digit normal force and center of pressure, as well as on the safety margins and force sharing patterns, e.g., normal forces exerted by each finger expressed as percentage of thumb normal forces. Furthermore, these friction effects were found on the very first trial and were observed throughout the remainder of the trials, thus indicating that force adaptation occurred within the first manipulation. Finally, a highly linear relation between the safety margin at object lift onset and object hold confirmed that digit force adaptation to friction occurred before object lift onset. These findings are discussed in relation to the role of tactile input in force modulation during the early phase of multi-digit grasping.

  12. Friction drive of an SAW Motor. Part I: measurements.

    Science.gov (United States)

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi

    2008-09-01

    The surface acoustic wave motor in this study utilized transparent lithium niobate for a stator. We then measured the normal and tangential displacements of the frictional surface of the slider via the transparent stator by means of 2 laser Doppler vibrometers. We thoroughly inspected the measurement conditions and indicated that the measured data were reliable and usable for subsequent precise analyses of the friction drive. The driving conditions for the measurements were a driving frequency of 9.61 MHz and a wave vibration amplitude of 20 nm. The start-up transients of the motor for a duration of 10.4 micros were measured. The measurements showed that the frictional surface of the slider displaced in both the normal and tangential directions followed each wave vibration. The displacements increased with the wave's vibration amplitude: they increased to 10 nm in both directions, in response to the transient increase of the wave's vibration amplitude to 20 nm, under the 15 N preload condition. Moreover, the slider surface rotated in the same direction as the wave surface and its trajectories were a tilted elliptical orbit. Since the surface of the wave rotated in an upright elliptical orbit, the result indicated that the tangential displacement of the slider surface was delayed in relation to that of the wave. The delay was in the range from 30 degrees to 60 degrees under the 15 N preload condition.

  13. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.

    Science.gov (United States)

    Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A

    2006-01-01

    This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.

  14. Optimization of Blank Holding Force in Deep Drawing Process Using Friction Property of Steel Blank

    Directory of Open Access Journals (Sweden)

    Prasad S. Pandhare

    2012-08-01

    Full Text Available Majority of automobile and appliances component are made by deep drawing sheet metal process. So these growing need demands a new design methodology based on metal forming simulation. With the help of metal forming simulation we can identify the problem areas and solutions can be validated in computers without any expensive shop floor operations prior to any tool construction. Metal forming simulation is also helpful at the product and tool design stage to decide various parameters. Problem and improvements in each area of the SDF technology and their interactions should be considered. In the product and process design phases in order to optimize Blank Holding Force which is one of the important parameters in Deep Drawing process. Sometimes accuracies of frictional values have more effect on the simulation results than most of the material properties. So that friction plays a major role during optimization of Blank Holding Force. In this paper, the friction is varied in six different values. CRDQ Steel is used as a material. For each value of friction and its corresponding B.H.F., Forming Limit Diagrams are drawn by using hyper mesh module of Hyper Form Solver software. Also the effect of these two parameters on occurrence of wrinkling during the process is studied. Thus, optimized range of coefficient of friction in which product is safe as well as having minimized wrinkles along with optimized B.H.F. is calculated.

  15. Effects of friction on forced two-dimensional Navier-Stokes turbulence

    Science.gov (United States)

    Blackbourn, Luke A. K.; Tran, Chuong V.

    2011-10-01

    Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, “side effects” of such a mechanism—mechanical friction—on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity νc, which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that νc=[η'1/3/(Ckf2)]exp[-η'1/3/(Cα)], where η' is half the enstrophy injection rate, kf is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.

  16. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force.

    Science.gov (United States)

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-05-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  17. Effects of third-order torque on frictional force of self-ligating brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Ahluwalia, Karamdeep S; Kohda, Naohisa; Mizoguchi, Itaru

    2014-11-01

    To investigate the effects of third-order torque on frictional properties of self-ligating brackets (SLBs). Three SLBs (two passive and one active) and three archwires (0.016 × 0.022-inch nickel-titanium, and 0.017 × 0.025-inch and 0.019 × 0.025-inch stainless steel) were used. Static friction was measured by drawing archwires though bracket slots with four torque levels (0°, 10°, 20°, 30°), using a mechanical testing machine (n  =  10). A conventional stainless-steel bracket was used for comparison. RESULTS were subjected to Kruskal-Wallis and Mann-Whitney U-tests. Contact between the bracket and wire was studied using a scanning electron microscope. In most bracket-wire combinations, increasing the torque produced a significant increase in static friction. Most SLB-wire combinations at all torques produced less friction than that from the conventional bracket. Active-type SLB-wire combinations showed higher friction than that from passive-type SLB-wire combinations in most conditions. When increasing the torque, more contact between the wall of a bracket slot and the edge of a wire was observed for all bracket types. Increasing torque when using SLBs causes an increase in friction, since contact between the bracket slot wall and the wire edge becomes greater; the design of brackets influences static friction.

  18. A HYBRID TECHNIQUE FOR FREQUENCY DOMAIN IDENTIFICATION OF SERVO SYSTEM WITH FRICTION FORCE

    Directory of Open Access Journals (Sweden)

    SHAIK.RAFI KIRAN,

    2011-03-01

    Full Text Available The system identification process in servo system with frictional force seems to be a complex task becauseof its non-linear nature. For such non-linear systems, a good choice is system identification in frequencydomain. However, most of the techniques are manual and are inappropriate for determination of systemparameters. This makes system identification ineffective for servo systems with frictional force. Toovercome this issue, a hybrid technique is proposed in this paper. The proposed technique exploits neuralnetwork and genetic algorithm to determine the system parameters of servo systems with friction. In theproposed technique, the target parameters are determined from the transfer function derived for thesystem. Subsequently, the system parameters are identified by a process formed by blending the neuralnetwork and genetic algorithm techniques. Prior to performing the identification procedure, backpropagation training is given to the neural network using a pre-examined dataset. Then with thecombined operation of neural network and genetic algorithm, the system parameters that are closer tothe target parameters for the servo system with frictional force are determined. The technique isimplemented and compared with the existing frequency domain identification technique. From thecomparative results, it is evident that the proposed technique outperforms the existing technique.

  19. DSPC/DLPC mixed films supported on silica: a QCM-D and friction force study.

    Science.gov (United States)

    Oguchi, Takakuni; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    The membrane properties of phospholipid mixtures supported on silica were studied by means of a quartz crystal microbalance with dissipation monitoring (QCM-D) technique, in situ soft-contact atomic force microscopy (AFM), and friction force microscopy (FFM). The phospholipids used in this study were di-stearoylphosphatidylcholine (DSPC) and dilauroylphosphatidylcholine (DLPC). The phospholipid films were prepared by a vesicle-fusion method, in which DSPC/DLPC mixed liposomes dispersed in an aqueous medium are adsorbed on silica and their structure is transformed into a bilayer on the substrate. The changes in QCM-D (frequency and dissipation) and friction responses of DSPC single systems (gel state at 25°C) are relatively large compared with those of DLPC single systems (liquid-crystalline state at 25°C) and those of mixed DSPC/DLPC systems. This suggests that (i) the gel-state DSPC liposomes are somewhat flattened on the silica, by keeping their solid-like molecular rigidity, whereas (ii) both the liquid-crystalline DLPC and mixed liposomes experience instantaneous structural transformation at the silica/water interface and form a normally flattened bilayer on the substrate. The friction force response is dependent on the phase state of the phospholipids, and the liquid-crystalline DLPC has a more significant impact on the overall membrane properties (i.e., the degree of swelling and the friction response on the surface) than does the gel-state DSPC.

  20. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2012-11-01

    Full Text Available Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied. The nanoscale studies were performed by using atomic force microscope (AFM, and macroscale studies were performed by using a pin-on-disk (POD reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability.

  1. Optimization of method a load cell calibration for the measurement of coefficient of friction

    Science.gov (United States)

    Castro, R. M.; Pereira, M.; Sousa, A. R.; Curi, E. I. M.; Izidoro, C. L.; Correa, L. C.

    2016-07-01

    The instrumentation of equipment for mechanical testing is used to optimize the time to deliver a result, besides minimizing errors associated with manual measurements. Given this context, this work aims to present a calibration method for a load cell to determine the measurement results of force and friction coefficient, developed from on rotary pin-on-disk tribometer. The results indicate that the procedure provides measurements reliable for the tribological phenomena, resulting in with proximity the values provided by the ASTM G99-04.

  2. Determination of time-varying contact length, friction force, torque and forces at the bearings in a helical gear system

    Science.gov (United States)

    Kar, Chinmaya; Mohanty, A. R.

    2008-01-01

    This paper deals with determining various time-varying parameters that are instrumental in introducing noise and vibration in a helical gear system. The most important parameter is the contact line variation, which subsequently induces friction force variation, frictional torque variation and variation in the forces at the bearings. The contact line variation will also give rise to gear mesh stiffness and damping variations. All these parameters are simulated for a defect-free and two defective cases of a helical gear system. The defective cases include one tooth missing and two teeth missing in the helical gear. The algorithm formulated in this paper is found to be simple and effective in determining the time-varying parameters.

  3. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  4. A new skin friction balance and selected measurements

    Science.gov (United States)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  5. Reducing friction-induced vibration using intelligent active force control (AFC) with piezoelectric actuators

    Indian Academy of Sciences (India)

    S M Hashemi-Dehkordi; A R Abu-Bakar; M Mailah

    2012-12-01

    In this paper, a novel approach to reduce the effect of mode coupling that causes friction induced vibration (FIV) is proposed by applying an intelligent active force control (AFC)-based strategy employing piezoelectric actuators with hysteresis effect to a simplified two degree-of-freedom mathematical model of a friction-induced vibration system. At first, the model is simulated and analysed using a closed loop pure Proportional-Integral-Derivative (PID) controller. Later, it is integrated with the intelligent AFC with fuzzy logic (FL) estimator and simulated under similar operating condition. After running several tests with different sets of operating and loading conditions, the results both in time and frequency domains show that the PID controller with the intelligent AFC is much more effective in reducing the vibration, compared to the pure PID controller alone.

  6. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  7. Friction in surface micromachined microengines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.L.; Sniegowski, J.J.; LaVigne, G.; McWhorter, P.J.

    1996-03-01

    Understanding the frictional properties of advanced Micro-Electro- Mechanical Systems (MEMS) is essential in order to develop optimized designs and fabrication processes, as well as to qualify devices for commercial applications. We develop and demonstrate a method to experimentally measure the forces associated with sliding friction of devices rotating on a hub. The method is demonstrated on the rotating output gear of the microengine recently developed at Sandia National Laboratories. In-situ measurements of an engine running at 18300 rpm give a coefficient of friction of 0.5 for radial (normal) forces less than 4 {mu}N. For larger forces the effective coefficient of friction abruptly increases, suggesting a fundamental change in the basic nature of the interaction between the gear and hub. The experimental approach we have developed to measure the frictional forces associated with the microengine is generically applicable to other MEMS devices.

  8. Velocity, temperature and normal force dependence on friction: An analytical and molecular dynamic study

    CERN Document Server

    Dias, R A; Rapini, M; Costa, B V

    2007-01-01

    In this work we propose an extension to the analytical one-dimensional model proposed by E. Gnecco (Phys. Rev. Lett. 84:1172) to describe friction. Our model includes normal forces and the dependence with the angular direction of movement in which the object is dragged over a surface. The presence of the normal force in the model allow us to define judiciously the friction coefficient, instead of introducing it as an {\\sl a posteriori} concept. We compare the analytical results with molecular dynamics simulations. The simulated model corresponds to a tip sliding over a surface. The tip is simulated as a single particle interacting with a surface through a Lennard-Jones $(6-12)$ potential. The surface is considered as consisting of a regular BCC(001) arrangement of particles interacting with each other through a Lennard-Jones $(6-12)$ potential. We investigate the system under several conditions of velocity, temperature and normal forces. Our analytical results are in very good agreement with those obtained by...

  9. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    CERN Document Server

    Kagan, Grigory; Daligault, Jerome

    2016-01-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  10. Skin friction measurement on the NASA Common Research Model using global luminescent oil film skin friction meter

    Science.gov (United States)

    Rajendran, Lalit Kishore

    Accurate skin friction measurements are indispensable in the design of more efficient aerodynamic vehicles, and is also the controlling variable in closed loop flow control systems. Spatially and temporally resolved skin friction data is required to calibrate turbulence models used in Computational Fluid Dynamics analysis, and can also provide insight into the nature of near-wall turbulence. Luminescent oil film based techniques offer the ability to make distributed wall shear stress measurements with a relatively simple setup. The Global Luminescent Oil Film Skin Friction Meter (GLOSFM) technique involves calculating the shear stress based on observing the thickness of an oil film, which in turn is directly proportional to its luminescent intensity, provided the oil film is sufficiently thin. This technique is briefly reviewed, with some emphasis on uncertainty quantification, and the formation and propagation of ripples/surface waves on the oil film, as well as their impact on the shear stress measurement. Finally, this technique is used to measure the skin friction field on the wing and fuselage of the NASA Common Research Model, a passenger jet configuration. The issue of repeatability and the effects of tripping the flow are investigated, and the effect of flow parameters like the angle of attack and the Reynolds number are studied.

  11. Apparatus Measures Friction In Vacuum Or Pressurized Gas

    Science.gov (United States)

    Trevathan, Joseph R.

    1996-01-01

    Friction-testing apparatus in small test chamber contains special atmosphere, which could include vacuum or pressurized gas. Provides readings indicative of friction between pin specimen and plate specimen sliding under pin in reciprocating linear motion. Pin and plate specimens made of same or different material.

  12. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    Institute of Scientific and Technical Information of China (English)

    W Yuan; L Li; D G Zhang; J Z Hong

    2016-01-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid mod-eling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  13. Solid friction between soft filaments

    CERN Document Server

    Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...

  14. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  15. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  16. Reynolds-dependence of turbulent skin-friction drag reduction induced by spanwise forcing

    CERN Document Server

    Gatti, Davide

    2015-01-01

    This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the traveling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like ...

  17. INVESTIGATION OF THE EFFECT OF FRICTION FORCE ON DAMAGE FORMATION IN SPUR GEARS

    Directory of Open Access Journals (Sweden)

    Kubilay ASLANTAŞ

    2002-01-01

    Full Text Available Gears are perhaps one of the important components used in machinery to transmit motion and power. Transmission of force and motion occur at the same moment for mutual working gears. Transmission of the force and motion from a gear to another is a result of rolling-sliding contact of tooth surfaces each other. This rolling-sliding contact causes some stresses on surface and subsurface. In this study, analysis of stresses on surface and subsurface due to rolling-sliding contact on tooth surfaces are carried out. In the solution of the problem, different friction coefficients between tooth surfaces and are taken as the variables. The contact analysis between tooth surfaces is based upon Hertz elastic contact theory and for the numerical solution ANSYS 54 finite element program code is used.

  18. 78 FR 69927 - Notice to Manufacturers of Continuous Friction Measurement Equipment (CFME)

    Science.gov (United States)

    2013-11-21

    ... Federal Aviation Administration Notice to Manufacturers of Continuous Friction Measurement Equipment (CFME... foreign manufacturers of Continuous Friction Measurement Equipment (CFME) that meet the requirements of... Airport Improvement Program (AIP). AIP grant recipients must follow 49 U.S.C. Sec. 50101, Buy...

  19. Generated forces and heat during the critical stages of friction stir welding and processing

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Sadiq Aziz; Tahir, Abd Salam Md; Izamshah, R. [University Teknikal Malaysia Melaka, Malacca (Malaysia)

    2015-10-15

    The solid-state behavior of friction stir welding process results in violent mechanical forces that should be mitigated, if not eliminated. Plunging and dwell time are the two critical stages of this welding process in terms of the generated forces and the related heat. In this study, several combinations of pre-decided penetration speeds, rotational speeds, tool designs, and dwell time periods were used to investigate these two critical stages. Moreover, a coupled-field thermal-structural finite element model was developed to validate the experimental results and the induced stresses. The experimental results revealed the relatively large changes in force and temperature during the first two stages compared with those during the translational tool movement stage. An important procedure to mitigate the undesired forces was then suggested. The model prediction of temperature values and their distribution were in good agreement with the experimental prediction. Therefore, the thermal history of this non-uniform heat distribution was used to estimate the induced thermal stresses. Despite the 37% increase in these stresses when 40 s dwell time was used instead of 5 s, these stresses showed no effect on the axial force values because of the soft material incidence and stir effects.

  20. Diabatic and frictional forcing effects on the structure and intensity of tropical cyclones

    Science.gov (United States)

    Slocum, Christopher J.

    Tropical cyclone intensity forecasting skill has slowed in improvement for both dynamical and statistical-dynamical forecasting methods in comparison to gains seen in track forecasting skill. Also, forecast skill related to rapid intensification, e.g. a 30 kt or greater increase in intensity within a 24-hour period, still remains poor. In order to make advances and gain a greater understanding, the processes that affect intensity change, especially rapid intensification, need further study. This work evaluates the roles of diabatic and frictional forcing on the structure and intensity of tropical cyclones. To assess the diabatic forcing effects on intensity change in tropical cyclones, this study develops applications of Eliassen's balanced vortex model to obtain one-dimensional solutions to the geopotential tendency and two-dimensional solutions to the transverse circulation. The one-dimensional balanced solutions are found with dynamical model outputs as well as aircraft reconnaissance combined with diabatic heating derived from microwave rainfall rate retrievals. This work uses solutions from both datasets to make short-range intensity predictions. The results show that for the one-dimensional solutions, the tangential tendency does not match the dynamical model or aircraft wind tendencies. To relax the assumptions of the one-dimensional solutions to the geopotential tendency, solutions for idealized vortices are examined by finding two-dimensional solutions to the transverse circulation. The two-dimensional solutions allow for evaluation of the axisymmetric structure of the vortex on the (r, z)-plane without setting the baroclinicity to zero and the static stability to a constant value. While the sensitivity of tangential wind tendency to diabatic forcing and the region of high inertial stability is more realistic in the two-dimensional results, the solutions still neglect the influence of friction from the boundary layer. To understand further the role of

  1. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas;

    2005-01-01

    A load transducer has been developed to measure the contact forces in the deformation zone during rolling. The transducer consists of a strain gauge equipped insert, embedded in the surface of the roll. The length of the insert exceeds the contact length between material and roll. By analyzing...

  2. On the friction forces on buried district heating pipelines. Influence factors for the tunnel effect; Zur Reibung an erdverlegten Fernwaermeleitungen. Einflussfaktoren fuer den Tunneleffekt

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Ingo; Achmus, Martin [Leibniz Univ. Hannover (DE). Inst. fuer Grundbau, Bodenmechanik und Energiewasserbau (IGBE)

    2008-11-15

    The extent of friction forces depends on the type and degree of compacting of the filling material, the thickness of the earth cover and many other parameters that may be difficult to assess quantitatively. In practice, only the minimum and maximum possible friction forces are therefore determined. The article starts by presenting physical models for calculating the friction forces to be expected. After this, a numerical method is presented for calculating the loads and deformations of a straight pipeline; the method permits the consideration of temperature-dependent friction forces. Finally, an exemplary pipeline is calculated and interpreted. (orig./GL)

  3. SURFACE DYNAMIC FRICTION OF POLYMER GELS

    Institute of Scientific and Technical Information of China (English)

    J.P.Gong; G.Kagata; Y.Iwasaki; Y.Osada

    2000-01-01

    The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors of the hydrogels do not conform to Amonton's law F =μW which well describes the friction of solids. The frictional force and its dependence on the load are quite different depending on the chemical structures of the gels, surface properties of the opposing substrates, and the measurement condition. The gel friction is explained in terms of interfacial interaction, either attractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed to the viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chain from the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed a good correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.

  4. The Effect of Tool Press Force to Weldability of AA5754 and AA6061 Alloys with Friction Stir Welding Method

    Directory of Open Access Journals (Sweden)

    Tevfik Küçükömeroğlu

    2013-07-01

    Full Text Available In this study AA5754 and A6061 alloys have been butt welded to each other by using friction stir welding (FSW. At constant tool geometry and tool angle experiments were carried out, joints were performed using different welding speed, rotation speed and especially tool press force. The mechanical properties of the welded samples were determined by using tensile test, bending test and micro hardness. Generated microstructure and hardness profile was obtained in the welding zone. In this friction stir welding study the parameters which affect the joint structure are the tool press force, welding speed and tool rotation speed which were determined. At the end of study it is determined that AA5754 and AA6061 alloys can be successfully welded by using Friction Stir Welding method under different tool press forces at least 6kN.

  5. Transducer for measuring normal and friction stress in contact zone during rolling

    DEFF Research Database (Denmark)

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens

    2004-01-01

    by the friction conditions. To achieve this important information, measurements of the normal pressure and friction stresses in the deformation zone are requested. The interface conditions are analyzed by several authors [1-8] The direction of the friction stress is changing during the rolling gap....... At the entrance of the deformation zone, the peripherical velocity of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll...

  6. Quantification of basal friction for technical and silvicultural glide-snow avalanche mitigation measures

    OpenAIRE

    2014-01-01

    A long-standing problem in avalanche engineering is to design defense structures and manage forest stands such that they can withstand the forces of the natural snow cover. In this way, glide-snow avalanches can be prevented. Ground friction plays a crucial role in this process. To verify existing guidelines, we collected data on the vegetation cover and terrain characteristics of 101 glide-snow release areas in Davos, Switzerland. We quantified the Coulomb friction paramete...

  7. Force and repetition in cycling: possible implications for iliotibial band friction syndrome.

    Science.gov (United States)

    Farrell, Kevin C; Reisinger, Kim D; Tillman, Mark D

    2003-03-01

    This study examined force and repetition during simulated distance cycling with regard to how they may possibly influence the on-set of the overuse injury at the knee called iliotibial band friction syndrome (ITBFS). A 3D motion analysis system was used to track lower limb kinematics during cycling. Forces between the pedal and foot were collected using a pressure-instrumented insole that slipped into the shoe. Ten recreational athletes (30.6+/-5.5 years) with no known history of ITBFS participated in the study. Foot-pedal force, knee flexion angle and crank angle were examined as they relate to the causes of ITBFS. Specifically, foot-pedal force, repetition and impingement time were calculated and compared with the same during running. A minimum knee flexion angle of approximately 33 degrees occurred at a crank angle of 170 degrees. The foot-pedal force at this point was 231 N. This minimum knee flexion angle falls near the edge of the impingement zone of the iliotibial band (ITB) and the femoral epicondyle, and is the point at which ITBFS is aggravated causing pain at the knee. The foot-pedal forces during cycling are only 18% of those occurring during running while the ITB is in the impingement zone. Thus, repetition of the knee in the impingement zone during cycling appears to play a more prominent role than force in the on-set of ITBFS. The results also suggest that ITBFS may be further aggravated by improper seat position (seat too high), anatomical differences, and training errors while cycling.

  8. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. I. Testing with Analytic Solutions

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.; Valori, G.

    2016-09-01

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov-Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax-Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.

  9. In-process tool force and rotation variation to control sheet thickness change in friction stir welding of magnesium alloys

    Science.gov (United States)

    Buffa, Gianluca; Fratini, Livan; Simoncini, Michela; Forcellese, Archimede

    2016-10-01

    Two different in-process control strategies, developed in order to produce sound joints in AZ31 magnesium alloy by Friction Stir Welding on sheet blanks with a non-uniform thickness, are presented and compared. To this purpose, sheets with dip or hump were machined and welded by either changing the rotational speed or the tool plunging in order to keep constant the vertical force occurring during welding. The mechanical strength of the joints was measured in the zones where the sheets before welding were characterised by different thicknesses. The sheets welded by the two different strategies are characterized by very similar ultimate tensile strength values. Finally, the results showed that the two approaches permit to successfully weld sheets with non-uniform thickness with a reduced loss in the mechanical strength.

  10. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces.

    Directory of Open Access Journals (Sweden)

    Kevin G Keenan

    Full Text Available Mobile computing devices (e.g., smartphones and tablets that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs adults produced maximal voluntary contractions (MVCs and steady submaximal forces (2.5 and 10% MVC with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (F(z were similar (p = .135 for young and older adults, and decreased by 15% (p<.001 while pressing on Teflon compared to sandpaper. Fluctuations in F(z during the submaximal force-matching tasks were 2.45× greater (p<.001 for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.

  11. Slip measurement in a frictional connection by torsional LDV

    Science.gov (United States)

    Schäfer, Günter; Lohrengel, Armin; Hilgermann, Jan Lukas

    2016-06-01

    Frictional shaft-hub connections are often used in drive train applications. The classic version is fitted by a temperature difference between the cold shaft und the hot hub, or simply axial press-fitted at room temperature. The critical point in this type of connection is the contact pressure at the edge of the hub regarding the relative deformation between the shaft and the hub under dynamic operating loads. Another innovative version, the internal press-fit, leads to a tolerance insensitive lightweight design using a tube as shaft and a controlled plastic deformation by internal high pressure. The internal press-fit connection is a special research topic at the IMW, TU Clausthal. The use of internal high pressure allows to trigger the contact pressure at the edge of the hub on an optimum value. The product of contact pressure and slipway is the key value to determine the fatigue resistance and load capacity of this kind of connection. /1/ and /2/ defined a critical range of slipway amplitudes between 5 and 25 µm for fretting. The normal use and main function of a shaft-hub connection is the transmission of torque. Regarding the different torsional stiffness of the shaft and the hub, there will be a difference in deformation in the contact zone between the shaft and the hub, which is necessary to measure on a probe under oscillating torque load. The measurement on the test-rig in /3/ was done with a POLYTEC torsional LDV (controller OFV-4000, sensor head OFV-400). In general the continuously oscillating torque load allowed a serial measurement of the torsional movement of the shaft and the hub. The difference of the two maximum values is the expected slipway between the two parts in the critical zone at the edge of the hub. The main benefits of the Torsional LDV in this application are the very small measuring point (next to the contact), no influence on the probe, no special preparation of the probe and a really good resolution. The paper gives an overview to

  12. DETERMINATION OF BALL COHESIVE AND FRICTIONAL FORCES WITH TOOL AT POLISHING BETWEEN ALIGNED RINGS AND DISK

    Directory of Open Access Journals (Sweden)

    K. G. Schetnikovich

    2010-01-01

    Full Text Available The paper provides a design description of a tool used for polishing balls made of brittle materials between bottom driving disk and two rings. An external stationary ring has a ring turning of rectangular profile that helps the ring to be based directly on the balls which are to be polished and take self-aligned position in relation to tool rotation axis.  Forces acting on the balls in the points of contact with the tool with due account of friction against a separator and conditions of ball sliding along ring working surfaces are determined in the paper. Dependence for determination of stationary and driving ring load ratio when balls are sliding along two contact surfaces of the tool is ascertained in the paper. The paper contains recommendations on selection of modes for ball polishing at its initial and finishing stages.

  13. Force measurements with the atomic force microscope: Technique, interpretation and applications

    Science.gov (United States)

    Butt, Hans-Jürgen; Cappella, Brunero; Kappl, Michael

    2005-10-01

    The atomic force microscope (AFM) is not only a tool to image the topography of solid surfaces at high resolution. It can also be used to measure force-versus-distance curves. Such curves, briefly called force curves, provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities. For this reason the measurement of force curves has become essential in different fields of research such as surface science, materials engineering, and biology. Another application is the analysis of surface forces per se. Some of the most fundamental questions in colloid and surface science can be addressed directly with the AFM: What are the interactions between particles in a liquid? How can a dispersion be stabilized? How do surfaces in general and particles in particular adhere to each other? Particles and surfaces interactions have major implications for friction and lubrication. Force measurements on single molecules involving the rupture of single chemical bonds and the stretching of polymer chains have almost become routine. The structure and properties of confined liquids can be addressed since force measurements provide information on the energy of a confined liquid film. After the review of Cappella [B. Cappella, G. Dietler, Surf. Sci. Rep. 34 (1999) 1-104] 6 years of intense development have occurred. In 1999, the AFM was used only by experts to do force measurements. Now, force curves are used by many AFM researchers to characterize materials and single molecules. The technique and our understanding of surface forces has reached a new level of maturity. In this review we describe the technique of AFM force measurements. Important experimental issues such as the determination of the spring constant and of the tip radius are discussed. Current state of the art in analyzing force curves obtained under different conditions is presented. Possibilities, perspectives but also open questions and

  14. Measurement and Calculation of Frictional Loss in Large Two-Stroke Engines

    DEFF Research Database (Denmark)

    Vølund, Anders

    2003-01-01

    The total frictional loss in a large two-stroke marine diesel engine is rather well determined. However, the contribution (size and distribution) from the different machine elements are not well known. The aim of this study is to establish methods to measure and calculate friction in the piston...... assembly and guide shoe system for a large two-stroke marine diesel engine. These components are the two major contributors to the total friction in a two-stroke marine diesel engine. The piston pack represents approximately 60% of the total mechanical loss at full load and the guide shoe system 23......%. The rest of the mechanical loss is situated in the piston rod 2%, piston skirt 3% and main bearings and connecting rod bearing 12%. Information about the friction distribution can be used in future design of these machine elements. Theoretical models for determination of frictional losses for both...

  15. DESIGN, BUILDING AND VALIDATION OF A BALL-CRATERING WEAR TEST EQUIPMENT BY FREE-BALL TO MEASURE THE COEFFICIENT OF FRICTION

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-06-01

    Full Text Available The purpose of this work is to present a ball-cratering equipment configuration to measure the coefficient of friction. Two load cells were used to measure, in real time, the “normal” and “tangential” forces during the experiments to calculate the coefficient of friction. Micro-abrasive wear tests were conducted on an AISI H10 tool steel specimen, with a ball of AISI 52100 steel and an abrasive slurry, prepared with SiC and distilled water; different values of normal force and sliding distance were defined for the wear experiments to investigate and validate the constructed machine. The results showed that due to test conditions, it was observed the occurrence of rolling abrasion. The equipment showed excellent functionality and reproducibility, in terms of formation of the wear craters and measurement of the coefficient of friction.

  16. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  17. Interfacial forces between silica surfaces measured by atomic force microscopy.

    Science.gov (United States)

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  18. The measurement of friction coefficient down to 1.8 K for LHC Magnets

    CERN Document Server

    Artoos, K; Poncet, Alain; Savary, F; Veness, R J M

    1994-01-01

    The Large Hadron Collider (LHC) proposed for construction at CERN consists of a series of high field superconducting dipole magnet operating at 1.8K. The mechanical structure of these magnets contains many components in close contact. A knowledge of the friction coefficient between these components is required. Indeed, during assembly and cool down of the magnets, prestresses must be transferred to the superconducting coils. During operation, frictional heating may provoke loss of superconductivity. A machine has been built at CERN to measure the coefficient of friction from room temperature down to 1.8K. This paper describes the cryogenic tribometer and the results collected to date.

  19. FORCED COOLING OF THE FRICTION UNITS: «HEAT PUMP» EFFECT

    OpenAIRE

    Киндрачук, Мирослав Васильевич; Вольченко, Николай Александрович; Журавлев, Дмитрий Юрьевич; Андрейчиков, Евгений Юрьевич

    2017-01-01

    A variety of types of brake devices used in the drives of hoisting and transport machines, road and construction machines, vehicles and in other branches of engineering. Friction pairs of brake devices significantly differ in their design and operational (power and friction work, braking torque, specific loads, braking moments, dynamic friction coefficient, surface and bulk temperatures and their gradients, mechanical and thermal deformations and stresses, etc.) parameters. In these condition...

  20. Non-linear friction in reciprocating hydraulic rod seals: Simulation and measurement

    Science.gov (United States)

    Bullock, A. K.; Tilley, D. G.; Johnston, D. N.; Bowen, C. R.; Keogh, P. S.

    2009-08-01

    Non-linear seal friction can impede the performance of hydraulic actuation systems designed for high precision positioning with favourable dynamic response. Methods for predicting seal friction are required to help develop sealing systems for this type of application. Recent simulation techniques have claimed progress, although have yet to be validated experimentally. A conventional reciprocating rod seal is analysed using established elastohydrodynamic theory and the mixed lubrication Greenwood-Williamson-average Reynolds model. A test rig was used to assess the accuracy of the simulation results for both instroke and outstroke. Inverse hydrodynamic theory is shown to predict a U0.5 power law between rod speed and friction. Comparison with experimental data shows the theory to be qualitatively inaccurate and to predict friction levels an order of magnitude lower than those measured. It was not possible to model the regions very close to the inlet and outlet due to the high pressure gradients at the edges of the contact. The mixed lubrication model produces friction levels within the correct order of magnitude, although incorrectly predicts higher friction during instroke than outstroke. Previous experiments have reported higher friction during instroke than outstroke for rectangular seals, suggesting that the mixed lubrication model used could possibly be suitable for symmetric seals, although not for seal tribology in general.

  1. Measuring Coefficients of Friction for Materials Commonly Used in Theatre

    Science.gov (United States)

    Mentzer, Robert; Martell, Eric

    2008-04-01

    While designing a stage setup for a theatrical presentation, designers must consider equipment, materials, cost and manpower, and we can use physics to simplify and enhance the process. Unfortunately, there is a lack of information about the properties of materials commonly used in theatre. The objective of this research was to determine the coefficients of static and kinetic friction for several materials commonly used in theatrical scene construction and the coefficients of rolling friction for a series of commonly used casters. Materials of known coefficients were tested to confirm the accuracy of the experimental process. Data was collected using a sled style apparatus and LabVIEW software. Data was analyzed in mass volumes using Microsoft Excel spreadsheets and macros. This research was performed as a part of the Physics of Theatre project, a joint collaboration between Millikin University and the University of Illinois at Urbana-Champaign, and was supported in part by Millikin, UIUC, and the United States Institute for Theatre Technology.

  2. Transducer for measuring normal and friction stress in contact zone during rolling

    DEFF Research Database (Denmark)

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens

    2004-01-01

    For the cold rolling process, knowledge about interface conditions is important since it directly influences the maximum reduction ratio and thereby the number of steps required for a given reduction. The mechanical properties of the produced sheet and the surface quality are also influenced...... by the friction conditions. To achieve this important information, measurements of the normal pressure and friction stresses in the deformation zone are requested. The interface conditions are analyzed by several authors [1-8] The direction of the friction stress is changing during the rolling gap....... At the entrance of the deformation zone, the peripherical velocity of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll...

  3. Lateral hydrodynamic interactions between an emulsion droplet and a flat surface evaluated by frictional force microscopy.

    Science.gov (United States)

    Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Higashitani, Ko; Grieser, Franz

    2010-06-01

    We introduce a lateral atomic force microscopy (AFM) method to measure the hydrodynamic drag force acting on a microscopic emulsion droplet moving parallel to a flat surface. A tetradecane oil droplet formed in an aqueous solution of sodium dodecylsulfate was attached to a V-shaped atomic force microscopy cantilever, and lateral hydrodynamic interactions between the droplet and a flat glass surface were measured using a range of scanning velocities. The droplet was positioned either far from the oscillating surface or was pressed to the surface under a constant applied load. These measurements demonstrate the feasibility of using AFM to study lateral hydrodynamic interactions and lubricity between soft matter materials relevant to a large number of applications in areas as diverse as flavor delivery in foods to the applications of emulsions or emollients in personal care products.

  4. Traction Force Measurement Using Deformable Microposts.

    Science.gov (United States)

    Xie, Tianfa; Hawkins, Jamar; Sun, Yubing

    2017-01-01

    Recent findings suggest that mechanical forces strongly influence wound repair and fibrosis across multiple organ systems. Traction force is vital to the characterization of cellular responses to mechanical stimuli. Using hydrogel-based traction force microscopy, a FRET-based tension sensor, or microengineered cantilevers, the magnitude of traction forces can be measured. Here, we describe a traction force measurement methodology using a dense array of elastomeric microposts. This platform can be used to measure the traction force of a single cell or a colony of cells with or without geometric confinement.

  5. Anomalous Doppler-effect singularities in radiative heat generation, interaction forces, and frictional torque for two rotating nanoparticles

    Science.gov (United States)

    Volokitin, A. I.

    2017-07-01

    We calculate the quantum heat generation, the interaction force, and the frictional torque for two rotating spherical nanoparticles with a radius R . In contrast to the static case, when there is an upper limit in the radiative heat transfer between the particles, for two rotating nanoparticles the quantum heat generation rate diverges when the angular velocity becomes equal to the poles in the photon emission rate. These poles arise for the separation d material at the surface phonon or plasmon polariton frequency ω0] due to the anomalous Doppler effect and the mutual polarization of the particles and they exist even for the particles with losses. Similar singularities exist also for the interaction force and the frictional torque. The obtained results can be important for biomedical applications.

  6. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schaeben, H.; Vancso, G. Julius

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a fi

  7. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  8. Molecular-dynamics simulation of lateral friction in contact-mode atomic force microscopy of alkane films: The role of molecular flexibility

    DEFF Research Database (Denmark)

    Soza, P.; Hansen, Flemming Yssing; Taub, H.

    2011-01-01

    Molecular-dynamics simulations are used to investigate lateral friction in contact-mode atomic force microscopy of tetracosane (n-C24H50) films. We find larger friction coefficients on the surface of monolayer and bilayer films in which the long axis of the molecules is parallel to the interface ...

  9. A new transducer for local load measurements of friction and roll pressure in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, J.; Wanheim, Tarras; Precz, W.

    2006-01-01

    The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, in order to overcome problems in previous measurements in the past 70 years. The new idea is to increase ...... and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and showed good reproducibility, together with a proven agreement between recorded and simulated signals.......The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, in order to overcome problems in previous measurements in the past 70 years. The new idea is to increase...... selected from a steady state with no disturbance from the material flow. The transducer was able to simultaneously measure both the normal pressure and the friction stress. An estimation of the coefficient of friction was accordingly performed. The new transducer works very well, it was seen to be robust...

  10. Development and validation of a new method for measuring friction between skin and nonwoven materials.

    Science.gov (United States)

    Cottenden, A M; Wong, W K; Cottenden, D J; Farbrot, A

    2008-07-01

    A new method for measuring the coefficient of friction between nonwoven materials and the curved surface of the volar forearm has been developed and validated. The method was used to measure the coefficient of static friction for three different nonwoven materials on the normal (dry) and over-hydrated volar forearms of five female volunteers (ages 18-44). The method proved simple to run and had good repeatability: the coefficient of variation (standard deviation expressed as a percentage of the mean) for triplets of repeat measurements was usually (80 per cent of the time) less than 10 per cent. Measurements involving the geometrically simpler configuration of pulling a weighted fabric sample horizontally across a quasi-planar area of volar forearm skin proved experimentally more difficult and had poorer repeatability. However, correlations between values of coefficient of static friction derived using the two methods were good (R = 0.81 for normal (dry) skin, and 0.91 for over-hydrated skin). Measurements of the coefficient of static friction for the three nonwovens for normal (dry) and for over-hydrated skin varied in the ranges of about 0.3-0.5 and 0.9-1.3, respectively. In agreement with Amontons' law, coefficients of friction were invariant with normal pressure over the entire experimental range (0.1-8.2 kPa).

  11. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    Science.gov (United States)

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-12-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle.

  12. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface sep...

  13. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  14. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    OpenAIRE

    Bharat Bhushan; Si Chen; Shirong Ge

    2012-01-01

    Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged) skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The e...

  15. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  16. Force Measurements in Vibration and Acoustic Tests

    Science.gov (United States)

    Scharton, T. D.

    1996-01-01

    The advent of triaxial, piezoelectric force gages and the associated signal processing is a precursor to several dynamics testing innovations. This new technology is applicable to spacecraft programs that JPL manages. An application of force measurement is force limiting (when testing spacecraft in random vibration tests). Base-drive and acoustic modal testing is a potential application.

  17. Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique

    Science.gov (United States)

    Monson, D. J.; Higuchi, H.

    1980-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.

  18. Ambulatory measurement of ground reaction forces

    NARCIS (Netherlands)

    Veltink, Petrus H.; Liedtke, C.B.; Droog, Adriaan; van der Kooij, Herman

    2005-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. Many applications require full ambulatory measurement of these forces, but this is not supported by current measurement systems. We propose the use of two six-degrees-of-freedom f

  19. SYNTHESIS OF PERFLUORO-1-OCTANESULFONATED FULLERENE AND THE FRICTION PROPERTIES OF ITS THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Lan Huang; Shuang Fan; Fang Wei; Xin-sheng Zhao; Jin-xin Xiao; Bu-yao Zhu

    2002-01-01

    A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower friction force compared to that of the star-shaped C60-polystyrene films.

  20. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.

    Science.gov (United States)

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W Jon P; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-03-06

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106° ± 12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131° ± 11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore-aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory.

  1. Method for Investigation of Frictional Properties at Impact Loading

    Science.gov (United States)

    Sundin, K. G.; Åhrström, B. O.

    1999-05-01

    In the assessment of lubricant performance and also in various other contact applications it is of importance to know the frictional qualities of a surface. Under quasi-static conditions, normal and frictional forces are measured using force transducers but the task is more difficult when loads are transient. The experimental method presented in this paper is based on the analysis of propagating waves in a beam, due to an impact on the end surface. The impact is oblique and therefore a transverse as well as a normal force is generated. The normal force history is measured from the axial non-dispersive wave using strain gauges. Transverse force and bending moment both generate dispersive flexural waves. From the FFT of two transverse acceleration histories, the frictional force at the end of the rod is evaluated using beam theory. The relation between normal and frictional force histories displays the frictional properties at the impact. Preliminary results are presented.

  2. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  3. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Quantification of patient migration in bed: catalyst to improve hospital bed design to reduce shear and friction forces and nurses' injuries.

    Science.gov (United States)

    Kotowski, Susan E; Davis, Kermit G; Wiggermann, Neal; Williamson, Rachel

    2013-02-01

    The study objective was to quantify the movement of hospital bed occupants relative to the bed in typical bed articulations. Movement of a patient in bed results in two common adverse events: (a) increase in shear and friction forces between the patient and bed, which are extrinsic pressure ulcer risk factors, and (b) musculoskeletal injuries to nurses, resulting from repositioning patients who have migrated down in bed. The study involved 12 participants who lay supine in three hospital beds, which were articulated to common positions. Body movement relative to the bed was quantified with the use of motion capture. Cumulative movement, net displacement, and torso compression (shoulder to trochanter distance) were calculated for different bed types and bed movements. Bed design and bed movement had a significant effect on most of the dependent variables. Bed design (e.g., type) influenced cumulative movement by up to 115%, net displacement by up to 70%, and torso compression by about 20%. Bed movement (e.g., knee elevation) reduced cumulative migration by up to 35%. The quantification of patient migration provides a metric for evaluating the interaction between body and bed surfaces. Overall, the measures were sensitive to design changes in bed frames, bed articulations, and mattress inflation. Documentation of the cumulative movement, net displacement, and torso compression provides hospital bed designers quantifiable measures for reducing migration and potentially shear and friction forces when designing bed frames, bed articulations, and mattresses. Optimization of these metrics may ultimately have an impact on patient and caregiver health.

  5. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    Science.gov (United States)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  6. Friction and wear measurements of 50 keV N implanted stainless steels

    Science.gov (United States)

    Ikeyama, Masami; Miyagawa, Soji; Clissold, Ronald A.; Wielunski, Leszek S.; Swain, Michael V.

    1997-05-01

    Features of friction, wear and hardness of 50 keV nitrogen implanted 13Cr type, C and V rich stainless steel was studied. The implantation was carried out at room temperature (300 K) or about 800 K to the doses of 1 × 10 18 and 5 × 10 17 ions/cm 2. Friction coefficient was measured using steel or silicon nitride balls with the loads of 98 to 980 mN. Friction coefficient depended on upper contact ball materials and loads, and changed from an initial value of 0.1 to final values between 0.2 and 0.8. After implantation, the surface became softer due to amorphization, however, it became relatively harder around the projected range of implanted N. 800 K implantation reduced the amorphization and enhanced diffusion of nitrogen. For the silicon nitride ball, implanted surfaces showed a lower friction coefficient than unimplanted region, particularly for 800 K implantation. When the friction coefficient increased, a considerable amount of adhered debris was observed on stainless steel surfaces.

  7. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    Science.gov (United States)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  8. Kinetic Friction Coefficient of Ice,

    Science.gov (United States)

    1985-03-01

    For the hardest ice tested (xi = 0.33 described by Rabinowicz (1965), where To is inter- mm, H, = 1525 kPa), the calculated values of a preted as...material with a low elastic pressures. The frictional force was measured at modulus ( Rabinowicz 1965). It has been observed the application point of...tion 10, pp. 8-16. Barnes, P. and D. Tabor (1966) Plastic flow and Rabinowicz , E. (1965) Friction and Wear of Mate- pressure melting in the deformation

  9. A force sensor and peak-reading recorder for measurement of cervical dilatation force.

    Science.gov (United States)

    Crawford, A J; Plant, G R; Filshie, G M; Macpherson, M B; McCabe, A R

    1984-10-01

    Earlier dilatation force-sensing transducers, when subjected to side loads, suffered frictional losses which affected their accuracy. This new instrument incorporates a thermal-writing chart recorder and a digital readout of the peak force during dilatation of the cervix.

  10. The measurement of friction for superplastic forming of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.B.; Leen, S.B.; Pashby, I.R.; Kennedy, A.R. [School of M3EM, Univ. of Nottingham (United Kingdom)

    2004-07-01

    An experimental test for measuring the friction between Ti-6Al-4V sheet material and S310 stainless steel tool material at 900 C is presented. The test is intended for application to Ti-6Al-4V superplastic forming for the manufacture of aeroengine components. The work is motivated by the need for accurate, representative data for process modelling, where accurate simulation is critical to formed component dimensions. The results show a time dependency of friction. The effects of boron nitride density, applied normal load and die surface roughness are investigated. (orig.)

  11. Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, Gustav Winther; Hiller, Jochen

    2013-01-01

    that friction materials which are untypical for brake applications, like thermoplastics and fibre composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fibre...... composite materials running against a steel surface are presented. All tests were carried out on a pinon-disc test-rig in reciprocating operation at a fixed sliding speed and various pressure levels for both dry and grease lubricated conditions. Moreover, a generic theoretical framework is introduced...

  12. Accurate measurement of the kinetic coefficient of friction between a surface and a granular mass

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1978-01-01

    A device has been developed for correct measurement of the kinematic coefficient of friction between a cohesionless granular material and a surface. Particle size may range from 0.5 up to about 9 mm, depending somewhat on the desired accuracy. Sliding velocity of the granules with respect to the sur

  13. Measuring Force System Set-Up

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2008-10-01

    Full Text Available In this paper, are presented the results of cutting force and torque measurements were undertaken by a 4-axis 9272 KISTLER dynamometer. The DynoWare software was used for processing of the measurements. We can conclude that the values of torque, cutting force were higher compared to dry drilling, as we expected.

  14. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Petrus H.; Liedtke, C.B.; Droog, Adriaan

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  15. Friction coefficient measurements of silencers on specialized duct tract

    Directory of Open Access Journals (Sweden)

    Sehnalek Stanislav

    2016-01-01

    Full Text Available This article describes test methods on air duct track in Laboratory of Environmental Engineering. It focuses on measurement of silencer parameter like is pressure loss coeffcient. Firstly, the paper describe the measurement apparatus with description of calculation method by standard ISO 7235 and energy equation. Then the paper presents three ways how to accomplish measurement because such way is not covered by procedure in standard. Then follows the evaluation of results of measurements on three types of silencer designed for HVAC applications. The article is concluded with discussion over measured data with outline for further research.

  16. Normal Force Influence on 3D Texture Parameters Characterizing the Friction Couple Steel – PBT + 10 % PTFE

    Directory of Open Access Journals (Sweden)

    C. Georgescu

    2014-03-01

    Full Text Available This study presents the influence of the normal force on the surface quality of the friction couple steel – polybutylene terephthalate (PBT + 10 % polytetrafluoroethylene (PTFE. There were calculated the average values of the amplitude and functional parameters, as obtained from investigating square areas on the wear tracks, with the help of a proposed methodology, for initial and tested surfaces generated on the blocks and on counterpart ring made of rolling bearing steel, for the following test conditions: three normal forces (F = 1 N, F = 2.5 N and F =5 N, three sliding speeds (v = 0.25 m/s, v = 0.50 m/s and v = 0.75 m/s and a sliding distance of L = 7500 m. The conclusion of the research study was that the tested normal force range has an insignificant influence on the surface quality for the tested materials and parameters. This friction couple could be recommended for variable conditions (speed and load in dry regimes.

  17. Formation and rupture of capillary bridges in atomic scale friction

    Science.gov (United States)

    Barel, Itay; Filippov, Aleksander E.; Urbakh, M.

    2012-10-01

    While formation of capillary bridges significantly contributes to the adhesion and friction at micro- and nanoscales, many key aspects of dynamics of capillary condensation and its effect on friction forces are still not well understood. Here, by analytical model and numerical simulations, we address the origin of reduction of friction force with velocity and increase of friction with temperature, which have been experimentally observed under humid ambient conditions. These observations differ significantly from the results of friction experiments carried out under ultrahigh vacuum, and disagree with predictions of thermal Prandtl-Tomlinson model of friction. Our calculations demonstrate what information on the kinetics of capillary condensation can be extracted from measurements of friction forces and suggest optimal conditions for obtaining this information.

  18. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    NARCIS (Netherlands)

    Kozlov, A.S.; Baumgart, J.; Risler, T.; Versteegh, C.P.C.; Hudspeth, A.J.

    2011-01-01

    The detection of sound begins when energy derived from an acoustic stimulus deflects the hair bundles on top of hair cells1. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental physical challenge to the ear’s high sensitivity and sharp

  19. Axial force measurement for esophageal function testing

    Institute of Scientific and Technical Information of China (English)

    Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  20. Axial force measurement for esophageal function testing.

    Science.gov (United States)

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  1. In-Situ-measurement of restraining forces during forming of rectangular cups

    Science.gov (United States)

    Singer, M.; Liewald, M.

    2016-11-01

    This contribution introduces a new method for evaluating the restraining forces during forming of rectangular cups with the goal of eliminating the disadvantages of the currently used scientifically established measurement procedures. With this method forming forces are measured indirectly by the elastic deformation of die structure caused by locally varying tribological system. Therefore, two sensors were integrated into the punch, which measure the restraining forces during the forming process. Furthermore, it was possible to evaluate the effects of different lubricants showing the time dependent trend as a function of stroke during the forming of the materials DP600 and DC04. A main advantage of this testing method is to get real friction corresponding data out of the physical deep drawing process as well as the measurement of real acting restraining forces at different areas of the deep drawing part by one single test. Measurement results gained by both sensors have been integrated into LS-Dyna simulation in which the coefficient of friction was regarded as a function of time. The simulated and deep drawn parts afterwards are analysed and compared to specific areas with regard to locally measured thickness of part. Results show an improvement of simulation quality when using locally varying, time dependent coefficients of friction compared to commonly used constant values.

  2. Vision-based measurement of microassembly forces

    Science.gov (United States)

    Anis, Y. H.; Mills, J. K.; Cleghorn, W. L.

    2006-08-01

    This work describes a vision-based force sensing method for measuring microforces acting upon the jaws of passive, compliant microgrippers, used to construct 3D microstructures. The importance of jaw force measurement during microassembly is to confirm that the microgripper-micropart makes a successful grasp and to protect the microparts and microgripper from excessive forces which may lead to damage during the assembly process. Finite-element analysis of the microgripper is performed to determine the relation between the displacement and the resultant forces of its jaw. The resulting nearly linear force-displacement relationship is fitted to a first-degree equation. A mathematical model of the microgripper system validated this force-displacement relation. The proposed vision-based gripper force measurement techniques determine the deflections of the microgripper jaws during the microassembly process. The deflections in the gripper jaws are measured during the microassembly processes through computation of the relative displacements of the right and left microgripper jaws with respect to the microgripper base. Two approaches are proposed. The first approach uses pattern identification to measure these relative displacements. Two-dimensional pattern identification is performed using normalized cross-correlation to estimate the degree to which the image and pattern are correlated. The second approach uses object recognition and image processing methods, such as zero-crossing Laplacian of Gaussian edge detection and region filling. Experiments performed confirm the success of both approaches in measuring the microgripper jaw deflections and therefore the assembly forces.

  3. Metal Rubber^TM Sensors for Skin Friction Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop conformal thin film sensors and sensor arrays for the direct measurement and mapping of distributed skin...

  4. Three measuring techniques for assessing the mean wall skin friction in wall-bounded flows

    Science.gov (United States)

    Zanoun, E.-S.; Jehring, L.; Egbers, C.

    2014-04-01

    The present paper aims at evaluating the mean wall skin friction data in laminar and turbulent boundary layer flows obtained from two optical and one thermal measuring techniques, namely, laser-Doppler anemometry (LDA), oil-film interferometry (OFI), and surface hot-film anemometry (SHFA), respectively. A comparison among the three techniques is presented, indicating close agreement in the mean wall skin friction data obtained, directly, from both the OFI and the LDA near-wall mean velocity profiles. On the other hand, the SHFA, markedly, over estimates the mean wall skin friction by 3.5-11.7% when compared with both the LDA and the OFI data, depending on the thermal conductivity of the substrate and glue material, probe calibration, probe contamination, temperature drift and Reynolds number. Satisfactory agreement, however, is observed among all three measuring techniques at higher Reynolds numbers, Re x >106, and within ±5% with empirical relations extracted from the literature. In addition, accurate velocity data within the inertial sublayer obtained using the LDA supports the applicability of the Clauser method to evaluate the wall skin friction when appropriate values for the constants of the logarithmic line are utilized.

  5. Measurement of edgewise torque force in vitro.

    Science.gov (United States)

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  6. Corrosion effects on friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  7. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  8. Measurement of crossflow forces on tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.

    1983-01-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design, requirements for obtaining valid fluid-force test data are discussed, and pertinent flow-test experience is related.

  9. Interaction of Lubricin with Collagen II Surfaces: Adsorption, Friction, and Normal Forces

    Science.gov (United States)

    Chang, Debby P.; Guilak, Farshid; Jay, Gregory; Zauscher, Stefan

    2014-01-01

    One of the major constituents of the synovial fluid that is thought to be responsible for chondroprotection and boundary lubrication is the glycoprotein lubricin (PRG4); however, the molecular mechanisms by which lubricin carries out its critical functions still remain largely unknown. We hypothesized that the interaction of lubricin with type II collagen, the main component of the cartilage extracellular matrix, results in enhanced tribological and wear properties. In this study, we examined: i) the molecular details by which lubricin interacts with type II collagen and how binding is related to boundary lubrication and adhesive interactions; and, ii) whether collagen structure can affect lubricin adsorption and its chondroprotective properties. We found that lubricin adsorbs strongly onto denatured, amorphous, and fibrillar collagen surfaces. Furthermore, we found large repulsive interactions between the collagen surfaces in presence of lubricin, which increased with increasing lubricin concentration. Lubricin attenuated the large friction and also the long-range adhesion between fibrillar collagen surfaces. Interestingly, lubricin adsorbed onto and mediated the frictional response between the denatured and native amorphous collagen surfaces equally and showed no preference on the supramolecular architecture of collagen. However, the coefficient of friction was lowest on fibrillar collagen in the presence of lubricin. We speculate that an important role of lubricin in mediating interactions at the cartilage surface is to attach to the cartilage surface and provide a protective coating that maintains the contacting surfaces in a sterically repulsive state. PMID:24406099

  10. Interaction of lubricin with type II collagen surfaces: adsorption, friction, and normal forces.

    Science.gov (United States)

    Chang, Debby P; Guilak, Farshid; Jay, Gregory D; Zauscher, Stefan

    2014-02-01

    One of the major constituents of the synovial fluid that is thought to be responsible for chondroprotection and boundary lubrication is the glycoprotein lubricin (PRG4); however, the molecular mechanisms by which lubricin carries out its critical functions still remain largely unknown. We hypothesized that the interaction of lubricin with type II collagen, the main component of the cartilage extracellular matrix, results in enhanced tribological and wear properties. In this study, we examined: (i) the molecular details by which lubricin interacts with type II collagen and how binding is related to boundary lubrication and adhesive interactions; and (ii) whether collagen structure can affect lubricin adsorption and its chondroprotective properties. We found that lubricin adsorbs strongly onto denatured, amorphous, and fibrillar collagen surfaces. Furthermore, we found large repulsive interactions between the collagen surfaces in presence of lubricin, which increased with increasing lubricin concentration. Lubricin attenuated the large friction and also the long-range adhesion between fibrillar collagen surfaces. Interestingly, lubricin adsorbed onto and mediated the frictional response between the denatured and native amorphous collagen surfaces equally and showed no preference on the supramolecular architecture of collagen. However, the coefficient of friction was lowest on fibrillar collagen in the presence of lubricin. We speculate that an important role of lubricin in mediating interactions at the cartilage surface is to attach to the cartilage surface and provide a protective coating that maintains the contacting surfaces in a sterically repulsive state.

  11. Skin-Friction Measurements on a Model Submarine

    Science.gov (United States)

    2013-10-01

    where there is no static pressure port, the Cp data were interpolated using a cubic spline . An example of a cubic spline fit to the Cp data is given...and details of this program are given in Appendix B . x (mm) Cp −0.2 0.2 0.4 0.6 0.8 0 0 200 400 600 800 1000 1200 1400 U = 70m/s data Spline fit to...data Domain of Preston tube measurements Figure 10: Example of a cubic spline fit to Cp data, showing domain of Preston-tube data. Data is shown for

  12. Relationship Between Measured Friction Coefficients and Two Tread Groove Design Parameters for Footwear Pads

    Institute of Scientific and Technical Information of China (English)

    LI Kai Way; CHEN Chin Jung; LIN Ching-Hua; HSU Yao Wen

    2006-01-01

    The shoe sole geometrical design parameters are believed to be important factors affecting the coefficient of friction (COF) between the shoe/floor interface. This study is concerned with the relationship between the measured COF and the tread groove orientation and width on the footwear pad. Friction measurements using the Brungraber Mark Ⅱ slipmeter were conducted. Six tread groove width/orientations designs on the footwear pads under 27 footwear material/floor/contamination conditions were tested. The results show that tread orientation and width affect the measured COF significantly. Wider grooved footwear pads result in higher COF values and footwear pads with tread grooves perpendicular to the friction measurement direction have higher COF values. A regression model using measured COF as the dependent variable and tread groove width, groove orientation, footwear material, floor, and contamination conditions as independent variables was established. The models are significant at p<0.0001 with R2 of 0.97, which may be used in predicting the COF at the shoe-floor interface.

  13. Instrument for measuring human biting force

    Science.gov (United States)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  14. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  15. Experimental investigation of friction coefficient in tube hydroforming

    Institute of Scientific and Technical Information of China (English)

    Hyae Kyung YI; Hong Sup YIM; Gun Yeop LEE; Sung Mun LEE; Gi Suk CHUNG; Young-Hoon MOON

    2011-01-01

    The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.

  16. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  17. Coefficient of Friction Measurements for Thermoplastics and Fiber Composites under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, G.; Hiller, Jochen

    2012-01-01

    materials which are untypical for brake applications, like thermoplastics and fiber composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fiber composite...... materials running against a steel surface are presented. All tests were carried out on a pin-on-disc test-rig at a fixed sliding speed and various pressure levels for both dry and grease lubricated conditions....

  18. A new transducer for roll gap measurements of the roll pressure distribution and the friction condition in cold flat rolling

    DEFF Research Database (Denmark)

    Lagergren, Jonas; Wanheim, Tarras; Presz, W.

    2005-01-01

    . Conclusions The new transducer works very well, it was seen to be robust and able to avoid signal disturbance. The pressure and friction stress distribution results was as expected by the authors and a good reproducibility, together with a proven agreement between recorded signals and signals simulated....... Keywords Friction stress, normal pressure distribution, roll bite measurements, cold flat rolling of metals......Background/purpose The only way to establish the true rolling pressure and the true friction condition in cold rolling is to conduct measurements in the roll bite. A new transducer design is therefore proposed, this to overcome problems in previous measurements in the past 70 years. Method The new...

  19. Acoustics of friction.

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  20. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  1. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    Science.gov (United States)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  2. Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy Using Grey Relation Analysis with Entropy Measurement Method

    Directory of Open Access Journals (Sweden)

    SAURABH KUMAR GUPTA

    2015-01-01

    Full Text Available The present research focus on optimization of Friction Stir Welding (FSW process parameters for joining of AA6061 aluminium alloy using hybrid approach. The FSW process parameters considered are tool rotational speed, welding speed and axial force. The quality characteristics considered are tensile strength (TS and percentage of tensile elongation (TE. Taguchi based experimental design L9 orthogonal array is used for determining the experimental results. The value of weights corresponding to each quality characteristic is determined by using the entropy measurement method so that their importance can be properly explained. Analysis of Variance (ANOVA is used to determine the contribution of FSW process parameters. The confirmation tests also have been done for verifying the results.

  3. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  4. BIFURCATION OF A SHAFT WITH HYSTERETIC-TYPE INTERNAL FRICTION FORCE OF MATERIAL

    Institute of Scientific and Technical Information of China (English)

    丁千; 陈予恕

    2003-01-01

    The bifurcation of a shaft with hysteretic internal friction of material was analysed. Firstly, the differential motion equation in complex form was deduced using Hamilton principle. Then averaged equations in primary resonances were obtained using the averaging method. The stability of steady-state responses was also determined. Lastly, the bifurcations of both normal motion (synchronous whirl) and self-excited motion (nonsynchronous whirl) were investigated using the method of singularity. The study shows that by a rather large disturbance, the stability of the shaft can be lost through Hopf bifurcation in case the stability condition is not satisfied. The averaged self-excited response appears as a type of unsymmetrical bifurcation with high orders of co-dimension. The second Hopf bifurcation, which corresponds to double amplitude-modulated response, can occur as the speed of the shaft increases. Balancing the shaft carefully to decrease its unbalance level and increasing the external damping are two effective methods to avoid the appearance of the self-sustained whirl induced by the hysteretic internal friction of material.

  5. Detecting Chameleons through Casimir Force Measurements

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine; Mota, David F; Shaw, Douglas

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces, however this sheet mask any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behaviour of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter couplin...

  6. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    Science.gov (United States)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  7. Friction drive of an SAW motor. Part II: analyses.

    Science.gov (United States)

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi

    2008-09-01

    The mechanics of the friction drive of a surface acoustic wave motor were investigated by means of contact mechanics theory. As a means to control the contact condition, the motor's slider had projections on its frictional surface. Assuming the projection was a rigid circular punch and the slider body was an elastic half-space allowed application of contact mechanics formulae to the analyses of the friction drive. Because the projection contacted the Rayleigh wave vibration, the projection's responses were considered dynamic; thus, the dynamics were also analyzed in the same framework of contact mechanics formulae. Moreover, the analyses were applied to measurements of the projection's displacement to examine the detailed mechanics during the friction drive. We calculated the contact/frictional forces based on the measurement and indicated the necessity of further investigation of the surface acoustic wave motor's friction drive, because the usual friction law was unable to explain the measurement.

  8. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  9. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model

    Science.gov (United States)

    Simpson Chen, Abraham; Bergbreiter, Sarah

    2017-02-01

    Elastomer-based electroadhesion can be an effective method to provide tunable adhesion between robots and grasped objects or surfaces. However, there has been little work to develop models of electroadhesion and characterization of adhesive performance relative to these models. In this paper, a basic friction model is proposed to describe the critical shear force for a single electrode electroadhesive fabricated from conductive PDMS encased in parylene. The use of parylene results in thin dielectrics that require only tens of Volts to achieve shear pressures greater than 100 kPa. The experimental results gathered by characterizing voltage, dielectric thickness, adhesive area, and adhesive thickness follow the trends predicted by theory with some important deviations that are studied using high speed video capture of the soft adhesive failure.

  10. Simulation of Metal Flow During Friction Stir Welding Based on the Model of Interactive Force Between Tool and Material

    Science.gov (United States)

    Chen, G. Q.; Shi, Q. Y.; Fujiya, Y.; Horie, T.

    2014-04-01

    In this research, the three-dimensional flow of metal in friction stir welding (FSW) has been simulated based on computational fluid dynamics. Conservation equations of mass, momentum, and energy were solved in three dimensions. The interactive force was imposed as boundary conditions on the tool/material boundary in the model. The strain rate- and temperature-dependent non-Newtonian viscosity was adopted for the calculation of metal flow. The distribution of temperature, velocity, and strain rate were simulated based on the above models. The simulated temperature distribution agreed well with the experimental results. The simulation results showed that the velocity on the pin was much higher than that on the shoulder. From the comparison between the simulation results and the experiments results, contours line, corresponding to strain rate = 4 s-1, reflected reasonably well the shape of stir zone, especially at the ground portion.

  11. A Novel Engine Mount with Semi-Active Dry Friction Damping

    Directory of Open Access Journals (Sweden)

    M. Lorenz

    2006-01-01

    Full Text Available In this paper the authors present a semi-active engine mount with a controllable friction damper. The normal force of the friction contact is applied by an electromagnetic actuator and can be varied dynamically. The nonlinear current-force-relation of the actuator is linearized. To account for wear and assembly tolerances, an initialization method is developed, that is based on indirect measurement of the actuators inductance. The friction contact is made up of industrial friction pads and a friction rod of steel. The friction model used is suitable especially for small oscillations of the friction damper. The control policy imitates viscous damping forces that exert a minimum of harmonics. Damping is activated only when necessary. Finally the friction mount is compared to the original mount in a row of test rack experiments and also in the car.

  12. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  13. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    Science.gov (United States)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  14. Effect of tooth displacement and vibration on frictional force and stick-slip phenomenon in conventional brackets: a preliminary in vitro mechanical analysis.

    Science.gov (United States)

    Seo, Yu-Jin; Lim, Bum-Soon; Park, Young Guk; Yang, Il-Hyung; Ahn, Seok-Joon; Kim, Tae-Woo; Baek, Seung-Hak

    2015-04-01

    To evaluate the effects of tooth displacement and vibration on frictional force and stick-slip phenomenon (SSP) when conventional brackets were used with a levelling/alignment wire. The samples consisted of six groups (n = 10 per group) with combinations of tooth displacement (2mm lingual displacement [LD], 2mm gingival displacement [GD], and no displacement [control]) and vibration conditions (absence and presence at 30 Hz and 0.25 N). A stereolithographically made typodont system was used with conventional brackets and elastomeric ligatures. After application of artificial saliva, static/kinetic frictional forces (SFF/KFF) and frequency/amplitude of SSP were measured while drawing a 0.018-inch copper nickel-titanium (Cu-NiTi) archwire at a speed of 0.5mm/min for 5 minutes at 36.5 degree celsius. Two-way analysis of variance and independent t-test were performed. Tooth displacement increased SFF and KFF (control [LD, GD], P < 0.01). Vibration reduced SFF, KFF, and SSP amplitude in the control group (P < 0.05, P < 0.05, and P < 0.001, respectively), but not in the LD and GD groups. SSP frequency was increased by vibration in the control, LD, and GD groups (all P < 0.001), and it was lower in the LD and GD groups than in the control group (P < 0.01). When conventional brackets and a 0.018-inch Cu-NiTi archwire were used in the tooth displacement conditions (LD and GD), vibration did not significantly reduce SFF, KFF, or SSP amplitude. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Proposed apparatus for measuring internal friction in rocks at high temperatures and pressures: a design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.P.

    1977-10-03

    An apparatus is described that measures internal friction in rocks at high temperatures (approximately 800/sup 0/C) and pressures (approximately 1.0 GPa). Steady oscillations (approximately 1.0 Hz) are induced in a jacketed sample while coaxial capacitive transducers monitor the resulting radial strain. Sample strains are continuously compared to the deformation of a low-loss standard, which acts as a stress transducer. The stress state produced is uniaxial stress. We use the theory of viscoelasticity to partition the loss into components depending on pure shear and dilatation. The theoretical results emphasize the importance of ultimately measuring each loss independently.

  16. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  17. In-process discontinuity detection during friction stir welding

    Science.gov (United States)

    Shrivastava, Amber

    The objective of this work is to develop a method for detecting the creation of discontinuities (e.g., voids) during friction stir welding. Friction stir welding is inherently cost-effective, however, the need for significant weld inspection can make the process cost-prohibitive. A new approach to weld inspection is required -- where an in-situ characterization of weld quality can be obtained, reducing the need for post-process inspection. Friction stir welds with discontinuity and without discontinuity were created. In this work, discontinuities are generated by reducing the friction stir tool rotation frequency and increasing the tool traverse speed in order to create "colder" welds. During the welds, forces are measured. Discontinuity sizes for welds are measured by computerized tomography. The relationship between the force transients and the discontinuity sizes indicate that the force measurement during friction stir welding can be effectively used for detecting discontinuities in friction stir welds. The normalized force transient data and normalized discontinuity size are correlated to develop a criterion for discontinuity detection. Additional welds are performed to validate the discontinuity detection method. The discontinuity sizes estimated by the force measurement based method are in good agreement with the discontinuity sizes measured by computerized tomography. These results show that the force measurement based discontinuity detection model method can be effectively used to detect discontinuities during friction stir welding.

  18. Experimental Measurements of Journal Bearing Friction Using Mineral, Synthetic, and Bio-Based Lubricants

    Directory of Open Access Journals (Sweden)

    Pantelis G. Nikolakopoulos

    2015-04-01

    Full Text Available The environmental impact of many industrial and naval applications is becoming increasingly important. Journal bearings are crucial components related with the reliable, safe and environmentally friendly operation of rotating machinery in many applications, e.g., in hydroplants, ships, power generation stations. The maintenance activities in certain cases also have considerable environmental impact. Fortunately, it is relatively easy to reduce the impact by changing the way lubricants are being used. Selecting the proper lubricant is important to sharply reduce long-term costs. The best-fit product selection can mean longer lubricant life, reduced machine wear, reduced incipient power losses and improved safety. Suitable basestocks and additives reduce environmental impact. In this paper, three types of lubricants are used in order to examine their effects on the tribological behavior of journal bearings. A mineral oil, a synthetic oil and a bio-based lubricant are experimentally and analytically examined for several configurations of load and journal rotational velocity. The friction forces and the hydrodynamic friction coefficients are calculated and compared. This investigation can assist the correct choice of lubricant in journal bearings with minimized environmental footprint.

  19. Use of force-measuring transducers in manipulator control. I - Theory. II - Implementation

    Science.gov (United States)

    Jansen, John; Kress, Reid

    Two types of control structures for teleoperated manipulators are investigated using force-measuring transducers with each type targeting specific properties of the manipulator. One approach is to measure torque in the drive train of the manipulator to increase backdriveability, sensitivity, and stiffness. The second is to measure the forces and torques at the wrist of the manipulator. This force/torque vector is then employed in a stiffness control algorithm which resolves dissimilar kinematics and increases sensitivity. It is shown that torque feedback can be used to reduce the apparent friction in a manipulator drive train caused by gear boxes, bearings, and transmissions. For teleoperated systems, drive-train torque feedback yields improved backdriveability, better sensitivity, and improved stiffness. Cartesian stiffness control allows the operator to specify the relationship between force and displacement in any direction at the manipulator end effector.

  20. Design of Piston Ring Friction Tester Apparatus

    DEFF Research Database (Denmark)

    Klit, Peder

    2006-01-01

    the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount...... and forces on piston rod. Since the frictional forces are small compared to the rest of the acting forces the main design idea is to fix the piston, while the cylinder liner moves. This approach makes it simple to measure the parameters mentioned above by putting the instrumentation in the piston....

  1. Measurement methods in atomic force microscopy.

    Science.gov (United States)

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  2. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.

    Science.gov (United States)

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong

    2011-03-01

    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  3. Measurement-only topological quantum computation without forced measurements

    Science.gov (United States)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-12-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons.

  4. Velocity tuning of friction with two trapped atoms

    CERN Document Server

    Gangloff, Dorian; Counts, Ian; Jhe, Wonho; Vuletić, Vladan

    2015-01-01

    Friction is the basic, ubiquitous mechanical interaction between two surfaces that results in resistance to motion and energy dissipation. In spite of its technological and economic significance, our ability to control friction remains modest, and our understanding of the microscopic processes incomplete. At the atomic scale, mismatch between the two contacting crystal lattices can lead to a reduction of stick-slip friction (structural lubricity), while thermally activated atomic motion can give rise to a complex velocity dependence, and nearly vanishing friction at sufficiently low velocities (thermal lubricity). Atomic force microscopy has provided a wealth of experimental results, but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a full quantitative description from first principles. Here, using an ion-crystal friction emulator with single-atom, single substrate-site spatial resolution and single-slip temporal resolution, we measure the friction force...

  5. A method for measuring skin friction drag on a flat plate in contaminated gas flows

    Science.gov (United States)

    Oetting, R. B.; Patterson, G. K.

    1984-01-01

    A technique for measuring friction drag in turbulent gas and gas/particle flows over flat plates is presented, and preliminary results are reported. A 0.25-in.-thick 72 x 6-in. Al plate is suspended by six horizontal support air bearings and four vertical alignment air bearings between fixed dummy plates and leading-edge and trailing-edge fairings in the 32-in.-high 48-in.-wide 11-ft-long test section of a closed-circuit atmospheric wind tunnel operating at 50-150 ft/sec. Particles of Fe and Al oxides of diameter 20-150 microns and density up to 0.3 lb particles per lb air are injected via a 6 x 0.167-in. nozzle; turbulence is induced by a roughened section of the leading-edge fairing; and friction drag is measured using a load-cell pressure transducer. Sample results are shown in a graph, demonstrating good agreement with theoretical drag calculations.

  6. Rotordynamic and Friction Loss Measurements on a High Speed Laval Rotor Supported by Floating Ring Bearings

    Directory of Open Access Journals (Sweden)

    Rob Eling

    2017-03-01

    Full Text Available Floating ring bearings are the commonly used type of bearing for automotive turbochargers. The automotive industry continuously investigates how to reduce the bearing friction losses and how to create silent turbochargers. Many of these studies involve creating a numerical model of the rotor-bearing system and performing validation on a test bench on which a turbocharger is driven by hot gases. This approach, however, involves many uncertainties which diminish the validity of the measurement results. In this study, we present a test setup in which these uncertainties are minimized. The measurement results show the behavior of the floating ring bearing as a function of oil feed pressure, oil feed temperature, rotor unbalance and bearing clearances. Next to an increased validity, the test setup provides measurement data with good repeatability and can therefore represent a case study which can be used for validation of rotor-bearing models.

  7. Quantized friction across ionic liquid thin films

    Science.gov (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  8. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  9. Root-soil friction: quantification provides evidence for measurable benefits for manipulation of root-tip traits.

    Science.gov (United States)

    McKenzie, Blair M; Mullins, Christopher E; Tisdall, Judith M; Bengough, A Glyn

    2013-06-01

    To penetrate soil, a root requires pressure both to expand the cavity it is to occupy, σn , and to overcome root-soil friction, σf . Difficulties in estimating these two pressures independently have limited our ability to estimate the coefficient of soil-root friction, μsr . We used a rotated penetrometer probe, of similar dimensions to a root, and for the first time entering the soil at a similar rate to a root tip, to estimate σn . Separately we measured root penetration resistance (PR) Qr . Root PR was between two to four times σn . We estimated that the coefficient of root-soil friction (μsr ) was 0.21-0.26, based on the geometry of the root tip. This is slightly larger than the 0.05-0.15 characteristic of boundary lubricants. Scanning electron microscopy showed that turgid border cells lined the root channel, supporting our hypothesis that the lubricant consisted of mucilage sandwiched between border cells and the surface of the root cap and epidermis. This cell-cell lubrication greatly decreased the friction that would otherwise be experienced had the surface of the root proper slid directly past unlubricated soil particles. Because root-soil friction can be a substantial component of root PR, successful manipulation of friction represents a promising opportunity for improving plant performance.

  10. Quantification of basal friction for glide-snow avalanche mitigation measures in forested and non-forested terrain

    Directory of Open Access Journals (Sweden)

    T. Feistl

    2014-04-01

    Full Text Available A long-standing problem in avalanche engineering is to design defense structures and manage forest stands such that they can withstand the forces of the natural snow cover. In this way glide-snow avalanches can be prevented. Ground friction plays a crucial role in this process. To verify existing guidelines, we collected data on the vegetation cover and terrain characteristics of 101 glide-snow release areas in Davos, Switzerland. We quantified the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchzone. We investigated the role of glide length, slope steepness and friction on avalanche release. Our calculations revealed that the slope angle and slab length for smooth slopes corresponds to the technical guidelines for defense structure distances in Switzerland. Artificial defense structures, built in accordance with guidelines, prevent glide-snow avalanche releases, even when the terrain is smooth. Slopes over 40 m length and 45° steepness require a ground friction of μ = 0.7 corresponding to stumps or tree regeneration to assure protection. Forest management guidelines which define maximum forest gap sizes to prevent glide-snow avalanche release neglect the role of surface roughness and therefore underestimate the danger on smooth slopes.

  11. CFD Analysis of an Installation Used to Measure the Skin-Friction Penalty of Acoustic Treatments

    Science.gov (United States)

    Spalart, Philippe R.; Garbaruk, Andrey; Howerton, Brian M.

    2017-01-01

    There is a drive to devise acoustic treatments with reduced skin-friction and therefore fuel-burn penalty for engine nacelles on commercial airplanes. The studies have been experimental, and the effects on skin-friction are deduced from measurements of the pressure drop along a duct. We conduct a detailed CFD analysis of the installation, for two purposes. The first is to predict the effects of the finite size of the rig, including its near-square cross-section and the moderate length of the treated patch; this introduces transient and blockage effects, which have not been included so far in the analysis. In addition, the flow is compressible, so that even with homogeneous surface conditions, it is not homogeneous in the streamwise direction. The second purpose is to extract an effective sand-grain roughness size for a particular liner, which in turn can be used in a CFD analysis of the aircraft, leading to actual predictions of the effect of acoustic treatments on fuel burn in service. The study is entirely based on classical turbulence models, with an appropriate modification for effective roughness effects, rather than directly modeling the liners.

  12. Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets

    Science.gov (United States)

    Astarita, A.; Squillace, A.; Carrino, L.

    2014-10-01

    In this paper, AA 2024 T3-rolled sheets were joined in butt joint configuration through the friction stir welding process. Different joints were carried out varying the principal process parameters (i.e., tool welding speed and tool rotational speed). The aim of this work was the study and the experimental characterization of the influence of the process parameters on the forces acting on the tool during the FSW process. Furthermore, it was studied the correlation between the forces and the grain size, in particular with the extension of the heat-affected zone. Forces acting along the axis parallel to the tool are actually greater than those acting along welding direction. All the recorded forces are strictly dependant on the process parameters adopted. No correlation has been found between the grain dimension within the weld bead and the recorded forces, while the greater the forces, the narrower the extension of the heat-affected zone.

  13. A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment

    Science.gov (United States)

    There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...

  14. A reciprocating pin-on-plate test-rig for studying friction materials for holding brakes

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Drago, Nicola; Klit, Peder

    2014-01-01

    -on-plate test-rig for studying the evolution of wear by monitoring the pin height reduction using Eddy-current proximity sensors is presented. Moreover, a new mechanism for recording the friction force is suggested. Apart from the design of the test-rig, friction force and wear rate measurements for two...

  15. Friction Properties of Inkjet and Flexographic Prints on Different Papers

    Directory of Open Access Journals (Sweden)

    Simona Grigaliūnienė

    2015-03-01

    Full Text Available Friction between different papers, inkjet and flexographic prints has been experimentally investigated. Flexographic prints have been made using an anilox roller, and inkjet prints have been produced covering paper with one and four toner layers. Static (SCOF and kinetic (KCOF friction coefficients between paper and paper, paper and prints, prints and prints have been determined. Friction properties have been discovered to be different in flexographic and laser prints. The dependence of SCOF and KCOF on pressure (both decrease together with roughness measurements enables to conclude that the friction of prints is mainly governed by adhesion forces.

  16. A new test machine for measuring friction and wear in controlled atmospheres to 1200 C

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1991-01-01

    This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.

  17. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    Science.gov (United States)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  18. The applicability range of different forms of the radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    Science.gov (United States)

    Bulanov, S. S.; Esirkepov, T. Zh; Kando, M.; Koga, J. K.; Bulanov, S. V.

    2013-02-01

    When the effects of radiation reaction dominate the interaction of electrons with intense laser pulses, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possess unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency.

  19. Measurement of Vehicle Tire-to-Road Coefficient of Friction with a Portable Microcomputerized Transducer.

    Science.gov (United States)

    1982-08-01

    Rabinowicz , E.,Friction and Wear of Materials, John Wiley & Sons, New York, 1965. C24) Calcote, L. R., "A Comparison of High-Speed Photo- graphy and...May 1981. [23] Rabinowicz , E.,Friction and Wear of Materials, John Wiley & Sons, New Yo-, 5-7 [24] Calcote, L. R., "A Comparison of High-Speed Photo

  20. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires

    Science.gov (United States)

    Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad

    2015-01-01

    Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire. PMID:26020037

  1. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  2. Friction characteristics of floppy disks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This note presents the principle and structure of a tribological measure for floppy disks.The precision of the force measuring system is 1 mN in loading and 3×10-6 N in friction.The resolution of the film thickness between head and floppy disk is 0.5 nm in the vertical and 1.5 nm in the horizontal direction.In order to investigate the tribological characteristics of floppy disks,six types of floppy disks have been tested and the floating properties of these disks are also studied with film measuring system.The experimental results of the surface morphology and friction coefficient of these floppy disks using the atomic force microscope/friction force mcroscope (AFM/FFM) are in accordance with the conclusion made by our own measuring system.The experimental results show that the air film thickness between head and disk is of the same order as the surface roughness of floppy disks.

  3. Load-Dependent Friction Hysteresis on Graphene.

    Science.gov (United States)

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  4. Frictional coupling between sliding and spinning motion

    CERN Document Server

    Farkas, Z; Unger, T; Wolf, D E; Farkas, Zeno; Bartels, Guido; Unger, Tamas; Wolf, Dietrich E.

    2002-01-01

    We show that the friction force and torque, acting at a dry contact of two objects moving and rotating relative to each other, are inherently coupled. As a simple test system, a sliding and spinning disk on a horizontal flat surface is considered. We calculate, and also measure, how the disk is slowing down, and find that it always stops its sliding and spinning motion at the same moment. We discuss the impact of this coupling between friction force and torque on the physics of granular materials.

  5. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles

    Science.gov (United States)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  6. Towards measuring the Archimedes force of vacuum

    CERN Document Server

    Calloni, Enrico; De Rosa, Rosario; Di Fiore, Luciano; Esposito, Giampiero; Garufi, Fabio; Rosa, Luigi; Rovelli, Carlo; Ruggi, Paolo; Tafuri, Francesco

    2014-01-01

    We discuss the force exerted by the gravitational field on a Casimir cavity in terms of Archimedes' force of vacuum, we identify the force that can be tested against observation and we show that the present technology makes it possible to perform the first experimental tests. We motivate the use of suitable high-Tc superconductors as modulators of Archimedes' force. We analyze the possibility of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometers test masses to maintain the two systems well separated. We also analyze the use of balances to actuate and detect the force, we compare different solutions and discuss the most important experimental issues.

  7. The Friction Law Stress Exponent under Pine Island Glacier from 15 Years of Surface Elevation and Velocity Measurements

    Science.gov (United States)

    Gillet-chaulet, F.; Durand, G.; Gagliardini, O.; Mosbeux, C.; Mouginot, J.; Remy, F.; Ritz, C.

    2015-12-01

    Polar the ice-sheets mass balance largely depends on the flow of ice-streams. Rapid basal motion generally accounts for most of the velocities. In flow models, the conditions at the base of the ice in contact with the bedrock are generally parameterised using a friction law that relates the sliding velocity to the basal shear stress. The most common law has two poorly constrained parameters, the basal slipperiness c and the stress exponent m. The basal slipperiness is expected to depend on local unobservable quantities and is routinely tuned from observed surface velocities using inverse methods. Different values for m are expected depending on the processes, from hard-bed sliding to soft bed deformation, and no consensus has emerged so far for its value that range from 1 to infinity. However, several studies have shown that the transient response of the ice-sheet models to external forcing is highly sensitive to m. Therefore, the uncertainty attached to the friction law is an important limit to our ability to evaluate future dynamical evolution of coastal regions. Calibrating m can be done only if either basal stresses and/or velocities have changed significantly while c can be assumed constant in time. Here, we use Elmer/Ice to model the flow of Pine Island Glacier (PIG), Antarctica, sufficiently far upstream of the grounding line so that we can assume no change in c. Observations show an increase of surface velocities by up to 50% between 1996 and 2010, associated with an important dynamical thinning. Using a control inverse method and different values of m, we tune a spatially varying basal slipperiness field that best fit, in the same time, observed surface velocities for years 1996, 2007, 2008, 2009 and 2010. These years correspond to the MeaSUREs project velocity datasets that have the best spatial coverage for our model domain. Surface elevations for the corresponding years are constructed using ERS and Envisat radar altimetry data. We show that the

  8. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  9. Measurement of cell traction forces with ImageJ.

    Science.gov (United States)

    Martiel, Jean-Louis; Leal, Aldo; Kurzawa, Laetitia; Balland, Martial; Wang, Irene; Vignaud, Timothée; Tseng, Qingzong; Théry, Manuel

    2015-01-01

    The quantification of cell traction forces requires three key steps: cell plating on a deformable substrate, measurement of substrate deformation, and the numerical estimation of the corresponding cell traction forces. The computing steps to measure gel deformation and estimate the force field have somehow limited the adoption of this method in cell biology labs. Here we propose a set of ImageJ plug-ins so that every lab equipped with a fluorescent microscope can measure cell traction forces.

  10. Frictional properties of single crystals HMX, RDX and PETN explosives.

    Science.gov (United States)

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Development of a novel precision instrument for high-resolution simultaneous normal and shear force measurements between small planar samples

    Science.gov (United States)

    Lundstrom, Troy; Clark, William; Jalili, Nader

    2017-05-01

    In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.

  12. A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type.

    Science.gov (United States)

    Lee, Souk Min; Hwang, Chung-Ju

    2015-01-01

    This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a -7° torque. The orthodontic wires used included 0.018 round and 0.019 × 0.025 in rectangular stainless steel wires. The FR was measured at 0°, 5°, and 10° angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p self-ligating brackets exhibited the lowest static FR at the 0° angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

  13. Capillary-force measurement on SiC surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness similar to 4-14 nm mainly

  14. MEASUREMENT OF ADHESION FORCES IN AIR WITH THE VIBRATION METHOD

    Institute of Scientific and Technical Information of China (English)

    Siegfried Ripperger; Konrad Hein

    2005-01-01

    The vibration method represents a practical method for the measurement of adhesion forces and adhesion force distributions. This method causes sinusoidally altemating stresses and yields detachment and contact forces between particles and substrate of the same order of magnitude. Alternating contact forces of the vibration method can cause an adhesion force intensification through flattening of asperities. The measuring principle of the vibration method and the analysis of experimental results are described in the article. Normal adhesion forces (pull-off forces) are measured using the vibration method and the colloidal probe technique. The results of both methods show good agreement for small particle sizes. The influence of the detachment force direction is shown by comparing tangential and normal adhesion forces measured using particle reentrainment in a turbulent air flow and the vibration method, respectively. The surface roughness of the substrate and the relative humidity are shown to significantly influence the measured adhesion forces. For the calculation of the adhesion forces, an approach by Rabinovich was combined with approximations of plastic micro asperity flattening. The Rabinovich approach accounts for roughness effects on the van der Waals force by incorporating the rms roughness of the interacting surfaces. rms-values of the particles and substrates were measured with atomic force microscopy at different scanning areas.

  15. Cantilevers orthodontics forces measured by fiber sensors

    Science.gov (United States)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  16. A Pedagogical Model of Static Friction

    CERN Document Server

    Pickett, Galen T

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  17. Measuring the Magnetic Force on a Current-Carrying Conductor.

    Science.gov (United States)

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  18. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  19. Association between friction and wear in diarthrodial joints lacking lubricin

    Science.gov (United States)

    Jay, Gregory D; Torres, Jahn R; Rhee, David K; Helminen, Heikki J; Hytinnen, Mika M; Cha, Chung-Ja; Elsaid, Khaled; Kim, Kyung-Suk; Cui, Yajun; Warman, Matthew L

    2007-01-01

    Objective The glycoprotein lubricin (encoded by the gene Prg4) is secreted by surface chondrocytes and synovial cells, and has been shown to reduce friction in vitro. In contrast to man-made bearings, mammalian diarthrodial joints must endogenously produce friction-reducing agents. This study was undertaken to investigate whether friction is associated with wear. Methods The lubricating ability of synovial fluid (SF) samples from humans with genetic lubricin deficiency was tested in vitro. The coefficient of friction in the knee joints of normal and lubricin-null mice was measured ex vivo; these joints were also studied by light and electron microscopy. Atomic force microscopy was used to image and measure how lubricin reduces friction in vitro. Results SF lacking lubricin failed to reduce friction in the boundary mode. Joints of lubricin-null mice showed early wear and higher friction than joints from their wild-type counterparts. Lubricin self-organized and reduced the work of adhesion between apposing asperities. Conclusion These data show that friction is coupled with wear at the cartilage surface in vivo. They imply that acquired lubricin degradation occurring in inflammatory joint diseases predisposes the cartilage to damage. Lastly, they suggest that lubricin, or similar biomolecules, will have applications in man-made devices in which reducing friction is essential. PMID:17968947

  20. Friction in orthodontics

    Science.gov (United States)

    Prashant, P. S.; Nandan, Hemant; Gopalakrishnan, Meera

    2015-01-01

    Conventional wisdom suggests that resistance to sliding (RS) generated at the wire-bracket interface has a bearing on the force transmitted to the teeth. The relative importance of static and kinetic friction and also the effect of friction on anchorage has been a topic of debate. Lot of research work has been done to evaluate the various factors that affect friction and thus purportedly retards the rate of tooth movement. However, relevancy of these studies is questionable as the methodology used hardly simulates the oral conditions. Lately studies have concluded that more emphasis should be laid on binding and notching of archwires as these are considered to be the primary factors involved in retarding the tooth movement. This article reviews the various components involved in RS and the factors affecting friction. Further, research work should be carried out to provide cost effective alternatives aimed at reducing friction. PMID:26538873

  1. Displacement sensor with controlled measuring force and its error analysis and precision verification

    Science.gov (United States)

    Yang, Liangen; Wang, Xuanze; Lv, Wei

    2011-05-01

    A displacement sensor with controlled measuring force and its error analysis and precision verification are discussed in this paper. The displacement sensor consists of an electric induction transducer with high resolution and a voice coil motor (VCM). The measuring principles, structure, method enlarging measuring range, signal process of the sensor are discussed. The main error sources such as parallelism error and incline of framework by unequal length of leaf springs, rigidity of measuring rods, shape error of stylus, friction between iron core and other parts, damping of leaf springs, variation of voltage, linearity of induction transducer, resolution and stability are analyzed. A measuring system for surface topography with large measuring range is constructed based on the displacement sensor and 2D moving platform. Measuring precision and stability of the measuring system is verified. Measuring force of the sensor in measurement process of surface topography can be controlled at μN level and hardly changes. It has been used in measurement of bearing ball, bullet mark, etc. It has measuring range up to 2mm and precision of nm level.

  2. Friction enhancement in concertina locomotion of snakes.

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  3. Friction enhancement in concertina locomotion of snakes

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  4. Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy

    NARCIS (Netherlands)

    van Hoogmoed, CG; Dijkstra, RJB; van der Mei, HC; Busscher, HJ

    Although interactive forces, influenced by environmental conditions, between oral bacteria and tooth surfaces are important for the development of plaque, they have never been estimated. It is hypothesized that interactive forces, as measured by atomic force microscopy, between enamel with or

  5. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Osvaldo N. Oliveira

    2012-10-01

    Full Text Available The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS, it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  6. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  7. 船用斜齿轮时变接触线对齿面摩擦力及摩擦扭矩的影响研究%Study on the impact of time-varying contact line on tooth surface friction force and friction torque of helical gear

    Institute of Scientific and Technical Information of China (English)

    李文良; 王黎钦; 常山

    2013-01-01

    Based on the calculation of time-varying contact line, the numerical algorithm is adopted to cal-culate the friction force of tooth surface and the friction torque with different helix angles. After analyzed Root Mean Square and fluctuation ratio of friction force of tooth surface and friction torque, the conclusions were obtained: the fluctuation ratio of time-varying contact line is the principal factor for the change of friction force of tooth surface and the friction torque. In the range of parameters selected, the fluctuations of tooth surface friction force and friction torque are the same as the volatility of time-varying contact line and show a change law between 10°-20° and 20°-30°, which provide a theoretical reference to reduce noise and vibration in engineering.%  文章在计算斜齿轮时变接触线基础上,采用数值编程快速计算主动轮齿面摩擦力和齿面摩擦扭矩。通过分析齿面摩擦力和齿面摩擦扭矩的均方根以及波动率后可知,时变接触线的波动是影响齿面摩擦力以及齿面摩擦扭矩的主要因素。在文中选定的参数范围内,齿面摩擦力的波动和齿面摩擦扭矩的波动与时变接触线的波动变化规律基本一致,呈现出一种10°-20°和20°-30°的变化规律,为工程减振降噪提供了理论参考。

  8. Bio-Molecular Interactions Measured by Atomic Force Microscopy

    NARCIS (Netherlands)

    Willemsen, O.H.; Snel, M.M.E.; Cambi, A.; Cambi, Alessandra; Greve, Jan; de Grooth, B.G.; Figdor, Carl

    2000-01-01

    Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more

  9. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, Bjorn [Los Alamos National Laboratory; Woo, Wanchuck [ORNL; Zhili, Feng [ORNL; Edward, Kenik [ORNL; Ungar, Tamas [EOTVOS UNIV.

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  10. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  11. Measurement of Laterally Induced Optical Forces at the Nanoscale

    CERN Document Server

    Huang, Fei; Wickramasinghe, Hemanta Kumar

    2016-01-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. Torsional eigenmodes of an AFM cantilever probe were used to detect the laterally induced optical forces. We engineered the cantilever shape using a focused ion beam to enhance the torsional eigenmode resonance. The measured lateral optical force agrees well with simulations. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multichannel detector. This will enable simultaneous Photon Induced Force Microscopy (PIFM) detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  12. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    Science.gov (United States)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  13. Frictional heating of total hip implants. Part 1: measurements in patients.

    NARCIS (Netherlands)

    Bergmann, G.; Graichen, F.; Rohlmann, A.; Verdonschot, N.J.J.; Lenthe, G.H. van

    2001-01-01

    Hip implants heat up due to friction during long lasting, high loading activities like walking. Thermal damage in the surrounding soft and hard tissues and deteriorated lubrication of synovial fluid could contribute to implant loosening. The goal of this study was to determine the implant temperatur

  14. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Science.gov (United States)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  15. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  16. High fidelity frictional models for MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Reedy, Earl David, Jr.; Bitsie, Fernando; de Boer, Maarten Pieter; Corwin, Alex David; Ashurst, William Robert (Auburn University, Auburn, AL); Jones, Reese E.; Subhash, Ghatu S. (Michigan Technological Institute, Houghton, MI); Street, Mark D. (University of Wisconsin, Madison, WI); Sumali, Anton Hartono; Antoun, Bonnie R.; Starr, Michael James; Redmond, James Michael; Flater, Erin E. (University of Wisconsin, Madison, WI)

    2004-10-01

    The primary goals of the present study are to: (1) determine how and why MEMS-scale friction differs from friction on the macro-scale, and (2) to begin to develop a capability to perform finite element simulations of MEMS materials and components that accurately predicts response in the presence of adhesion and friction. Regarding the first goal, a newly developed nanotractor actuator was used to measure friction between molecular monolayer-coated, polysilicon surfaces. Amontons law does indeed apply over a wide range of forces. However, at low loads, which are of relevance to MEMS, there is an important adhesive contribution to the normal load that cannot be neglected. More importantly, we found that at short sliding distances, the concept of a coefficient of friction is not relevant; rather, one must invoke the notion of 'pre-sliding tangential deflections' (PSTD). Results of a simple 2-D model suggests that PSTD is a cascade of small-scale slips with a roughly constant number of contacts equilibrating the applied normal load. Regarding the second goal, an Adhesion Model and a Junction Model have been implemented in PRESTO, Sandia's transient dynamics, finite element code to enable asperity-level simulations. The Junction Model includes a tangential shear traction that opposes the relative tangential motion of contacting surfaces. An atomic force microscope (AFM)-based method was used to measure nano-scale, single asperity friction forces as a function of normal force. This data is used to determine Junction Model parameters. An illustrative simulation demonstrates the use of the Junction Model in conjunction with a mesh generated directly from an atomic force microscope (AFM) image to directly predict frictional response of a sliding asperity. Also with regards to the second goal, grid-level, homogenized models were studied. One would like to perform a finite element analysis of a MEMS component assuming nominally flat surfaces and to include the

  17. Static Absolute Force Measurement for Preloaded Piezoelements Used for Active Lorentz Force Detuning System

    CERN Document Server

    Sekalski, S P; Sekalski, S P

    2004-01-01

    To reach high gradients in pulsed operation of superconducting (SC) cavities an active Lorentz force detuning compensation system is needed. For this system a piezoelement can be used as an actuator (other option is a magnetostrictive device). To guarantee the demanded lifetime of the active element, the proper preload force adjustment is necessary. To determine this parameter an absolute force sensor is needed which will be able to operate at cryogenic temperatures. Currently, there is no calibrated commercial available sensor, which will be able to measure the static force in such an environment. The authors propose to use a discovered phenomenon to estimate the preload force applied to the piezoelement. The principle of the proposed solution based on a shape of impedance curve, which changes with the value of applied force. Especially, the position of resonances are monitored. No need of specialized force sensor and measurement in-situ are additional advantages of proposed method.

  18. A Novel Device for Measuring Forces in Endoluminal Procedures

    Directory of Open Access Journals (Sweden)

    Tommaso Ranzani

    2015-08-01

    Full Text Available In this paper a simple but effective measuring system for endoluminal procedures is presented. The device allows measuring forces during the endoluminal manipulation of tissues with a standard surgical instrument for laparoscopic procedures. The force measurement is performed by recording both the forces applied directly by the surgeon at the instrument handle and the reaction forces on the access port. The measuring system was used to measure the forces necessary for appropriate surgical manipulation of tissues during transanal endoscopic microsurgery (TEM. Ex-vivo and in-vivo measurements were performed, reported and discussed. The obtained data can be used for developing and appropriately dimensioning novel dedicated instrumentation for TEM procedures.

  19. A Novel Device for Measuring Forces in Endoluminal Procedures

    Directory of Open Access Journals (Sweden)

    Tommaso Ranzani

    2015-08-01

    Full Text Available In this paper a simple but effective measuring system for endoluminal procedures is presented. The device allows measuring forces during the endoluminal manipulation of tissues with a standard surgical instrument for laparoscopic procedures. The force measurement is performed by recording both the forces applied directly by the surgeon at the instrument handle and the reaction forces on the access port. The measuring system was used to measure the forces necessary for appropriate surgical manipulation of tissues during transanal endoscopic microsurgery (TEM. Ex-vivo and in-vivo measurements were performed, reported and discussed. The obtained data can be used for developing and appropriately dimensioning novel dedicated instrumentation for TEM procedures.

  20. Measurement of non-monotonic Casimir forces between silicon nanostructures

    Science.gov (United States)

    Tang, L.; Wang, M.; Ng, C. Y.; Nikolic, M.; Chan, C. T.; Rodriguez, A. W.; Chan, H. B.

    2017-01-01

    Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling this force via the optical properties of materials, a number of novel geometries have been proposed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.

  1. Displacement and Force Measurements with Quadrant Photodetector in Optical Tweezers

    Institute of Scientific and Technical Information of China (English)

    郭红莲; 刘春香; 李兆霖; 段建发; 韩学海; 程丙英; 张道中

    2003-01-01

    A technique of displacement and force measurements with a photodiode quadrant detector in an optical tweezers system is presented. The stiffness of optical trap is calibrated and the leukemia cell membrane tension is measured.The results show that the optical tweezers combined with the quadrant detector is a very useful tool for detecting the displacement and force with a millisecond-order response.

  2. Adhesion Force Measurements of Polymer Particles by Detachment Field Method

    Institute of Scientific and Technical Information of China (English)

    Masashi Nagayama; Nobuyasu Sakurai; Tatsuaki Wada; Manabu Takeuchi

    2004-01-01

    The adhesion force distributions of polymer particles to aluminum substrates were measured by the detachment field method. Polymer particles with conducting surface treatment were used for the measurements.Further the conventional detachment field method was modified to be applicable to the adhesion force measurements of a single particle. The adhesion force of the polymer particles increased with an increase in relative humidity. The surface roughness of the substrate influenced the adhesion forces of particles significantly. The influence of the CF4 plasma treatment of the polymer particles and thin layer coating of the substrate surface on the adhesion forces of the polymer particles was also studied, and factors affecting adhesion forces of polymer particles are discussed.

  3. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  4. Measurement of the friction between a silver nanowire and the silicon dioxide substrate%银纳米线与二氧化硅衬底表面摩擦力的测量

    Institute of Scientific and Technical Information of China (English)

    吴森; 张峻铭; 刘鸿志; 张锐; 胡晓东

    2016-01-01

    Silver nanowires ( Ag NWs ) are ideal building blocks for nano?photoelectric devices. Understanding the friction mechanism between individual Ag NWs and certain substrate is of great significance to the nano?manufacturing process. In this paper, the atomic force microscopy ( AFM) is applied to study the friction between Ag NWs and silicon dioxide ( SiO2 ) substrate. By using the AFM?based nanomanipulation, an Ag NW with 50 nm in diameter is moved across the SiO2 surface. During the translation, the friction force is recorded by the AFM cantilever probe. In order to increase the accuracy of the force measurement, the lateral spring constant of the AFM cantilever and the sensitivity of optical lever are precisely calibrated by using the wedge method and the lateral force?curve method, respectively. The error introduced by the movement of the AFM scanner is also considered and compensated. The measurement results show that the maximum static friction force per unit between Ag NWs and the SiO2 substrate is 1.07 nN/nm, and the sliding friction per unit is 0.56 nN/nm.%银纳米线是制作纳米光电子器件的理想材料,了解银纳米线与特定衬底间的摩擦特性对于器件的设计和制备工艺具有重要参考价值.本文利用原子力显微镜(AFM)研究银纳米线与二氧化硅衬底表面的摩擦特性,为提高摩擦力测量准确性,依次借助斜面法和横向力曲线分别标定了AFM探针的扭转弹性常数和光杠杆横向灵敏度,同时对扫描器引入的横向误差进行了补偿.利用AFM纳米操纵技术记录了单根银纳米线由静止到整体滑动的全过程,实验测得直径50 nm银纳米线与二氧化硅衬底表面的最大静摩擦线密度和滑动摩擦线密度分别为1.07 nN/nm和0.56 nN/nm.

  5. High Speed Friction Microscopy and Nanoscale Friction Coefficient Mapping

    OpenAIRE

    Bosse, James L.; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for Friction Coefficient Mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true...

  6. Friction laws for lubricated nanocontacts

    Science.gov (United States)

    Buzio, R.; Boragno, C.; Valbusa, U.

    2006-09-01

    We have used friction force microscopy to probe friction laws for nanoasperities sliding on atomically flat substrates under controlled atmosphere and liquid environment, respectively. A power law relates friction force and normal load in dry air, whereas a linear relationship, i.e., Amontons' law, is observed for junctions fully immersed in model lubricants, namely, octamethylciclotetrasiloxane and squalane. Lubricated contacts display a remarkable friction reduction, with liquid and substrate specific friction coefficients. Comparison with molecular dynamics simulations suggests that load-bearing boundary layers at junction entrance cause the appearance of Amontons' law and impart atomic-scale character to the sliding process; continuum friction models are on the contrary of limited predictive power when applied to lubrication effects. An attempt is done to define general working conditions leading to the manifestation of nanoscale lubricity due to adsorbed boundary layers.

  7. Measurement and Determination of Friction Characteristic of Air Flow through Porous Media

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2015-03-01

    Full Text Available Sintered metal porous media currently plays an important role in air bearing systems. When flowing through porous media, the flow properties are generally represented by incompressible Darcy-Forchheimer regime or Ergun regime. In this study, a modified Ergun equation, which includes air compressibility effects, is developed to describe friction characteristic. Experimental and theoretical investigations on friction characteristic are conducted with a series of metal-sintered porous media. Re = 10 is selected as the boundary for a viscous drag region and a form drag region. Experimental data are first used to determine the coefficient α in the viscous drag region, and then the coefficient β in the form drag region, rather than both simultaneously. Also, the theoretical mass flow rate in terms of the modified Ergun equation provides close approximations to the experimental data. Finally, it is also known that both the air compressibility and inertial effects can obviously enhance the pressure drop.

  8. Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector

    Science.gov (United States)

    Pierce, M.; Stuart, J.; Pungor, A.; Dryden, P.

    2012-01-01

    The atomic force microscope (AFM), in addition to providing images on an atomic scale, can be used to measure the forces between surfaces and the AFM probe. The potential uses of mapping the adhesive forces on the surface include a spatial determination of surface energy and a direct identification of surface proteins through specific protein–ligand binding interactions. The capabilities of the AFM to measure adhesive forces can be extended by replacing the four-quadrant photodiode detection sensor with an external linear position sensitive detector and by utilizing a dedicated user-programmable signal generator and acquisiton system. Such an upgrade enables the microscope to measure in the larger dynamic range of adhesion forces, improves the sensitivity and linearity of the measurement, and eliminates the problems inherent to the multiple repetitious contacts between the AFM probe and the specimen surface. PMID:25125792

  9. Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process

    Science.gov (United States)

    2015-10-01

    AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Elastohydrodynamically...state friction coefficient and surface morphology , once the running-in process is complete, does not depend significantly on the ramp direction, nor... morphological changes may also be taking place.1–5 The running-in process has lasting consequences for the operation, efficiency, and failure conditions of the

  10. Measurement of inter-particle forces by an interfacial force microscope

    Institute of Scientific and Technical Information of China (English)

    Qing Huang; Asghar Mesbah-Nejad; Seyed M. Tadayyon; Peter Norton; Hui Zhang; Jesse Zhu

    2010-01-01

    An inteffacial force microscope (IFM) was employed to measure the inter-particle forces between two individual glass beads with diameters varying from 8 to 20 μm. With the feedback function of IFM turned off, attractive forces were obtained. The forces varied in the range of 0.1-0.34 μN, and their validity was confirmed by a theoretical analysis of the van der Waals force between the same glass beads. With the feedback function switched on, no attractive forces between particles were detected by the IFM when the probe approached the sample substrate. This may be attributed to the dramatic change of the attractive forces within a very short separation distance and/or the relatively poor signal-to-noise ratio of the IFM.

  11. Tibial forces measured in vivo after total knee arthroplasty.

    Science.gov (United States)

    D'Lima, Darryl D; Patil, Shantanu; Steklov, Nikolai; Slamin, John E; Colwell, Clifford W

    2006-02-01

    An instrumented tibial prosthesis was developed to measure forces in vivo after total tibial arthroplasty. This prosthesis was implanted in a 67-kg, 80-year-old man. The prosthesis measured forces at the 4 quadrants of the tibial tray. Tibial forces were measured postoperatively during rehabilitation, rising from a chair, standing, walking, and climbing stairs. By the sixth postoperative week, the peak tibial forces during walking averaged 2.2 times body weight (BW). Stair climbing increased from 1.9 times BW on day 6 to 2.5 times BW at 6 weeks. This represents the first direct in vivo measurement of tibial forces, which should lead to refined surgical techniques and enhanced prosthetic designs. Technical design improvements will enhance function, quality of life, and longevity of total knee arthroplasty.

  12. Friction and Wear in Timing Belt Drives

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2010-09-01

    Full Text Available Timing belt tooth goes into contact with a drive pulley, stretched to the maximum, because of the previous tension. When the contact begins the peak of the belt tooth makes the contact with the outer surface of the pulley teeth. The process of the teeth entering into the contact zone is accompanied with the relative sliding of their side surfaces and appropriate friction force. The normal force value is changing with the parabolic function, which also leads to the changes of the friction force. The biggest value of the normal force and of the friction force is at the tooth root. Hollow between teeth and the tip of the pulley teeth are also in contact. Occasionally, the face surface of the belt and the flange are also in contact. The friction occurs in those tribomechanical systems, also. Values of these friction forces are lower compared with the friction force, which occurs at the teeth root.

  13. A Simple Method for Measuring Tensile Force with Piezoelectric Patch

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Wen; JIANG Zhong-Wei; Testuya Morisaki

    2007-01-01

    @@ We propose a simple method for monitoring the axial tensile and compressive force in a structure by using a piezoelectric patch with the piezoelectric impedance based measurement. A simple approximate equation for estimating the tensile force in two different conditions, which can be calculated easily if the natural frequencies in two different states are measured, is explained in detail. On another front, the natural frequency can be very easily measured by a piezoelectric element by bonding it on the measuring subject structure, because its electric impedance of piezoelement is related to the structural mechanical impedance. Furthermore, an experiment for measuring a tensile force in a simple supported beam is carried out for validating the proposed method. The results show a good accuracy in estimating the tensile force variation by the natural frequency change measured from the piezoelement.

  14. Molecular force sensors to measure stress in cells

    Science.gov (United States)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.

    2017-06-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  15. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  16. Thigh-calf contact force measurements in deep knee flexion.

    NARCIS (Netherlands)

    Zelle, J.G.; Barink, M.; Loeffen, R.; Waal Malefijt, M.C. de; Verdonschot, N.J.J.

    2007-01-01

    BACKGROUND: Knee models often do not contain thigh-calf contact which occurs in deep knee flexion. Thigh-calf contact is expected to reduce muscle forces and thereby affects internal stresses in the knee joint. The purpose of this study was to measure thigh-calf contact forces. Two deep knee flexion

  17. An eight-legged tactile sensor to estimate coefficient of static friction.

    Science.gov (United States)

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  18. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  19. Elastic model of dry friction

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, A. I.; Khmelnitskii, D. E., E-mail: dekl2@cam.ac.uk [Landau Institute for Theoretical Physics (Russian Federation)

    2013-09-15

    Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.

  20. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; XU Hong-guang

    2008-01-01

    The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experi-mentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.

  1. Direct measurement of Vorticella contraction force by micropipette deflection.

    Science.gov (United States)

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  2. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  3. Multiscaling behavior of atomic-scale friction

    Science.gov (United States)

    Jannesar, M.; Jamali, T.; Sadeghi, A.; Movahed, S. M. S.; Fesler, G.; Meyer, E.; Khoshnevisan, B.; Jafari, G. R.

    2017-06-01

    The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H =0.61 ±0.02 at a 1 σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h (q ) , on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.

  4. Topological and geometric measurements of force chain structure

    CERN Document Server

    Giusti, Chad; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S

    2016-01-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts to a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force chain structure, with the goal of identifying shape differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here, we discuss a trio of related but fundamentally distinct measurements of mesoscale structure of force chains in arbitrary 2D packings, including a novel statistic derived using tools from algebraic topology...

  5. Measuring Air Force Contracting customer satisfaction

    OpenAIRE

    Davis, Jamie

    2015-01-01

    Approved for public release; distribution is unlimited This research gathers background information to identify which customer satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and internal customers. This research conducts a comprehensive literature review of the prominent customer satisfaction trends, while exploring the idiosyncrasies of customer satisfaction that are unique to AF Contracting. F...

  6. Quantum metrology. Optically measuring force near the standard quantum limit.

    Science.gov (United States)

    Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2014-06-27

    The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.

  7. Ultralow Friction in a Superconducting Magnetic Bearing

    Science.gov (United States)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  8. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  9. Surface force measurement of ultraviolet nanoimprint lithography materials

    Science.gov (United States)

    Taniguchi, Jun; Hasegawa, Masayuki; Amemiya, Hironao; Kobayashi, Hayato

    2016-02-01

    Ultraviolet nanoimprint lithography (UV-NIL) has advantages such as room-temperature operation, high through-put, and high resolution. In the UV-NIL process, the mold needs a release coating material to prevent adhesion of the transfer resin. Usually, fluorinated silane coupling agents are used as release coating materials. To evaluate the release property, surface force analyzer equipment was used. This equipment can measure the surface forces between release-coated or noncoated mold material surfaces and UV-cured resin surfaces in the solid state. Lower surface forces were measured when a release coating was used on the mold material surface.

  10. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.

    Science.gov (United States)

    Hendricks, Adam G; Goldman, Yale E

    2017-01-01

    Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.

  11. Dry friction avalanches: Experiment and theory

    Science.gov (United States)

    Buldyrev, Sergey V.; Ferrante, John; Zypman, Fredy R.

    2006-12-01

    Experimental evidence and theoretical models are presented supporting the conjecture that dry friction stick-slip is described by self-organized criticality. We use the data, obtained with a pin-on-disk tribometer set to measure lateral force, to examine the variation of the friction force as a function of time. We study nominally flat surfaces of matching aluminum and steel. The probability distribution of force drops follows a negative power law with exponents μ in the range 3.2-3.5. The frequency power spectrum follows a 1/fα pattern with α in the range 1-1.8. We first compare these experimental results with the well-known Robin Hood model of self-organized criticality. We find good agreement between theory and experiment for the force-drop distribution but not for the power spectrum. We explain this on a physical basis and propose a model which takes explicitly into account the stiffness and inertia of the tribometer. Specifically, we numerically solve the equation of motion of a block on a friction surface pulled by a spring and show that for certain spring constants the motion is characterized by the same power law spectrum as in experiments. We propose a physical picture relating the fluctuations of the force drops to the microscopic geometry of the surface.

  12. Commentary on "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153"

    Science.gov (United States)

    Ritto, T. G.; Sampaio, Rubens; Rosales, M. B.

    2016-12-01

    The goal of this article is to clarify some points of the formulation presented in the "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153".

  13. Interface corrective force measurements in Boston brace treatment.

    Science.gov (United States)

    van den Hout, J A A M; van Rhijn, L W; van den Munckhof, R J H; van Ooy, A

    2002-08-01

    Brace application has been reported to be effective in treating idiopathic adolescent scoliosis. The exact working mechanism of a thoracolumbo spinal orthosis is a result of different mechanisms and is not completely understood. One of the supposed working mechanisms is a direct compressive force working through the brace upon the body and thereby correcting the scoliotic deformity, achieving optimal fit of the individual orthosis. In this study we measured these direct forces exerted by the pads in a Boston brace in 16 patients with idiopathic adolescent scoliosis, using the electronic PEDAR measuring device (Novel, Munich, Germany). This is designed as an in-shoe measuring system consisting of two shoe insoles (size 8 1/2), wired to a computer, recording static and dynamic pressure distribution under the plantar surface of the foot. After positioning the inserts between the lumbar and thoracic pads and the body, we measured the forces acting upon the body in eight different postures. In all positions the mean corrective force through the lumbar brace pad was larger than the mean corrective force over the thoracic brace pad. Some changes in body posture resulted in statistically significant alterations in the exerted forces. There was no significant correlation between the magnitude of the compressive force over the lumbar and thoracic brace-pad and the degree of correction of the major curve. Comparing the corrective forces in a relatively new (6 months) brace, there was no statistically relevant difference, although the corrective force was slightly larger in the new braces. We think that the use of this pressure measurement device is practicable and of value for studies of the working mechanism of brace treatment, and in the future it might be of help in achieving optimal fit of the individual orthosis.

  14. Orthodontic forces released by low-friction versus conventional systems during alignment of apically or buccally malposed teeth.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; Camporesi, Matteo; Defraia, Efisio

    2011-02-01

    The aim of the present study was to analyse the forces released by passive stainless steel self-ligating brackets (SLBs) and by a non-conventional elastomeric ligature-bracket system on conventional brackets ([slide ligatures on conventional brackets (SLCB)]) when compared with conventional elastomeric ligatures on conventional brackets (CLCB) during the alignment of apically or buccally malposed teeth in the maxillary arch. An experimental model consisting of five brackets was used to assess the forces released by the three different bracket-ligature systems with 0.012-inch super-elastic (SE) nickel-titanium (NiTi) wires in the presence of different amounts of apical or buccal canine misalignment of the canine (ranging from 1.5 to 6 mm). The forces released by each wire/bracket/ligature combination with the three different amounts of apical or buccal canine misalignment were tested 20 times. Comparisons between the different types of wire/bracket/ligature systems were carried out by means of analysis of variance on ranks with Dunnett's post hoc test (P force released in presence of a misalignment of 1.5 mm was recorded among the three systems. At 3 mm of apical misalignment a significantly greater amount of orthodontic force was released by SLB or SLCB when compared with CLCB, while no significant differences were found among the three systems at 3 mm of buccal canine displacement. When correction of a large amount of misalignment (6 mm) was attempted, a noticeable amount of force for alignment was still generated by the passive SLB and SLCB systems while no force was released in presence of CLCB.

  15. Financial Frictions

    DEFF Research Database (Denmark)

    Vestergaard Jensen, Mads

    frictions, a call option should never be exercised early, but only at expiration or just before the underlying stock pays a dividend. Chapter one of this thesis shows that suffciently severe frictions can make early exercise optimal. Short-sale costs especially represent an important driver of early...

  16. NASA ATP Force Measurement Technology Capability Strategic Plan

    Science.gov (United States)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  17. The Kilogram and Measurements of Mass and Force.

    Science.gov (United States)

    Jabbour, Z J; Yaniv, S L

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces.

  18. Novel Low-Cost Sensor for Human Bite Force Measurement

    Directory of Open Access Journals (Sweden)

    Jarred Fastier-Wooller

    2016-08-01

    Full Text Available This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement.

  19. Video measurements of instantaneous forces of flapping wing vehicles

    Science.gov (United States)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  20. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  1. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  2. Measurement of laterally induced optical forces at the nanoscale

    Science.gov (United States)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  3. The development of a cascade impactor simulator based on adhesion force measurements to aid the development of dry powder inhalations.

    Science.gov (United States)

    Podczeck, F

    1997-05-01

    Adhesion and friction forces are the main physical factors determining the re-suspension of a micronized drug from carrier particles during inhalation. Hence, it appears useful to link adhesion and friction force measurements to the in vitro testing of dry powder inhalations, namely the assessment of the mass median aerodynamic diameter (MMAD) using an eight-stage Andersen cascade impactor. Interactive mixtures of micronized Salmeterol Xinafoate adhered to irrespirable lactose monohydrate carrier particles were used as model dosage forms. The adhesion force between the drug and carrier particles was assessed using a centrifuge technique, and the MMAD was determined under standardized working conditions using the Andersen-Cascade impactor (Mark II). A cascade impactor simulator (CIS), which is a computer program containing a re-suspension model to assess the amount of drug detached from the carrier particles during inhalation, was developed and validated using the experimental data. It could be shown, that the CIS provided a good estimate of the loss of drug due to adhesion to the carrier particles and the loss of drug on the cascade impactor walls. Small deviations between the theoretical and experimental mass median aerodynamic particle diameters however were found. These deviations were shown to be mainly due to the experimental error introduced by the cascade impactor, and that the error due to the experimental adhesion measurements is negligibly small. Hence, the CIS developed could be a useful tool in early development stages of dry powder inhalations to predict the in vitro aerodynamic performance of drug particles.

  4. Sliding force measurements of the LHC RF contact Plug In Modules at 15 K and in UHV

    CERN Document Server

    Artoos, K; Renaglia, T; CERN. Geneva. TS Department

    2008-01-01

    Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Some of the gold-coated copper-beryllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

  5. Deconvolution Kalman filtering for force measurements of revolving wings

    Science.gov (United States)

    Vester, R.; Percin, M.; van Oudheusden, B.

    2016-09-01

    The applicability of a deconvolution Kalman filtering approach is assessed for the force measurements on a flat plate undergoing a revolving motion, as an alternative procedure to correct for test setup vibrations. The system identification process required for the correct implementation of the deconvolution Kalman filter is explained in detail. It is found that in the presence of a relatively complex forcing history, the DK filter is better suited to filter out structural test rig vibrations than conventional filtering techniques that are based on, for example, low-pass or moving-average filtering. The improvement is especially found in the characterization of the generated force peaks. Consequently, more reliable force data is obtained, which is vital to validate semi-empirical estimation models, but is also relevant to correlate identified flow phenomena to the force production.

  6. Measurement of Friction and Energy Consumption for Elevator Slide Guide System%电梯滑动导靴系统摩擦及能耗测量

    Institute of Scientific and Technical Information of China (English)

    钱磊; 史熙

    2012-01-01

    介绍了一种测试电梯滑动导靴系统摩擦及能耗的实验装置和方法,并针对不同的导靴产品进行了能耗及摩擦特性测定及分析.研究结果表明,接触压强越大,导靴摩擦系数越小;摩擦系数随滑动速度增大呈先上升后下降的趋势;导靴的结构对于摩擦系数、摩擦能耗也有一定的影响.%This paper introduces a method which is used to measure the friction and Energy consumption of the elevator slide guide system and analyses energy efficiency and friction characteristics of different guide shoes. The results of this study show that the greater contact pressure leads to the smaller friction coefficient. When sliding speed is increased friction coefficient increases to a top then after the peak it begins to fall. The structure of the shoes also have certain effect on friction coefficient and friction energy consumption.

  7. Are buckling force measurements reliable in nocturnal penile tumescence studies?

    Science.gov (United States)

    Nofzinger, E A; Fasiczka, A L; Thase, M E; Reynolds, C F; Frank, E; Jennings, J R; Garamoni, G L; Matzzie, J V; Kupfer, D J

    1993-02-01

    The study of nocturnal penile tumescence (NPT) is frequently used to evaluate male erectile dysfunction. Buckling force, a measure of rigidity, is an important part of this evaluation, but its reliability is unknown. Accordingly, we studied the reliability of buckling force measurement and the stability of "maximum buckling force" between consecutive NPT series repeated in the same subject. For individual subjects, we correlated buckling forces for separate episodes of sleep-related tumescence that were of comparable fullness (0-100%) as rated by a technician's visual estimates. For healthy control subjects, test-retest correlations were > 0.8 both within-night and across study series separated by an average of 70 weeks. In depressed men, correlations within nights were > 0.9, but fell to 0.64 across study series separated by an average of 21 weeks. Despite the high reliability of buckling force measurement, we found little stability of "maximum buckling force" between NPT series for individual subjects. Considerable variability in the maximum degree of penile rigidity was seen over time despite a constant level of reported daytime erectile function. We conclude that although penile rigidity is one of the more important variables in the assessment of male erectile dysfunction and can be measured reliably, the instability of maximum rigidity during sleep-related erections suggests that it is, at best, an imprecise correlate of daytime erectile function.

  8. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  9. Tribological Properties of Silicone Rubber-Based Ceramizable Composites Destined for Wire Covers. Part II. Studies of Ball-on-Plate, Plate-on-Plate and Ring-on-Plate Friction Contact

    Directory of Open Access Journals (Sweden)

    R. Anyszka

    2016-09-01

    Full Text Available Tribological properties of commercially available silicone-based ceramizable composites were studied. Friction forces of three different types of ceramizable composites were measured against three different-shape steel samples. Each friction pair contact was loaded with 15, 30, 45 or 60 N. Conducted studies reveal that tribological behavior of the composites vary considerably depending on the composite type and friction contact. However, friction force was increasing with an increase of the load, which mean that the composites behave accordingly to the classic friction theory.

  10. Support force measures of midsized men in seated positions.

    Science.gov (United States)

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  11. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  12. Optically Measuring Force near the Standard Quantum Limit

    CERN Document Server

    Schreppler, Sydney; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2013-01-01

    The Heisenberg uncertainty principle sets a lower bound on the sensitivity of continuous optical measurements of force. This bound, the standard quantum limit, can only be reached when a mechanical oscillator subjected to the force is unperturbed by its environment, and when measurement imprecision from photon shot-noise is balanced against disturbance from measurement backaction. We apply an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity. The optomechanically transduced response clearly demonstrates the trade-off between measurement imprecision and back-action noise. We achieve a sensitivity that is consistent with theoretical predictions for the quantum limit given the atoms' slight residual thermal disturbance and the photodetection quantum efficiency, and is a factor of 4 above the absolute standard quantum limit.

  13. The Measurement and Prediction of Rotordynamic Forces for Labyrinth Seals

    Science.gov (United States)

    1988-03-01

    AFOSRlM- 88-0 662 C-" DTIC FILE COPy THE MEASUREMENT AND PREDICTION OF I ROTORDYNAMIC FORCES FOR . ,LABYRINTH SEALS prepared by D. W. Childs D. L...FRMorcesT123/ 18, MARCH k 7~ 1 A 19. ABSTRACT ICniu IT JECTr TRM necesoary ond identif if R&iocftr an um rbyblckn %I I _I Measurements of rotordynamic ...0 FORM 1472, 83 APR EOITiC’q OF I iA 71 15 )SOLETF O~p - ...... 0 THE MEASUREMENT AND PREDICTION OF ROTORDYNAMIC FORCES FOR LABYRINTH SEALS prepared

  14. Measurements of human force control during a constrained arm motion using a force-actuated joystick.

    Science.gov (United States)

    McIntyre, J; Gurfinkel, E V; Lipshits, M I; Droulez, J; Gurfinkel, V S

    1995-03-01

    1. When interacting with the environment, human arm movements may be prevented in certain directions (i.e., when sliding the hand along a surface) resulting in what is called a "constrained motion." In the directions that the movement is restricted, the subject is instead free to control the forces against the constraint. 2. Control strategies for constrained motion may be characterized by two extreme models. Under the active compliance model, an essentially feedback-based approach, measurements of contact force may be used in real time to modify the motor command and precisely control the forces generated against the constraint. Under the passive compliance model the motion would be executed in a feedforward manner, using an internal model of the constraint geometry. The feedforward model relies on the compliant behavior of the passive mechanical system to maintain contact while avoiding excessive contact forces. 3. Subjects performed a task in which they were required to slide the hand along a rigid surface. This task was performed in a virtual force environment in which contact forces were simulated by a two-dimensional force-actuated joystick. Unknown to the subject, the orientation of the surface constraint was varied from trial to trial, and contact force changes induced by these perturbations were measured. 4. Subjects showed variations in contact force correlated with the direction of the orientation perturbation. "Upward" tilts resulted in higher contact forces, whereas "downward" tilts resulted in lower contact forces. This result is consistent with a feedforward-based control of a passively compliant system. 5. Subject responses did not, however, correspond exactly to the predictions of a static analysis of a passive, feedforward-controlled system. A dynamic analysis reveals a much closer resemblance between a passive, feedforward model and the observed data. Numerical simulations demonstrate that a passive, dynamic system model of the movement captures

  15. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  16. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp...

  17. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Science.gov (United States)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  18. Capillary-force measurement on SiC surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  19. Gravitomagnetic dynamical friction

    CERN Document Server

    Cashen, Benjamin; Kesden, Michael

    2016-01-01

    A supermassive black hole moving through a field of stars will gravitationally scatter the stars, inducing a backreaction force on the black hole known as dynamical friction. In Newtonian gravity, the axisymmetry of the system about the black hole's velocity $\\mathbf{v}$ implies that the dynamical friction must be anti-parallel to $\\mathbf{v}$. However, in general relativity the black hole's spin $\\mathbf{S}$ need not be parallel to $\\mathbf{v}$, breaking the axisymmetry of the system and generating a new component of dynamical friction similar to the Lorentz force $\\mathbf{F} = q\\mathbf{v} \\times \\mathbf{B}$ experienced by a particle with charge $q$ moving in a magnetic field $\\mathbf{B}$. We call this new force gravitomagnetic dynamical friction and calculate its magnitude for a spinning black hole moving through a field of stars with Maxwellian velocity dispersion $\\sigma$, assuming that both $v$ and $\\sigma$ are much less than the speed of light $c$. We use post-Newtonian equations of motion accurate to $...

  20. Static and kinetic friction characteristics of nanowire on different substrates

    Science.gov (United States)

    Kim, Hyun-Joon; Nguyen, Gia Hau; Ky, Dinh Le Cao; Tran, Da Khoa; Jeon, Ki-Joon; Chung, Koo-Hyun

    2016-08-01

    Friction characteristics of nanowires (NWs), which may be used as building blocks for nano-devices, are crucial, especially for cases where contact sliding occurs during the device operation. In this work, the static and kinetic friction characteristics of oxidized Si NWs deposited on thermally grown SiO2 and chemical vapor-deposited single layer graphene were investigated using an atomic force microscope (AFM). Kinetic friction between the oxidized Si NWs and the substrates was directly measured by the AFM. Static friction was also obtained from the most bent state of the NWs using the individually determined elastic moduli of the NWs from kinetic friction experiments based on elastic beam theory. Furthermore, the shear stress between the oxidized Si NWs and the substrates was estimated based on adhesive contact theory. It was found that both static and kinetic friction increased as the radius of the NWs increased. The friction of the oxidized Si NWs on the graphene substrate was found to be smaller than that on the SiO2 substrate, which suggests that chemical vapor-deposited graphene can be used as a lubricant or as a protective layer in nano-devices to reduce friction. The shear stress estimated from the kinetic friction data between the oxidized Si NWs and the SiO2 substrate ranged from 7.5 to 12.3 MPa while that between the oxidized Si NWs and the graphene substrate ranged from 4.7 to 7.0 MPa. The result also indicated that the dependence of shear stress on the radius of the NWs was not significant. These findings may provide insight into the friction characteristics of NWs.

  1. Temporomandibular joint forces measured at the condyle of Macaca arctoides.

    Science.gov (United States)

    Boyd, R L; Gibbs, C H; Mahan, P E; Richmond, A F; Laskin, J L

    1990-06-01

    Forces were measured at the articular surface of the temporomandibular joint (TMJ) condyle in two stump-tail monkeys (Macaca arctoides) during chewing, incisal biting, and drinking and also during aggressive behaviors. Force was measured with a thin piezoelectric foil transducer, which was cemented over the anterior and superior surfaces of the condyle. Wires from the upper and lower surfaces of the foil were insulated between two layers of Teflon tape and run subcutaneously to a telemetry unit, which was implanted in the upper back. Force applied across the foil by the condyle was detected by the telemetry unit and transmitted to an FM radio receiver outside the animal. The FM signals were received and demodulated, and a signal proportional to the force applied between the condyle and the TMJ fossa was displayed on a chart recorder. Data were collected over an 8-day period. The animals were not constrained. The TMJ was found to be load bearing. The greatest force of 39.0 lb (17.7 kg) was measured during feisty vocal aggression. Forces ranged as high as 34.5 lb (15.7 kg) during chewing and 28.5 lb (13.0 kg) during incisal biting. Forces were greater on the working (food) side than on the nonworking (balancing) side by average ratios of 1.4 to 2.6. A large unilateral interference at the most distal molar greatly disturbed chewing. It reduced TMJ forces by 50% or more, and the monkey refused to chew on the side opposite the interference.

  2. Frictional Characteristics of a Small Aerostatic Linear Bearing

    Directory of Open Access Journals (Sweden)

    Ryosuke Araki

    2015-04-01

    Full Text Available Frictional characteristics of a small aerostatic linear bearing are accurately evaluated by means of a method, in which the force acting on the moving part of the bearing is measured as the inertial force. An optical interferometer is newly developed to measure the Doppler shift frequency of the laser light reflected on the small moving part. From the measured time-varying Doppler shift frequency, the velocity, the position, the acceleration and the inertial force of the moving part are numerically calculated. It is confirmed that the dynamic frictional force acting inside the bearing is almost proportional to the velocity of the moving part and is similar to the theoretical value calculated under the assumption that the flow inside the bearing is the Couette flow.

  3. Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    CERN Document Server

    Kim, W J

    2010-01-01

    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between...

  4. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  5. Fibroblasts and myofibroblasts in wound healing: force generation and measurement.

    Science.gov (United States)

    Li, Bin; Wang, James H-C

    2011-11-01

    Fibroblasts are one of the most abundant cell types in connective tissues. These cells are responsible for tissue homeostasis under normal physiological conditions. When tissues are injured, fibroblasts become activated and differentiate into myofibroblasts, which generate large contractions and actively produce extracellular matrix (ECM) proteins to facilitate wound closure. Both fibroblasts and myofibroblasts play a critical role in wound healing by generating traction and contractile forces, respectively, to enhance wound contraction. This review focuses on the mechanisms of force generation in fibroblasts and myofibroblasts and techniques for measuring such cellular forces. Such a topic was chosen specifically because of the dual effects that fibroblasts/myofibroblasts have in wound healing process- a suitable amount of force generation and matrix deposition is beneficial for wound healing; excessive force and matrix production, however, result in tissue scarring and even malfunction of repaired tissues. Therefore, understanding how forces are generated in these cells and knowing exactly how much force they produce may guide the development of optimal protocols for more effective treatment of tissue wounds in clinical settings. Copyright © 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  6. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  7. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  8. Application of Sensing Techniques to Cellular Force Measurement

    Directory of Open Access Journals (Sweden)

    James H.-C. Wang

    2010-11-01

    Full Text Available Cell traction forces (CTFs are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research.

  9. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  10. The experimental rules of mica as a reference sample of AFM/FFM measurement

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For the friction measurements with AFM/FFM, usually the relativevalues of friction signal can be obtained. In order to compare the micro-tribological properties of different samples, mica is often used as an reference sample for friction measurement. However, due to the friction force of new cleaved mica surface is unstable, it is urged to systematically investigate the tribological properties of mica to design the experimental rules of the reference sample mica for friction measurements. Experimental results show that the friction of mica varies with the cleaving time, humidity and surface state of tip. The friction measured with different tips on mica varies in the range of ± 15%. For a new tip, the friction increases with the tip’s wear and then becomes stable. For new cleaved mica, the friction increases within the first two hours and then keeps unchanged. The friction of mica also decreases with the relative humidity because of its hydrophilicity.

  11. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    Science.gov (United States)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  12. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    Science.gov (United States)

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  13. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-01-01

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244

  14. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2016-08-01

    Full Text Available Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  15. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-08-11

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  16. Systematic review of ground reaction force measurements in cats.

    Science.gov (United States)

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat.

  17. Analytical series solution for the fully developed forced convection duct flow with frictional heating and variable viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Magyari, E. [ETH-Zuerich, Institute of Building Technology, Zuerich (Switzerland); Barletta, A. [Universita di Bologna, Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale (DIENCA), Bologna (Italy)

    2007-12-15

    Laminar forced convection flow of a liquid in the fully developed region of a circular duct with isothermal wall is analyzed. The effects of viscous dissipation as well as of temperature dependent viscosity are taken into account. The coupled momentum and energy equations are solved analytically by means of a power series method. Then, reference is made to the Poiseuille model for the temperature change of viscosity. For a fixed value of the axial pressure gradient along the duct, dual solutions are found for the velocity and temperature fields. Although dual solutions correspond to the same value of the axial pressure gradient, they lead in general to different values of the average fluid velocity, of the average fluid temperature and of the wall heat flux. It is shown that, for a given fluid and for a fixed duct radius, the absolute value of the axial pressure gradient has an upper bound above which no steady laminar solution can exist. (orig.)

  18. Comparison of static friction with self-ligating, modified slot design and conventional brackets

    Directory of Open Access Journals (Sweden)

    Raquel Morais Castro

    2013-07-01

    Full Text Available OBJECTIVE: To compare the static frictional forces generated at the bracket/wire interface of stainless steel brackets with different geometries and angulations, combined with orthodontic wires of different diameters. MATERIAL AND METHODS: The frictional forces were evaluated with three different types of metal brackets: a passive self-ligating (SmartClipTM, 3M/Unitek, Monrovia, USA, with a modified slot design (Mini Uni TwinTM, 3M/Unitek, Monrovia, USA and conventional (Kirium, Abzil, São José do Rio Preto, Brazil. The samples were mounted in a testing device with three different angulations and tested with 0.014" and 0.018" stainless steel wires (American Orthodontics, Sheboygan, USA. The static frictional force was measured using a universal testing machine (DL 500, EMIC®, São José dos Pinhais, Brazil with a crosshead speed of 1 mm/min. Statistical analysis was performed by two-way ANOVA followed by Bonferroni's post hoc test. RESULTS: There was a significant difference (p<0.05 in static friction when the three types of brackets were tested with the same wire size. The wire diameter influenced friction only when the brackets had a 10º angulation (p<0.05. The angulation influenced friction (p<0.05 when the brackets were associated with a 0.018" wire. CONCLUSION: Brackets with a modified slot design showed intermediate static frictional force values between the conventional and self-ligating brackets tested.

  19. Static and kinetic friction characteristics of nanowire on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joon [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju 37224 (Korea, Republic of); Nguyen, Gia Hau; Ky, Dinh Le Cao; Tran, Da Khoa [School of Mechanical Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Jeon, Ki-Joon [Department of Environmental Engineering, Inha University, Incheon 22212 (Korea, Republic of); Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr [School of Mechanical Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of)

    2016-08-30

    Highlights: • Direct measurement of kinetic friction of oxidized Si NW using AFM. • Determination of static friction of oxidized Si NW from most bent state. • Friction characteristics of oxidized Si NW on SiO{sub 2} and graphene. • Estimation of shear stress between cylindrical NW and flat substrate. • No significant dependence of shear stress on NW radius. - Abstract: Friction characteristics of nanowires (NWs), which may be used as building blocks for nano-devices, are crucial, especially for cases where contact sliding occurs during the device operation. In this work, the static and kinetic friction characteristics of oxidized Si NWs deposited on thermally grown SiO{sub 2} and chemical vapor-deposited single layer graphene were investigated using an atomic force microscope (AFM). Kinetic friction between the oxidized Si NWs and the substrates was directly measured by the AFM. Static friction was also obtained from the most bent state of the NWs using the individually determined elastic moduli of the NWs from kinetic friction experiments based on elastic beam theory. Furthermore, the shear stress between the oxidized Si NWs and the substrates was estimated based on adhesive contact theory. It was found that both static and kinetic friction increased as the radius of the NWs increased. The friction of the oxidized Si NWs on the graphene substrate was found to be smaller than that on the SiO{sub 2} substrate, which suggests that chemical vapor-deposited graphene can be used as a lubricant or as a protective layer in nano-devices to reduce friction. The shear stress estimated from the kinetic friction data between the oxidized Si NWs and the SiO{sub 2} substrate ranged from 7.5 to 12.3 MPa while that between the oxidized Si NWs and the graphene substrate ranged from 4.7 to 7.0 MPa. The result also indicated that the dependence of shear stress on the radius of the NWs was not significant. These findings may provide insight into the friction characteristics

  20. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  1. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  2. Force-Velocity Measurements of a Few Growing Actin Filaments

    Science.gov (United States)

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  3. Performance measures for combat-ready forces in the military

    CSIR Research Space (South Africa)

    Engelbrecht, GN

    2009-09-01

    Full Text Available The development of performance indicators in the military is dependent on the measurability of its associated strategies. Von Clausewitz (1976) argues that nations are either at war or preparing for war. It follows that military forces should have a...

  4. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We ...

  5. Lorentz force sigmometry: A contactless method for electrical conductivity measurements

    Science.gov (United States)

    Uhlig, Robert P.; Zec, Mladen; Ziolkowski, Marek; Brauer, Hartmut; Thess, André

    2012-05-01

    The present communication reports a new technique for the contactless measurement of the specific electrical conductivity of a solid body or an electrically conducting fluid. We term the technique "Lorentz force sigmometry" where the neologism "sigmometry" is derived from the Greek letter sigma, often used to denote the electrical conductivity. Lorentz force sigmometry (LoFoS) is based on similar principles as the traditional eddy current testing but allows a larger penetration depth and is less sensitive to variations in the distance between the sensor and the sample. We formulate the theory of LoFoS and compute the calibration function which is necessary for determining the unknown electrical conductivity from measurements of the Lorentz force. We conduct a series of experiments which demonstrate that the measured Lorentz forces are in excellent agreement with the numerical predictions. Applying this technique to an aluminum sample with a known electrical conductivity of σAl=20.4MS/m and to a copper sample with σCu=57.92MS/m we obtain σAl=21.59MS/m and σCu=60.08MS/m, respectively. This demonstrates that LoFoS is a convenient and accurate technique that may find application in process control and thermo-physical property measurements for solid and liquid conductors.

  6. Development of a reaxff reactive force field for silicon/oxygen/hydrogen/fluoride interactions and applications to hydroxylation and friction

    Science.gov (United States)

    Yeon, Jejoon

    Molecular dynamics (MD) simulations with the ReaxFF reactive force field were carried out to find the atomistic mechanisms for tribo-chemical reactions occurring at the sliding interface of fully-hydroxylated amorphous silica and oxidized silicon as a function of interfacial water amount. The ReaxFF-MD simulations showed a significant amount of mass transfer across the interface occurs during the sliding. In the absence of water molecules, the interfacial mixing was initiated by dehydroxylation followed by the Si-O-Si bond formation bridging two solid surfaces. In the presence of sub-monolayer thick water, the dissociation of water molecules can provide additional reaction pathways to form the Si-O-Si bridge bonds and mass transfers across the interface. However, when the amount of interfacial water molecules was large enough to form full monolayer, the degree of mass transfer was substantially reduced since the silicon atoms at the sliding interface were terminated with hydroxyl groups rather than forming interfacial Si-O-Si bridge bonds. The ReaxFF-MD simulations clearly showed the role of water molecules in atomic scale mechano-chemical processes during the sliding and provided physical insights into tribochemical wear processes of silicon oxide surfaces observed experimentally. In addition to this, we performed reactive force field molecular dynamics simulation to observe the hydrolysis reactions between water molecules and locally strained SiO2 geometries. We improved the Si/O/H force field from Fogarty et al.1, to more accurately describe the hydroxylation reaction barrier for strained and non-strained Si-O structures, which are about 20 kcal/mol and 30 kcal/mol, respectively. After optimization, energy barrier for the hydroxylation shows a good agreement with DFT data. The observation of silanol formation at the high-strain region of a silica nano-rod also supports the concept that the adsorption of water molecule: hydroxyl formation favors the geometry with

  7. Enclosed Electronic System for Force Measurements in Knee Implants

    Directory of Open Access Journals (Sweden)

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  8. Measurement of Large Forces and Deflections in Microstructures

    CERN Document Server

    Hals, Kai Axel; Chen, Xuyuan

    2008-01-01

    Properties of typical MEMS materials have been widely investigated. Mechanical properties of MEMS structures depend not only on the bulk material properties, but also structural factors. A measurement system has been made to measure force/deflection on microstructures to examine some of the structural properties. This is a stylus setup integrated with a load cell and a linear actuator. First, the requirements for the measurement system were established. Then the system was built up and characterized. We have successfully made measurements on a typical micromechanical structure, a cantilever accelerometer design. The stylus placement accuracy, the spring constant along the proof mass, analysis of the force/deflection curve shape and destructive tests on the cantilever have been investigated in our experiment and will be presented in this paper.

  9. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  10. Computational Methods for Nonlinear Dynamic Problems in Solid and Structural Mechanics: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces

    Science.gov (United States)

    1989-03-31

    Rabinowicz [60]) the frictional resistence depends on the strength of *I 13 I I I I I 1S S I IxnI I - 2 I1s" J I S 1II I I I Figure 2.3: Rate dependence...much smaller than before the initiation of sliding, which would explain3 ( Rabinowicz [60]) the occurrence of coefficients of kinetic friction smaller...velocity in the ranges 10-10 to 10-4 cr/s and 10-0 to 10-cm/s, re- spectively, were obtained by Burwell and Rabinowicz [19]. For the same metal combinations

  11. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  12. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  13. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  14. Static friction between silicon nanowires and elastomeric substrates.

    Science.gov (United States)

    Qin, Qingquan; Zhu, Yong

    2011-09-27

    This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications.

  15. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  16. An appraisal of techniques and equipment for cutting force measurement

    Institute of Scientific and Technical Information of China (English)

    AUDY J.

    2006-01-01

    Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality of machined surfaces,the geometry of cutting tool edges, and cutting conditions are closely related to the cutting forces. This information is of great interest to cutting tool manufactures and users alike. Over the years there have been significant developments and improvements in the equipment used to monitor such forces. In 1930 mechanical gauges were replaced by resistance strain gauges, and some 30 years later compact air gauge dynamometers were invented. Since this time intensive research has continued being directed towards developing new approaches to cutting force measurement. The Kistler Company, well-known manufacturer of acceleration and piezoelectrical dynamometers, has worked in this field for more than three decades, and developed very sensitive devices.While leading manufacturing research laboratories are often equipped with this technology, classical electrical strain gauges and other dynamometers of individual designs are still commonly used in industry. The present paper presents data obtained using different techniques of force measurement in metal machining processes. In particular, areas of uncertainties, illustrated through results concerning the turning process, are analysed, leading to an appraisal of the current status of these measurements and their significance.

  17. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  18. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: ryan.wagner@nist.gov; Killgore, Jason P. [Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  19. The Reality of Casimir Friction

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2016-04-01

    Full Text Available For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with observations, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here, we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  20. The Reality of Casimir Friction

    CERN Document Server

    Milton, K A; Brevik, I

    2015-01-01

    For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum fluctuations. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Because of the lack of contact with phenomena, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  1. Friction in rail guns

    Science.gov (United States)

    Kay, P. K.

    1984-01-01

    The influence of friction is included in the present equations describing the performance of an inductively driven rail gun. These equations, which have their basis in an empirical formulation, are applied to results from two different experiments. Only an approximate physical description of the problem is attempted, in view of the complexity of details in the interaction among forces of this magnitude over time periods of the order of milisecs.

  2. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  3. Linearization of friction effects in vibration of two rotating blades

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2013-06-01

    Full Text Available This paper is aimed at modelling of friction effects in blade shrouding which are realized by means of friction elements placed between blades. In order to develop a methodology of modelling, two blades with one friction element in between are considered only. Flexible blades fixed to a rotating disc are discretized by FEM using 1D Rayleigh beam elements derived in rotating space as well as the friction element modelled as a rigid body. The blades and the friction element are connected through two concurrent friction planes, where the friction forces arise on the basis of centrifugal force acting on the friction element. The linearization of friction is performed using the harmonic balance method to determine equivalent damping coefficients in dependence on the amplitudes of relative slip motion between the blades and the friction element. The methodology is applied to a model of two real blades and will be extended for the whole bladed disc with shrouding.

  4. MEMS-based contact stress field measurements at a rough elastomeric layer: local test of Amontons’ friction law in static and steady sliding regimes

    Directory of Open Access Journals (Sweden)

    Debrégeas G.

    2010-06-01

    Full Text Available We present the results of recent friction experiments in which a MEMS-based sensing device is used to measure both the normal and tangential stress fields at the base of a rough elastomer film in frictional contact with smooth, rigid, glass indentors. We consider successively multicontacts under (i static normal loading by a spherical indentor and (ii frictional steady sliding conditions against a cylindrical indentor, for an increasing normal load. In both cases, the measured fields are compared to elastic calculations assuming (i a smooth interface and (ii Amontons’ friction law. In the static case, significant deviations are observed which decrease with increasing load and which vanish when a lubricant is used. In the steady sliding case, Amontons’ law reproduces rather satisfactorily the experiments provided that the normal/tangential coupling at the contact interface is taken into account. We discuss the origin of the difference between the Amontons fields and the measured ones, in particular the effect of the finite normal and tangential compliances of the multicontact interface.

  5. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  6. FRICTION ANALYSIS OF KINETIC SCHEMES - THE FRICTION COEFFICIENT

    NARCIS (Netherlands)

    LOLKEMA, JS

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  7. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  8. Patterned hydrogels for simplified measurement of cell traction forces.

    Science.gov (United States)

    Polio, Samuel R; Smith, Michael L

    2014-01-01

    To understand mechanobiology, a quantitative understanding of how cells interact mechanically with their environment is needed. Cell mechanics is important to study as they play a role in cell behaviors ranging from cell signaling to epithelial to mesenchymal transition in physiological processes such as development and cancer. To study changes in cell contractile behavior, numerous quantitative measurement techniques have been developed based on the measurement of deformations of a substrate from an initial state. Herein, we present details on a technique we have developed for the measurements of 2D cellular traction forces with the goal of facilitating adaptation of this technique by other investigators. This technique is flexible in that it utilizes well-studied methods for microcontact printing and fabrication of polyacrylamide hydrogels to generate regular arrays of patterns that can be transferred onto the hydrogels. From the deformation of the arrays, an automated algorithm can be used to quantitatively determine the traction forces exerted by the cells onto the adhesion points. The simplicity and flexibility of this technique make it a useful contribution to our toolbox for measurement of cell traction forces. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Directory of Open Access Journals (Sweden)

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  10. Nonlinear friction characteristics between silica surfaces in high pH solution.

    Science.gov (United States)

    Taran, Elena; Kanda, Yoichi; Vakarelski, Ivan U; Higashitani, Ko

    2007-03-15

    Molecular-scale characteristics of friction forces between silica particles and silica wafers in aqueous solutions of the normal (pH 5.6) and high pH (pH 10.6) are investigated, using the lateral force measuring procedure of the atomic force microscope (AFM). Various significant differences of friction characteristics between solutions of normal and high pH's are found. In the case of solutions of normal pH, the friction force increases linearly with increasing loading force, as the Amonton's law for solid bodies indicates. However, in the case of high pH solutions, the increasing rate with the loading force is considerably reduced in the low loading region, but the value increases abruptly above a critical loading force to overcome the magnitude of friction force of normal pH above the region of very high loading. It is very interesting to know that this nonlinear force curve at high pH is independent of the atomic-scale roughness of surfaces, although the magnitude of friction is greatly influenced by the roughness in the case of normal pH. The reason why the friction at high pH is independent of the surface roughness is postulated to be due to the hairy-like layer formed on the silica surface. The existence of hairy-like layers at high pH is proven directly by the dynamic method of normal force measurements with AFM and the thickness is estimated to be at least ca. 1.3 nm.

  11. Evaluation of the sensing block method for dynamic force measurement

    Science.gov (United States)

    Zhang, Qinghui; Chen, Hao; Li, Wenzhao; Song, Li

    2017-01-01

    Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.

  12. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  13. Direct force measurement of single DNA-peptide interactions using atomic force microscopy.

    Science.gov (United States)

    Chung, Ji W; Shin, Dongjin; Kwak, June M; Seog, Joonil

    2013-06-01

    The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single-molecule level by using atomic force microscopy. This peptide (p007) contains an α-helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin-antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence-specific DNA-peptide interaction has a potential to be utilized to prepare well-defined mechanically stable DNA-protein hybrid nanostructures.

  14. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence

    Science.gov (United States)

    Esteban, Luis Blay; Dogan, Eda; Rodríguez-López, Eduardo; Ganapathisubramani, Bharathram

    2017-09-01

    This experimental investigation deals with the influence of free-stream turbulence (FST) produced by an active grid on the skin friction of a zero-pressure-gradient turbulent boundary layer. Wall shear stress is obtained by oil-film interferometry. In addition, hot-wire anemometry was performed to obtain wall-normal profiles of streamwise velocity. This enables the skin friction to be deduced from the mean profile. Both methods show remarkable agreement for every test case. Although skin friction is shown to increase with FST, the trend with Reynolds number is found to be similar to cases without FST. Furthermore, once the change in the friction velocity is accounted for, the self-similarity of the logarithmic region and below (i.e. law of the wall) appears to hold for all FST cases investigated.

  15. Measurement of trocar insertion force using a piezoelectric transducer.

    Science.gov (United States)

    Ng, Pui Shan; Sahota, Daljit Singh; Yuen, Pong Mo

    2003-11-01

    We attempted to establish a model to measure the force required for trocar insertion at laparoscopy. A 3-cm, circular transducer was constructed from piezoresistive material that changes its impedance as force is exerted on its surface. The transducer is connected by an interface box to a personal computer to record surface contact pressure digitally (pressure = force/area) profile continuously during trocar insertion. Each subject had three trocars inserted: a 10-mm trocar at the umbilicus after creation of pneumoperitoneum, and 5-mm trocars at corresponding sites on the left and right sides of the lower abdomen. All insertions were performed by the same operator using reusable trocar with a conical tip. Each subject acted as her own control. Recordings were successfully obtained from eight women. There was no instance of transducer failure. The mean (SE) peak contact surface pressure for the 10-mm and 5-mm left and right trocars were 5.3 (0.32), 6.4 (0.51), and 6.81 (0.27) pounds/square inch, respectively. Placement of the 10-mm trocar required less insertion force than placement of the 5-mm trocars. There was a strong negative correlation (r = -0.97, p trocar.

  16. Onset of frictional sliding of rubber-glass contact under dry and lubricated conditions

    Science.gov (United States)

    Tuononen, Ari J.

    2016-06-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements.

  17. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer......Production of components close to the final shape increases the demand for correct dimensions of tools. In processes where the internal pressure is low, the dimensions of the component reflect the dimensions of the die-cavity in the tool, but in processes where the internal pressure is high, die...... to measure normal pressure has been available....

  18. Road Friction Estimation under Complicated Maneuver Conditions for Active Yaw Control

    Institute of Scientific and Technical Information of China (English)

    LI Liang; LI Hongzhi; SONG Jian; YANG Cai; WU Hao

    2009-01-01

    Road friction coefficient is a key factor for the stability control of the vehicle dynamics in the critical conditions. Obviously the vehicle dynamics stability control systems, including the anti-lock brake system(ABS), the traction control system(TCS), and the active yaw control(AYC) system, need the accurate tire and road friction information. However, the simplified method based on the linear tire and vehicle model could not obtain the accurate road friction coefficient for the complicated maneuver of the vehicle. Because the active braking control mode of AYC is different from that of ABS, the road friction coefficient cannot be estimated only with the dynamics states of the tire. With the related dynamics states measured by the sensors of AYC, a comprehensive strategy of the road friction estimation for the active yaw control is brought forward with the sensor fusion technique. Firstly, the variations of the dynamics characteristics of vehicle and tire, and the stability control mode in the steering process are considered, and then the proper road friction estimation methods are brought forward according to the vehicle maneuver process. In the steering maneuver without braking, the comprehensive road friction from the four wheels may be estimated based on the multi-sensor signal fusion method. The estimated values of the road friction reflect the road friction characteristic. When the active brake involved, the road friction coefficient of the braked wheel may be estimated based on the brake pressure and tire forces, the estimated values reflect the road friction between the braked wheel and the road. So the optimal control of the wheel slip rate may be obtained according to the road friction coefficient. The methods proposed in the paper are integrated into the real time controller of AYC, which is matched onto the test vehicle. The ground tests validate the accuracy of the proposed method under the complicated maneuver conditions.

  19. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  20. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  1. Friction properties of amorphous carbon ultrathin films deposited by filtered cathodic vacuum arc and radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, J.; Komvopoulos, K., E-mail: kyriakos@me.berkeley.edu

    2015-03-31

    The friction properties of ultrathin films of amorphous carbon (a-C) deposited on Si(100) substrates by filtered cathodic vacuum arc and radio-frequency sputtering were investigated by surface force microscopy. Deposition parameters yielding a-C films with high sp{sup 3} content were used to deposit films of thickness between 5 and 35 nm. The coefficient of friction of both types of a-C films was measured with a 1-μm-radius conical diamond tip and normal loads in the range of 20–640 μN. The results show a strong dependence of the friction properties on the surface roughness, thickness, and structure of the a-C films, which are influenced by the intricacies of the deposition method. The dependence of the coefficient of friction on normal load and the dominance of adhesion and plowing friction mechanisms are interpreted in terms of the through-thickness variation of carbon atom hybridization of the a-C films. - Highlights: • Comparison of nanoscale friction properties of ultrathin amorphous carbon films. • Friction dependence on film roughness, thickness, and structure (hybridization). • Effect of through-thickness changes in carbon atom hybridization on film friction. • Explanation of film friction trends in terms of competing friction mechanisms.

  2. DIRECT MEASUREMENT OF WEAK DEPLETION FORCE BETWEEN TWO SURFACES*

    Institute of Scientific and Technical Information of China (English)

    Xiang-jun Gong; Xiao-chen Xing; Xiao-ling Wei; To Ngai

    2011-01-01

    In a mixture of colloidal particles and polymer molecules, the particles may experience an attractive “depletion force” if the size of the polymer molecule is larger than the interparticle separation. This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space,which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction. This depletion force has been the subject of several studies since the 1980s, but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of kBT and beyond. We present here our results for applying total internal reflection microscopy (TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants. Our results indicate that stable nanobubbles (ca. 150 nm) exist free in the above aqueous solutions. More importantly, the existence of such nanobubbles induces an attraction between the spherical particle and flat surface. Using TIRM, we are able to directly measure such weak interaction with a range up to 100 nm. Furthermore, we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent, we are able to quantitatively measure and reversibly control kBT-scale depletion attraction as function of solution pH.

  3. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    Science.gov (United States)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  4. An engineering approach to dry friction behaviour of numerous engineering plastics with respect to the mechanical properties

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2013-02-01

    Full Text Available Twenty-one different commercial-grade engineering polymers, including virgin and composite types, were selected for testing, based on mechanical engineering practices. Three groups were formed according to typical applications: 1 Sliding machine element materials; 2 Mechanically load-carrying machine element materials that are often subjected to friction and wear effects; and 3 Additional two amorphous materials used as chemically resistant materials that have rare sliding load properties. The friction running-in state was tested using a dynamic pin-on-plate test rig. During steady-state friction tests, two pv regimes (0.8 and 2 MPa"ms–1 were analysed by a pin-on-disc test system. Based on the measured forces on ground structural steel, surface friction coefficients were calculated and analysed with respect to the mechanical effects of friction. The friction results were evaluated by the measured mechanical properties: yield stress, Shore D hardness, Young’s modulus and elongation at the break. The three material groups exhibited different trends in friction with respect to changing mechanical properties. Linear (with varying positive and negative slopes, logarithmic and exponential relationships were observed, and occasionally there were no effects observed. At steady-state friction, the elongation at the break had less effect on the friction coefficients. The dynamic sliding model, which correlates better to real machine element applications, showed that increasing hardness and yield stress decreases friction. During steady-state friction, an increase in pv regime often changed the sign of the linear relationship between the material property and the friction, which agrees with the frictional theory of polymer/steel sliding pairs.

  5. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    Science.gov (United States)

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants.

  6. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao; Ding, Guoliang; Jiang, Weiting; Hu, Haitao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, 381 Huaihaizhong Road, Shanghai 200020 (China)

    2009-11-15

    The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m{sup -2} s{sup -1}, heat fluxes from 3.08 to 6.16 kW m{sup -2}, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of {+-}15%. (author)

  7. Measurement error in grip and pinch force measurements in patients with hand injuries.

    Science.gov (United States)

    Schreuders, Ton A R; Roebroeck, Marij E; Goumans, Janine; van Nieuwenhuijzen, Johan F; Stijnen, Theo H; Stam, Henk J

    2003-09-01

    There is limited documentation of measurement error of grip and pinch force evaluation methods. The purposes of this study were (1) to determine indexes of measurement error for intraexaminer and interexaminer measurements of grip and pinch force in patients with hand injuries and (2) to investigate whether the measurement error differs between measurements of the injured and noninjured hands and between experienced and inexperienced examiners. The subjects were a consecutive sample of 33 patients with hand injuries who were seen in the Department of Rehabilitation Medicine of Erasmus MC-University Medical Center Rotterdam in the Netherlands. Repeated measurements were taken of grip and pinch force, with a short break of 2 to 3 minutes between sessions. For the grip force in 2 handle positions (distance between handles of 4.6 and 7.2 cm, respectively), tip pinch (with the index finger on top and the thumb below, with the other fingers flexed) and key pinch force (with the thumb on top and the radial side of the index finger below) data were obtained on both hands of the subjects by an experienced examiner and an inexperienced examiner. Intraclass correlation coefficients (ICCs), standard errors of measurement (SEMs), and associated smallest detectable differences (SDDs) were calculated and compared with data from previous studies. The reliability of the measurements was expressed by ICCs between .82 and .97. For grip force measurements (in the second handle position) by the experienced examiner, an SDD of 61 N was found. For tip pinch and key pinch, these values were 12 N and 11 N, respectively. For measurements by the inexperienced examiner, SDDs of 56 N for grip force and 13 N and 18 N for tip pinch and key pinch were found. Based on the SEMs and SDDs, in individual patients only relatively large differences in grip and pinch force measurements can be adequately detected between consecutive measurements. Measurement error did not differ between injured and

  8. EMC3-eIRENE simulation of impurity transport in comparison with EUV emission measurements in the stochastic layer of LHD: effects of force balance and transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S. [National Institute for Fusion Science, Toki (Japan); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Kobayashi, M.; Morita, S.; Oishi, T.; Suzuki, Y. [National Institute for Fusion Science, Toki (Japan); Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Kawamura, G. [National Institute for Fusion Science, Toki (Japan); Zhang, H.M.; Huang, X.L. [Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Feng, Y. [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Wang, D.Z. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Collaboration: The LHD experiment group

    2016-08-15

    The transport properties and line emissions of the intrinsic carbon in the stochastic layer of the Large Helical Device have been investigated with the three-dimensional edge transport code EMC3-EIRENE. The simulations of impurity transport and emissivity have been performed to study the dedicated experiment in which the carbon emission distributions are measured by a space-resolved EUV spectrometer system. A discrepancy of the CIV impurity emission between the measurement and simulation is obtained, which is studied with the variation of the ion thermal force, friction force and the perpendicular diffusivity in the impurity transport model. An enhanced ion thermal force or a reduced friction force in the modelling can increase the CIV impurity emission at the inboard X-point region. Furthermore, the impact of the perpendicular diffusivity Dimp is studied which shows that the CIV impurity emission pattern is very sensitive to Dimp. It is found that the simulation results with the increased Dimp tend to be closer to the experimental observation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.

    Science.gov (United States)

    Buchmann, L F; Schreppler, S; Kohler, J; Spethmann, N; Stamper-Kurn, D M

    2016-07-15

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  10. Contractile force measured in unskinned isolated adult rat heart fibres.

    Science.gov (United States)

    Brady, A J; Tan, S T; Ricchiuti, N V

    1979-12-13

    A number of investigators have succeeded in preparing isolated cardiac cells by enzymatic digestion which tolerate external [Ca2+] in the millimolar range. However, a persistent problem with these preparations is that, unlike in situ adult ventricular fibres, the isolated fibres usually beat spontaneously. This spontaneity suggests persistent ionic leakage not present in situ. A preferable preparation for mechanical and electrical studies would be one which is quiescent but excitable in response to electrical stimulation and which does not undergo contracture with repeated stimulation. We report here a modified method of cardiac fibre isolation and perfusion which leaves the fibre membrane electrically excitable and moderately resistant to mechanical stress so that the attachment of suction micropipettes to the fibre is possible for force measurement and length control. Force generation in single isolated adult rat heart fibres is consistent with in situ contractile force. The negative staircase effect (treppe) characteristic of adult not heart tissue is present with increased frequency of stimulation. Isometric developed tension increases with fibre length as in in situ ventricular tissue.

  11. Measurement of Metal Cutting Forces at High Speeds

    Science.gov (United States)

    Princehouse, David W.

    1996-03-01

    Proposed numerically-controlled milling machines will cut aluminum alloys with cutter tip speeds of up to 130 m/s (300 MPH). There are a variety of challenging technical problems to be solved--high power density motors, inverters, cutter/machine dynamics, servo control systems--and compelling reasons to do so. We measured time-varying cutting forces at these tip speeds with a 25.4-cm (10-in) diameter cutter turning at rates up to 167 Hz (10,000 RPM.) We took special care to measure and compensate for the dynamic response of the force transducer (a three-axis quartz-crystal milling dynamometer), extending the useful bandwidth of the measurements well into the mechanical resonances of the dynamometer. We instrumented a production milling machine on the factory floor and processed megabytes of data, obtaining results minutes after a cut was made. This case study shows how a physicist's background in mechanics, instrumentation, signal processing, and computing hardware and software can help advance the state of the art in aerospace manufacturing.

  12. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  13. Practical aspects of using Hertzian ring crack initiation to measure surface flaw densities in glasses: influence of humidity, friction and searched areas

    Science.gov (United States)

    Tandon, Rajan; Paliwal, Bhasker; Gibson, Cory

    2013-07-01

    Ring crack initiation loads on glass, using spherical Tungsten carbide (WC) and glass (G) indenters, are measured and analysed. Our measurements demonstrate that environmental humidity plays a key role in determining the load to fracture; experiments conducted without controlling this variable cannot be used to obtain material properties. The role of friction is explicitly considered for dissimilar (WC-G) elastic contacts. For this material pair, the stresses at fracture are well described by a boundary lubrication value of friction coefficient. The fracture loads are used in a fracture-mechanics formulation to calculate crack sizes on glass surfaces. The 'searched-area' concept for dissimilar contacts is described, and used to provide crack density values for these surfaces.

  14. Absolute rotation detection by Coriolis force measurement using optomechanics

    Science.gov (United States)

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  15. Measuring shear force transmission across a biomimetic glycocalyx

    Science.gov (United States)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  16. Concerted dihedral rotations give rise to internal friction in unfolded proteins.

    Science.gov (United States)

    Echeverria, Ignacia; Makarov, Dmitrii E; Papoian, Garegin A

    2014-06-18

    Protein chains undergo conformational diffusion during folding and dynamics, experiencing both thermal kicks and viscous drag. Recent experiments have shown that the corresponding friction can be separated into wet friction, which is determined by the solvent viscosity, and dry friction, where frictional effects arise due to the interactions within the protein chain. Despite important advances, the molecular origins underlying dry friction in proteins have remained unclear. To address this problem, we studied the dynamics of the unfolded cold-shock protein at different solvent viscosities and denaturant concentrations. Using extensive all-atom molecular dynamics simulations we estimated the internal friction time scales and found them to agree well with the corresponding experimental measurements (Soranno et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17800-17806). Analysis of the reconfiguration dynamics of the unfolded chain further revealed that hops in the dihedral space provide the dominant mechanism of internal friction. Furthermore, the increased number of concerted dihedral moves at physiological conditions suggest that, in such conditions, the concerted motions result in higher frictional forces. These findings have important implications for understanding the folding kinetics of proteins as well as the dynamics of intrinsically disordered proteins.

  17. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    Science.gov (United States)

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-09-02

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  18. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    Science.gov (United States)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  19. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Anushree Roy; U Mohideen

    2001-02-01

    Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.

  20. Steady and transient sliding under rate-and-state friction

    Science.gov (United States)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block

  1. Anomalous low friction coefficient in shear thickening suspensions

    Science.gov (United States)

    Clavaud, Cecile; Berut, Antoine; Metzger, Bloen; Forterre, Yoel; GEP Team

    2016-11-01

    We study the frictional behavior of classical and shear thickening suspensions under low confining pressure, by measuring the pile slope-angle in rotating drum flow experiments. We show that, at low rotation rates, the pile angle of the shear thickening suspension is about 8 .5° , which is much lower than pile angles observed with classical suspensions in the same conditions ( 25°). We then study the frictional behavior of silica powders in water, and show that we can switch from low to high pile angle by changing the salinity of the suspension. These results support a recent scenario for the shear-thickening transition in such non-Brownian systems, where inter particle repulsive forces suppress friction at low confining pressure. ERC PlantMove.

  2. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy.

    Science.gov (United States)

    Puech, Pierre-Henri; Taubenberger, Anna; Ulrich, Florian; Krieg, Michael; Muller, Daniel J; Heisenberg, Carl-Philipp

    2005-09-15

    During vertebrate gastrulation, progenitor cells of different germ layers acquire specific adhesive properties that contribute to germ layer formation and separation. Wnt signals have been suggested to function in this process by modulating the different levels of adhesion between the germ layers, however, direct evidence for this is still lacking. Here we show that Wnt11, a key signal regulating gastrulation movements, is needed for the adhesion of zebrafish mesendodermal progenitor cells to fibronectin, an abundant extracellular matrix component during gastrulation. To measure this effect, we developed an assay to quantify the adhesion of single zebrafish primary mesendodermal progenitors using atomic-force microscopy (AFM). We observed significant differences in detachment force and work between cultured mesendodermal progenitors from wild-type embryos and from slb/wnt11 mutant embryos, which carry a loss-of-function mutation in the wnt11 gene, when tested on fibronectin-coated substrates. These differences were probably due to reduced adhesion to the fibronectin substrate as neither the overall cell morphology nor the cell elasticity grossly differed between wild-type and mutant cells. Furthermore, in the presence of inhibitors of fibronectin-integrin binding, such as RGD peptides, the adhesion force and work were strongly decreased, indicating that integrins are involved in the binding of mesendodermal progenitors in our assay. These findings demonstrate that AFM can be used to quantitatively determine the substrate-adhesion of cultured primary gastrulating cells and provide insight into the role of Wnt11 signalling in modulating cell adhesion at the single cell scale.

  3. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  4. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  5. Measurement of cricoid pressure force during simulated Sellick's manoeuvre.

    Science.gov (United States)

    Andruszkiewicz, Paweł; Zawadka, Mateusz; Kosińska, Anna; Walczak-Wieteska, Paulina; Majerowicz, Kalina

    2017-09-27

    Cricoid pressure is a standard anaesthetic procedure used to reduce the risk of aspiration of gastric contents during the induction of general anaesthesia. However, for several years its validity has been questioned. There still remains the question of whether we perform it correctly. The aim of the study was an evaluation of the theoretical knowledge of Sellick's manoeuvre, as well an assessment of practical skill related with it when simulated on a model of the upper airway. The study was performed on a cohort of anaesthetists and anaesthetic nurses working in various hospitals in the Warsaw area. Measurements were taken on an upper airway model placed on an electronic kitchen scale. Participants were asked to perform Sellick's manoeuvre in the way they do it in their clinical practice. The test was done twice. Both the position and pressures applied on the model were documented. Knowledge concerning current recommendations of cricoid force was noted. 206 subjects participated in the study. Only 49% (n = 101) properly identified cricoid cartilage during their application of Sellick's manoeuvre. Application of the correct pressure on the model of the airway was noted in 16.5% (n = 34) during the first attempt and in 20.4% (n = 42) during the second attempt. The median force applied during simulated Sellick's manoeuvrewas 36 N (IQR: 26-55) in the first attempt, and 38 (IQR 25-55) in the second attempt. Sellick's manoeuvre was performed incorrectly in many cases. Half of the participants of our study applied the pressure in the wrong place while the majority of them used an inappropriate amount of force. Thus, the application of cricoid pressure in patients should be preceded with simulation training.

  6. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  7. Novel Method of Measuring Cantilever Deflection during an AFM Force Measurement

    Science.gov (United States)

    Hlady, V.; Pierce, M.; Pungor, A.

    2012-01-01

    A combination of a reflection interference contrast microscope (RICM) and the atomic force microscope (AFM) was used to monitor the cantilever–surface separation distance during force measurements using the streptavidin–biotin recognition pairs. The RICM showed that the cantilever loses contact with the surface before the final rupture of the adhesive bonds is measured by the AFM detection system. This finding suggests that the immobilization of biotin by physisorbed albumin and subsequent binding of streptavidin might have created a cross-linked protein network whose cohesion is tested by the AFM cantilever with the immobilized biotin ligands. PMID:25132721

  8. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  9. Control of fracture reduction robot using force/torque measurement.

    Science.gov (United States)

    Douke, T; Nakajima, Y; Mori, Y; Onogi, S; Sugita, N; Mitsuishi, M; Bessho, M; Ohhashi, S; Tobita, K; Ohnishi, I; Sakuma, I; Dohi, T; Maeda, Y; Koyama, T; Sugano, N; Yonenobu, K; Matsumoto, Y; Nakamura, K

    2008-01-01

    We have developed a surgical robotic system for femoral fracture reduction employing indirect traction. Indirect traction in fracture reduction is a generally used surgical method for preventing complications such as bone splits caused by high stress on bones. For traction, a patient's foot is gripped by a jig and pulled to the distal side. Indirect traction has the advantage of distributing bone stress by utilizing a strong traction force; however, this procedure does not accurately control the proper positioning of fractured fragments when a surgical robot is used. The human leg has knee and an ankle joints, and thus robotic motion presents problems in not being able to directly propagate reduction motion to a fractured femoral fragment, rendering control of bone position difficult. We propose a control method for fracture reduction robots using external force/torque measurements of the human leg to achieve precise fracture reduction. Results showed that the proposed method reduced repositioning error from 6.8 mm and 15.9 degrees to 0.7 mm and 5.3 degrees, respectively.

  10. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms.

    Science.gov (United States)

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-06-05

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs' hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  11. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  12. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    Science.gov (United States)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  13. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  14. Torque Control of Friction Stir Welding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  15. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  16. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    Science.gov (United States)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  17. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  18. Influence of scanning force microscope loading force on measurement of ion—track diameter

    Institute of Scientific and Technical Information of China (English)

    WangYu-Gang; AckermannJ; 等

    1997-01-01

    Scanning force microscope(SFM) was operated in the lateral-force mode with different loading forces.The mica samples were irradiated by Se ions with a kinetic energy of 11.4MeV/u.The"full-height width" and the "half-height width" of track profiles were used to evaluate the ion-track diameter,For the former method,the average track diameter increases slowly with increasing loading force between SFM tip and sample.For the later method,the average diameters of ion track nearly keep a common value as the SFM loading force increases.

  19. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  20. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  1. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    Science.gov (United States)

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-01

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  2. Forces from highly focused laser beams: modeling, measurement and application to refractive index measurements

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H

    2007-01-01

    The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz-Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle - in this case, the refractive index - to be determined.

  3. Heat-Transfer and Friction Measurements with Variable Properties for Airflow Normal to Finned and Unfinned Tube Banks

    Science.gov (United States)

    Ragsdale, Robert G.

    1958-01-01

    A single-line correlation of both the heat-transfer and pressure- drop data for electrically heated unfinned tubes is obtained by evaluating the density in the Reynolds number, specific heat, thermal conductivity, and viscosity at the film temperature, and the density in the friction coefficient at the bulk temperature. The heat-transfer data for finned tubes also exhibit an effect of physical-property variation which is removed by evaluating all properties, including density, at the primary surface temperature, and using k* = 0.015 square root of T/530 for the thermal conductivity of air where T is the absolute temperature. The pressure drop for finned tubes is correlated by the use of bulk density in both the Reynolds number and friction coefficient. The data reported are for Reynolds numbers from 2000 to 35,000, surface temperatures from 600 to 1400 R, and an air inlet temperature of 530 R.

  4. A Damping Characteristics Calculation Method of Metal Dry Friction Isolators

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong-yuan; HAO De-gang; XIA Yu-hong; ULANOV A M; PONOMAREV Yu K

    2008-01-01

    The dry friction ring-type vibration isolator is considered as an isotropic continuous medium. A method of dry friction hysteresis loop calculation is proposed based on friction force analysis of contact beam. The friction force is modeled as an equivalent distributed moment to use the finite element method (FEM) to calculate the dry friction vibration isolator hysteresis loop, so the damping characteristics can be obtained. A comparison of the hysteresis loop calculation results and the experimental results shows the average relative error is 2.7%, it proves the calculation method is feasible.

  5. Rubber friction: comparison of theory with experiment.

    Science.gov (United States)

    Lorenz, B; Persson, B N J; Dieluweit, S; Tada, T

    2011-12-01

    We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from -10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σ(f) in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σ(f) to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.

  6. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    Full Text Available Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is necessary for any development of new systems to study enough on the properties and behavior of agricultural products. Some characteristics for separation are size (length, width and thickness, hardness, shape, density, surface roughness, color, speed limit, aerodynamic properties, electrical conductivity, elasticity and coefficient of static friction point. So far, the friction properties of agricultural products used in the separating process, but the effect of electrostatic charging on static and dynamic coefficients of friction for separation had little attention. The aim of this study was to find out the interactions between electrostatic and friction properties to find a way to separate products that separation is not possible with conventional methods or not sufficiently accurate. In this paper, the separation of close and smiley pistachios by electrostatic charging was investigated. Materials and Methods: Kallehghoochi pistachio cultivar has the top rank in production in Iran. Therefore, it was used as a sample. The experimental design that used in this study, had moisture content at three levels (24.2, 14.5 and 8.1 percent, electric field intensity at three levels (zero, 4000 and 7000 V, speed of movement on the surface at three levels (1300, 2500 and 3300 mm per minute, friction surface (galvanized sheet iron, aluminum and flat rubber and pistachio type at two levels (filled splits and closed that was measured and analyzed in completely randomized factorial design. A friction measuring device (built in Ferdowsi University of Mashhad used to measure the friction force. It has a removable table that can move in two directions with adjustable speed. The test sample put into the vessel with internal dimensions of 300 × 150

  7. Innovative measurement of ultra-low friction : analysis of dynamic free responses characterized by damped oscillatory motion

    OpenAIRE

    Majdoub, Fida

    2013-01-01

    Controlling friction is a one of the most significant challenges in the field of tribology. Its major purpose is directed towards the reduction of energy in real mechanical systems, especially in the area of transportation. In response to this necessity, the automobile industries are emphasizing on minimizing the consumption of energy by selecting the appropriate lubricants and materials on one hand and mechanical system with high performance on the other hand. DLC (Diamond-like carbon) coate...

  8. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  9. Empirical analysis of skin friction under variations of temperature; Variacion de la resistencia al corte con temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-07-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  10. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    Science.gov (United States)

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-01

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently industrial design applications where measurements of finger and hand force are needed.

  11. Assessment of semi-active friction dampers

    Science.gov (United States)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  12. Tire/runway friction interface

    Science.gov (United States)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  13. FORCE OPTIMIZATION OF GRASPING BY ROBOTIC HANDS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It is important for robotic hands to obtain optimal grasping performance in the meanwhile balancing external forces and maintaining grasp stability.The problem of force optimization of grasping is solved in the space of joint torques.A measure of grasping performance is presented to protect joint actuators from working in heavy payloads.The joint torques are calculated for the optimal performance under the frictional constraints and the physical limits of motor outputs.By formulating the grasping forces into the explicit function of joint torques, the frictional constraints imposed on the grasping forces are transformed into the constraints on joint torques.Without further simplification, the nonlinear frictional constraints can be simply handled in the process of optimization.Two numerical examples demonstrate the simplicity and effectiveness of the approach.

  14. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  15. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    Science.gov (United States)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  16. Analog-Computer Investigation of Effects of Friction and Preload on the Dynamic Longitudinal Characteristics of a Pilot-Airplane Combination

    Science.gov (United States)

    Crane, Harold L.

    1961-01-01

    With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of these four friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the air-plane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 deg. out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.

  17. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  18. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  19. Measuring stall forces in vivo with optical tweezers through light momentum changes

    Science.gov (United States)

    Mas, J.; Farré, A.; López-Quesada, C.; Fernández, X.; Martín-Badosa, E.; Montes-Usategui, M.

    2011-10-01

    The stall forces of processive molecular motors have been widely studied previously in vitro. Even so, in vivo experiments are required for determining the actual performance of each molecular motor in its natural environment. We report the direct measurement of light momentum changes in single beam optical tweezers as a suitable technique for measuring forces inside living cells, where few alternatives exist. The simplicity of this method, which does not require force calibration for each trapped object, makes it convenient for measuring the forces involved in fast dynamic biological processes such us intracellular traffic. Here we present some measurements of the stall force of processive molecular motors inside living Allium cepa cells.

  20. Adhesion forces due to nano-triboelectrification between similar materials

    CERN Document Server

    Guerret-Piecourt, Christelle; Ségault, Frédéric; Juvé, Denyse; Tréheux, Daniel; Tonck, André

    2004-01-01

    Contact electrification and triboelectrification are well-known in the case of dissimilar materials, however the case of charge exchange during friction between nominally identical insulating materials is less documented. We experimentally investigated the triboelectrification between two smooth monocrystalline α-Al 2O 3 (sapphire) antagonists by surface force measurements with a Surface Force Apparatus (SFA). The force between a sphere and a plane, both in sapphire, was measured as a function of the sphere-plane distance D, before and after nano-friction tests, under dry argon atmosphere. Respective contributions of van der Waals, water meniscus and electrostatic forces were determined. The estimated Hamaker constant was in good agreement with the Lifshitz theory, and the dominant meniscus attraction at low separation could be overcome with small radius sphere. We demonstrated that electrostatic forces were generated by the nano-friction test and we quantified the adhesion that results from this con...

  1. Comparative Frictional Analysis of Automobile Drum and Disc Brakes

    Directory of Open Access Journals (Sweden)

    H.P. Khairnar

    2016-03-01

    Full Text Available In the present work, a comparative frictional behaviour of drum brakes and disc brakes in automobiles has been investigated. The influential factors; contact force and friction radius were modeled for the estimation of the friction coefficient for drum as well as disc brakes. The effect of contact force and friction radius is studied with varying conditions of parameters; longitudinal force, caliper force and torque on piston side as well as non-piston side. The numerical results obtained have been compared with the similar obtained from virtual Matlab/Simulink models for drum and disc brakes. The results evidenced that friction radius predominantly affects brake pressure and thus the friction coefficient, also the increase in contact force resulted with decrease in friction coefficient both for drum and disc brakes. Further it has been found that disc brakes exhibit gradual decrease of friction coefficient due to the equitable distribution of braking effort while drum brake presents sudden variations in friction coefficient. It can be revealed that frictional behaviour of disc brake is more consistent than drum brake.

  2. Nanoscale adhesion, friction and wear of proteins on polystyrene.

    Science.gov (United States)

    Bhushan, Bharat; Utter, Jason

    2013-02-01

    Protein layers are routinely deployed on biomaterials and biological micro/nanoelectromechanical systems (bioMEMS/NEMS) as a functional layer allowing for specific molecular recognition, binding properties or to facilitate biocompatibility. In addition, uncoated biomaterial surfaces will have uncontrolled protein layers adsorbing to the surface within seconds of implantation, so a pre-defined protein layer will improve the host response. Implanted biomaterials also experience micromotion over time which may degrade any surface protein layers. Degradation of these protein layers may lead to system failure or an unwanted immune response. Therefore, it is important to characterize the interfacial properties of proteins on biomaterial surfaces. In this study, the nanoscale adhesion, friction and wear properties of proteins adsorbed to a spin coated polystyrene surface were measured using atomic force microscopy (AFM) in deionized (DI) water and phosphate buffered saline. Adhesion, friction and wear have been measured for bovine serum albumin (BSA), collagen, fibronectin and streptavidin (STA) in DI water and PBS as a function of protein concentration. These proteins were chosen due to their importance and widespread application in the biotechnology field. Adhesion and friction were also measured for BSA and STA at two different temperatures and different pH values to simulate a biological environment. Based on this study, adhesion, friction and wear mechanisms of the different proteins are discussed.

  3. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  4. Lorentz force electrical impedance tomography using magnetic field measurements.

    Science.gov (United States)

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  5. Lorentz force electrical impedance tomography using magnetic field measurements

    Science.gov (United States)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  6. Standard test method for measuring rolling friction characteristics of a spherical shape on a flat horizontal plane

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the use of an angled launch ramp to initiate rolling of a sphere or nearly spherical shape on a flat horizontal surface to determine the rolling friction characteristics of a given spherical shape on a given surface. 1.1.1 Steel balls on a surface plate were used in interlaboratory tests (see Appendix X1). Golf balls on a green, soccer and lacrosse balls on playing surfaces, bowling balls on an a lane, basketballs on hardwood, and marbles on composite surface were tested in the development of this test method, but the test applies to any sphere rolling on any flat horizontal surface. 1.1.2 The rolling friction of spheres on horizontal surfaces is affected by the spherical shape’s stiffness, radius of curvature, surface texture, films on the surface, the nature of the counterface surface; there are many factors to consider. This test method takes all of these factors into consideration. The spherical shape of interest is rolled on the surface of interest using a standard ramp to...

  7. Rate of force development as a measure of muscle damage.

    Science.gov (United States)

    Peñailillo, L; Blazevich, A; Numazawa, H; Nosaka, K

    2015-06-01

    This study tested the hypothesis that rate of force development (RFD) would be a more sensitive indirect marker of muscle damage than maximum voluntary isometric contraction (MVC) peak torque. Ten men performed one concentric cycling and two eccentric cycling (ECC1, ECC2) bouts for 30 min at 60% of maximal concentric power output with 2 weeks between bouts. MVC peak torque, RFD, and vastus lateralis electromyogram amplitude and mean frequency were measured during a knee extensor MVC before, immediately after and 1-2 days after each bout. The magnitude of decrease in MVC peak torque after exercise was greater (P < 0.05) for ECC1 (11-25%) than concentric cycling (2-12%) and ECC2 (0-16%). Peak RFD and RFD from 0-30 ms, 0-50 ms, 0-100 ms, to 0-200 ms decreased (P < 0.05) immediately after all cycling bouts without significant differences between bouts, but RFD at 100-200 ms interval (RFD(100-200)) decreased (P < 0.05) at all time points after ECC1 (24-32%) and immediately after ECC2 (23%), but did not change after CONC. The magnitude of decrease in RFD(100-200) was 7-19% greater than that of MVC peak torque after ECC1 (P < 0.05). It is concluded that RFD(100-200) is a more specific and sensitive indirect marker of eccentric exercise-induced muscle damage than MVC peak torque.

  8. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    Science.gov (United States)

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  9. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  10. Micromechanisms of friction and wear introduction to relativistic tribology

    CERN Document Server

    Lyubimov, Dmitrij; Pinchuk, Leonid

    2013-01-01

    The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction – triboplasma – was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.

  11. Theoretical research and experimental study for a new measurement method of standing wave levitation force

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)

    2015-05-15

    Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.

  12. Slow frictional waves

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  13. Internal Friction and Young's Modulus Measurements on SiO2 and Ta2O5 Films Done with an Ultra-High Q Silicon-Wafer Suspension

    Directory of Open Access Journals (Sweden)

    Granata M.

    2015-04-01

    Full Text Available In order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension has been developed. The key features of this system are: i the possibility to use substrates easily available like silicon wafers; ii extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×108 on 3” diameter wafers; iii reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv absence of clamping; v the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO2 and at room temperature only on Ta2O5 films deposited on silicon are presented.

  14. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    Science.gov (United States)

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-06-29

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO)2Cl2), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl2, which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  15. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  16. Precise force measurement method by a Y-shaped cavity dual-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Guangzong Xiao; Xingwu Long; Bin Zhang; Geng Li

    2011-01-01

    A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed. The principle of force measurement with this method is analyzed, and the analytic relation expression between the input force and the change in the output beat frequency is derived. Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed; they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range. The maximum scale factor is observed as 5.02×109 Hz/N, with beat frequency instability equivalent resolution of 10-5 N. By optimizing the optical and geometrical parameters of the laser sensor, a force measurement resolution of 10-6i N could be expected.%A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed.The principle of force measurement with this method is analyzed,and the analytic relation expression between the input force and the change in the output beat frequency is derived.Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed;they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range.The maximum scale factor is observed as 5.02× 109 Hz/N,with beat frequency instability equivalent resolution of 10-5 N.By optimizing the optical and geometrical parameters of the laser sensor,a force measurement resolution of 10 -6 N could be expected.Precise measurement of force and force-related nagnitudes,such as acceleration,pressure,and mass,is an often demanded task in modern engineering and science[1-3].In recent decades,some research efforts have been intensified to utilize optical measnrement procedures for obtaining precise force measurement.

  17. How linear molecules resist to shear:the origin of nanoscale friction

    Institute of Scientific and Technical Information of China (English)

    Linmao; QIAN; G.; Luengo; E.; Perez

    2004-01-01

    Friction force measurements between smooth surfaces across two layers of linear alkanes over five decades of speeds are presented. A maximum friction dissipation is observed at a characteristic speed. The behaviour is described by a new approach: the formation and destruction of molecular bridges between confined alkane layers. The bridges interdigitated between the layers exhibit a thermally activated resistance to shear.An analytical model involving activation barriers accounts for the overall behaviour of the forces over four decades of speed. This first simple semi-quantitative description sheds new light on the subtle mechanisms of friction at the nanoscale level and shows how the molecular length influences the tribological properties of the liquid.

  18. Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers

    Directory of Open Access Journals (Sweden)

    Fan-Tso Chien

    2014-12-01

    Full Text Available The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-extension (FE traces of chromatin fibers as measured with magnetic tweezers, covering the force regime from 0 pN to 27 pN. Those traces provide information for further studies at varied force regimes.

  19. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces.

    Science.gov (United States)

    Rau, D C; Parsegian, V A

    1992-01-01

    Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring the repulsive forces between parallel B-form DNA double helices pushed together from the separations at which they have self organized into hexagonal arrays of parallel rods. For all of the wide variety of "condensing agents" from divalent Mn to polymeric protamines, the resulting intermolecular force varies exponentially with a decay rate of 1.4-1.5 A, exactly one-half that seen previously for hydration repulsion. Such behavior qualitatively contradicts the predictions of all electrostatic double layer and van der Waals force potentials previously suggested. It fits remarkably well with the idea, developed and tested here, that multivalent counterion adsorption reorganizes the water at discrete sites complementary to unadsorbed sites on the apposing surface. The measured strength and range of these attractive forces together with their apparent specificity suggest the presence of a previously unexpected force in molecular organization.

  20. Transducer for Tension Force Measuring of Strip Materials

    Directory of Open Access Journals (Sweden)

    Emad S. Addasi

    2005-01-01

    Full Text Available In winding-up motor drive systems, such as that used in textile industry, it is very important to get a constant tension force for the winding strip material (thread and to reduce its oscillations. This study recommends a transducer with a special design to be used in the mentioned motor drive systems. By using a piston damper, spring, levers, slider and other simple components the suggested sensor (transducer can be used to control the motor speed for getting the required thread tension force. Also the suggested transducer avoids the disadvantage of other used conventional transducer: the parasitic (detrimental oscillations of the thread tension force, which affect the quality of the produced strip material.