WorldWideScience

Sample records for friction bonding process

  1. Ultrasonic friction power during thermosonic Au and Cu ball bonding

    International Nuclear Information System (INIS)

    Shah, A; Mayer, M; Zhou, Y; Qin, I; Huynh, C; Meyer, M

    2010-01-01

    The ultrasonic friction power during thermosonic ball bonding with Au and Cu wires, both 25 μm in diameter, is derived with an improved method from experimental measurements during the bonding process. Experimental data include the current delivered to the ultrasonic transducer and the tangential force measured using piezoresistive microsensors integrated close to the Al bonding pad. The improvement results from a new, more accurate method to derive the mechanical compliance of the ultrasonic system. The method employs a bond process modification in which the ultrasonic current is ramped up sequentially in three steps. In the first two steps, the ultrasonic current is set to levels that are too low to cause sliding. The bonding takes place during the third step, when the current is ramped up to the optimum value required for making good quality bonds. The ultrasonic compliance values are derived from the first two steps and are 8.2 ± 0.5 μm N -1 and 7.7 ± 0.5 μm N -1 for the Au and Cu processes, respectively. These values are determined within an average error estimate of ±6%, substantially lower than the ±10% estimated with a previously reported method. The ultrasonic compliance in the case of Au is 6% higher due to the lower elastic modulus of Au compared with that of Cu. Typical maximum values of relative sliding amplitude of ultrasonic friction at the interface are 655 nm and 766 nm for the Au and Cu processes. These values are 81% of the free-air vibration amplitude of the bonding capillary tip for the respective ultrasonic current settings. Due to bond growth, which damps relative motion between the ball and the pad, the final relative amplitude at the bond interface is reduced to 4% of the equivalent free-air amplitude. Even though the maximum value of relative amplitude is 17% higher in the Cu process compared with the Au process, the average total interfacial sliding is 519 μm in the Cu process, which is 31% lower than that in the Au process (759

  2. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    Science.gov (United States)

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-11-30

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.

  3. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    Science.gov (United States)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    fitting ageing vs. load data which shows that the friction drop data points all fall on a master curve. The analysis yields physically reasonable values for the activation energy and activation volume of the chemical bonding process. Our study provides a basis to hypothesize that the kinetic processes in chemical bonding-induced ageing do not depend strongly on normal load.

  4. Bonding prediction in friction stir consolidation of aluminum alloys: A preliminary study

    Science.gov (United States)

    Baffari, Dario; Reynolds, Anthony P.; Li, Xiao; Fratini, Livan

    2018-05-01

    Friction Stir Consolidation (FSC) is a solid-state process that results in consolidation of metal powders or chips producing solid billet through severe plastic deformation and the solid-state bonding phenomena. This process can be used both for primary production and for metal scrap recycling. During the FSC process, a rotating die is plunged into a hollow chamber containing the finely divided, unconsolidated material to be processed. In this paper, a FEM numerical model for the prediction of the quality of the consolidated billet is presented. In particular, a dedicated bonding criterion that takes into account the peculiar process mechanics of this innovative technology is proposed.

  5. Local reinforcement of magnesium components by friction processing. Determination of bonding mechanisms and assessment of joint properties

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, G.A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The development of new creep-resistant and cost effective die casting magnesium alloys, such as AE, MRI, MEZ, ACM, AXJ, AJ, WE, have emerged as an alternative, to fulfil the modern demands in structurally relevant applications, such as engine blocks, gears and converter boxes. However, in most cases, magnesium components are screwed with aluminium and steel bolts, which lead the screwed joints to lose the preload force, due to relaxation. This barrier thereby limits the broad use of magnesium within this segment and should somehow find an adequate solution to help overcome this limitation. Furthermore, together with alloy development and the addition of reinforcement (MMCs), local material engineering processes have been conceived and are considered a method to improve the properties and therefore expand the number of potential applications for magnesium alloys. In this context, Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appear to be an alternative to make the use of magnesium more widespread. For this reason, FHPP is intended to be used, to locally reinforce the mechanically fastened magnesium components. With this approach, regions submitted to the stresses imposed by tightening forces can be compensated by the use of a material with superior properties. It is not required to fabricate the whole structure from an expensive material, thus saving costs and thereby satisfying the economic pressures of an increasingly competitive global market. In the present work, a preliminary experimental matrix was defined and used to determine the optimal welding conditions for each specific material combination selected. Further, elaborate experimental techniques are used to describe the process parameters-microstructure-properties relationships and the consequent mechanisms leading to bonding in FHPP welds in similar and dissimilar configurations. The welds were performed using a hydraulic

  6. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Eder Paduan; Dollinger, Christian Avila [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil); Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying, E-mail: eder.padua@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  7. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    International Nuclear Information System (INIS)

    Alves, Eder Paduan; Dollinger, Christian Avila; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying

    2016-01-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  8. Formability of fiber-reinforced thermoplastics in hot press forming process based on friction properties

    NARCIS (Netherlands)

    Sachs, Ulrich; Haanappel, Sebastiaan; Rietman, Bert; ten Thije, R.H.W.; Akkerman, Remko

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  9. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    Science.gov (United States)

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  10. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    International Nuclear Information System (INIS)

    Lang, Haojie; Peng, Yitian; Zeng, Xingzhong

    2017-01-01

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  11. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Haojie; Peng, Yitian, E-mail: yitianpeng@dhu.edu.cn; Zeng, Xingzhong

    2017-07-31

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  12. Texture analysis of a friction stir welded ultrafine grained Al–Al2O3 composite produced by accumulative roll-bonding

    International Nuclear Information System (INIS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Szpunar, Jerzy

    2014-01-01

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al 2 O 3 ) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm

  13. The Effect of Stick Stiffness of Friction Models on the Bending Behavior in Non-Bonded Flexible Risers

    OpenAIRE

    Dai, Tianjiao; Ye, Naiquan; Sævik, Svein

    2017-01-01

    This paper investigates the effect of stick stiffness on the bending behavior in non-bonded flexible risers. The stick stiffness was normally implemented in the friction model for calculating the friction stress between layers in such structures. As the stick stiffness may be too small to achieve the plane-surfaces-remain-plane assumption under low contact pressure in some friction models [1], a new friction model was proposed for maintaining the constant stick stiffness in the present work. ...

  14. Interfacial bonding and friction in silicon carbide (filament)-reinforced ceramic- and glass-matrix composites

    International Nuclear Information System (INIS)

    Bright, J.D.; Shetty, D.K.

    1989-01-01

    This paper reports interfacial shear strength and interfacial sliding friction stress assessed in unidirectional SiC-filament-reinforced reaction-bonded silicon nitride (RBSN) and borosilicate glass composites and 0/90 cross-ply reinforced borosilicate glass composite using a fiber pushout test technique. The interface debonding load and the maximum sliding friction load were measured for varying lengths of the embedded fibers by continuously monitoring the load during debonding and pushout of single fibers in finite-thickness specimens. The dependences of the debonding load and the maximum sliding friction load on the initial embedded lengths of the fibers were in agreement with nonlinear shear-lag models. An iterative regression procedure was used to evaluate the interfacial properties, shear debond strength (τ d ), and sliding friction stress (τ f ), from the embedded fiber length dependences of the debonding load and the maximum frictional sliding load, respectively. The shear-lag model and the analysis of sliding friction permit explicit evaluation of a coefficient of sliding friction (μ) and a residual compressive stress on the interface (σ 0 ). The cross-ply composite showed a significantly higher coefficient of interfacial friction as compared to the unidirectional composites

  15. Texture analysis of a friction stir welded ultrafine grained Al–Al{sub 2}O{sub 3} composite produced by accumulative roll-bonding

    Energy Technology Data Exchange (ETDEWEB)

    Shamanian, Morteza, E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadnezhad, Mahyar [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9 (Canada)

    2014-12-05

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al{sub 2}O{sub 3}) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm.

  16. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy

    International Nuclear Information System (INIS)

    Hosseini, M.; Danesh Manesh, H.

    2010-01-01

    In this research, ultrafine grained strips of commercial pure strain hardenable aluminum (AA1050) were produced by accumulative roll-bonding (ARB) technique. These strips were joined by friction stir welding (FSW) in immersed (underwater) and conventional (in-air) conditions to investigate the effect of the immersion method on the microstructure and mechanical properties of the joint, aiming to reduce the deterioration of the mechanical properties of the joint. Transmission electron microscopy and X-ray diffraction analyses were used to evaluate the microstructure, showing smaller grains and subgrains in the stir zone of the immersed FSW condition with respect to the conventional FSW method. The hardness and tensile properties of the immersed friction stir welded sample and ARBed base metal show more similarity compared to the conventional friction stir welded sample. Moreover, the aforementioned method can result in the enhancement of the superplasticity tendency of the material.

  17. Hybrid friction diffusion bonding of 316L stainless steel tube-to-tube sheet joints for coil-wound heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils; Cionea, Cristian; Reuven, Rony; Frazer, David; Hosemann, Peter; Peterson, Per F. [Dept of Nuclear Engineering, University of California, Berkeley (United States)

    2016-11-15

    Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Zentrum Geesthacht to join aluminum tube-to-tube sheet joints of Coil-wound heat exchangers (CWHE). This study describes how HFDB was successfully used to manufacture 316L test samples simulating tube-to-tube sheet joints of stainless steel CWHE for molten salt coolants as foreseen in several advanced nuclear- and thermal solar power plants. Engineering parameters of the test sample fabrication are presented and results from subsequent non-destructive vacuum decay leak testing and destructive tensile pull-out testing are discussed. The bonded areas of successfully fabricated samples as characterized by tube rupture during pull-out tensile testing, were further investigated using optical microscopy and scanning electron microscopy including electron backscatter diffraction.

  18. On the Prediction of Hot Tearing in Al-to-Steel Welding by Friction Melt Bonding

    Science.gov (United States)

    Jimenez-Mena, N.; Jacques, P. J.; Drezet, J. M.; Simar, A.

    2018-04-01

    Aluminum alloy AA6061 was welded to dual-phase steel 980 (DP980) by the friction melt bonding (FMB) process. Hot tears have been suppressed by controlling the thermomechanical cycle. In particular, the welding speed and the thermal conductivity of the backing plate have been optimized. A finite-element thermomechanical model coupled with the Rappaz-Drezet-Gremaud (RDG) criterion has been used to explain these experimental observations. The hot tear susceptibility has been reduced with large thermal gradients and with the formation of a cellular microstructure. Both effects are favored by a backing plate made of a material with high thermal conductivity, such as copper.

  19. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  20. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  1. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  2. Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    A. Yamileva

    2014-07-01

    Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.

  3. Effect of friction time on the microstructure and mechanic properties of friction welded AISI 1040/Duplex stainless steel

    Directory of Open Access Journals (Sweden)

    İhsan Kırık

    2000-06-01

    Full Text Available In this study, the effect on the characteristic microstructure and mechanic properties of friction time on the couple steels AISI 1040/AISI 2205 stainless steel joining with friction welding method was experimentally investigated. Friction welding experiment were carried out in privately prepared PLC controlled continuous friction welding machine by us. Joints were carried out under 1700 rpm rotation speed, with 30MPa process friction pressure, 60MPa forging pressure, 4 second forging pressure and under 3, 5, 7, 9 and 11 second friction time, respectively. After friction welding, the bonding interface microstructures of the specimens were examined by SEM microscopy and EDS analysis. After weld microhardness and tensile strength of specimens were carried out. The result of applied tests and observations pointed out that the properties of microstructure were changed with friction time increased. The excellent tensile strength of joint observed on 1700 rpm rotation speed and 3 second friction time sample.

  4. Friction Stir Welding Process: A Green Technology

    OpenAIRE

    Esther T. Akinlabi; Stephen A. Akinlabi

    2012-01-01

    Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materia...

  5. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task...... has, however, been extended to include a number of new developed process tests: 3. forward rod extrusion test, 4. special ring test at low normal pressure, 5. spike test (especially developed for warm and hot forging). Validation of the measured friction values in cold forming from sub-task 3.1 has...... been made with forward rod extrusion, and very good agreement was obtained between the measured friction values in simulative testing and process testing....

  6. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  7. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  8. Overview of friction modelling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several research...... groups have studied and modelled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most important...... future work in order to advance further in modelling of real contact area in relation to implementation of frictional conditions existing finite element codes for simulation of metal forming processes. © 2017 The Authors. Published by Elsevier Ltd....

  9. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  10. Applications of Friction Stir Processing during Engraving of Soft Materials

    Directory of Open Access Journals (Sweden)

    V. Kočović

    2015-12-01

    Full Text Available Friction stir processing has extensive application in many technological operations. Application area of friction stir processing can be extended to the processing of non-metallic materials, such as wood. The paper examines the friction stir processing contact between a specially designed hard and temperature-resistant rotating tool and workpiece which is made of wood. Interval of speed slip and temperature level under which the combustion occurs and carbonization layer of soft material was determined. The results of the research can be applied in technological process of wood engraving operations which may have significant technological and aesthetic effects.

  11. New Materials Design Through Friction Stir Processing Techniques

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Shivpuri, R.

    2007-01-01

    Friction Stir Welding (FSW) has reached a large interest in the scientific community and in the last years also in the industrial environment, due to the advantages of such solid state welding process with respect to the classic ones. The complex material flow occurring during the process plays a fundamental role in such solid state welding process, since it determines dramatic changes in the material microstructure of the so called weld nugget, which affects the effectiveness of the joints. What is more, Friction Stir Processing (FSP) is mainly being considered for producing high-strain-rate-superplastic (HSRS) microstructure in commercial aluminum alloys. The aim of the present research is the development of a locally composite material through the Friction Stir Processing (FSP) of two AA7075-T6 blanks and a different material insert. The results of a preliminary experimental campaign, carried out at the varying of the additional material placed at the sheets interface under different conditions, are presented. Micro and macro observation of the such obtained joints permitted to investigate the effects of such process on the overall joint performance

  12. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P.

    2014-01-01

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al 5 Fe 2 ) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  13. Hybrid multi-response optimization of friction stir spot welds: failure ...

    Indian Academy of Sciences (India)

    O O OJO

    2018-06-08

    Jun 8, 2018 ... Friction stir spot welding; effective bonded size; failure load; expelled flash volume; hybrid multi- response ... eliminated with the application of FSSW process. Conse- ... design of experiment is generally applied in either single.

  14. Friction Modelling In Connection With Cold Forming Processes

    DEFF Research Database (Denmark)

    Tan, Xincai

    is first coated with aluminate conversion coatings and then lubricated by alkaline soap, molybdenum disulphide (MoS2), alkaline soap followed by molykote grease paste, or kerosene respectively. Steel and stainless steel are first coated with zinc phosphate coatings and then lubricated by either alkaline...... soap or molybdenum disulphide. As processes testing friction sensitive flow, the ring-compression tests and the double cup extrusion tests are carried out. An absolute constant friction model has been proposed to separate the influence of strain hardening from friction. This model has been applied...

  15. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  16. Infrared monitoring of friction welds and adhesive bond curing in automotive manufacturing

    International Nuclear Information System (INIS)

    Chapman, G.B.

    2005-01-01

    The need for improving automotive assembly, energy-efficiency, performance, durability and quality is intensifying as customer demands and competitive pressures drive the industry toward unrelenting improvements in energy conservation, cost, quality and speed to market, without compromising the vehicle capacity, performance, appearance and affordability to which North Americans have become accustomed. This presentation describes the need for and the development and use of infrared detection methods to assure the joint quality of friction welds in thermoplastic assemblies and to monitor adhesive bond-joint curing in metal assemblies. Some remaining barriers to the wider applications of this technology in the quality assurance of joints in automotive body structures will also be presented as indicators of further research and development opportunities. (author)

  17. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    Science.gov (United States)

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016

  18. Microstructures of friction welded joints of AZ31 to AM60 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, S.; Ono, T.; Tanaka, S.; Tsubakino, H. [Graduate School of Engineering, Himeji Inst. of Tech., Hyogo (Japan); Tomita, T.; Aritoshi, M. [Hyogo Prefectural Inst. of Industrial Research, Kobe, Hyogo (Japan); Okita, K. [Inst. of Industrial Research, Osaka Sangyo Univ., Osaka (Japan)

    2003-07-01

    AZ31 magnesium alloy was friction-welded to AM60 and the microstructures and the friction welding process were studied. The microstructures changed near the weld interface. The AZ31 was refined to a grain size of several {mu}m near the weld interface. The nucleation occurred in the shear bands that were introduced during the welding process. On the other hand, the eutectic structure was deformed and the lamellar structure which was composed of {alpha}-Mg and Mg{sub 17}Al{sub 12} was formed near the weld interface in AM60 alloy. In the friction process, the adhesion and peel off occurred alternately between AZ31 and AM60. Eventually, bonding was completed during upset process. (orig.)

  19. Frictional processes of bimaterial interfaces at seismic slip rates.

    Science.gov (United States)

    Passelegue, F. X.; Fabbri, O.; Leclère, H.; Spagnuolo, E.; Di Toro, G.

    2017-12-01

    Large subduction earthquakes ruptures propagate from crustal rock toward the sea floor along frictional interfaces of different lythologies. Up to now, frictional processes of rocks were mainly investigated along single material experimental faults. Here, we present the results of high velocity friction experiments coupled with high frequency acoustic monitoring system on biomaterial interfaces including gabbro, pyroxenite and serpentinized peridotite (>95%), following a recent field investigation highlighting bimaterial contacts in the Corsica ophiolitic nappe. We first studied the frictional processes of single materials which result in a mechanical behaviour comparable to previous studies. Both gabbro and pyroxenite exhibit two weakening stages. The first one corresponds to flash heating and the second stage occurs concomitantly with complete melting of the interface. In the case of serpentinite, only one weakening stage is observed, after a weakening slip distance of only few centimeters. We then conducted bimaterial experiments. The two couples tested were gabbro/pyroxenite and gabbro/serpentinite, as observed along natural fault zones (Corsica, France). In the case of gabbro/serpentinite, we observe that frictional processes are controlled by serpentinite. Mechanical curves replicate the behaviour of single serpentinite friction experiments. We observe that few melting occurs, and that the product of experiments consists in fine grained cataclasite, as observed in the field. The case of gabbro/pyroxenite is more complicated. The first weakening is controlled by the lithology of the sample installed on the static part of the rotary apparatus. However, the second weakening is controlled by the gabbro and mechanical curves are identical than those obtained in the case of single gabbro experiments. Supported by microstructural analysis and acoustic activity, our results suggest that frictional processes of bimaterial interfaces are controlled by the material

  20. Review of friction modeling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, C.V.; Bay, N.

    2018-01-01

    Abstract In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several...... research groups have studied and modeled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most...... conditions, normal pressure, sliding length and speed, temperature changes, friction on the flattened plateaus and deformation of the underlying material. The review illustrates the development in the understanding of asperity flattening and the methods of analysis....

  1. Friction stir weld-bonding defect inspection using phased array ultrasonic testing

    NARCIS (Netherlands)

    Fortunato, J.; Anand, C.; Braga, Daniel F.O.; Groves, R.M.; Moreira, P. M.G.P.; Infante, V

    2017-01-01

    Weight reduction is an important driver of the aerospace industry, which encourages the development of lightweight joining techniques to substitute rivet joints. Friction stir welding (FSW) is a solid-state process that enables the production of lighter joints with a small performance reduction

  2. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  3. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  4. Superplastic forming of 7475 Al sheet after friction stir processing (FSP)

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, M.; Bingel, W.H.; Fuller, C. [Rockwell Scientific Co., Thousand Oaks, CA (United States); Barnes, A.J. [Superform USA, Riverside, CA (United States)

    2004-07-01

    Since the invention of friction stir welding (FSW) in 1991, an increasing number of successful applications have been found for this unique solid-state welding technique. More recently, attention has been given to utilizing the mechanics of friction stirring to thermo-mechanically modify the microstructure of aluminum alloys to create or enhance superplasticity. Until now, superplasticity induced by friction stir processing (FSP) has only been demonstrated in small samples and evaluated by hot tensile elongation testing. The present work describes what we believe to be the first biaxial testing and full size component superplastic forming of friction stir processed aluminum sheet. The remarkable formability demonstrated in these 'first time' trials is described in detail. (orig.)

  5. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  6. Automatic Gap Detection in Friction Stir Welding Processes (Preprint)

    National Research Council Canada - National Science Library

    Yang, Yu; Kalya, Prabhanjana; Landers, Robert G; Krishnamurthy, K

    2006-01-01

    .... This paper develops a monitoring algorithm to detect gaps in Friction Stir Welding (FSW) processes. Experimental studies are conducted to determine how the process parameters and the gap width affect the welding process...

  7. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding at different process parameters

    Science.gov (United States)

    Konovalenko S., Iv.; Psakhie, S. G.

    2017-12-01

    Using the molecular dynamics method, we simulated the atomic scale butt friction stir welding on two crystallites and varied the onset FSW tool plunge depth. The effects of the plunge depth value on the thermomechanical evolution of nanosized crystallites and mass transfer in the course of FSW have been studied. The increase of plunge depth values resulted in more intense heating and reducing the plasticized metal resistance to the tool movement. The mass transfer intensity was hardly dependent on the plunge depth value. The plunge depth was recommended to be used as a FSW process control parameter in addition to the commonly used ones.

  8. Friction Stir Processing of Cast Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  9. Model analysis and experimental investigation of the friction torque during the CMP process

    International Nuclear Information System (INIS)

    Guo Dongming; Xu Chi; Kang Renke; Jin Zhuji

    2011-01-01

    A model for calculating friction torque during the chemical mechanical polishing (CMP) process is presented, and the friction force and torque detection experiments during the CMP process are carried out to verify the model. The results show that the model can well describe the feature of friction torque during CMP processing. The research results provide a theoretical foundation for the CMP endpoint detection method based on the change of the torque of the polishing head rotational spindle. (semiconductor technology)

  10. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  11. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  12. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  13. Friction Stir Processing of Cast Superalloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  14. A Study on the Optimal Conditions of friction Welding for JLF and STS304 Using AE Technique

    International Nuclear Information System (INIS)

    Yoon, Han Ki; Lee, Sang Pil; Kong, Yu Sik; Lee, Jin Kyung

    2003-01-01

    Japanese low activation terrific steel(JLF) is a good material for the parts of heat exchanger such as blanket and diverter. At first, JLF was developed as a candidate for structural materials in nuclear fusion applications. However, the development of the jointing technique of JLF steel to other materials is important for wide applications of this material to the industry fields. Recently the jointing technologies including diffusion bonding, brazing, roll bonding, explosive bonding and hot iso-static pressing have been studied for the heterogeneous materials of JLF-1 steel(Fe-9Cr-2W-V-Ta) and stainless steel(STS304). Friction welding is one of the most popular welding methods for two different kinds of materials. In this paper, the JLF-1 steel was jointed to SIS304 by friction welding method and the optimal conditions of the friction welding discussed. Acoustic emission was used as a nondestructive technique to evaluate the weld quality in processing

  15. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  16. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  17. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    Science.gov (United States)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  18. Retractable Pin Tools for the Friction Stir Welding Process

    Science.gov (United States)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  19. Friction Stir Processing of ODS and FM Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  20. Friction Stir Processing of ODS and FM Steels

    International Nuclear Information System (INIS)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu

    2013-01-01

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  1. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  2. Confinement-Dependent Friction in Peptide Bundles

    Science.gov (United States)

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  3. Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Cartigueyen Srinivasan

    2015-01-01

    Full Text Available Friction stir processing (FSP technique has been successfully employed as low energy consumption route to prepare copper based surface level nanocomposites reinforced with nanosized silicon carbide particles (SiCp. The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nanosized SiCp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nanocomposites was remarkably enhanced and about 95% more than that of copper matrix.

  4. Friction between silicon and diamond at the nanoscale

    International Nuclear Information System (INIS)

    Bai, Lichun; Srikanth, Narasimalu; Sha, Zhen-Dong; Pei, Qing-Xiang; Wang, Xu; Srolovitz, David J; Zhou, Kun

    2015-01-01

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region. (paper)

  5. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  6. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  7. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  8. Friction Stir Welding-assisted Diffusion Bond of Al/Zn/Mg Lap Joint

    Directory of Open Access Journals (Sweden)

    JIN Yu-hua

    2018-03-01

    Full Text Available Dissimilar materials welding between 2mm-thick AZ31B Mg alloy and 6061 Al alloy plates in overlap form was performed using the friction stir-induced diffusion bond with zinc foil as the interlayer. The microstructure and mechanical properties of the Al/Zn/Mg lap joints were analyzed by means of SEM, EPMA, XRD, tensile experiment and Vickers hardness test. The results show that diffusion layer consists of Al enrichment zone, Al5Mg11Zn4 layer and Mg-Zn eutectic zone at proper rotation speed; however, when rotation speed is low, the residual zinc interlayer remains in the diffusion layer; when rotation speed is high, the Al-Mg intermetallic compounds are present again. Due to the existence of intermetallic compounds in diffusion layer, its microhardness is significantly higher than that of base metal. The addition of zinc foil can improve the mechanical properties of Al/Mg lap joints. According to analysis on the fracture, joint failure occurs in the diffusion layer near to Al side.

  9. Microstructure, mechanical properties and microtexture of friction stir welded S690QL high yield steel

    Energy Technology Data Exchange (ETDEWEB)

    Paillard, Pascal [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Bertrand, Emmanuel, E-mail: emmanuel.bertrand@univ-nantes.fr [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Allart, Marion; Benoit, Alexandre [Institut de Recherche Technologique Jules Verne, Chemin du Chaffault, 44340 Bouguenais (France); Ruckert, Guillaume [DCNS Research, Technocampus Ocean, 5 rue de l' Halbrane, 44340 Bouguenais (France)

    2016-12-15

    Two try-out campaigns of friction stir welding (FSW) were performed with different friction parameters to join S690QL high yield strength steel. The welds were investigated at macroscopic and microscopic scales using optical and electronic microscopy and microhardness mapping. Welds of the second campaign exhibit microstructures and mechanical properties in accordance with requirements for service use. Microtexture measurements were carried out in different zones of welds by electron backscattered diffraction (EBSD). It is shown that that texture of the bottom of the weld is similar to that of the base metal, suggesting a diffusion bonding mechanism. Finally, the mechanical properties (tensile strength, resilience, bending) were established on the most promising welds. It is shown that it is possible to weld this high yield strength steel using FSW process with satisfactory geometric, microstructural and mechanical properties. - Highlights: •1000 mm ∗ 400 mm ∗ 8 mm S690QL steel plates are joined by friction stir welding (FSW). •Maximum hardness is reduced by optimization of process parameters. •Various microstructures are formed but no martensite after process optimization. •Texture is modified in mechanically affected zones of the weld. •Texture in the bottom of the weld is preserved, suggesting diffusion bonding.

  10. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  11. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  12. Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process

    Science.gov (United States)

    2015-10-01

    ARL-TR-7501 ● OCT 2015 US Army Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact...Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process by Stephen Berkebile Vehicle...YYYY) October 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 January–30 June 2015 4. TITLE AND SUBTITLE Friction Mapping as a Tool for

  13. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  14. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  15. Friction and wear behavior of glasses and ceramics

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  16. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    Science.gov (United States)

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  17. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...

  18. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  19. The production and characterization of Ptfe bonded Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Mokal, B.; Williams, A.J.; Hay, J.N.; Harris, I.R.

    1996-01-01

    A study of the processing and characteristics of PTFE bonded Nd Fe B magnets has been carried out. PTFE was used because of its low coefficient of friction, thus enabling its flow between the particles of Nd Fe B powder. PTFE also increases the resistance to corrosion of the magnet. In these investigations, the production of bonded magnets by cold compaction and by hot processing (HP) of MQ powders using PTFE as the binder was investigated . Magnetic, microstructural, and mechanical properties were investigated and are presented together with a correlation with the different processing techniques used. The corrosion behaviour of the hot pressed magnets was also investigated. These studies could lead to the development of simpler and more effective processing routes for the production of bonded magnets. (author)

  20. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng

    2014-01-01

    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  1. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  2. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    Science.gov (United States)

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  3. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Directory of Open Access Journals (Sweden)

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  4. Mechanism analysis of improved DLC films friction behaviors with liquid sulfidation treatment

    International Nuclear Information System (INIS)

    Zeng Qunfeng; Yu Fei; Dong Guangneng; Mao Junhong

    2012-01-01

    Highlights: ► Liquid sulfidation is applied to treat DLC films. ► Sulfur atoms are chemically bonded and the graphitization presented in the treated films. ► The treated films exhibited much lower coefficient of friction than the untreated films under dry friction condition. ► The sulfidation mechanisms are supposed as surface chemical reaction and surface diffusion. ► The presence of sulfur-containing materials and graphitization are beneficial to improve anti-friction behaviors of the treated films. - Abstract: Diamond like carbon (DLC) films were treated by liquid sulfidation to improve their friction behaviors. Friction behaviors of DLC films were experimentally evaluated in ambient air under dry friction using GCr15 steel ball sliding over DLC-coated steel flat in a ball-on-disk tribometer system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were applied to identify the chemical composition and structure of DLC films. It was found that the content of sp 2 carbon bond increased and G peak shifted to high wave number after sulfidation treatment. The measurement results showed that sulfur atoms were chemically bonded and the graphitization occurred in the treated DLC films. It was indicated that the treated DLC films exhibited much better friction behaviors than the untreated films, especially for DLC films deposited with high nitrogen ratio. In this paper, we proposed the possible sulfidation mechanism of sulfurized DLC films. Sulfidation mechanism is postulated that thiourea reacted with oxygen to form sulfur-containing organic compounds which included CSSC, CSOH and (NH 2 )NH=CSO 2 H and surface diffusion during sulfidation treatment. The anti-friction behaviors of the treated DLC films can be attributed to the production of the compounds containing sulfur on the DLC film surface, the reduce of oxygen content and the presence of graphitization of DLC films.

  5. Physics-based process model approach for detecting discontinuity during friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.; Ferrier, Nicola J.; Smith, Christopher B.; Malukhin, Kostya; Zinn, Michael

    2015-02-12

    The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities were generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.

  6. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    Science.gov (United States)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  7. Microstructural evolution in friction stir welding of nanostructured ODS alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Tatlock, G.J.; Jones, A.R.

    2010-01-01

    Nanostructured oxide dispersion strengthened (ODS) Fe-based alloys manufactured by mechanical alloying (MA) are generally considered to be promising candidate materials for high-temperature applications up to at least 1100 o C because of their excellent creep strength and good oxidation resistance. However, a key issue with these alloys is the difficulty in using fusion welding techniques to join components due to oxide particle agglomeration and loss in the weld zone and the disruption and discontinuity in the grain structure introduced at the bond. In this study, the evolution of microstructure has been comprehensively studied in friction stir welds in a ferritic ODS alloy. Initially, electron backscattering diffraction (EBSD) was used to analyze the grain orientation, the grain boundary geometries and recrystallization behaviour. It suggested that deformation heterogeneities were introduced during the friction stirring process which facilitated the onset of recrystallization. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to observe the effects of the friction stir welding (FSW) process on the grain structure and the distribution of Y 2 O 3 and other particles in the metal substrates in the FSW and adjacent regions, after the alloys had been recrystallized at temperatures up to 1380 o C for 1 h in air. The results show that fine-equiaxed grains and a uniform distribution of oxide particles were present in the friction stirred region but that the grain boundaries in the parent metal were pinned by particles. Friction stirring appeared to release these boundaries and allowed secondary recrystallization to occur after further heat treatment. The FSW process appears to be a promising technique for joining ferritic ODS alloys in the form of sheet and tube.

  8. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  9. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    Science.gov (United States)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  10. Evaluation of interfacial bonding in dissimilar materials of YSZ-alumina composites to 6061 aluminium alloy using friction welding

    International Nuclear Information System (INIS)

    Uday, M.B.; Ahmad Fauzi, M.N.; Zuhailawati, H.; Ismail, A.B.

    2011-01-01

    Research highlights: → Friction-welding process. → Joining between ceramic composite and metal alloy. → Slip casting of the yttria stabilized zirconia/alumina composite samples. - Abstract: The interfacial microstructures characteristics of alumina ceramic body reinforced with yttria stabilized zirconia (YSZ) was evaluated after friction welding to 6061 aluminum alloy using optical and electron microscopy. Alumina rods containing 25 and 50 wt% yttria stabilized zirconia were fabricated by slip casting in plaster of Paris (POP) molds and subsequently sintered at 1600 deg. C. On the other hand, aluminum rods were machine down to the required dimension using a lathe machine. The diameter of the ceramic and the metal rods was 16 mm. Rotational speeds for the friction welding were varied between 900 and 1800 rpm. The friction pressure was maintained at 7 MPa for a friction time of 30 s. Optical and scanning electron microscopy was used to analyze the microstructure of the resultant joints, particularly at the interface. The joints were also examined with EDX line (energy dispersive X-ray) in order to determine the phases formed during the welding. The mechanical properties of the friction welded YSZ-Al 2 O 3 composite to 6061 alloy were determined with a four-point bend test and Vickers microhardness. The experimental results showed the degree of deformation varied significantly for the 6061 Al alloy than the ceramic composite part. The mechanical strength of friction-welded ceramic composite/6061 Al alloy components were obviously affected by joining rotational speed selected which decreases in strength with increasing rotational speed.

  11. Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron diffraction

    International Nuclear Information System (INIS)

    Woo, W.; Choo, H.; Brown, D.W.; Vogel, S.C.; Liaw, P.K.; Feng, Z.

    2006-01-01

    Time-of-flight neutron diffraction was used to investigate the texture changes in friction stir-processed (FSP) 6061-T6 aluminum alloy plates. Two different specimens were prepared with the purpose of separating the effects of frictional heating and severe plastic deformation on the changes of the preferred orientation in the as-received rolled plates: a plate processed with both stirring pin and tool shoulder, i.e., a regular FSP plate subjected to both severe plastic deformation and frictional heating (Case 1); and a plate processed only with the tool shoulder, i.e., subjected mainly to frictional heating (Case 2). The diffraction peak intensities provide insights into the texture variations at various locations across the centerline and through the thickness of the FSP plates. Comparison of the texture variations between Cases 1 and 2 clearly shows that the severe plastic deformation from the stirring pin affects the preferred orientation during the FSP, while heating alone from the tool shoulder has little effect

  12. How brucite may affect the frictional properties of serpentinite

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.; Iwata, K.; Tanaka, H.; Byerlee, J.D.

    2001-01-01

    The frictional strength of brucite gouge has been measured at hydrothermal conditions to 450°C. At room temperature, brucite has a coefficient of friction, μ ≈ 0.30, making it one of the weakest minerals identified to date. With increasing temperature at a constant effective normal stress, the coefficient of friction of brucite decreases to a minimum of μ ≈ 0.20 near 300°C, and μ ≈ 0.22–0.24 in the temperature range 350–450°C. Brucite has a sheeted crystal structure, and its low frictional strength may be attributed to the relatively weak bonds between the layers. In addition, the temperature dependence of μ to ≈300°C can be explained in terms of the anomalously large coefficient of thermal expansion of brucite, which will further weaken the interlayer bonds. Brucite is a common constituent of serpentinite, and at ≈300°C, where brucite is weakest, all the major serpentine minerals have μ ≥ 0.5. The maximum expected brucite content of a serpentinite is close to 20% by weight or volume. That amount of disseminated brucite will lower the coefficient of friction of serpentinite by ≤10–15% in the deeper parts of the seismogenic zone. However, the effect will be much greater if shear can be concentrated along brucite-lined slip surfaces in the serpentinite body.

  13. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B.; Persson, B. N. J. [PGI, FZ Jülich, 52425 Jülich (Germany); Oh, Y. R.; Nam, S. K.; Jeon, S. H. [Hankook Tire Co. LTD., 112 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-725 (Korea, Republic of)

    2015-05-21

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.

  14. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    Science.gov (United States)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  15. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    International Nuclear Information System (INIS)

    Fuller, M.D.; Swaminathan, S.; Zhilyaev, A.P.; McNelley, T.R.

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal; for the stir zone (SZ) produced by the friction stir processing; and for a region wherein friction stir processing had taken place over the fusion weld. A region of low ductility in the heat affected zone (HAZ) of the fusion weld and in the thermomechanically affected zone (TMAZ) of friction stir processed material was attributed to partial reversion of an equilibrium lamellar eutectoid constituent upon local heating above ∼800 deg. C and formation of non-equilibrium transformation products upon subsequent cooling. The adverse effect on ductility is worse in the heat affected zone of the fusion weld than in the thermomechanically affected zone of friction stir processing due to the lower heat input of the latter process. The implications of this work to engineering applications of friction stir processing are discussed

  16. Atomistic Frictional Properties of the C(1002x1-H Surface

    Directory of Open Access Journals (Sweden)

    Paul M. Jones

    2013-01-01

    Full Text Available Density functional theory- (DFT- based ab initio calculations were used to investigate the surface-to-surface interaction and frictional behavior of two hydrogenated C(100 dimer surfaces. A monolayer of hydrogen atoms was applied to the fully relaxed C(1002x1 surface having rows of C=C dimers with a bond length of 1.39 Å. The obtained C(1002x1-H surfaces (C–H bond length 1.15 Å were placed in a large vacuum space and translated toward each other. A cohesive state at a surface separation of 4.32 Å that is stabilized by approximately 0.42 eV was observed. An increase in the charge separation in the surface dimer was calculated at this separation having a 0.04 e transfer from the hydrogen atom to the carbon atom. The Mayer bond orders were calculated for the C–C and C–H bonds and were found to be 0.962 and 0.947, respectively. σ C–H bonds did not change substantially from the fully separated state. A significant decrease in the electron density difference between the hydrogen atoms on opposite surfaces was seen and assigned to the effects of Pauli repulsion. The surfaces were translated relative to each other in the (100 plane, and the friction force was obtained as a function of slab spacing, which yielded a 0.157 coefficient of friction.

  17. Multi-objective Optimization of Friction Welding Process Parameters using Grey Relational Analysis for Joining Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sreenivasan KONGANAPURAM SUNDARARAJAN

    2018-05-01

    Full Text Available Aluminium metal matrix composites has gained importance in recent time because of its improved mechanical and metallurgical properties. The welding of aluminium metal matrix composites using conventional welding process has got many demerits so in order to overcome them a solid state welding process is to be employed. To achieve a good strength weld in the aluminium metal matrix composite bars an efficient and most preferred technique is friction welding. In this work the aluminium metal matrix composite AA7075 + 10 % vol SiC-T6 is selected and friction welded. The combination of friction welding process parameters such as spindle speed, friction pressure, upset pressure and burn-off- length for joining the AA7075 + 10 % vol SiCP-T6 metal matrix composite bars are selected by Taguchi’s design of experiment. The optimum friction welding parameters were determined for achieving improved ultimate tensile strength and the hardness using grey relational analysis. A combined grey relational grade is found from the determined grey relational coefficient of the output responses and the optimum friction welding process parameters were obtained as spindle speed – 1200 rpm, friction pressure – 100 MPa, upset pressure – 250 MPa, Burn-off-Length – 2 mm. Analysis of variance (ANOVA performed shows that the friction pressure is the most significant friction welding parameter that influences the both the ultimate tensile strength and hardness of friction welded AA7075 + 10 % volSiCP-T6 joints. The fractured surface under microstructure study also revealed good compliance with the grey relational grade result. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.17725

  18. Simulation of friction stir drilling process

    Science.gov (United States)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  19. Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector-electrode interfaces

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Cannio, M.; Hjelm, J.; Hendriksen, P. V.

    2016-01-01

    Roč. 162, č. 1 (2016), s. 250-253 ISSN 0167-577X Institutional support: RVO:68081723 Keywords : Metal-ceramic bond strength * Schwickerath crack-initiation test * SOC interfaces Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.572, year: 2016

  20. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    Science.gov (United States)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz

  1. Frictional heating processes during laboratory earthquakes

    Science.gov (United States)

    Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.

    2017-12-01

    Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with

  2. An analysis to optimize the process parameters of friction stir welded ...

    African Journals Online (AJOL)

    The friction stir welding (FSW) of steel is a challenging task. Experiments are conducted here, with a tool having a conical pin of 0.4mm clearance. The process parameters are optimized by using the Taguchi technique based on Taguchi's L9 orthogonal array. Experiments have been conducted based on three process ...

  3. Irradiation effects on low-friction coatings for LMFBR applications

    International Nuclear Information System (INIS)

    Ward, A.L.; Johnson, R.N.; Guthrie, G.L.; Aungst, R.C.

    1975-11-01

    A variety of wear-resistant low-friction materials has been irradiated in the EBR-II in order to assess their reponse to LMFBR environments. Pre- and postirradiation testing and examination efforts have concentrated on candidate materials for application to the wear pads on FTR ducts (fuel, control, and reflector assemblies), and a significant result has been qualification of a proprietary detonation-gun-applied chromium carbide coating which employs a Ni Cr binder. Additional materials such as Inconel-718, Haynes-273, aluminides, and various chromium carbide/binder combinations, and other application processes such as plasma-spray, weld-overlays, diffusion bonding and explosive bonding, have also been studied. The most detailed examinations were conducted on selected chromium carbide coatings and included visual inspection, weight and dimensional measurements, metallography, electron microprobe, epoxy-lift-off, and x-ray diffraction analysis. Chromium carbide coatings applied by the detonation-gun process have demonstrated a marked superiority to those applied by plasma-spray techniques

  4. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  5. Multiple pass and multiple layer friction stir welding and material enhancement processes

    Science.gov (United States)

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  6. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  7. High strain rate superplasticity in a friction stir processed 7075 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S.; Mahoney, M.W.; McFaden, S.X.; Mara, N.A.; Mukherjee, A.K.

    1999-12-31

    In this paper, the authors report the first results using friction stir processing (FSP). In the last ten years, a new technique of Friction Stir Welding (FSW) has emerged as an exciting solid state joining technique for aluminum alloys. This technique, developed by The Welding Institute (TWI), involves traversing a rotating tool that produces intense plastic deformation through a stirring action. The localized heating is produced by friction between the tool shoulder and the sheet top surface, as well as plastic deformation of the material in contact with the tool. This results in a stirred zone with a very fine grain size in a single pass. Mahoney et al. observed a grain size of 3 {micro}m in a 7075 Al alloy. This process can be easily adopted as a processing technique to obtain fine grain size. FSP of a commercial 7075 Al alloy resulted in significant enhancement of superplastic properties. The optimum superplastic strain rate was 10{sup {minus}2}s{sup {minus}1} at 490 C in the FSP 7075 Al alloy, an improvement of more than an order of magnitude in strain rate. The present results suggest an exciting possibility to use a simple FSP technique to enhance grain size dependent properties.

  8. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  9. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  10. Friction stir welding (FSW) of AA 6061 T6

    International Nuclear Information System (INIS)

    Cabot, Pedro; Monglioni, Alberto; Carella, Eduardo

    2002-01-01

    The friction-stir process (FSW) developed by England's TWI in the last decade is a new concept in solid phase friction welding that is particularly appropriate for soldering aluminum and its alloys. It offers interesting aspects and can advantageously replace the usual arch processes. It is an automatic process that solders together long pieces by butt or lap welding and, therefore, overcomes the greater limitation of the conventional friction process that can be applied only to pieces with revolution symmetry. FSW is based essentially on the use of a cylindrical tool with a special profile, which is inserted between the surfaces where the materials meet to join them together at a certain rotation speed and under a specific force. The pieces must be rigidly butt bonded or overlapped to prevent movement when the tool moves forward along the joint producing the dispersion of oxides, local plastisizing of the material and the weld. Since its creation FSW has been the subject of many international publications, but until the present work there was no technologically relevant data about tools and procedures. For this reason, when its promising and novel nature was noticed, the CNEA began its own development project in 1997. The main characteristics of the tool are reviewed here and the results of tests carried out to evaluate the influence of the feed velocity on the mechanical properties of the butt joining of a 6.25 mm thick AA6061 T6 plate. Different accumulated aspects of the experience are discussed as well (cw)

  11. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  12. Modelling and Simulation of a Manipulator with Stable Viscoelastic Grasping Incorporating Friction

    Directory of Open Access Journals (Sweden)

    A. Khurshid

    2016-12-01

    Full Text Available Design, dynamics and control of a humanoid robotic hand based on anthropological dimensions, with joint friction, is modelled, simulated and analysed in this paper by using computer aided design and multibody dynamic simulation. Combined joint friction model is incorporated in the joints. Experimental values of coefficient of friction of grease lubricated sliding contacts representative of manipulator joints are presented. Human fingers deform to the shape of the grasped object (enveloping grasp at the area of interaction. A mass-spring-damper model of the grasp is developed. The interaction of the viscoelastic gripper of the arm with objects is analysed by using Bond Graph modelling method. Simulations were conducted for several material parameters. These results of the simulation are then used to develop a prototype of the proposed gripper. Bond graph model is experimentally validated by using the prototype. The gripper is used to successfully transport soft and fragile objects. This paper provides information on optimisation of friction and its inclusion in both dynamic modelling and simulation to enhance mechanical efficiency.

  13. Correlation between the bending strength and the thickness interlayer of alumina-mild steel friction welded at lower rotational speed

    International Nuclear Information System (INIS)

    Mohamad Zaky Noh; Luay Bakir Hussain; Zainal Arifin Ahmad

    2007-01-01

    The joining of ceramic-metal could be done through a few techniques: brazing, diffusion bonding, friction welding etc. However, the mechanism of ceramic-metal joining was still not properly understood. In this study, alumina rod was bonded to mild steel rod via friction welding technique by using Al 1100 sheet as interlayer. The diameter of the rods was 10 mm. Friction pressure of 20 MPa and forging pressure of 40 MPa were used. Rotational speeds were maintained at 900 rpm and friction times of 2 to 20 seconds were applied. The joining strength was determined through four point bending test. The maximum bending strength, 240 MPa was obtained at the friction times of 20 seconds. Under optical microscope and SEM observation, the deformation of the aluminum interface was clearly obtained. Mechanical interlocking and close contact between the alumina aluminum and aluminum-mild steel were observed at magnifications of 3000X. The strength of alumina-steel bonding is much dependent on the wettability of the alumina surface by the molten aluminum and the existing of mechanical interlocking between interlayer and sample materials. (Author)

  14. Prolegomena to the Study of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  15. Tribological Processes of the Mechanisms of Free Motion of Impulsive Friction Variators

    Directory of Open Access Journals (Sweden)

    B. Nedic

    2010-12-01

    Full Text Available Free motion mechanism (FMM of the impulsive variators is one vital part in power transmiting of impulsive lever variators which oscillating motion of external envelope (coulisse converted in rotation movement of the output shaft. The elements of mechanism of free motion are exposed to friction and wear during the work, which may be extremely intensive in some cases. The paper analyzes the tribological processes on elements of free motion mechanism of impulsive friction variators with special report on wear of tribomehanical system: the external envelope (coulisse - roller and roller - shaft (star.

  16. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Directory of Open Access Journals (Sweden)

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  17. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-01-01

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes

  18. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying

    2010-01-01

    Abstract: The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The ...

  19. Probing the surface properties of a polymer glass with macroscopic friction

    International Nuclear Information System (INIS)

    Bureau, Lionel

    2007-01-01

    We show how macroscopic friction can be used as a sensitive probe of chain dynamics at the surface of a glassy polymer. We present experiments in which a smooth poly(methylmethacrylate) (PMMA) solid slides on flat surfaces presenting different densities of pinning sites available for polymer/substrate bond formation. These experiments indicate that: (i) at high pinning level, frictional dissipation occurs through the sudden flips of molecular-sized bistable regions localized in a nm-thick layer of confined chains, which responds to shear as an elasto-plastic solid, and (ii) in situations of weak pinning, dissipation appears to be governed by a process akin to that proposed for rubber friction. This suggests that some 'glass-to-rubber' transition occurs at the polymer surface when its interaction with the substrate goes from strong to weak. The temperature-dependence of friction provides further support for the presence of a nm-thick layer at the polymer surface, which exhibits a rubberlike response in situation of weak interaction with the countersurface. This behavior results from the interplay between viscous flow in this surface layer, and shear induced depinning of adsorbed surface chains. Moreover, a quantitative analysis of the results indicates that the pinning dynamics of polymer chains is controlled by localized β rotational motions at the interface

  20. Friction conditions in the bearing area of an aluminium extrusion process

    NARCIS (Netherlands)

    Ma, X.; de Rooij, Matthias B.; Schipper, Dirk J.

    2012-01-01

    In aluminium extrusion processes, friction inside the bearing channel is important for controlling the surface quality of the extrusion products. The contact materials show a large hardness difference, one being hot aluminium, and the other being hardened tool steel. Further, the contact pressure is

  1. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering; Mahoney, M.W. [Rockwell International Corp., Thousand Oaks, CA (United States). Science Center

    2001-07-01

    Friction stir processing is a new thermo-mechanical processing technique that leads to a microstructure amenable for high strain rate superplasticity in commercial aluminum alloys. Friction stirring produces a combination of very fine grain size and high grain boundary misorientation angles. Preliminary results on a 7075 Al demonstrate high strain rate superplasticity in the temperature range of 430-510 C. For example, an elongation of >1000% was observed at 490 C and 1 x 10{sup -2} s{sup -1}. This demonstrates a new possibility to economically obtain a superplastic microstructure in commercial aluminum alloys. Based on these results, a three-step manufacturing process to fabricate complex shaped components can be envisaged: cast sheet or hot-pressed powder metallurgy sheet + friction stir processing + superplastic forging or forming. (orig.)

  2. Development of a process envelope for friction stir welding of DH36 steel – A step change

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Cater, Stephen; McPherson, Norman

    2014-01-01

    Highlights: • The friction stir welding speed on DH36 steel has been substantially increased. • Excellent quality welds offering potential economic advantages are obtained. • Friction stir welding of steel generates a very complex metallurgical system. • Slow and intermediate welding speed tensile samples fractured in the parent material. • Increasing traverse speed is seen to improve the impact toughness of the weld. - Abstract: Friction stir welding of steel presents an array of advantages across many industrial sectors compared to conventional fusion welding techniques. However, the fundamental knowledge of the friction stir welding process in relation to steel remains relatively limited. A microstructure and property evaluation of friction stir welded low alloy steel grade DH36 plate, commonly used in ship and marine applications has been undertaken. In this comprehensive study, plates of 2000 × 200 × 6 mm were butt welded together at varying rotational and traverse speeds. Samples were examined microscopically and by transverse tensile tests. In addition, the work was complemented by Charpy impact testing and micro-hardness testing in various regions of the weld. The study examined a wide range of process parameters; from this, a preliminary process parameter envelope has been developed and initial process parameter sets established that produce commercially attractive excellent quality welds through a substantial increase in the conventionally recognised weld traverse speed

  3. Unraveling the Processing Parameters in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  4. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  5. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  6. Friction Stir Welding and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  7. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    OpenAIRE

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying; Silva, Euclides Castorino da

    2012-01-01

    Abstract: The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materiais: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained...

  8. A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, S. [Advanced Materials and Manufacturing Processes Institute, Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Arora, A. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat (India); Doherty, K.J. [U.S. Army Research Laboratory, Materials and Manufacturing Science Division, Aberdeen Proving Ground, MD 21005 (United States); Mishra, R.S., E-mail: Rajiv.Mishra@unt.edu [Advanced Materials and Manufacturing Processes Institute, Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States)

    2016-12-15

    A framework is proposed to explain the dissolution and fragmentation of particles during friction stir welding and processing. Two major mechanisms dissolve the particle during the process: (i) thermally activated diffusion, and (ii) dislocation and grain boundary sweeping of atoms. We use a three-dimensional coupled viscoplastic flow and heat transfer model to quantify these mechanisms. For illustration purposes, calculations were done on a thermally stable Mg{sub 2}Y intermetallic that dissolved during processing. The framework is universal and applies to any second phase dissolution and fragmentation during friction stir welding and processing, thus enabling a science-based approach to tailor microstructures.

  9. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2017-09-01

    Full Text Available The poor wear performance of copper is improved by reinforcing hard ceramic particles. The present work reports the fabrication of Cu/TiB2 (0, 6, 12, 18 vol.% copper matrix composites (CMCs using friction stir processing (FSP. TiB2 particles were initially packed together into a machined groove and were subjected to FSP under a constant set of process parameters. The microstructure was observed using optical, scanning and transmission electron microscopy. The wear behavior was examined using a pin-on-disc apparatus. The micrographs showed a homogeneous distribution of TiB2 particles without aggregation and segregation. The distribution of TiB2 particles was closely persistent across the stir zone. TiB2 particles were well bonded with the copper matrix without any interfacial reaction. Many TiB2 particles fractured during FSP. The grains in the composite were extensively refined because of dynamic recrystallization and pinning effect of TiB2 particles. The wear behavior under dry sliding condition was presented in detail.

  10. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    Science.gov (United States)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction

  11. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  12. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  13. Multi-objective Optimization of Process Parameters in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    The objective of this paper is to investigate optimum process parameters in Friction Stir Welding (FSW) to minimize residual stresses in the work piece and maximize production efficiency meanwhile satisfying process specific constraints as well. More specifically, the choices of tool rotational...... speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2- dimensional sequentially coupled thermo...

  14. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation

    International Nuclear Information System (INIS)

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-01-01

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

  15. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  16. Hybrid FSWeld-bonded joint fatigue behaviour

    Science.gov (United States)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  17. Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

    Science.gov (United States)

    Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava

    2018-04-01

    A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.

  18. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    Science.gov (United States)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the

  19. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints

    International Nuclear Information System (INIS)

    Hynes, N. Rajesh Jesudoss; Nagaraj, P.; Sujana, J. Angela Jennifa

    2014-01-01

    Highlights: • Friction stud welding of AA 6063 and AISI 1030 was done successfully. • Ultrasonic evaluation of interfacial properties. • EDX analysis confirms intermetallic compound (FeAl) in the interfacial region. - Abstract: Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the

  20. Grain refinement of Aluminium alloys using friction stir processing

    International Nuclear Information System (INIS)

    Khraisheh, M.

    2004-01-01

    Full text.Friction Stir Processing (FSP) is a new advanced material processing technique used to refine and homogenize the microstructure of sheet metals. FSP is a solid state processing technique that uses a rapidly rotating non-consumable high strength tool steel pin that extends from a cylindrical shoulder. The rotating pin is forced with a predetermined load into the work piece and moved along with the work pieces, while the rotating pin deforms and stirs the locally heated material. It is a hot working process in which a large amount of deformation is imparted to the sheet. FS processed zone is characterized by dynamic recrystallization which results in grain refinement . this promising emerging process needs further investigations to develop optimum process parameters to produce the desired microstructure. In this work, we present preliminary results on the effects of rotational and translational speeds on grain refinement of AA5052. Under certain processing conditions, sub-micron grain structure was produced using this technique

  1. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-06-01

    Full Text Available Friction stir processing (FSP was applied to produce aluminum matrix composites (AMCs. Aluminum alloy AA6082 was used as the matrix material. Various ceramic particles, such as SiC, Al2O3, TiC, B4C and WC, were used as reinforcement particle. AA6082 AMCs were produced using a set of optimized process parameters. The microstructure was studied using optical microscopy, filed emission scanning electron microscopy and electron back scattered diagram. The results indicated that the type of ceramic particle did not considerably vary the microstructure and ultimate tensile strength (UTS. Each type of ceramic particle provided a homogeneous dispersion in the stir zone irrespective of the location and good interfacial bonding. Nevertheless, AA6082/TiC AMC exhibited superior hardness and wear resistance compared to other AMCs produced in this work under the same set of experimental conditions. The strengthening mechanisms and the variation in the properties are correlated to the observed microstructure. The details of fracture mode are further presented.

  2. Bonding Be to Cu alloys using a proprietary Brush Wellman process and new results for bonding Be to AlBeMet

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, D.E. [Brush Wellman Inc., Cleveland, OH (United States)

    1998-01-01

    A novel process has been investigated for bonding of beryllium to copper alloys. The process is compatible with current manufacturing capabilities and can be readily scaled up from laboratory to production scale. The effect of process variations on the bond are shown. Also shown are several new approaches for direct bonding of beryllium to an AlBeMet interlayer. Bond strengths of Be/AlBeMet 162/Cu alloy couples are presented. (author)

  3. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces

    International Nuclear Information System (INIS)

    Kern, Patrick

    2016-01-01

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are presented

  4. Origin of temperature-induced low friction of sputtered Si-containing amorphous carbon coatings

    International Nuclear Information System (INIS)

    Jantschner, O.; Field, S.K.; Holec, D.; Fian, A.; Music, D.; Schneider, J.M.; Zorn, K.; Mitterer, C.

    2015-01-01

    This work reports on a tribological study of magnetron-sputtered silicon-containing amorphous carbon thin films vs. their alumina counterparts. Temperature cycling during ball-on-disk tests in humid air revealed a decrease in the coefficient of friction from 0.3 to <0.02 beyond 240 ± 15 °C. Systematic variation of the environment confirmed oxygen to be responsible for the low friction. X-ray photoelectron spectroscopy of the wear tracks indicates oxidation of Si-C bonds and formation of Si-O-C bonds, followed by further oxidation to SiO 2 above 450 °C. Ab initio molecular dynamics simulations of gas interactions with the a-C surface revealed dissociation of O 2 and the formation of oxides. Additional density functional theory calculations of Si incorporation into a graphene layer, resembling the surface of the film, showed preferential attraction of gaseous species (H, O, -OH, H 2 O), to Si-sites as compared to C-sites. Hence, the temperature- and atmosphere-induced changes in friction coefficient can be understood based on correlative X-ray photoelectron spectroscopy and ab initio data: the formation of Si-O-C bonds stemming from a reaction of the as-deposited coating with atmosphere in the tribological contact is observed by theory and experiment

  5. Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing

    International Nuclear Information System (INIS)

    Ashjari, M.; Mostafapour Asl, A.; Rouhi, S.

    2015-01-01

    Friction stir processing, a lately devised grain refining and also microstructure homogenizing technique, has extensively been used on aluminum alloys. Significance of limiting the grain growth during the process, has made lots of researchers make endeavor to keep, as one of the ways of controlling grain growth, the process temperature low; one way of doing so, is performing the friction stir process under water, which keeps the peak temperature low and increases the cooling rate as well. In the present work, research has been done to make known the effects of doing submerged friction stir processing on mechanical properties of AA5083/Al 2 O 3p composite. The process was completed on each sample without changing the rotation and traverse speed of the tool. The pin of the tool was a threaded cylindrical one. Tensile and micro-hardness tests were used to evaluate the effect of the process on these properties of the samples. Also to study the microstructure of the samples, optical microscopy (OM) and scanning electron microscopy (SEM) micrographs were used. The results show that, underwater friction stir process is capable of producing defect-free AA5083/Al 2 O 3p nanocomposite. Analyzing the properties of the processed samples showed that, by significantly reducing the grain size, water environment has positive impact on the mechanical properties of the alloy; And that, Hall–Petch effect is more powerful than Orowan mechanism in enhancing the mechanical properties of the samples

  6. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  7. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  8. Development of a penetration friction apparatus (PFA) to measure the frictional performance of surgical suture.

    Science.gov (United States)

    Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile

    2017-10-01

    Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improvement of orthodontic friction by coating archwire with carbon nitride film

    International Nuclear Information System (INIS)

    Wei Songbo; Shao Tianmin; Ding Peng

    2011-01-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp 2 carbon dominated structures, and diversiform bonds (N-C, N≡C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp 2 C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  10. Improvement of orthodontic friction by coating archwire with carbon nitride film

    Energy Technology Data Exchange (ETDEWEB)

    Wei Songbo [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shao Tianmin, E-mail: shaotm@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Ding Peng [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081 (China)

    2011-10-01

    In order to reduce frictional resistance between archwire and bracket during orthodontic tooth movement, carbon nitride (CNx) thin films were deposited on the surface of archwires with ion beam assisted deposition (IBAD). The energy-dispersive X-ray spectrometer (EDS) analysis showed that the CNx film was successfully deposited on the surface of the orthodontic wires. X-ray photoelectron spectroscopy (XPS) analysis suggested that the deposited CNx film was sp{sup 2} carbon dominated structures, and diversiform bonds (N-C, N{identical_to}C, et al.) coexisted in the film. The friction tests indicated that the CNx film significantly reduced the wire-bracket friction both in ambient air and in artificial saliva. The sp{sup 2}C rich structure of the CNx film as well as its protection function for the archwire was responsible for the low friction of the wire-bracket sliding system.

  11. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  12. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  13. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  14. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  15. The role of friction in tow mechanics

    NARCIS (Netherlands)

    Cornelissen, Bo

    2013-01-01

    Friction plays and important role in the processing of fibrous materials: during production of tow materials, during textile manufacturing and during preforming operations for composite moulding processes. One of the poorly understood phenomena in these processes is the dynamic frictional behaviour

  16. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  17. Static friction in rubber-metal contacts with application to rubber pad forming processes

    NARCIS (Netherlands)

    Deladi, E.L.

    2006-01-01

    A static friction model suitable for rubber-metal contact is presented in this dissertation. In introduction, the motivation and the aims of the research are introduced together with the background regarding the related industrial application, which is the rubber pad forming process.

  18. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Science.gov (United States)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  19. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  20. Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings

    Science.gov (United States)

    Matějka, V.; Lu, Y.; Matějková, P.; Smetana, B.; Kukutschová, J.; Vaculík, M.; Tomášek, V.; Zlá, S.; Fan, Y.

    2011-12-01

    After a friction process several changes in phase composition of friction composites are often registered. High temperature, accompanied by high pressure induced during braking can cause initiation of chemical reactions which do not run at room or elevated temperatures under the atmospheric pressure. Most of the studies in the field of tribochemistry at friction surfaces of automotive semi-metallic brake linings deal with phenolic resin degradation and corrosion of metallic components. The paper addresses the formation of elemental antimony as well as the alloying process of iron with antimony observed on the surface of laboratory prepared semi-metallic friction composites containing stibnite. The role of alumina abrasives in the process of stibnite transformation is also discussed and mechanism of stibnite transformation was outlined.

  1. Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing

    Energy Technology Data Exchange (ETDEWEB)

    Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.; Olszta, Matthew J.; McDonnell, Martin; Whalen, Scott A.

    2018-04-01

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  2. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  3. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  4. Effect of energetic dissipation processes on the friction unit tribological

    Directory of Open Access Journals (Sweden)

    Moving V. V.

    2007-01-01

    Full Text Available In article presented temperature influence on reological and fric-tion unit coefficients cast iron elements. It has been found that surface layer formed in the temperature friction has good rub off resistance. The surface layer structural hardening and capacity stress relaxation make up.

  5. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  6. Characteristic evaluation of process parameters of friction stir welding of aluminium 2024 hybrid composites

    Science.gov (United States)

    Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.

  7. Development of friction welding process of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Shin, Hyung Seop; Jeong, Young Jin; Kim, Ki Hyun

    2004-01-01

    Bulk Metallic Glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager

  8. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    Science.gov (United States)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  9. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    Science.gov (United States)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013

  10. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  11. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  12. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  13. Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy

    International Nuclear Information System (INIS)

    Surekha, K.; Murty, B.S.; Prasad Rao, K.

    2011-01-01

    Highlights: → Poor corrosion resistance of AA 2219 can be improved by surface treatments. → FSP and LM leads to dissolution of second phase particles. → No literature available on comparison of corrosion behaviour after FSP and LM. → The study implies FSP is as good as LM in improving the corrosion resistance of AA 2219. -- Abstract: Dissolution of second phase particles (CuAl 2 ) present in AA 2219 aluminium improves the corrosion resistance of the alloy. Two surface treatment techniques, viz., solid state friction stir processing and fusion based laser melting lead to the reduction in CuAl 2 content and the effect of these processes on the corrosion behaviour of the alloy is compared in this study. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out to compare corrosion behaviour. The corrosion resistance achieved by friction stir processing is comparable to that obtained by the laser melting technique.

  14. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Friction dampers, the positive side of friction

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.; Busturia, J.M.; Sas, P.; Munck, de M.

    2004-01-01

    Friction is frequently seen as an unwanted phenomenon whose influence has to be either minimised or controlled. In this work one of the positive sides of friction is investigated: friction damping. Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of

  16. Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31

    Science.gov (United States)

    Nagasawa, T.; Otsuka, M.; Yokota, T.; Ueki, T.

    The applicability of friction stir welding to hot rolled sheet of commercial magnesium alloy AZ31 plates has been investigated. Friction stir weld joint showed mechanical strength comparable to that of base material, though the ductility remained at one half of that of the latter. The results are consistent with the microstructure which is characterized by a fine grained bond layer bounded by-intermediate grained base metals. It is found that both anodizing treatment and insertion of aluminum foil between batting faces do not degrade the joint properties at all. The results suggest that friction stir welding can be potentially applied to magnesium alloy.

  17. Reliable four-point flexion test and model for die-to-wafer direct bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, T., E-mail: toshiyuki.tabata@cea.fr; Sanchez, L.; Fournel, F.; Moriceau, H. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  18. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  19. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  20. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Daniel Joseph [The Ohio State Univ., Columbus, OH (United States); Mahaffey, David [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Senkov, Oleg [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Semiatin, Sheldon [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States)

    2017-12-01

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from an analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.

  1. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  2. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  3. Characterization of Microstructure and Microtexture in Longitudinal Sections from Friction Stir Processed Nickel-Aluminum Bronze

    National Research Council Canada - National Science Library

    Faires, Kenneth B

    2003-01-01

    .... Friction stir processing (FSP) represents a new technology for surface hardening of as-cast NAB by means of severe plastic deformation induced by a rotating tool that is traversed across the surface of a material...

  4. Friction stir spot welding of dissimilar aluminium alloys

    International Nuclear Information System (INIS)

    Bozkurt, Yahya

    2016-01-01

    Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys such as thin sheets aluminum alloys and dissimilar materials. FSSW is derived from friction stir welding technology, its principle benefit being low cost joining, lower welding temperature and shorter welding time than conventional welding methods. In this study, dissimilar AlMg 3 and AlCu 4 Mg 1 aluminium alloy plates were FSSWed by offsetting the low strength sheet on upper side of the weld. The effects of tool rotation speed on the microstructure, lap shear fracture load (LSFL), microhardness and fracture features of the weld are investigated by constant welding parameters. The maximum LSFL was obtained by increasing the tool rotational speed. However, the joints exhibited pull-out nugget fracture mode under lap shear tensile testing conditions. The largest completely bonded zone was observed as 5.86 mm which was narrower at the opposite position of the joint. Key words: friction stir spot welding, aluminium alloys, mechanical properties, dissimilar joint, welding parameters

  5. High-velocity frictional properties of gabbro

    Science.gov (United States)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  6. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  7. Frictional response of fatty acids on steel.

    Science.gov (United States)

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  8. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenfang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Duan, Jingzhu; Wang, Huan [Spinal surgery, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10 N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti{sub 4}N{sub 3−x} transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (L{sub c1} = 80 N, L{sub c2} = 120 N), hardness (21 GPa) and anti-wear performance (6.2 × 10{sup −7} mm{sup 3}/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. - Highlights: • A graded nano-TiN coating was prepared on biomedical Ti alloy by PVD. • The combination of hard and soft phase increases hardness and toughness. • The coating exhibits high bonding, low coefficient of friction and wear rate. • The new coating has good bio-safety and great clinical application prospect.

  9. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    Science.gov (United States)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  10. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    investigation, and the second stage is to design and manufacture a more practical tool system which can be used to forging some industrial components with larger capacity. The high performance and power piezoelectric actuator stack as the vibration source will be used for designing the vibration system in order...... to 50% with vibration being applied in forming process. Furthermore, by using finite element method, a series of the simulations of the cold forging process under die surface excitation have been implemented in order to further understand the influence of vibration on friction, especially the influence...

  11. Anti-aging Friction of Carbonate Fault Mirror and its Microstructural Interpretation

    Science.gov (United States)

    Park, Y.; Ree, J. H.; Hirose, T.

    2017-12-01

    In our slide-hold-slide (SHS) friction tests on carbonate fault rocks, fault mirror (FM), light reflective mirror-like fault surface, shows almost zero or slightly negative aging rate of friction (`anti-aging' friction), whereas carbonate faults without FM exhibit a positive aging rate. We analyzed microstructures from three types of carbonate faults to explore the cause of the anti-aging friction of FM. The three types of fault rocks before SHS tests were made from Carrara marble; (i) FM, (ii) crushed gouge of former FM (CF), and (iii) gouge produced by pre-shearing of Carrara marble (PR). The fault zone of FM before SHS tests consists of sintered nanograin patches smeared into negative asperities of wall rocks (thickness up to 150 μm) and a sintered gouge layer between wall rocks (thickness up to 200 μm) that is composed of tightly-packed nanograins (50-500 nm in size) with triple junctions and angular-subangular fragments (a few-100 μm) of sintered nanograin aggregates. A straight and discrete Y-shear surface defines a boundary between the gouge layer and the nanograin patches or between the layer and wall rock. CF specimens before SHS tests are composed of patches of sintered nanograins as in FM specimens and a porous gouge layer with finer nanograins (a few-20 nm in size) and angular fragments of former FM. PR specimens before SHS tests are composed of damaged wall rocks and porous gouge with finer nanograins (a few-tens of μm). After SHS tests, sintered appearance of grains within the fault zones of CF and PR indicates the increase in interparticle bonding and also in contact area by grain aggregation. In contrast, the gouge layer of FM specimens after SHS tests consists mostly of angular fragments of sintered nanograin aggregates. The angular shape of the fragments indicates little increase in bonding and contact area between the fragments. Tightly sintered nanograins in FM specimens would have a lower chemical reactivity with their size coarser and

  12. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Science.gov (United States)

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  13. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  14. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  15. The role of frictional contact of constituent blocks on the stability of masonry domes.

    Science.gov (United States)

    Beatini, Valentina; Royer-Carfagni, Gianni; Tasora, Alessandro

    2018-01-01

    The observation of old construction works confirms that masonry domes can withstand tensile hoop stresses, at least up to a certain level. Here, such tensile resistance, rather than a priori assumed as a property of the bulk material, is attributed to the contact forces that are developed at the interfaces between interlocked blocks under normal pressure, specified by Coulomb's friction law. According to this rationale, the aspect ratio of the blocks, as well as the bond pattern, becomes of fundamental importance. To investigate the complex assembly of blocks, supposed rigid, we present a non-smooth contact dynamic analysis, implemented in a custom software based on the Project Chrono C++ framework and complemented with parametric-design interfaces for pre- and post-processing complex geometries. Through this advanced tool, we investigate the role of frictional forces resisting hoop stresses in the stability of domes, either circular or oval, under static and dynamic loading, focusing, in particular, on the structural role played by the underlying drum and the surmounting tiburium .

  16. Solid state crack repair by friction stir processing in 304L stainless steel

    Institute of Scientific and Technical Information of China (English)

    C.Gunter; M.P.Miles; F.C.Liu; T.W Nelson

    2018-01-01

    Friction stir processing (FSP) was investigated as a method of repairing cracks in 12mm thick 304L stainless steel plate.Healing feasibility was demonstrated by processing a tapered crack using a PCBN/WRe tool with a 25 mm diameter shoulder and a pin length of 6.4 mm.The experiment showed that it was possible to heal a crack that begins narrow and then progressively grows up to a width of 2 mm.Bead on plate experiments were used to find the best parameters for creating a consolidated stir zone with the least amount of hardness difference compared to the base metal.Grain refinement in some specimens resulted in much higher stir zone hardness,compared to base metal.A plot of grain size versus microhardness showed a very strong inverse correlation between grain size and hardness,as expected from the HallPetch relationship.Corrosion testing was carried out in order to evaluate the effect of FSP on potential sensitization of the stir zone.After 1000h of intermittent immersion in 3.5% saline solution at room temperature it was found that no corrosion products formed on the base material controls or on any of the friction stir processed specimens.

  17. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  18. Artificial neural network modeling studies to predict the friction welding process parameters of Incoloy 800H joints

    Directory of Open Access Journals (Sweden)

    K. Anand

    2015-09-01

    Full Text Available The present study focuses on friction welding process parameter optimization using a hybrid technique of ANN and different optimization algorithms. This optimization techniques are not only for the effective process modelling, but also to illustrate the correlation between the input and output responses of the friction welding of Incoloy 800H. In addition the focus is also to obtain optimal strength and hardness of joints with minimum burn off length. ANN based approaches could model this welding process of INCOLOY 800H in both forward and reverse directions efficiently, which are required for the automation of the same. Five different training algorithms were used to train ANN for both forward and reverse mapping and ANN tuned force approach was used for optimization. The paper makes a robust comparison of the performances of the five algorithms employing standard statistical indices. The results showed that GANN with 4-9-3 for forward and 4-7-3 for reverse mapping arrangement could outperform the other four approaches in most of the cases but not in all. Experiments on tensile strength (TS, microhardness (H and burn off length (BOL of the joints were performed with optimised parameter. It is concluded that this ANN model with genetic algorithm may provide good ability to predict the friction welding process parameters to weld Incoloy 800H.

  19. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  20. Effects of tool speeds and corresponding torque/energy on stir zone formation during friction stir welding/processing

    International Nuclear Information System (INIS)

    Cui, S; Chen, Z W

    2009-01-01

    The way processing parameters and the measurable thermomechanical responses relate to the individual and combined flows forming the different processed zones during friction stir welding/processing has been studied. Experimentally, a cast Al-7Si-0.3Mg alloy was used to provide readily identifiable processed zones. A series of friction stir experiments covering a wide range of tool forward and rotation speeds were conducted followed by the measurement of individual and combined stir areas. It has been found that the basic modes of material flow did not change but the relative volume of each flow depended on both forward and rotation speeds. The trends observed in the present data explain how pin rotation relates to the material transportation mechanism and the associated torque required. This data also explains how forward speed, not rotation speed, relates to specific energy and the volume of the total stir zone.

  1. Thermal analysis of friction stir welding process and investigation into affective parameters using simulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mahmoud [University of Kashan, Kashan (Iran, Islamic Republic of); Bagheri, Behrouz [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Keivani, Rasoul [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Friction stir welding (FSW) as an efficient solid state joining process has numerous applications in industries. Temperature distribution analysis through simulation not only brings the possibility to characterize the microstructure of different zones, but also enables one to save cost and energy as optimum welding variables are obtained with less concern. In the present study, the temperature distribution during the friction stir welding (FSW) process of AA6061-T6 was evaluated using finite element method (FEM). Since experimental measurements cannot be readily made in the weld region, it is difficult to understand physics in the stir zone of the welds without simulation. Abaqus software was applied to model the parts and simulate the process of welding, while Johnson-Cook law utilized to evaluate the effect of strain rate and generated heat. FE-results were verified by experimental results. The comparisons revealed a good compatibility between the results. The effect of probe shape on temperature distribution was also studied. It was found that spherical pins result in the highest temperatures at workpieces with respect to cylindrical and tapered pins. Additionally, it was concluded that more heat is generated in workpieces as pin angle increases.

  2. Thermal analysis of friction stir welding process and investigation into affective parameters using simulation

    International Nuclear Information System (INIS)

    Abbasi, Mahmoud; Bagheri, Behrouz; Keivani, Rasoul

    2015-01-01

    Friction stir welding (FSW) as an efficient solid state joining process has numerous applications in industries. Temperature distribution analysis through simulation not only brings the possibility to characterize the microstructure of different zones, but also enables one to save cost and energy as optimum welding variables are obtained with less concern. In the present study, the temperature distribution during the friction stir welding (FSW) process of AA6061-T6 was evaluated using finite element method (FEM). Since experimental measurements cannot be readily made in the weld region, it is difficult to understand physics in the stir zone of the welds without simulation. Abaqus software was applied to model the parts and simulate the process of welding, while Johnson-Cook law utilized to evaluate the effect of strain rate and generated heat. FE-results were verified by experimental results. The comparisons revealed a good compatibility between the results. The effect of probe shape on temperature distribution was also studied. It was found that spherical pins result in the highest temperatures at workpieces with respect to cylindrical and tapered pins. Additionally, it was concluded that more heat is generated in workpieces as pin angle increases.

  3. Evaluation of deep drawing force under different friction conditions

    Directory of Open Access Journals (Sweden)

    Lăzărescu Lucian

    2017-01-01

    Full Text Available The purpose of this study is to investigate the variation of the required punch load during the deep drawing process under different friction conditions. In this regards, several deep-drawing tests of cylindrical cups were conducted under four friction conditions at the tool–blank interface. The first case was the dry deep-drawing, considered as a reference friction condition, while in the other three cases hydraulic oil, lithium-based grease and animal fat were used as lubricants. For each friction case, three levels of blank holding force were adopted, namely 10, 20 and 25 kN. The finite element simulation of the deep-drawing process was used to generate a set of calibration curves. By overlapping the experimental load-stroke curves on the calibration curves, the friction coefficient was estimated for each friction case.

  4. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  5. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  6. Debris and friction of self-ligating and conventional orthodontic brackets after clinical use.

    Science.gov (United States)

    Araújo, Raíssa Costa; Bichara, Lívia Monteiro; Araujo, Adriana Monteiro de; Normando, David

    2015-07-01

    To compare the degree of debris and friction of conventional and self-ligating orthodontic brackets before and after clinical use. Two sets of three conventional and self-ligating brackets were bonded from the first molar to the first premolar in eight individuals, for a total of 16 sets per type of brackets. A passive segment of 0.019 × 0.025-inch stainless steel archwire was inserted into each group of brackets. Frictional force and debris level were evaluated as received and after 8 weeks of intraoral exposure. Two-way analysis of variance and Wilcoxon signed-rank test were applied at P brackets (P brackets showed a higher amount of debris compared with the conventional brackets. The frictional force in conventional brackets was significantly higher when compared with self-ligating brackets before clinical use (P brackets, when exposed to the intraoral environment, showed a significant increase in frictional force during the sliding mechanics. Debris accumulation was higher for the self-ligating system.

  7. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  8. Modeling Friction in Modelica with the Lund-Grenoble Friction Model

    OpenAIRE

    Aberger, Martin; Otter, Martin

    2002-01-01

    The properties of the Lund-Grenoble friction model are summarized and different types of friction elements - bearing friction, clutch, one-way clutch, are implemented in Modelica using this friction formulation. The dynamic properties of these components are determined in simulations and compared with the friction models available in the Modelica standard library. This includes also an automatic gearbox model where 6 friction elements are coupled dynamically.

  9. Friction welded closures of waste canisters

    International Nuclear Information System (INIS)

    Klein, R.F.

    1987-01-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it into a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive-seal weld, the properties and thickness of which must be at least equal to those of the canister material. All studies and tests performed in the work discussed in this paper have the inertia friction welding concept to be highly feasible in this application. This paper describes the decision to investigate the inertia friction welding process, the inertia friction welding process itself, and a proposed equipment design concept. This system would provide a positive, reliable, inspectable, and full-thickness seal weld while utilizing easily maintainable equipment. This high-quality weld can be achieved even in highly contaminated hot cell

  10. Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite

    Science.gov (United States)

    Hussain, G.; Khan, I.

    2018-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.

  11. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    Science.gov (United States)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  12. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  13. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  14. Low-cost bump-bonding processes for high energy physics pixel detectors

    CERN Document Server

    AUTHOR|(CDS)2069357; Blank, Thomas; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The sh...

  15. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  16. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  17. Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process

    International Nuclear Information System (INIS)

    Ng, W.B.; Gupta, M.; Lim, S.C.

    1997-01-01

    During the sliding of aluminium alloys dispersed with graphite particulates, a layer of graphite is usually present at the sliding interface. This tribo-layer significantly reduces the amount of direct metal-to-metal contact, giving rise to low friction and a low rate of wear, making these composites useful candidate materials for anti-friction applications. Such self-lubricating composites are commonly fabricated via the squeeze casting, slurry casting or powder metallurgy route. These processes are expensive while the less-expensive conventional casting route is limited by the agglomeration of graphite particles in the composites, giving rise to poor mechanical properties. In this work, graphite particulate-reinforced Al-4.5 wt.% Cu composites with two effective graphite contents (Al-4.5 Cu/4.2 wt.% C and Al-4.5 Cu/6.8 wt.% C) were synthesized through an innovative partial liquid phase casting (rheocasting) technique, which is a modification of the conventional casting process. Unlubricated (without the use of conventional liquid lubrication) friction and wear performance of these composites as well as the un-reinforced aluminium alloy was determined using a pin-on-disk tester. The results revealed that the graphite-reinforced composites have a higher wear rate than the un-reinforced matrix alloy while their frictional characteristics are very similar within the range of testing conditions. Combining these with the information gathered from worn-surface examinations and wear-debris analysis, it is suggested that there exists a certain threshold for the amount and size of graphite particulates in these composites to enable them to have improved tribological properties. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  19. Friction

    Science.gov (United States)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to

  20. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  1. Lateral position detection and control for friction stir systems

    Science.gov (United States)

    Fleming, Paul; Lammlein, David; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David; Hartman, Daniel A.

    2010-12-14

    A friction stir system for processing at least a first workpiece includes a spindle actuator coupled to a rotary tool comprising a rotating member for contacting and processing the first workpiece. A detection system is provided for obtaining information related to a lateral alignment of the rotating member. The detection system comprises at least one sensor for measuring a force experienced by the rotary tool or a parameter related to the force experienced by the rotary tool during processing, wherein the sensor provides sensor signals. A signal processing system is coupled to receive and analyze the sensor signals and determine a lateral alignment of the rotating member relative to a selected lateral position, a selected path, or a direction to decrease a lateral distance relative to the selected lateral position or selected path. In one embodiment, the friction stir system can be embodied as a closed loop tracking system, such as a robot-based tracked friction stir welding (FSW) or friction stir processing (FSP) system.

  2. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  3. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    Science.gov (United States)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  4. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    Science.gov (United States)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  5. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  6. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    Science.gov (United States)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  7. Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys

    International Nuclear Information System (INIS)

    Sun, Y.F.; Fujii, H.; Tsuji, N.

    2013-01-01

    The ultrafine grained (UFGed) 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after 5 cycles, were spot friction stir welded to 2 mm thick 6061-T6 Al alloy plates at different rotation speeds. Although the UFGed 1050 Al plates were used as the lower plates in order to reduce the heat generation therein during the welding process, the initial nano-sized lamellar structure still transformed into an equiaxial grain structure with a grain size of about 5.9 µm in the stir zone of the joints. Simultaneously, coarsening of the precipitates and formation of large quantities of nano-sized subgrains were found in the stir zone of the 6061 Al alloy plates. Microstructural observation by high resolution transmission electron microscope showed that the two plates were bonded through a transitional layer with a thickness of about 15 nm, within which a lot of screw dislocations formed due to the frictional force between the two plates. A mechanical properties evaluation revealed that the maximum shear tensile load can reach about 4127 N and the joints fractured just outside the hook region in the lower 1050 Al plate

  8. Development of a Simulink® toolbox for friction control design and compensation

    Directory of Open Access Journals (Sweden)

    Teodor DUMITRIU

    2005-12-01

    Full Text Available This paper focuses on the development of a MATLAB/Simulink® library for servo-systems with friction as a part of a new simulation platform dedicated to model, analysis and control design of friction. It is well known that friction is a very important process for the control engineering both for high-precision servo – mechanisms and simple pneumatic and hydraulic systems. Highly nonlinear process, friction may result in steady state errors, limit cycles and poor performance. It is therefore important for control engineering to understand friction phenomena and to know how to deal with them. Moreover, a reliable library of friction models that captures the friction behavior provides an important tool in order to investigate by analysis and simulation the properties of friction that are relevant to control design.

  9. Implementing unsteady friction in pressure-time measurements

    OpenAIRE

    Jonsson, Pontus; Ramdal, Jorgen; Cervantes, Michel; Nielsen, Torbjørn Kristian

    2012-01-01

    Laboratory measurements using the pressure‐time method showed a velocity or Reynolds number dependent error of the flow estimate. It was suspected that the quasi steady friction formulation of the method was the cause. This was investigated, and it was proved that implementing a model for unsteady friction into the calculations improved the result. This paper presents the process of this investigation, and proposes a new method for treatment of the friction term in the pressure‐time method.

  10. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  11. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  12. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  13. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  14. Anomalous friction of graphene nanoribbons on waved graphenes

    Directory of Open Access Journals (Sweden)

    Jun Fang

    2015-11-01

    Full Text Available Friction plays a critical role in the function and maintenance of small-scale structures, where the conventional Coulomb friction law often fails. To probe the friction at small scales, here we present a molecular dynamics study on the process of dragging graphene nanoribbons on waved graphene substrates. The simulation shows that the induced friction on graphene with zero waviness is ultra-low and closely related to the surface energy barrier. On waved graphenes, the friction generally increases with the amplitude of the wave at a fixed period, but anomalously increases and then decreases with the period at a fixed amplitude. These findings provide insights into the ultra-low friction at small scales, as well as some guidelines into the fabrication of graphene-based nano-composites with high performance.

  15. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  16. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  17. On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

    Science.gov (United States)

    Kolubaev, A. V.; Zaikina, A. A.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2018-04-01

    A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

  18. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    Science.gov (United States)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  19. The friction coefficient and its relation to the contact fatigue characteristics of materials

    International Nuclear Information System (INIS)

    Fedorov, S.V.

    1995-01-01

    The process of friction has been treated within the framework of an ergodynamic concept of deformable bodies. Equations of the friction energy balance are derived and a structure-energy interpretation of the friction process proposed. The friction parameter ranges within the domain of compatibility have been computed for tribosystems. The friction coefficient is shown to be a characteristic of the fatigue, wear resistance, and order (disorder) parameter of a tribosystem. Equations of state of a tribosystem and universal friction constants have been proposed. 31 refs.; 2 figs.; 3 tabs

  20. Modeling of Instabilities and Self-organization at the Frictional Interface

    Science.gov (United States)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a

  1. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    of mechanical, electrical, thermal and metallurgical processes, which are essential for simulation of resistance welding process to predict the welding results and evaluate the weldability of materials. These functions have been further extended with new functions for optimization of welding process parameters...... and predicting welding process window, for weld planning with optimal welding parameter settings, and for modeling microstructures and hardness distribution after welding. Latest developments have been made on simulation of resistance welding with nonconductive materials for applications in weld bonding......This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling...

  2. Process Model for Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the

  3. Characterization of friction welding for IN713LC and AISI 4140 steel

    International Nuclear Information System (INIS)

    Yeom, J.T.; Park, N.K.; Park, J.H.; Lee, J.W.

    2004-01-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  4. Characterization of friction welding for IN713LC and AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, J.T.; Park, N.K. [Dept. of Materials Processing, Korea Inst. of Machinery and Materials, Kyungnam (Korea); Park, J.H.; Lee, J.W. [ENPACO Co., Changwon (Korea)

    2004-07-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  5. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  6. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  7. Simulation of Friction Stir Processing in 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Miles M.P.

    2016-01-01

    Full Text Available A major dilemma facing the nuclear industry is repair or replacement of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for weld repair, the high temperatures and thermal stresses inherent in the process enhance the growth of helium bubbles, causing intergranular cracking in the heat-affected zone (HAZ. Friction stir processing (FSP has potential as a weld repair technique for irradiated stainless steel, because it operates at much lower temperatures than fusion welding, and is therefore less likely to cause cracking in the HAZ. Numerical simulation of the FSP process in 304L stainless steel was performed using an Eulerian finite element approach. Model input required flow stresses for the large range of strain rates and temperatures inherent in the FSP process. Temperature predictions in three locations adjacent to the stir zone were accurate to within 4% of experimentally measure values. Prediction of recrystallized grain size at a location about 6mm behind the tool center was less accurate, because the empirical model employed for the prediction did not account for grain growth that occurred after deformation in the experiment was halted.

  8. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    This paper estimates matching functions to measure search frictions in the Japanese labor market and presents determinants of search duration to explain the effect of unemployment benefits on a job seeker’s behavior. We employ administrative micro data that track the job search process of individ......This paper estimates matching functions to measure search frictions in the Japanese labor market and presents determinants of search duration to explain the effect of unemployment benefits on a job seeker’s behavior. We employ administrative micro data that track the job search process...

  9. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  10. Understanding and Observing Subglacial Friction Using Seismology

    Science.gov (United States)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  11. THE USE OF EXCHANGEABLE BONDS DURING THE PRIVATIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Damian Kaźmierczak

    2014-04-01

    Full Text Available In our article we present the use of hybrid securities in the privatization process. We show that exchangeable bonds may be successfully applied during privatization of state companies throughout the world. It may be profitable for many reasons. Firstly, the exchangeables offer a much lower coupon in comparison with the ordinary government bonds which may be crucial for highly indebted countries. Secondly, throughout the entire maturity period the state remains the owner of the privatized firm which means that the government can be a beneficiary of high dividends paid by the public enterprises and can actively manage them. Thirdly, in the case of unfavorable market conditions the authorities get an opportunity to wait for the end of economic turmoil in order to avoid selling the equity participations under their true value. Finally, the issue of certain types of exchangeables (e.g. callable exchangeables or mandatory exchangeables and adding several provisions (e.g. greenshoe option or clean-up call makes the instrument more flexible for the issuer. We also present a few examples of the privatization processes by means of exchangeable bonds i.a. in Germany and in Austria. Most of such operations, e.g. German Deutsche Post, Austrian Telekom Austria or Portuguese Galp Energia SGPS S.A. were completed with success.

  12. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  13. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  14. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology.

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D V

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology-the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  15. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D. V.

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology—the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  16. Optimization of the Process Parameters for Controlling Residual Stress and Distortion in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    In the present paper, numerical optimization of the process parameters, i.e. tool rotation speed and traverse speed, aiming minimization of the two conflicting objectives, i.e. the residual stresses and welding time, subjected to process-specific thermal constraints in friction stir welding......, is investigated. The welding process is simulated in 2-dimensions with a sequentially coupled transient thermo-mechanical model using ANSYS. The numerical optimization problem is implemented in modeFRONTIER and solved using the Multi-Objective Genetic Algorithm (MOGA-II). An engineering-wise evaluation or ranking...

  17. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  18. Frictional behavior of carbon fiber tows: a contact mechanics model of tow–tow friction

    NARCIS (Netherlands)

    Cornelissen, Bo; de Rooij, Matthias B.; Rietman, Bert; Akkerman, Remko

    2014-01-01

    Composite-forming processes involve mechanical interactions at the ply, tow, and filament level. The deformations that occur during forming processes are governed by friction between the contacting tows on the mesoscopic level and consequently between filaments on the microscopic level. A thorough

  19. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    Science.gov (United States)

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  20. Influence of pulsed plasma streams processing on wear behavior of steels in different friction conditions

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Tereshin, V.I.; Bovda, A.M.; Tortika, A.S.

    2000-01-01

    Pulsed plasma streams processing was applied for surface modification of industrial steel samples. Different types of wear tests (pin-on-disk,flat-on-flat, abrasive,cavitation) were carried out for samples irradiated by pulsed nitrogen plasma streams. There was achieved essential decrease of wear and tear of processed surfaces of all kinds of steels including previously thermally quenched ones. Obtained results are of importance for both determination of optimal regimes of plasma streams processing and the most resulting use of pulsed plasma streams for technology purpose, i.e. for identification of wear modes and optimal friction conditions for steels processed by plasma streams

  1. Nondestructive Evaluation of the Friction Weld Process on 2195/2219 Grade Aluminum

    Science.gov (United States)

    Suits, Michael W.; Clark, Linda S.; Cox, Dwight E.

    1999-01-01

    In 1996, NASA's Marshall Space Flight Center began an ambitious program designed to find alternative methods of repairing conventional TIG (Tungsten Inert Gas) welds and VPPA (Variable Polarity Plasma Arc) welds on the Space Shuttle External Tank without producing additional heat-related anomalies or conditions. Therefore, a relatively new method, invented by The Welding Institute (TWI) in Cambridge, England, called Friction Stir Welding (FSW), was investigated for use in this application, as well as being used potentially as an initial weld process. As with the conventional repair welding processes, nondestructive evaluation (NDE) plays a crucial role in the verification of these repairs. Since it was feared that conventional NDE might have trouble with this type of weld structure (due to shape of nugget, grain structure, etc.) it was imperative that a complete study be performed to address the adequacy of the NDE process. This paper summarizes that process.

  2. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  3. Friction and wear study of NR/SBR blends with Si3N4Filler

    Science.gov (United States)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  4. Hybrid Search for Faster Production and Safer Process Conditions in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Deb, Kalyanmoy; Hattel, Jesper Henri

    2011-01-01

    The objective of this paper is to investigate optimum process parameters and tool geometries in Friction Stir Welding (FSW) to minimize temperature difference between the leading edge of the tool probe and the work piece material in front of the tool shoulder, and simultaneously maximize traverse...... welding speed, which conflicts with the former objective. An evolutionary multi-objective optimization algorithm (i.e. NSGA-II), is applied to find multiple trade-off solutions followed by a gradient-based local search (i.e. SQP) to improve the convergence of the obtained Pareto-optimal front. In order...... choices have been offered based on several process specific performance and cost related criteria....

  5. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  6. Application of acoustic emission technique and friction welding for excavator hose nipple

    International Nuclear Information System (INIS)

    Kong, Yu Sik; Lee, Jin Kyung

    2013-01-01

    Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.

  7. Friction spinning - Twist phenomena and the capability of influencing them

    Science.gov (United States)

    Lossen, Benjamin; Homberg, Werner

    2016-10-01

    The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.

  8. Methods and devices used to measure friction in rolling

    DEFF Research Database (Denmark)

    Jeswiet, J.; Arentoft, Mogens; Henningsen, Poul

    2006-01-01

    Friction at the workpiece-die boundary, in both bulk forming and sheet forming is, arguably, the single most important physical parameter influencing the processing of metals; yet it remains the least understood. Hence there is a need for basic research into metal-die interface mechanisms. To gain...... a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure frictional stress in metal working has been pursued by many researchers. This paper surveys methods that have been used...... to measure friction in rolling in the past and discusses some of the recent sensor designs that can now be used to measure friction both in production situations and for research purposes....

  9. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    Science.gov (United States)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a

  10. Weld defect identification in friction stir welding using power spectral density

    Science.gov (United States)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  11. Benchmarking of direct and indirect friction tests in micro forming

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Calaon, Matteo; Arentoft, M.

    2012-01-01

    The sizeable increase in metal forming friction at micro scale, due to the existence of size effects, constitutes a barrier to the realization of industrial micro forming processes. In the quest for improved frictional conditions in micro scale forming operations, friction tests are applied...... to qualify the tribological performance of the particular forming scenario. In this work the application of a simulative sliding friction test at micro scale is studied. The test setup makes it possible to measure the coefficient of friction as a function of the sliding motion. The results confirm a sizeable...... increase in the coefficient of friction when the work piece size is scaled down. © (2012) Trans Tech Publications....

  12. Acting on frictions: Learning blocks and flows in knowledge intensive organizations

    NARCIS (Netherlands)

    Bijlsma-Frankema, K.M.; Rosendaal, B.W.; Taminiau, Y.T.A.

    2006-01-01

    Purpose - It is argued in this paper that opportunities for learning manifest themselves in the form of frictions between the structure-as-experienced by actors and the structure-as-preferred. These frictions are considered as potential triggers of learning processes. The concept of friction

  13. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  14. Method for Friction Force Estimation on the Flank of Cutting Tools

    Directory of Open Access Journals (Sweden)

    Luis Huerta

    2017-01-01

    Full Text Available Friction forces are present in any machining process. These forces could play an important role in the dynamics of the system. In the cutting process, friction is mainly present in the rake face and the flank of the tool. Although the one that acts on the rake face has a major influence, the other one can become also important and could take part in the stability of the system. In this work, experimental identification of the friction on the flank is presented. The experimental determination was carried out by machining aluminum samples in a CNC lathe. As a result, two friction functions were obtained as a function of the cutting speed and the relative motion of the contact elements. Experiments using a worn and a new insert were carried out. Force and acceleration were recorded simultaneously and, from these results, different friction levels were observed depending on the cutting parameters, such as cutting speed, feed rate, and tool condition. Finally, a friction model for the flank friction is presented.

  15. Frictional behaviour of high performance fibrouws tows: A contact mechanics model of tow -metal friction

    NARCIS (Netherlands)

    Cornelissen, Bo; de Rooij, Matthias B.; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Composites forming processes involve mechanical interactions on the ply, tow, and filament level. The deformations that occur during forming processes are governed by friction between tows and tooling material on the mesoscopic level and consequently between filaments and a counterface on the

  16. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  17. Bioinspired orientation-dependent friction.

    Science.gov (United States)

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  18. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas

    2005-01-01

    the output from the transducer, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material between transducer and roll. Aluminum, cupper...

  19. Accurate solutions of Colebrook-White's friction factor formulae ...

    African Journals Online (AJOL)

    Estimations of friction factor (Ff) in pipeline systems and fluid transport are essential ingredients in engineering fields and processes. In this paper explicit friction factor formulae (Fff) were proposed and evaluated with an aim of developing error free Fff. General Fff that relate Ff, Reynolds number (Re) and relative roughness ...

  20. A study of the friction and wear processes of the structural components of fuel assemblies for water-cooled and water moderated power reactors

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Matvienko, I.; Drozdov, Y.; Puchkov, V.

    2011-01-01

    The friction forces affect the fuel assembly (FA) strength at all the stages of its lifecycle. The paper covers the methods and the results of the pre-irradiation experimental studies of the static and dynamic processes the friction forces are involved in. These comprise the FA assembling at the manufacturer, fuel rod flow-induced vibration and fretting-wear in the fuel rod-to-cell friction pairs, rod cluster control assembly (RCCA) movement in the FA guide tubes, FA bowing, FA loading-unloading into the core, irradiation-induced growth and thermal-mechanical fuel rod-to-spacer grid interaction. (authors)

  1. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  2. Experimental Study on Bond-Slip Behavior of Bamboo Bolt-Modified Slurry Interface under Pull-Out Load

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2018-01-01

    Full Text Available This paper presents an analysis of bamboo bolt-modified slurry interfaces based on 26 in situ axial pull-out tests intended to highlight the mechanical behavior of interface under a fracture mode. Three impact factors are analyzed: anchorage length, bolt diameter, and bolt hole diameter, using the same materials of bamboo and modified slurry. The result shows that the interface between the bamboo bolt and anchoring agent is the control interface of an anchorage system, and the local behavior of the interface involves four stages: elastic, soften, friction, and decoupling. Distribution law and change trend of slippage, stress, and strain of anchoring interface along with the axial direction of an anchor bolt were analyzed. The result shows that there is effective anchoring length limit in this kind of interface, and that the complete decoupling phenomenon should not be neglected. Through a comparative analysis of the existing bond-slip model and interface bond-slip curve, and considering the correspondence of the strain-slip curve and trilinear bond-slip model simultaneously, a modified trilinear bond-slip model has been proposed. The friction section of this model is limited, and shearing stress in the complete decoupling section is zero.

  3. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  4. Microstructure modification of 2024 aluminum alloy produced by friction drilling

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.A., E-mail: alan@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); Fortuna, S.V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); Kolubaev, E.A. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Kalashnikova, T.A. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation)

    2017-04-13

    In this study modification of AA2024 microstructure produced by friction drilling was investigated. To reveal the role of deformation, high temperature and friction on microstructure modification methods of optical and scanning electron microscopy and microhardness test were used. Different zones of material around friction drilling hole has a special characterization through grain size, volume fraction and size of incoherent second phase particles and microhardness. It has been found that deformation, high temperature and friction in friction drilling process lead to recrystallization of grain structure and dissolution of incoherent second phase particles due to strain-induced dissolution effect. Microhardness of recrystallized material has increased.

  5. Ultralow friction of ink-jet printed graphene flakes.

    Science.gov (United States)

    Buzio, R; Gerbi, A; Uttiya, S; Bernini, C; Del Rio Castillo, A E; Palazon, F; Siri, A S; Pellegrini, V; Pellegrino, L; Bonaccorso, F

    2017-06-08

    We report the frictional response of few-layer graphene (FLG) flakes obtained by the liquid phase exfoliation (LPE) of pristine graphite. To this end, we inkjet print FLG on bare and hexamethyldisilazane-terminated SiO 2 substrates, producing micrometric patterns with nanoscopic roughness that are investigated by atomic force microscopy. Normal force spectroscopy and atomically-resolved morphologies indicate reduced surface contamination by solvents after a vacuum annealing process. Notably, the printed FLG flakes show ultralow friction comparable to that of micromechanically exfoliated graphene flakes. Lubricity is retained on flakes with a lateral size of a few tens of nanometres, and with a thickness as small as ∼2 nm, confirming the high crystalline quality and low defects density in the FLG basal plane. Surface exposed step edges exhibit the highest friction values, representing the preferential sites for the origin of the secondary dissipative processes related to edge straining, wear or lateral displacement of the flakes. Our work demonstrates that LPE enables fundamental studies on graphene friction to the single-flake level. The capability to deliver ultralow-friction-graphene over technologically relevant substrates, using a scalable production route and a high-throughput, large-area printing technique, may also open up new opportunities in the lubrication of micro- and nano-electromechanical systems.

  6. Ultra Low Friction of DLC Coating with Lubricant

    International Nuclear Information System (INIS)

    Kano, M; Yoshida, K

    2010-01-01

    The objective of this study was to find a trigger to make clear a mechanism of the ultra low friction by evaluating the friction property of DLC-DLC combination under lubrication with the simple fluid. The Pin-on-disc reciprocating and rotating sliding tests were conducted to evaluate the friction property. The super low friction property of pure sliding with the ta-C(T) pair coated by the filtered arc deposition process under oleic acid lubrication was found at the mixed lubrication condition. It was thought that the low share strength tribofilm composed of water and acid seemed to be formed on ta-C sliding interface. Additionally, the smooth sliding surface formed on ta-C(T) was seemed to be required to keep this tribofilm. Then, the super low friction was thought to be obtained by this superlubrication condition. Although the accurate and direct experimental data must be required to make clear this super low friction mechanism, the advanced effect obtained by the simple material combination is expected to be applied on the large industrial fields in near future.

  7. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  8. The friction influence on stress in micro extrusion

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-01-01

    Full Text Available Manufacturing of metallic parts by forming methods is industrially widespread due to high production rate, high accuracy, dimension’s and shape’s repeatability and good surface quality. The application of metal extrusion methods for the production of micro parts is possible, but there are some technological problems caused by small dimensions. Size effect is appearing. One of size effect symptom in micro extrusion, is a significant influence of rough contact between workpiece and tool while processing. In the case of rough contact without friction, material flows in the vicinity of the die surface. In order to explain more accurately a friction distribution in this area, the plastic wave friction model is proposed. This paper analyses specifications of a metal extrusion in micro scale. Using the friction model, a substitute friction shear factor mz and its influence on extrusion loading curves is determined in relationship to size of asperities.

  9. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    Science.gov (United States)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  10. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  11. Study Friction Distribution during the Cold Rolling of Material by Matroll Software

    International Nuclear Information System (INIS)

    Abdollahi, H.; Dehghani, K.

    2007-01-01

    Rolling process is one of the most important ways of metal forming. Since the results of this process are almost finished product, therefore controlling the parameters affecting this process is very important in order to have cold rolling products with high quality. Among the parameters knowing the coefficient of friction within the roll gap is known as the most significant one. That is because other rolling parameters such as rolling force, pressure in the roll gap, forward slip, surface quality of sheet, and the life of work rolls are directly influenced by friction. On the other hand, in rolling calculation due to lake of a true amount for coefficient of friction a supposed value is considered for it. In this study, a new software (Matroll), is introduced which can determine the coefficient of friction (COF) and plot the friction hills for an industrial mill. Besides, based on rolling equations, it offers about 30 rolling parameters as outputs. Having the rolling characteristics as inputs, the software is able to calculate the coefficient of friction. Many rolling passes were performed on real industrial aluminum mill. The coefficient of friction was obtained for all passes. The results are in good agreement with the findings of the other researchers

  12. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  13. Mechanisms of friction in diamondlike nanocomposite coatings

    International Nuclear Information System (INIS)

    Scharf, T. W.; Ohlhausen, J. A.; Tallant, D. R.; Prasad, S. V.

    2007-01-01

    Diamondlike nanocomposite (DLN) coatings (C:H:Si:O) processed from siloxane precursors by plasma enhanced chemical vapor deposition are well known for their low friction and wear behaviors. In the current study, we have investigated the fundamental mechanisms of friction and interfacial shear strength in DLN coatings and the roles of contact stress and environment on their tribological behavior. Friction and wear measurements were performed from 0.25 to 0.6 GPa contact pressures in three environments: dry ( 2 containing fragments, whereas those formed in dry nitrogen had hydrogenated and long range ordered carbons with practically no SiO 2 fragments, ultimately resulting in much lower interfacial shear strength and COF

  14. A preliminary study on the application of Friction Welding in structural repairs

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, D.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Blakemore, G.R. [Pressure Products Group, Aberdeen (United Kingdom); Gibson, D. [National Hyperbaric Centre, Aberdeen (United Kingdom)

    1998-11-01

    Friction Welding is characterised by the absence of a fusion zone associated with comparatively low temperatures in the weld. These features allow the application of this welding process in joining and repair of most engineering structures, especially in hazardous environments. This work presents a preliminary study on different friction welding processes, including the recently developed Friction Hydro-Pillar Processing (FHPP) and Friction Stitch Welding, as joining technologies for thick-walled structures. The use of these welding processes in different industrial applications, compared with the commonly used arc welding counterparts, as well as the influence of welding parameters on the weldment integrity are discussed. A brief description of a portable friction welding equipment and its possible implementation for FHPP are presented. Stud welds produced in the commissioning phase of this equipment have been analysed and tested to assess their quality. (orig.) [Deutsch] Da die Schweisszonentemperatur waehrend des Reibschweissvorganges vergleichsweise niedrig ist, bildet sich kein Schmelzbad aus. Anwendbar ist dieses Schweissverfahren zur Verbindung oder Reparatur der meisten Metallkonstruktionen, speziell in risikobehafteter Umgebung. Diese Arbeit enthaelt eine Vorstudie zu verschiedenen Reibschweissprozessen, einschliesslich der neu entwickelten Friction Hydro-Pillar Processing (FHPP)- und Friction Stitch Welding-Verfahren, als Fuegetechniken fuer dickwandige Strukturen. Die Anwendbarkeit dieser Schweissprozesse in verschiedenen Industrien, verglichen mit herkoemmlich verwendeten Lichtbogenschweissverfahren, sowie der Einfluss von Schweissparametern auf die Guete der Verbindung werden diskutiert. Praesentiert wird ausserdem eine tragbare Reibschweissmaschine und ihre moegliche Verwendung zum FHPP-Schweissen. Bolzenschweissungen, die waehrend der Inbetriebnahmephase dieser Maschine hergestellt wurden, sind zur Charakterisierung ihrer Qualitaet analysiert und

  15. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  16. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium

    International Nuclear Information System (INIS)

    Rao, H.M.; Ghaffari, B.; Yuan, W.; Jordon, J.B.; Badarinarayan, H.

    2016-01-01

    The microstructure and lap-shear behaviors of friction stir linear welded wrought Al alloy AA6022-T4 to cast Mg alloy AM60B joints were examined. A process window was developed to initially identify the potential process conditions. Multitudes of welds were produced by varying the tool rotation rate and tool traverse speed. Welds produced at 1500 revolutions per minute (rpm) tool rotation rate and either 50 mm/min or 75 mm/min tool traverse speed displayed the highest quasi-static failure load of ~3.3 kN per 30 mm wide lap-shear specimens. Analysis of cross sections of untested coupons indicated that the welds made at these optimum welding parameters had negligible microvoids and displayed a favorable weld geometry for the cold lap and hook features at the faying surface, compared to welds produced using other process parameters. Cross sections of the tested coupons indicated that the dominant crack initiated on the advancing side and progressed through the weld nugget, which consists of intermetallic compounds (IMC). This study demonstrates the feasibility of welding wrought Al and cast Mg alloy via friction stir linear welding with promising lap-shear strength results.

  17. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Rao, H.M. [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States); Ghaffari, B. [Research and Advanced Engineering, Ford Motor Company, Dearborn, MI 48121 (United States); Yuan, W., E-mail: wei.yuan@hitachi-automotive.us [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States); Jordon, J.B. [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Badarinarayan, H. [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States)

    2016-01-10

    The microstructure and lap-shear behaviors of friction stir linear welded wrought Al alloy AA6022-T4 to cast Mg alloy AM60B joints were examined. A process window was developed to initially identify the potential process conditions. Multitudes of welds were produced by varying the tool rotation rate and tool traverse speed. Welds produced at 1500 revolutions per minute (rpm) tool rotation rate and either 50 mm/min or 75 mm/min tool traverse speed displayed the highest quasi-static failure load of ~3.3 kN per 30 mm wide lap-shear specimens. Analysis of cross sections of untested coupons indicated that the welds made at these optimum welding parameters had negligible microvoids and displayed a favorable weld geometry for the cold lap and hook features at the faying surface, compared to welds produced using other process parameters. Cross sections of the tested coupons indicated that the dominant crack initiated on the advancing side and progressed through the weld nugget, which consists of intermetallic compounds (IMC). This study demonstrates the feasibility of welding wrought Al and cast Mg alloy via friction stir linear welding with promising lap-shear strength results.

  18. FEM simulation of friction testing method based on combined forward rod-backward can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels; Zhang, Z. L

    1997-01-01

    A new friction testing method by combined forward rod-backward can extrusion is proposed in order to evaluate frictional characteristics of lubricants in forging processes. By this method the friction coefficient mu and the friction factor m can be estimated along the container wall and the conical...... curves are obtained by rigid-plastic FEM simulations in a combined forward rod-backward can extrusion process for a reduction in area R-b = 25, 50 and 70 percent in the backward can extrusion. It is confirmed that the friction factor m(p) on the punch nose in the backward cart extrusion has almost...... in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm the analysis resulting in reasonable values for the friction coefficient and the friction factor....

  19. Friction-stir processing of a high-damping Mn-Cu alloy used for marine propellers

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, S.P.; Edwards, D.P.; Majumdar, A. [Defence Science and Technology Organisation, Melbourne (Australia); Moutsos, S. [Centre for Advanced Materials Technology, Monash Univ. (Australia); Mahoney, M.W. [Rockwell Scientific, Thousand Oaks (United States)

    2003-07-01

    Mn-Cu alloys are used for specialised applications, such as marine propellers, where high noise-damping characteristics are required. These alloys tend to have more severe shrinkage porosity than conventional propeller alloys, and the corrosion resistance (including stress-corrosion and corrosion-fatigue resistance) of the alloys is not as high as desirable. Friction-stir processing (FSP) trials on one such alloy (tradename Sonoston) have shown that near-surface porosity can be eliminated and that the coarse, as-cast microstructure can be significantly refined. The corrosion resistance of processed material is substantially improved provided a heat treatment to relieve residual stress is carried out after FSP. (orig.)

  20. Influence of damage and basal friction on the grounding line dynamics

    Science.gov (United States)

    Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael

    2016-04-01

    The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.

  1. Structure vs chemistry: friction and wear of Pt-based metallic surfaces.

    Science.gov (United States)

    Caron, A; Louzguine-Luzguin, D V; Bennewitz, R

    2013-11-13

    In comparison of a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with a Pt(111) single crystal we find that wearless friction is determined by chemistry through bond formation alloying, while wear is determined by structure through plasticity mechanisms. In the wearless regime, friction is affected by the chemical composition of the counter body and involves the formation of a liquid-like neck and interfacial alloying. The wear behavior of Pt-based metallic surfaces is determined by their structural properties and corresponding mechanisms for plastic deformation. In the case of Pt(111) wear occurs by dislocation-mediated homogeneous plastic deformation. In contrast the wear of Pt57.5Cu14.7Ni5.3P22.5 metallic glass occurs through localized plastic deformation in shear bands that merge together in a single shear zone above a critical load and corresponds to the shear softening of metallic glasses. These results open a new route in the control of friction and wear of metals and are relevant for the development of self-lubricated and wear-resistant mechanical devices.

  2. Friction stir weld tools having fine grain structure

    Science.gov (United States)

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  3. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    Science.gov (United States)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  4. Effectiveness of solid lubricant coatings for friction in hard vacuum (10-9 tor)

    Science.gov (United States)

    Verkin, B. I.; Lyubraskiy, I. M.; Udovenko, V. F.; Sentyurikhina, L. N.

    1974-01-01

    A study was made of the efficiency of solid lubricating coatings, based on MoS2 with various binders, during friction and under highvacuum conditions. Mass spectrometry was used for an analysis of the composition of the gas evolved from the coatings in the friction process. It is shown that the vacuum level, loading, and sliding velocity influence coating effectiveness. In the friction process the solid lubricant coatings yield characteristic decay products associated with the chemical nature of the binders. The mechanism of coating breakdown during friction is associated with the binder breakdown mechanism.

  5. Power characteristics of the metal compounds formation process during the friction stir welding

    Directory of Open Access Journals (Sweden)

    Rzaev Radmir

    2017-01-01

    Full Text Available An influence of the power characteristics on the formation process of the uniform metals compound during the welding with friction stirringis being examined in this article.A dependency between the machine-tool engine power input and the instrument tilt during the FSW for the aluminum alloy AD31, copper alloy M1, titanium alloy OT4-1 and steel St-3 low-alloyed has been explored. A question of the stabilization of power consumption process while the establishment of superplastic condition of welded metal during the FSW has also been reviewed. A dependency revealed between the power characteristics, the geometry of the formation, the rotation speeds, the longitudinal displacement of the tool and its dimensions for fixed values of the parameters during the FSW.

  6. Hedging, arbitrage and optimality with superlinear frictions

    OpenAIRE

    Guasoni, Paolo; Rásonyi, Miklós

    2015-01-01

    In a continuous-time model with multiple assets described by c\\`{a}dl\\`{a}g processes, this paper characterizes superhedging prices, absence of arbitrage, and utility maximizing strategies, under general frictions that make execution prices arbitrarily unfavorable for high trading intensity. Such frictions induce a duality between feasible trading strategies and shadow execution prices with a martingale measure. Utility maximizing strategies exist even if arbitrage is present, because it is n...

  7. Numerical investigation of the effect of friction conditions to increase die life

    Science.gov (United States)

    Mutlu, M. O.; Guleryuz, C. G.; Parlar, Z.

    2017-02-01

    The standard die materials in aluminium extrusion offer good mechanical properties like high tempering resistance, high strength and ductility. On the other hand, they struggle with the problem of sliding wear. As a result, there is a growing interest in using surface treatment techniques to increase the wear resistance of extrusion dies. In this study, it is aimed to observe the effects of the different friction conditions on material flow and contact pressure in extrusion process. These friction conditions can be obtained with the application of a variety of surface treatment. In this way, it is expected to decrease the friction force on the die bearing area and to increase the homogeneity of the material flow which will result in the increase of the quality of the extrudate as well as the improvement of the process economically by extending die life. For this purpose, an extrusion process is simulated with a finite element software. A die made of 1.2344 hot work tool steel-commonly used die material for aluminium extrusion process- has been modelled and Al 1100 alloy used as billet material. Various friction factor values defined on the die surface under the same process parameters and effects of changing frictional conditions on the die and the extrusion process have been discussed.

  8. Influence of tribological additives on friction and impact performance of injection moulded polyacetal

    DEFF Research Database (Denmark)

    Laursen, Jens Lolle; Sivebæk, Ion Marius; Christoffersen, L.W.

    2009-01-01

    Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant in the de......Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant...... in the development of tribologically modified grades. In the present study we investigate how two commonly used tribological additives, polydimethylsiloxane and polytetrafluoroethylene, affect friction and impact properties of polyacetal (polyoxymethylene). A new injection mould provides test specimens for both...

  9. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.

    Science.gov (United States)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-08

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  10. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng

    2012-01-01

    Highlights: → Friction stir lap welding technology with cutting pin was successfully employed to form lap joint of magnesium and steel. → The cutting pin made the lower steel participate in deformation and the interface was no longer flat. → A saw-toothed structure formed due to a mechanical mixing of the magnesium and steel was found at the interface. → A high-strength joint was produced which fractured in the magnesium side. -- Abstract: Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.

  11. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  12. Role of friction stir processing parameters on microstructure and ...

    Indian Academy of Sciences (India)

    The life of compo- nents depends on surface properties in many applications. ... The modified surface layer is called as surface composite (Attia. 2001). Friction stir .... The optical photomicrograph of as received copper plate is shown in figure 1a. ... It is essential to obtain a smooth crown appearance owing to the fact that ...

  13. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints

    International Nuclear Information System (INIS)

    Rajakumar, S.; Muralidharan, C.; Balasubramanian, V.

    2011-01-01

    The aircraft aluminium alloys generally present low weldability by traditional fusion welding process. The development of the friction stir welding has provided an alternative improved way of satisfactorily producing aluminium joints, in a faster and reliable manner. In this present work, the influence of process and tool parameters on tensile strength properties of AA7075-T 6 joints produced by friction stir welding was analysed. Square butt joints were fabricated by varying process parameters and tool parameters. Strength properties of the joints were evaluated and correlated with the microstructure, microhardness of weld nugget. From this investigation it is found that the joint fabricated at a tool rotational speed of 1400 rpm, welding speed of 60 mm/min, axial force of 8 kN, using the tool with 15 mm shoulder diameter, 5 mm pin diameter, 45 HRc tool hardness yielded higher strength properties compared to other joints.

  14. Evaluation of deep drawing force under different friction conditions

    OpenAIRE

    Lăzărescu Lucian; Banabic Dorel

    2017-01-01

    The purpose of this study is to investigate the variation of the required punch load during the deep drawing process under different friction conditions. In this regards, several deep-drawing tests of cylindrical cups were conducted under four friction conditions at the tool–blank interface. The first case was the dry deep-drawing, considered as a reference friction condition, while in the other three cases hydraulic oil, lithium-based grease and animal fat were used as lubricants. For each f...

  15. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  16. Probing into frictional contact dynamics by ultrasound and electrical simulations

    Directory of Open Access Journals (Sweden)

    Changshan Jin

    2014-12-01

    Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.

  17. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  18. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    Science.gov (United States)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  19. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  20. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91

    Science.gov (United States)

    Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.

  1. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. Pandia; Kumaraswamidhas, L. A. [Indian Institute of Technology, Jharkhand (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamil Nadu (India); Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm.

  2. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  3. On the nature of the static friction, kinetic friction and creep

    DEFF Research Database (Denmark)

    Persson, B. N. J.; Albohr, O.; Mancosu, F.

    2003-01-01

    of capillary bridges. However, there is no single value of the static friction coefficient, since it depends upon the initial dwell time and on rate of starting.We argue that the correct basis for the Coulomb friction law, which states that the friction force is proportional to the normal load...

  4. Wear and friction behaviour of soft particles filled random direction short GFRP composites

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Wahne, S.

    2007-01-01

    The random direction short E-glass fibre reinforced epoxy resin composites filled with the particles of mica and tricalcium phosphate (TCP) were prepared by hand lay-up method. The wear and friction behaviour of random direction short E-glass fibre reinforced epoxy resin (GFRP) composites sliding against AISI-1045 steel in a pin-on-disc configuration were evaluated on a TR-20LE wear and friction tester. The microhardness, density, tensile strength and compressive strength of the filled and unfilled mica as well as TCP particles were determined. The morphology of the worn surfaces of the unfilled and filled random E-glass fibre composites and the transfer films were analyzed with the scanning electron microscope. It was found that the particles as the fillers contributed significantly to improve the mechanical properties and wear resistance of the E-glass fibre. This was because the particulates as the fillers contributed to enhance the bonding strength between the fibre and the epoxy resin. Moreover, the wear and friction properties of the random E-glass fibre composites were reduced by increasing filler weight of particles

  5. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    Science.gov (United States)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  6. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    Science.gov (United States)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  7. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  8. Friction behavior of a microstructured polymer surface inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  9. Friction behavior of a microstructured polymer surface inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-01-01

    Full Text Available The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  10. Onset of frictional sliding of rubber-glass contact under dry and lubricated conditions.

    Science.gov (United States)

    Tuononen, Ari J

    2016-06-13

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons' law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements.

  11. Dislocation Processes and Frictional Stability of Faults

    Science.gov (United States)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    The rate dependence of frictional processes in faults in quartzofeldspathic crust is proposed to change at c. 300°C, because above this temperature asperity deformation can be accommodated by crystal plastic processes. As a consequence, the real fault contact area increases and the fault velocity strengthens. Conversely, faults at lower temperatures are velocity weakening and therefore prone to earthquake slip. We have investigated whether dislocation processes are important around faults in quartzites on seismic timescales, by inducing fault slip on a saw cut surface in novaculite blocks. Deformation was carried out at 450°C and 600°C in a Griggs apparatus. Slip rates of 8.3 x 10-7s-1 allowed total slip, u, of 0.5mm to be achieved in c. 10 minutes. Failure occurred at peak differential stresses of ~1.7 GPa and 1.4 GPa respectively, followed by significant weakening. Structures of the novaculite within and surrounding the fault surface were examined using EBSD, FIB-SEM and TEM to elucidate changes to their dislocation substructure. In the sample deformed at 450°C, a ~50μm thick layer of amorphous / non-crystalline silica was developed on the saw-cut surface during deformation. Rare clasts of the wall rock are preserved within this material. The surrounding sample is mostly composed of equant quartz grains of 5-10μm diameter that lack a preferred orientation, contain very few intercrystalline dislocations, and are divided by organised high angle grain boundaries. After deformation, most quartz grains within the sample retain their starting microstructure. However, within ~10μm of the sliding surface, dislocations are more common, and these are arranged into elongated, tangled zones (subgrain boundaries?). Microfractures are also observed. These microstructures are characteristic of deformation accommodated by low temperature plasticity. Our preliminary observations suggest that dislocation processes may be able to accommodate some deformation around fault

  12. A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy

    International Nuclear Information System (INIS)

    Nadammal, Naresh; Kailas, Satish V.; Suwas, Satyam

    2015-01-01

    Highlights: • An experimental bottom-up approach has been developed for optimizing the process parameters for friction stir processing. • Optimum parameter processed samples were tested and characterized in detail. • Ultimate tensile strength of 1.3 times the base metal strength was obtained. • Residual stresses on the processed surface were only 10% of the yield strength of base metal. • Microstructure observations revealed fine equi-axed grains with precipitate particles at the grain boundaries. - Abstract: Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for

  13. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  14. Proximity friction reexamined

    International Nuclear Information System (INIS)

    Krappe, H.J.

    1989-01-01

    The contribution of inelastic excitations to radial and tangential friction form-factors in heavy-ion collisions is investigated in the frame-work of perturbation theory. The dependence of the form factors on the essential geometrical and level-density parameters of the scattering system is exhibited in a rather closed form. The conditions for the existence of time-local friction coefficients are discussed. Results are compared to form factors from other models, in particular the transfer-related proximity friction. For the radial friction coefficient the inelastic excitation mechanism seems to be the dominant contribution in peripheral collisions. (orig.)

  15. Temperature processes at two sliding surfaces subjected to dry friction

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Cibulka, Jan; Bula, Vítězslav

    2012-01-01

    Roč. 63, 5/6 (2012), s. 277-292 ISSN 0039-2472 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * vibration damping * experimental set * increase of temperature * lost energy Subject RIV: BI - Acoustics

  16. A micro-force sensor with slotted-quad-beam structure for measuring the friction in MEMS bearings.

    Science.gov (United States)

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-09-30

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  17. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-09-01

    Full Text Available Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines.

  18. Mechanical properties of dissimilar friction welded steel bars in relation to post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2006-04-15

    Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and Post-Weld Heat Treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), P{sub 1}=60(MPa), P{sub 2}=100(MPa), t{sub 1}=4(s), t{sub 2}=5(s) when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

  19. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  20. Fatigue and Damage Tolerance of Friction Stir Welded Joints for Aerospace Applications

    NARCIS (Netherlands)

    Lemmen, H.J.K.

    2010-01-01

    Friction stir welding is a young welding process with high potential to replace riveted joints in aerospace structures like the fuselage. Friction stir welding is a robust process and capable of welding high strength aluminum alloys. Therefore it can lead to both costs and weight savings. To

  1. Chemical origins of frictional aging.

    Science.gov (United States)

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  2. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  3. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    International Nuclear Information System (INIS)

    Arora, H.S.; Singh, H.; Dhindaw, B.K.

    2012-01-01

    Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  4. Friction induced hunting limit cycles : a comparison between the LuGre and switch friction model

    NARCIS (Netherlands)

    Hensen, R.H.A.; Molengraft, van de M.J.G.; Steinbuch, M.

    2003-01-01

    In this paper, friction induced limit cycles are predicted for a simple motion system consisting of a motor-driven inertia subjected to friction and a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static switch friction model,

  5. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  6. Effect of heat treatment and number of passes on the microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dadashpour, M.; Yeşildal, R. [University of Ataturk, Erzurum (Turkmenistan); Mostafapour, A.; Rezazade, V. [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2016-02-15

    In this paper, the effect of heat treatment and number of passes on microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy samples were investigated. From six samples of as-cast AZ91C magnesium alloy, three plates were pre-heated at temperature of 375°C for 3 hours, and then were treated at temperature of 415°C for 18 hours and finally were cooled down in air. Three plates were relinquished without heat treatment. 8 mm thick as-cast AZ91C magnesium alloy plates were friction stir processed at constant traverse speed of 40 mm/min and tool rotation speed of 1250 rpm. After process, microstructural characterization of samples was analyzed using optical microscopy and tensile and Vickers hardness tests were performed. It was found that heat treated samples had finer grains, higher hardness, improved tensile strength and elongation relative to non-heat treated ones. As the number of passes increased, higher UTS and TE were achieved due to finer grains and more dissolution of β phase (Mg17Al12). The micro-hardness characteristics and tensile improvement of the friction stir processed samples depend significantly on grain size, removal of voids and porosities and dissolution of β phase in the stir zone.

  7. Ultrastrong Carbon Thin Films from Diamond to Graphene under Extreme Conditions: Probing Atomic Scale Interfacial Mechanisms to Achieve Ultralow Friction and Wear

    Science.gov (United States)

    2016-12-08

    tribological behavior of hard carbon materials during initial sliding contact, in order to understand what controls and enables the transition from high to...publication. Our goal is to characterize and understand the atomic-scale mechanisms governing the tribological behavior (friction and wear) of hard carbon...affecting the sliding behavior of these materials, including: rehybridization from sp3 to sp2-bonding of the C atoms20, formation of bonds across the

  8. Friction stir processing (FSP: refining microstructures and improving properties

    Directory of Open Access Journals (Sweden)

    McNelley, T. R.

    2010-12-01

    Full Text Available FSP is reviewed as an allied technology of friction stir welding (FSW and additional considerations such as processing pattern and step over distance are introduced. The application of FSP to continuously cast AA5083 material in the as-cast condition is described and the extent of grain refinement and homogenization of microstructure is documented. The FSP-induced superplastic response of this material is compared to the response of conventionally processed AA5083 and the improved ductility of the FSP material is related to grain refinement and microstructure homogenization.

    Se revisa el procesado por fricción batida (FSP como un aliado tecnológico de la soldadura por fricción batida (FSW y se introducen consideraciones adicionales tales como el patrón de procesado y el paso en función de la distancia. Se describe la aplicación de FSP al material AA5083 por colada continua en la condición de colada y se documenta el grado de afino de grano y homogeneización de la microestructura. La respuesta de superplasticidad inducida por FSP se compara con la respuesta de la aleación AA5083 procesada convencionalmente y la mejora de ductilidad del material FSP se relaciona con el afino de grano y la homogeneización de la microestructura.

  9. Novel friction law for the static friction force based on local precursor slipping.

    Science.gov (United States)

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  10. Static frictional resistance with the slide low-friction elastomeric ligature system.

    Science.gov (United States)

    Jones, Steven P; Ben Bihi, Saida

    2009-11-01

    This ex-vivo study compared the static frictional resistance of a low-friction ligation system against a conventional elastomeric module, and studied the effect of storage in a simulated oral environment on the static frictional resistance of both ligation systems. Eighty stainless steel brackets were tested by sliding along straight lengths of 0.018 inch round and 0.019 x 0.025 inch rectangular stainless steel wires ligated with either conventional elastomerics or the Slide system (Leone, Florence, Italy). During the tests the brackets and wires were lubricated with artificial saliva. A specially constructed jig assembly was used to hold the bracket and archwire securely. The jig was clamped in an Instron universal load testing machine. Crosshead speed was controlled via a microcomputer connected to the Instron machine. The static frictional forces at 0 degree bracket/wire angulation were measured for both systems, fresh from the pack and after storage in artificial saliva at 37 degrees C for 24 hours. The results of this investigation demonstrated that the Slide ligatures produced significantly lower static frictional resistance than conventional elastomeric modules in the fresh condition and after 24 hours of storage in a simulated oral environment (p static frictional resistance of conventional elastomeric modules and the Slide system (p = 0.525). The claim by the manufacturer that the Slide system produces lower frictional resistance than conventional elastomeric modules is upheld.

  11. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  12. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  13. Importance of material and friction characterisation for FE-aided process design of hybrid bevel gears

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Matthias, T.

    2017-10-01

    Solid-forming components are often used in areas where they are subjected to very high loads. For most solid components locally divergent and sometimes contradictory requirements exist. Despite these contradictory requirements, almost exclusively monomaterials are nowadays used for the production of solid components. These components often reach their material-specific limits because of increasing demands on the products. Thus a significant increase in product quality and profitability would result from combining different materials in order to create tailored properties. In the Collaborative Research Center (CRC) 1153 "Tailored Forming" at the Leibniz Universität Hannover, this topic is investigated. The primary objective of the CRC 1153 is to develop and investigate new tailored manufacturing processes to produce reliable hybrid solid semi-finished components. In contrast to existing production processes of hybrid solid components, semi-finished workpieces in the CRC 1153 are joined before the forming phase. Thus, it will be possible to produce complex and highly stressable solid components made of different metals, which cannot be produced yet with the current used technologies. In this work the material and friction characteristics are investigated and the forming tool for the production of hybrid bevel gears made of different steel alloys (C22 and 41Cr4) is designed by numerical simulations. For this purpose, flow curves of both materials are determined by means of upsetting tests at process-related forming temperatures and strain rates. The temperature range for the forming process of the semi-finished product is determined by comparing the respective flow curves regarding similar flow stresses. Furthermore, the friction between the tool and the joining materials is investigated by means of ring upsetting tests at a process-relevant temperature. Finally, a stress analysis of the forming tools is carried out.

  14. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  15. Effects of welding parameters on friction stir spot welding of high density polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yukler, Ahmet Irfan

    2012-01-01

    Graphical abstract: (a) Schematic illustration of the cross section of a friction stir spot weld and (b) Geometry of the weld bonded area, x: nugget thickness and y: the thickness of the upper sheet. Highlights: → Welding parameters affect the FSSW nugget formation and the strength of the joint. → Melting of polyethylene occurred in the vicinity of the tool pin. → The joint that fractures with a pull nugget failure mode has a higher strength. -- Abstract: Friction stir spot welding parameters affect the weld strength of thermoplastics, such as high density polyethylene (HDPE) sheets. The effects of the welding parameters on static strength of friction stir spot welds of high density polyethylene sheets were investigated. For maximizing the weld strength, the selection of welding parameters is very important. In lap-shear tests two fracture modes were observed; cross nugget failure and pull nugget failure. The tool rotational speed, tool plunge depth and dwell time were determined to be important in the joint formation and its strength. The joint which had a better strength fails with a pull nugget failure morphology. Weld cross section image analysis of the joints were done with a video spectral comparator. The plunge rate of the tool was determined to have a negligible effect on friction stir spot welding.

  16. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  17. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-02-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  18. An investigation on thermal and friction effect produced by friction welding of SA 213 tube to SA 387 tube plate

    Directory of Open Access Journals (Sweden)

    S. Pandia Rajan

    2016-03-01

    Full Text Available The present study investigates the effect of thermal and friction produced in the tube to tube plate during the friction welding process by using a Tungsten carbide external tool. In this process, the fictional welding of SA 213 tube and SA 387 tube plate was done by using an external tool. Modeling of tool and wok piece is done by using Solid works and to study the thermal and frictional effect by using Ansys. In this research work, joining of SA 213 tube to SA 387 tube plate was done by using two different techniques such as with hole [WH] and without hole [WOH]. The stress value of with hole and without hole such as 18,782 MPa and 10,486 MPa respectively and the ultimate heat flux generated with hole and without hole such as 0.80475 W/mm2 and 1.1344 W/mm2 respectively were observed.

  19. Variational transition state theory for multidimensional activated rate processes in the presence of anisotropic friction

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli

    1994-09-01

    Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.

  20. Nano-friction behavior of phosphorene.

    Science.gov (United States)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  1. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  2. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  3. Comparative study of friction between metallic and conventional interactive self-ligating brackets in different alignment conditions.

    Science.gov (United States)

    Jakob, Sérgio Ricardo; Matheus, Davison; Jimenez-Pellegrin, Maria Cristina; Turssi, Cecília Pedroso; Amaral, Flávia Lucisano Botelho

    2014-01-01

    The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC), self-ligating ceramic (In-Ovation, Denstply GAC) and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC). Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10). Three of these situations occured at the initial phase (in which a 0.016-in nickel-titanium wire was used): 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used). The wires slipped through the brackets and friction was measured by a Universal Testing Machine. Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05) were applied to assess the results. Significant interaction (p friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C® showed lower friction, which was similar to the In-Ovation R® metallic model. For the no misalignment situation, the same results were observed. The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C® ceramic model showed less friction than the metallic ones.

  4. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    Science.gov (United States)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  5. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  6. Friction Welding of Titanium and Carbon Steel

    OpenAIRE

    Atsushi, HASUI; Yoichi, KIRA; Faculty of Science and Technology, Keio University; Ishikawajima-Harima Heavy Industries, Co., Ltd.

    1985-01-01

    Titanium-steel is a combination of dissimilar materials, which are difficult to weld in general, owing to inevitable formation of brittle intermetallic compounds. A prominent feature of friction welding process is ability to weld dissimilar materials in many kinds of combinations. This report deals with friction weldabilily of pure titanium and S25C steel, which are 12 mm in diameter. Main results are summarized as follows; (1) Suitable welding conditions to obtain a sound weld, which has a j...

  7. Interfacial push-out measurements of fully-bonded SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Steiner, D.; Zinkle, S.J.

    1990-01-01

    The direct measurement of interfacial bond strength and frictional resistance to sliding in a fully-bonded SiC/SiC composite is measured. It is shown that a fiber push-out technique can be utilized for small diameter fibers and very thin composite sections. Results are presented for a 22 micron thick section for which 37 out of 44 Nicalon fibers tested were pushed-out within the maximum nanoindentor load of 120 mN. Fiber interfacial yielding, push-out and sliding resistance were measured for each fiber. The distribution of interfacial strengths is treated as being Weibull in form. 14 refs., 5 figs

  8. A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2017-10-01

    Full Text Available In this paper, a beam-membrane (BM sensor for measuring friction torque in micro-electro-mechanical system (MEMS gas bearings is presented. The proposed sensor measures the force-arm-transformed force using a detecting probe and the piezoresistive effect. This solution incorporates a membrane into a conventional four-beam structure to meet the range requirements for the measurement of both the maximum static friction torque and the kinetic friction torque in rotating MEMS machines, as well as eliminate the problem of low sensitivity with neat membrane structure. A glass wafer is bonded onto the bottom of the sensor chip with a certain gap to protect the sensor when overloaded. The comparisons between the performances of beam-based sensor, membrane-based sensor and BM sensor are conducted by finite element method (FEM, and the final sensor dimensions are also determined. Calibration of the fabricated and packaged device is experimentally performed. The practical verification is also reported in the paper for estimating the friction torque in micro gas bearings by assembling the proposed sensor into a rotary table-based measurement system. The results demonstrate that the proposed force sensor has a potential application in measuring micro friction or force in MEMS machines.

  9. Effect of Different Types of Toothpaste on the Frictional Resistance Between Orthodontic Stainless Steel Brackets and Wires.

    Science.gov (United States)

    Hosseinzadeh Nik, Tahereh; Hooshmand, Tabassom; Farhadifard, Homa

    2017-09-01

    The purpose of this study was to investigate the effect of different types of toothpaste on the frictional resistance between stainless steel brackets and archwires. Ninety stainless steel orthodontic brackets with stainless steel wires were bonded to bovine teeth and were divided into 6 groups for application of the following toothpastes: Colgate® Total® Advanced Whitening, Colgate® Total® Pro Gum Health, Colgate® Anticavity, Ortho.Kin®, and Sunstar GUM® Ortho toothpastes. No toothpaste was applied in the control group. Each group was brushed by a brushing machine with the use of the designated solution for 4.5 minutes. The frictional force was measured in a universal testing machine with a crosshead speed of 10 mm/minute over a 5-mm archwire. Data were analyzed using one-way analysis of variance (ANOVA) at the 0.05 significance level. The frictional resistance values of Ortho.Kin® and GUM® Ortho toothpastes and the control group were not significantly different (P>0.05). However, there were significant differences between the frictional resistance values of Colgate® Total® Pro Gum Health and Colgate® Anticavity toothpastes with that of the control group (Porthodontic toothpastes did not increase the frictional resistance between the orthodontic stainless steel brackets and wires.

  10. Simulative testing of friction in warm/hot forging

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    The objective of sub-task 3.2 is to determine the friction values for different work piece materials, tool materials and lubricants as a function of the main process parameters under conditions reflecting those which are present in typical warm/hot forming operations i.e. surface expansion, work...... piece and tool temperature. Based on this experimental work establish mathematical formulations of friction as a function of the basic parameters....

  11. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  12. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...... pressure±punch travel curves. It is found that the relationship between normal pressure and friction stress appears linear, and therefore Coulomb’s friction model ®ts the experimental data very well. Extrusion pressure±punch travel curves before the steady state can be divided into four stages: elastic...

  13. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  14. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083

    Energy Technology Data Exchange (ETDEWEB)

    Reza Toroghinejad, Mohammad; Ashrafizadeh, Fakhreddin [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Young Researchers Club, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of)

    2013-01-20

    In the present study, the effect of accumulative roll bonding (ARB) process at room temperature on the microstructure and mechanical properties of AA5083 strip was investigated. Microstructural observations were done by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also, mechanical properties were performed by tensile, hardness, and microhardness tests. It was observed that accumulative roll bonding is a promising process for production of nanostructured (80 nm) AA5083 strips. Nano shear bands were formed in the microstructure after the fourth cycles. When the number of cycles increased, the tensile strength and hardness of the accumulatively roll bonded strips increased. However, by increasing the number of cycles, the elongation value decreased except for the last (sixth) cycle. It was found that when the number of cycles increased, the distribution of microhardness values became more uniform. After the tensile test, debonding can be observed especially in the interface formed in the last cycle. Observations revealed that the failure mode in the accumulatively roll bonded AA5083 strip was a shear ductile rupture with elongated shallow shear dimples.

  15. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  16. Friction Reduction in Powertrain Materials: Role of Tribolayers

    Science.gov (United States)

    Banerji, Anindya

    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature

  17. Numerical simulation of linear fiction welding (LFW) processes

    Science.gov (United States)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  18. Numerical simulation of linear fiction welding (LFW) processes

    International Nuclear Information System (INIS)

    Fratini, L.; La Spisa, D.

    2011-01-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  19. Hybrid friction stir welding for dissimilar materials through electro-plastic effect

    Science.gov (United States)

    Liu, Xun; Lan, Shuhuai; Ni, Jun

    2018-05-29

    A hybrid Friction Stir Welding approach and device for dissimilar materials joining employing Electro-Plastic Effect. The approach and device include an introduction of high density, short period current pulses into traditional friction stir welding process, which therefore can generate a localized softened zone in the workpiece during plastic stirring without significant additional temperature increase. This material softened zone is created by high density current pulses based on Electro-Plastic Effect and will move along with the friction stir welding tool. Smaller downward force, larger processing window and better joint quality for dissimilar materials are expected to be achieved through this hybrid welding technique.

  20. Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Park, Young Whan [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-03-15

    A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

  1. Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars

    International Nuclear Information System (INIS)

    Kong, Yu Sik; Park, Young Whan

    2017-01-01

    A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

  2. Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints

    International Nuclear Information System (INIS)

    Udayakumar, T.; Raja, K.; Afsal Husain, T.M.; Sathiya, P.

    2014-01-01

    Highlights: • Corrosion resistance and impact strength – predicted by response surface methodology. • Burn off length has highest significance on corrosion resistance. • Friction force is a strong determinant in changing impact strength. • Pareto front points generated by genetic algorithm aid to fix input control variable. • Pareto front will be a trade-off between corrosion resistance and impact strength. - Abstract: Friction welding finds widespread industrial use as a mass production process for joining materials. Friction welding process allows welding of several materials that are extremely difficult to fusion weld. Friction welding process parameters play a significant role in making good quality joints. To produce a good quality joint it is important to set up proper welding process parameters. This can be done by employing optimization techniques. This paper presents a multi objective optimization method for optimizing the process parameters during friction welding process. The proposed method combines the response surface methodology (RSM) with an intelligent optimization algorithm, i.e. genetic algorithm (GA). Corrosion resistance and impact strength of friction welded super duplex stainless steel (SDSS) (UNS S32760) joints were investigated considering three process parameters: friction force (F), upset force (U) and burn off length (B). Mathematical models were developed and the responses were adequately predicted. Direct and interaction effects of process parameters on responses were studied by plotting graphs. Burn off length has high significance on corrosion current followed by upset force and friction force. In the case of impact strength, friction force has high significance followed by upset force and burn off length. Multi objective optimization for maximizing the impact strength and minimizing the corrosion current (maximizing corrosion resistance) was carried out using GA with the RSM model. The optimization procedure resulted in

  3. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mehran Tamjidy

    2017-05-01

    Full Text Available The development of Friction Stir Welding (FSW has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ, a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS and Shannon’s entropy.

  4. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm.

    Science.gov (United States)

    Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-05-15

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.

  5. Numerical optimisation of friction stir welding: review of future challenges

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last decade, the combination of increasingly more advanced numerical simulation software with high computational power has resulted in models for friction stir welding (FSW), which have improved the understanding of the determining physical phenomena behind the process substantially....... This has made optimisation of certain process parameters possible and has in turn led to better performing friction stir welded products, thus contributing to a general increase in the popularity of the process and its applications. However, most of these optimisation studies do not go well beyond manual...

  6. Experimental research on friction factor of end faces of contacting mechanical seals

    Science.gov (United States)

    Wei, Long; Gu, Bo-qin; Feng, Xiu; Sun, Jian-jun

    2008-11-01

    The friction of the seal faces is the most important phenomenon in working process of contacting mechanical seals. The friction factor f is a key parameter for expressing the friction regime of the seal faces, the frictional power, the wearing capacity, the friction heat productivity, the temperature distortion of the end face and the temperature of the end face. The relationship between the friction factor f and the friction regime of the end faces of contacting mechanical seals was discussed from a microscopic point of view. The friction factor is usually worked out by the friction torque which is measured in the test. In the computer aided testing device of the mechanical seal system, the experimental investigations on the basic performance of the B104a-70 contacting mechanical seal was carried out. The test results indicate that the bigger the spring pressure of B104a-70 contacting mechanical seal, the bigger the friction factor. When the spring pressure is less, the bigger the rotational speed, the bigger the friction factor. But when the spring pressure is equal to 0.0866 MPa, the friction factor is not almost influenced by the rotational speed. When the rotational speed and spring pressure are less, the medium pressure has a less influence on the friction factor. When the rotational speed or spring pressure is bigger, the bigger the medium pressure, the less the friction factor.

  7. Amorphization and Frictional Processes in Smectite-Quartz Gouge Mixtures Sheared from Sub-seismic to Seismic Slip Rates

    Science.gov (United States)

    Aretusini, S.; Mittempergher, S.; Spagnuolo, E.; Di Toro, G.; Gualtieri, A.; Plümper, O.

    2015-12-01

    Slipping zones in shallow sections of megathrusts and large landslides are often made of smectite and quartz gouge mixtures. Experiments aimed at investigating the frictional processes operating at high slip rates (>1 m/s) may unravel the mechanics of these natural phenomena. Here we present a new dataset obtained with two rotary shear apparatus (ROSA, Padua University; SHIVA, INGV-Rome). Experiments were performed at room humidity and temperature on four mixtures of smectite (Ca-Montmorillonite) and quartz with 68, 50, 25, 0 wt% of smectite. The gouges were slid for 3 m at normal stress of 5 MPa and slip rate V from 300 µm/s to 1.5 m/s. Temperature during the experiments was monitored with four thermocouples and modeled with COMSOL Multiphysics. In smectite-rich mixtures, the friction coefficient µ evolved with slip according to three slip rate regimes: in regime 1 (V0.3 m/s) µ had strong slip-weakening behavior. Instead, in quartz-rich mixtures the gouge had a monotonic slip-weakening behavior, independently of V. Temperature modelling showed that the fraction of work rate converted into heat decreased with increasing smectite content and slip rate. Quantitative X-ray powder diffraction (Rietveld method) indicates that the production of amorphous material from smectite breakdown increased with frictional work but was independent of work rate. Scanning Electron Microscopy investigation evidenced strain localization and presence of dehydrated clays for V≥0.3 m/s; instead, for V<0.3 m/s, strain was distributed and the gouge layer pervasively foliated. In conclusion, amorphization of the sheared gouges was not responsible of the measured frictional weakening. Instead, slip-weakening was concomitant to strain localization and possible vaporization of water adsorbed on smectite grain surfaces.

  8. Friction-induced Vibrations in an Experimental Drill-string System for Various Friction Situations

    NARCIS (Netherlands)

    Mihajlovic, N.; Wouw, van de N.; Hendriks, M.P.M.; Nijmeijer, H.

    2005-01-01

    Friction-induced limit cycling deteriorates system performance in a wide variety of mechanical systems. In this paper, we study the way in which essential friction characteristics affect the occurrence and nature of friction-induced limit cycling in flexible rotor systems. This study is performed on

  9. 3D simulation of friction stir welding based on movable cellular automaton method

    Science.gov (United States)

    Eremina, Galina M.

    2017-12-01

    The paper is devoted to a 3D computer simulation of the peculiarities of material flow taking place in friction stir welding (FSW). The simulation was performed by the movable cellular automaton (MCA) method, which is a representative of particle methods in mechanics. Commonly, the flow of material in FSW is simulated based on computational fluid mechanics, assuming the material as continuum and ignoring its structure. The MCA method considers a material as an ensemble of bonded particles. The rupture of interparticle bonds and the formation of new bonds enable simulations of crack nucleation and healing as well as mas mixing and microwelding. The simulation results showed that using pins of simple shape (cylinder, cone, and pyramid) without a shoulder results in small displacements of plasticized material in workpiece thickness directions. Nevertheless, the optimal ratio of longitudinal velocity to rotational speed makes it possible to transport the welded material around the pin several times and to produce a joint of good quality.

  10. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system

    Directory of Open Access Journals (Sweden)

    Bai Minli

    2011-01-01

    Full Text Available Abstract Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid.

  11. Brazing and diffusion bonding processes as available repair techniques for gas turbine blades and nozzles

    International Nuclear Information System (INIS)

    Mazur, Z.

    1997-01-01

    The conventionally welding methods are not useful for repair of heavily damaged gas turbine blades and nozzles. It includes thermal fatigue and craze cracks, corrosion, erosion and foreign object damage, which extend to the large areas. Because of required extensive heat input and couponing, it can cause severe distortion of the parts and cracks in the heat affected zone, and can made the repair costs high. For these cases, the available repair methods of gas turbine blades and nozzles, include brazing and diffusion bonding techniques are presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which have influence to get sound joint is carried out. Depend of kind of blades and nozzle damage or deterioration registered a different methods of brazing and diffusion bonding applicability is presented. (Author) 65 refs

  12. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  13. Research on measurement and modeling of the gastro intestine's frictional characteristics

    International Nuclear Information System (INIS)

    Wang, Kun Dong; Yan, Guo Zheng

    2009-01-01

    The frictional characteristics of an intestine are required basically for the development of a noninvasive endoscope for the human intestine. The frictional force is tested by measuring the current of the motor hauling the frictional coupons at an even speed. A multifunction data acquisition device with model NI-6008 USB is used and the data process is performed on the Labview software. Two kinds of materials with aluminum and copper are used. The surfaces are designed as triangle, rectangular, cylindrical and plane forms. The tested results indicate that the frictional resistance force includes the nominal frictional force and the visco-adhesive force. When the surface contour changes from the triangle to the rectangular, to the cylindrical and finally to the plane, the nominal frictional coefficients will decrease and the visco-adhesive force will increase. The nominal frictional force is related to the elastic restoring force, the real frictional force and the contact angle. The cohesive force is determined by the contact area and the contact angle. This research will provide some preliminary references to the design and the parameter selection of locomotion devices in the human gastro-intestine

  14. Surface hardening of two cast irons by friction stir processing

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Kikuchi, Toshifumi; Nogi, Kiyoshi; Yamaguchi, Yasufumi; Kiguchi, Shoji

    2009-01-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  15. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  16. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  17. Change in Frictional Behavior during Olivine Serpentinization

    Science.gov (United States)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but

  18. Direct reciprocity in animals: The roles of bonding and affective processes.

    Science.gov (United States)

    Freidin, Esteban; Carballo, Fabricio; Bentosela, Mariana

    2017-04-01

    The presence of direct reciprocity in animals is a debated topic, because, despite its evolutionary plausibility, it is believed to be uncommon. Some authors claim that stable reciprocal exchanges require sophisticated cognition which has acted as a constraint on its evolution across species. In contrast, a more recent trend of research has focused on the possibility that direct reciprocity occurs within long-term bonds and relies on simple as well as more complex affective mechanisms such as emotional book-keeping, rudimentary and higher forms of empathy, and inequity aversion, among others. First, we present evidence supporting the occurrence of long-term reciprocity in the context of existing bonds in social birds and mammals. Second, we discuss the evidence for affective responses which, modulated by bonding, may underlie altruistic behaviours in different species. We conclude that the mechanisms that may underlie reciprocal exchanges are diverse, and that some act in interaction with bonding processes. From simple associative learning in social contexts, through emotional contagion and behavioural mimicry, to empathy and a sense of fairness, widespread and diverse social affective mechanisms may explain why direct reciprocity may not be a rare phenomenon among social vertebrates. © 2015 International Union of Psychological Science.

  19. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    OpenAIRE

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µ M, which is considered to be a constant. Here, we conduct experiments demonstrating that the static fricti...

  20. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    Science.gov (United States)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  1. 49 CFR 594.9 - Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits or obligations of the United States in lieu of sureties on... indirect costs the agency incurs for receipt, processing, handling, and disbursement of cash deposits or...

  2. Analytical and numerical analysis of frictional damage in quasi brittle materials

    Science.gov (United States)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  3. Threshold friction velocity of crusted windblown soils in the Columbia Plateau

    Science.gov (United States)

    Wind erosion processes are governed by soil physical properties and surface characteristics. Erosion is initiated when the friction velocity exceeds the threshold friction velocity (u*t) of soils. Although u*t is influenced by soil physical properties such as wetness and crusting, there is little in...

  4. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Gromov, Viktor E., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Semin, Alexander P., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoBond' name='Single-Bond' value='Single-Bond'/>Cu, MoBond' name='Single-Bond' value='Single-Bond'/>CBond' name='Single-Bond' value='Single-Bond'/>Cu, WBond' name='Single-Bond' value='Single-Bond'/>Cu, WBond' name='Single-Bond' value='Single-Bond'/>CBond' name='Single-Bond' value='Single-Bond'/>Cu and TiB{sub 2}Bond' name='Single-Bond' value='Single-Bond'/>Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.

  5. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    International Nuclear Information System (INIS)

    Romanov, Denis A.; Sosnin, Kirill V.; Budovskikh, Evgenij A.; Gromov, Viktor E.; Semin, Alexander P.

    2014-01-01

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoBond' name='Single-Bond' value='Single-Bond'/>Cu, MoBond' name='Single-Bond' value='Single-Bond'/>CBond' name='Single-Bond' value='Single-Bond'/>Cu, WBond' name='Single-Bond' value='Single-Bond'/>Cu, WBond' name='Single-Bond' value='Single-Bond'/>CBond' name='Single-Bond' value='Single-Bond'/>Cu and TiB 2 Bond' name='Single-Bond' value='Single-Bond'/>Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times

  6. Frictional behaviour of megathrust fault gouges under in-situ subduction zone conditions

    NARCIS (Netherlands)

    den Hartog, S.A.M.

    2013-01-01

    Subduction zone megathrusts generate the largest earthquakes and tsunamis known. Understanding and modelling “seismogenesis” on such faults requires an understanding of the frictional processes that control nucleation and propagation of seismic slip. However, experimental data on the frictional

  7. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    Science.gov (United States)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  8. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  9. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  10. Wave analysis at frictional interface: A case wise study

    Science.gov (United States)

    Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar

    2018-03-01

    The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.

  11. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  12. The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals

    National Research Council Canada - National Science Library

    Ferrando, William A

    2008-01-01

    This report introduces a novel variant of conventional friction stir welding (FSW). Since 1991, friction stir welding provides an alternative to arc welding as a metal joining method in numerous applications...

  13. Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-01-01

    Full Text Available This study evaluated the bond properties of polypropylene (PP fiber in plain cementitious composites (PCCs and styrene butadiene latex polymer cementitious composites (LCCs at different nanosilica contents. The bond tests were evaluated according to JCI SF-8, in which the contents of nanosilica in the cement were 0, 2, 4, 6, 8, and 10 wt%, based on cement weight. The addition of nanosilica significantly affected the bond properties between macro PP fiber and cementitious composites. For PCCs, the addition of 0–2 wt% nanosilica enhanced bond strength and interface toughness, whereas the addition of 4 wt% or more reduced bond strength and interface toughness. The bond strength and interfacial toughness of LCCs also increased with the addition of up to 6% nanosilica. The analysis of the relative bond strength showed that the addition of nanosilica affects the bond properties of both PCC and LCC. This result was confirmed via microstructural analysis of the macro PP fiber surface after the bond tests, which revealed an increase in scratches due to frictional forces and fiber tearing.

  14. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    Science.gov (United States)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  15. Celtic Stone Dynamics Revisited Using Dry Friction and Rolling Resistance

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    2012-01-01

    Full Text Available The integral model of dry friction components is built with assumption of classical Coulomb friction law and with specially developed model of normal stress distribution coupled with rolling resistance for elliptic contact shape. In order to avoid a necessity of numerical integration over the contact area at each the numerical simulation step, few versions of approximate model are developed and then tested numerically. In the numerical experiments the simulation results of the Celtic stone with the friction forces modelled by the use of approximants of different complexity (from no coupling between friction force and torque to the second order Padé approximation are compared to results obtained from model with friction approximated in the form of piecewise polynomial functions (based on the Taylor series with hertzian stress distribution. The coefficients of the corresponding approximate models are found by the use of optimization methods, like as in identification process using the real experiment data.

  16. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  17. Characterization of friction and wear behavior of friction modifiers used in wheel-rail contacts

    NARCIS (Netherlands)

    Oomen, M. A.; Bosman, R.; Lugt, P. M.

    2017-01-01

    Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different

  18. Low temperature internal friction in La75Al20Si5 metallic glass

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.

    1991-01-01

    Results of investigation of temperature dependence of internal friction (IF) in amorphous alloy La 75 Al 20 Si 5 are presented. The amorphous state was atteined by quenching from liquid melt at a rate of 10 5 -10 6 K/s. Two IF maxima at Q -1 (T) dependence are observed at the temperatures of 185 and 230 K. Increase in the frequency of mechanical vibrations results in the shift of IF maxima to the side of high temperatures, which indicates their relaxation origin. The first peak of IF in the studied alloy La 75 Al 20 Si 5 is in all probability related to reorientation of chemical bonds La-La and La-Al. The maximum at T∼230 K is related to the switching of La-Si chemical bonds

  19. Grit-mediated frictional ignition of a polymer-bonded explosive during oblique impacts: Probability calculations for safety engineering

    International Nuclear Information System (INIS)

    Heatwole, Eric; Parker, Gary; Holmes, Matt; Dickson, Peter

    2015-01-01

    Frictional heating of high-melting-point grit particles during oblique impacts of consolidated explosives is considered to be the major source of ignition in accidents involving dropped explosives. It has been shown in other work that the lower temperature melting point of two frictionally interacting surfaces will cap the maximum temperature reached, which provides a simple way to mitigate the danger in facilities by implementing surfaces with melting points below the ignition temperature of the explosive. However, a recent series of skid testing experiments has shown that ignition can occur on low-melting-point surfaces with a high concentration of grit particles, most likely due to a grit–grit collision mechanism. For risk-based safety engineering purposes, the authors present a method to estimate the probability of grit contact and/or grit–grit collision during an oblique impact. These expressions are applied to potentially high-consequence oblique impact scenarios in order to give the probability of striking one or more grit particles (for high-melting-point surfaces), or the probability of one or more grit–grit collisions occurring (for low-melting-point surfaces). The probability is dependent on a variety of factors, many of which can be controlled for mitigation to achieve acceptable risk levels for safe explosives handling operations. - Highlights: • Unexpectedly, grit-mediated ignition of a PBX occurred on low-melting point surfaces. • On high-melting surfaces frictional heating is due to a grit–surface interaction. • For low-melting point surfaces the heating mechanism is grit–grit collisions. • A method for estimating the probability of ignition is presented for both surfaces

  20. Rubber friction and force transmission during the shearing process of actively-driven vacuum grippers on rough surfaces; Elastomerreibung und Kraftuebertragung beim Abscheren von aktiv betriebenen Vakuumgreifern auf rauen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Patrick

    2016-12-21

    Nowadays, vacuum grippers come in many different shapes and sizes. Their stability is guaranteed through specially manufactured metal fittings. These fittings are non-positively and positively connected to the elastic part of the vacuum gripper. The design of the elastic part may vary, though. Elastomer components are used to ensure tightness for the negative pressure in the active cave chamber of the vacuum gripper, as well as for the transfer of shearing forces, which acting parallel to the surface. Some vacuum grippers feature one elastomer for both the sealing function and the transfer of shear forces; other gripper types are equipped with various elastomers for those applications. The vacuum grippers described in this work are equipped with structured rubber friction pads, their tightness being ensured by sealing lips made of a flexible foam rubber. A restraint system consisting of one or several vacuum grippers must be sized prior to its actual practical use. For the transmission of shearing forces, which acting parallel to the surface, it is necessary to take the tribological system, consisting of the suction element's elastomer and the base material, into account since these loads put shearing stress on the vacuum gripper. In practice, however, a standardized value is given for the coefficient of friction μ; i.e. the ratio of transmissible frictional force to the normal force. This does neither include a detailed description of the elastomer used nor of the roughness of the base material. The standardized friction coefficients cannot be applied to the practical design of restraint systems. The present work includes the analysis of the load transmission and the modeling of the friction coefficients μ on rough surfaces during the shearing process of actively-driven vacuum grippers. Based on current theories, the phenomenon of elastomeric friction can be attributed to the two main components of hysteresis and adhesion friction. Both components are

  1. Effect of the Preheating Temperature on Process Time in Friction Stir Welding of Al 6061-T6

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    2013-01-01

    This paper presents the results obtained and the deductions made from an analytical modeling involving friction stir welding of Al 6061-T6. A new database was developed to simulate the contact temperature between the tool and the workpiece. A second-order equation is proposed for simulating...... the temperature in the contact boundary and the thermal history during the plunge phase. The effect of the preheating temperature on the process time was investigated with the proposed model. The results show that an increase of the preheating time leads to a decrease in the process time up to the plunge...

  2. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  3. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  5. Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite

    International Nuclear Information System (INIS)

    Ashok Kumar, B.; Murugan, N.

    2014-01-01

    Highlights: • AA6061/AlN p cast composite was welded by FSW process. • Regression models were developed to predict UTS and elongation of the FS welded joint. • FS welded joint using the optimized parameters exhibited maximum UTS and joint efficiency. • Defect free weld joint was obtained with optimized parameters value. - Abstract: Aluminium Matrix Composites (AMCs) reinforced with particulate form of reinforcement has replaced monolithic alloys in many engineering industries due to its superior mechanical properties and tailorable thermal and electrical properties. As aluminium nitride (AlN) has high specific strength, high thermal conductivity, high electrical resistivity, low dielectric constant, low coefficient of thermal expansion and good compatibility with aluminium alloy, Al/AlN composite is extensively used in electronic packaging industries. Joining of AMCs is unavoidable in many engineering applications. Friction Stir Welding (FSW) is one of the most suitable welding process to weld the AMCs reinforced with particulate form of ceramics without deteriorating its superior mechanical properties. An attempt has been made to develop regression models to predict the Ultimate Tensile Strength (UTS) and Percent Elongation (PE) of the friction stir welded AA6061 matrix composite reinforced with aluminium nitride particles (AlN p ) by correlating the significant parameters such as tool rotational speed, welding speed, axial force and percentage of AlN p reinforcement in the AA6061 matrix. Statistical software SYSTAT 12 and statistical tools such as analysis of variance (ANOVA) and student’s t test, have been used to validate the developed models. It was observed from the investigation that these factors independently influenced the UTS and PE of the friction stir welded composite joints. The developed regression models were optimized to maximize UTS of friction stir welded AA6061/AlN p composite joints

  6. 77 FR 10621 - Changes to the In-Bond Process

    Science.gov (United States)

    2012-02-22

    ... submit in-bond applications electronically using a CBP-approved electronic data interchange (EDI) system... electronically submit the in-bond application to CBP via a CBP-approved EDI system. \\6\\ Due to the unique... as the CBP-approved EDI system for submitting the in-bond application and other information that is...

  7. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  8. Dynamics of a particle with friction and delay

    Science.gov (United States)

    Monteiro Marques, Manuel D. P.; Dzonou, Raoul

    2018-03-01

    We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"

  9. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Simančík, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, Bratislava (Slovakia); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada)

    2015-08-26

    An aluminum–magnesium alloy was friction-stir processed in the presence of TiO{sub 2} nanoparticles which were pre-placed in a groove on the surface to produce a composite. Field emission-scanning and transmission electron microscopy studies show that solid state chemical reactions occur between the Al–Mg matrix and the ceramic particles upon the severe plastic deformation process. The microstructure of the aluminum alloy consists of a coarse grain structure, large complex (Fe,Mn,Cr){sub 3}SiAl{sub 12} particles, and small Mg{sub 2}Si precipitates. After friction stir processing, a deformed grain structure containing rod-like Al–Fe–Mn–Si precipitates is attained, along with cuboidal (~100 nm) Cr{sub 2} precipitates and spherical (~100 and 5 nm) Mg{sub 2}Si particles. In the presence of TiO{sub 2} nanoparticles, magnesium oxide (MgO) and titanium aluminide (Al{sub 3}Ti) nanophases are formed. It is shown that these microstructural modifications lead to a significant enhancement in the hardness and tensile strength of the aluminum alloy. The relationship between the microstructural evolution and mechanical properties and the role of hard inclusions are presented and discussed. An analysis based on strengthening models indicates that the yield strength of the nanocomposite is mainly controlled by dislocations and grain boundaries rather than the nano-scale inclusions.

  10. A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy

    Science.gov (United States)

    Li, Ruidi; Yuan, Tiechui; Qiu, Zili

    2014-07-01

    A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.

  11. Science friction: data, metadata, and collaboration.

    Science.gov (United States)

    Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L

    2011-10-01

    When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.

  12. Measuring Search Frictions Using Japanese Microdata

    DEFF Research Database (Denmark)

    Sasaki, Masaru; Kohara, Miki; Machikita, Tomohiro

    2013-01-01

    This paper estimates individual-level matching functions to measure search frictions in the Japanese labour market and presents the determinants of search duration. We employ administrative microdata that track the job search process of job seekers who left or lost their job in August 2005...

  13. Internal Friction Angle of Metal Powders

    Directory of Open Access Journals (Sweden)

    Jiri Zegzulka

    2018-04-01

    Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  15. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is to be expected for the coming years. Due to an increasing demand for biomass, the traditionally used wood residues from sawmills and pulp...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  16. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; Carlson, Blair; Boettcher, Eric; Ruokolainen, Robert

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.

  17. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  18. Ab Initio Modeling Of Friction Reducing Agents Shows Quantum Mechanical Interactions Can Have Macroscopic Manifestation.

    Science.gov (United States)

    Hernández Velázquez, J D; Barroso-Flores, J; Gama Goicochea, A

    2016-11-23

    Two of the most commonly encountered friction-reducing agents used in plastic sheet production are the amides known as erucamide and behenamide, which despite being almost identical chemically, lead to markedly different values of the friction coefficient. To understand the origin of this contrasting behavior, in this work we model brushes made of these two types of linear-chain molecules using quantum mechanical numerical simulations under the density functional theory at the B97D/6-31G(d,p) level of theory. Four chains of erucamide and behenamide were linked to a 2 × 10 zigzag graphene sheet and optimized both in vacuum and in continuous solvent using the SMD implicit solvation model. We find that erucamide chains tend to remain closer together through π-π stacking interactions arising from the double bonds located at C13-C14, a feature behenamide lacks, and thus a more spread configuration is obtained with the latter. It is argued that this arrangement of the erucamide chains is responsible for the lower friction coefficient of erucamide brushes, compared with behenamide brushes, which is a macroscopic consequence of cooperative quantum mechanical interactions. While only quantum level interactions are modeled here, we show that behenamide chains are more spread out in the brush than erucamide chains as a consequence of those interactions. The spread-out configuration allows more solvent particles to penetrate the brush, leading in turn to more friction, in agreement with macroscopic measurements and mesoscale simulations of the friction coefficient reported in the literature.

  19. Bulk-friction modeling of afterslip and the modified Omori law

    Science.gov (United States)

    Wennerberg, Leif; Sharp, Robert V.

    1997-01-01

    friction parameter a. We find that a∗ is typically positive, qualitatively consistent with laboratory observations, although our observations are considerably larger than laboratory values. However, we also find good model fits for a∗ frictional slipping. J. Appl. Mech. 50, 343–349] indicates that a∗ friction models. a∗ frictional stresses that vary on a fault surface. Our one-dimensional model parameters reflect spatially averaged, bulk, stress and frictional properties of a fault zone, where we clearly cannot specify the details of the averaging process. Our analysis of Omori's law suggests that bulk-frictional properties of a fault zone are well described by our simple laboratory-based models, but they would need to change during the seismic cycle for a mainshock instability to recur, unless a mainshock-aftershock sequence were characterized by a process similar to the arrested instabilities possible in two-state-variable systems.

  20. Influential Parameters and Numerical Simulation of Heat Generated in the Process of Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Ilija KOVACEVIC

    2016-09-01

    Full Text Available The paper analyzes the problem of friction stir welding (FSW technology. The mechanism of thermo-mechanical process of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Presented are the basic analytical formulations for the definition of temperature fields. Analysis of influential parameters of welding FSW technology at the zone of the weld material and mechanical properties of the realized joint was performed. Influential welding parameters were defined based on tool geometry, technological parameters of processing and the axial load of tool. Specific problems with the FSW process are related to gaps (holes left behind by a tool at the end of the process and inflexibility of welding regarding the degree of variation of material thickness. Numerical simulation of process welding FSW proceeding was carried out on the example of Aluminum Alloy (AA 2219 using the ANSYS Mechanical ADPL (Transient Thermal software package. The defined was the temperature field in the welding process at specified time intervals.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10022

  1. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  2. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  3. Process and magnetic properties of cold pressed Ne Fe B bonded magnets

    International Nuclear Information System (INIS)

    Rodrigues, DAniel; Concilio, Gilberto Vicente; Landgraf, Fernando Jose Gomes; Zanchetta, Antonio Carlos

    1996-01-01

    Bonded magnets are polymer composites based on a mixture of a hard magnetic powder and a polymer. This mixture is processed as a traditional powder metallurgy material, cold pressed, or like a thermoplastic material, by injection molding. The polymeric phase to a large extent determines the mechanical properties of the composite, while magnetic powder determines its magnetic properties. They are less expensive and easier to produce, specially in the case of high complexity parts. This paper presents the relationship between process variables and magnetic properties of cold pressed Nd Fe B bonded magnets produced from melt spun flakes mixed with thermosetting resins. The experiments were done using Statistical Design of Experiments. The variables investigates were: uniaxial compaction pressure, binder type; binder content; size of Nd Fe B particles; addition of lubricant; and addition of small quantities of magnetic additives, particles of ferrites, iron, or alnico. (author)

  4. Comparative study of friction between metallic and conventional interactive self-ligating brackets in different alignment conditions

    Directory of Open Access Journals (Sweden)

    Sérgio Ricardo Jakob

    2014-06-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC, self-ligating ceramic (In-Ovation, Denstply GAC and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC. METHODS: Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10. Three of these situations occurred at the initial phase (in which a 0.016-in nickel-titanium wire was used: 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used. The wires slipped through the brackets and friction was measured by a Universal Testing Machine. RESULTS: Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05 were applied to assess the results. Significant interaction (p < 0.01 among groups was found. For the tests that simulated initial alignment, Ovation(r bracket produced the highest friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C(r showed lower friction, which was similar to the In-Ovation R(r metallic model. For the no misalignment situation, the same results were observed. CONCLUSION: The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C(r ceramic model showed less friction than the metallic ones.

  5. Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

    Directory of Open Access Journals (Sweden)

    F. Stachowicz

    2010-07-01

    Full Text Available This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE model was built using the FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting special emphasis on geometrical non-linearities caused by large deformations, material non-linearities and complex friction conditions. Frictional properties of the deep drawing quality steel sheet were determined by using the pin-on-disc tribometer. It shows that the friction coefficient value depends on the measured angle from the rolling direction and corresponds to the surface topography. A quadratic Hill anisotropic yield criterion was compared with Huber-Mises yield criterion having isotropic hardening. Plastic anisotropy is the result of the distortion of the yield surface shape due to the material microstructural state. The sensitivity of constitutive laws to the initial data characterizing material behavior isalso presented. It is found that plastic anisotropy of the matrix in ductile sheet metal has influence on deformation behavior of the material. If the material and friction anisotropy are taken into account in the finite element analysis, this approach undoubtedly gives the most approximate numerical results to real processes. This paper is the first part of the study of numerical investigation using ABAQUS and mainly deals with the most influencing parameters in a forming process to simulate the sheet metal forming of rectangular cup.

  6. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    Science.gov (United States)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  7. Effect of grafted oligopeptides on friction.

    Science.gov (United States)

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  8. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    Science.gov (United States)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  9. Estimating the workpiece-backingplate heat transfer coefficient in friction stirwelding

    DEFF Research Database (Denmark)

    Larsen, Anders; Stolpe, Mathias; Hattel, Jesper Henri

    2012-01-01

    Purpose - The purpose of this paper is to determine the magnitude and spatial distribution of the heat transfer coefficient between the workpiece and the backingplate in a friction stir welding process using inverse modelling. Design/methodology/approach - The magnitude and distribution of the heat...... in an inverse modeling approach to determine the heat transfer coefficient in friction stir welding. © Emerald Group Publishing Limited....

  10. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    International Nuclear Information System (INIS)

    Palanivel, R.; Dinaharan, I.; Laubscher, R.F.

    2017-01-01

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  11. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, R., E-mail: rpalanivelme@gmail.com; Dinaharan, I., E-mail: dinaweld2009@gmail.com; Laubscher, R.F., E-mail: rflaubscher@uj.ac.za

    2017-02-27

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  12. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    Science.gov (United States)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  13. Friction in sheet metal forming

    DEFF Research Database (Denmark)

    Wiklund, D.; Liljebgren, M.; Berglund, J.

    2010-01-01

    and calls for functional tool surfaces that are durable in these severe tribological conditions. In this study the influence of tool surface topography on friction has been investigated. The frictional response was studied in a Bending Under Tension test. The results did show that a low frictional response...

  14. Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art

    Science.gov (United States)

    Khan, M. Roshan; Dasaka, Satyanarayana Murty

    2018-05-01

    High Speed Railways and Dedicated Freight Corridors are the need of the day for fast and efficient transportation of the ever growing population and freight across long distances of travel. With the increase in speeds and axle loads carried by these trains, wearing out of rails and train wheel sections are a common issue, which is due to the increase in friction at the wheel-rail interfaces. For the cases where the wheel-rail interface friction is less than optimum, as in case of high speed trains with very low axle loads, wheel-slips are imminent and loss of traction occurs when the trains accelerate rapidly or brake all of a sudden. These vast variety of traction problems around the wheel-rail interface friction need to be mitigated carefully, so that the contact interface friction neither ascents too high to cause material wear and need for added locomotive power, nor be on the lower side to cause wheel-slips and loss of traction at high speeds. Top-of-rail friction modifiers are engineered surface coatings applied on top of rails, to maintain an optimum frictional contact between the train wheels and the rails. Extensive research works in the area of wheel-rail tribology have revealed that the optimum frictional coefficients at wheel-rail interfaces lie at a value of around 0.35. Application of top-of-rail (TOR) friction modifiers on rail surfaces add an extra layer of material coating on top of the rails, with a surface frictional coefficient of the desired range. This study reviews the common types of rail friction modifiers, the methods for their application, issues related with the application of friction modifiers, and a guideline on selection of the right class of coating material based on site specific requirements of the railway networks.

  15. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  16. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  17. Thermal Phenomena in the Friction Process of the TG15 - Hard Anodic Coating Couple

    Directory of Open Access Journals (Sweden)

    Służałek G.

    2016-09-01

    Full Text Available The paper presents a one-dimensional model of heat conduction in a couple consisting of a cylinder made of a sliding plastic material, TG15, and a cuboid made of alloy AW 6061 coated with a hard anodic coating, where the couple is heated with the heat generated during friction. TG15 is a composite material based on polytetrafluoroethylene (PTFE with a 15% graphite filler, used for piston rings in oil-free air-compressors. Measurement of temperature in the friction zone is extremely important for the understanding and analysis of the phenomena occurring therein. It is practically impossible to introduce a temperature sensor in such a place. Therefore, the interaction taking place in such a couple was modelled using numerical methods. In order to simplify and accelerate the calculations, a one-dimensional model and constant thermophysical parameters of the materials participating in friction were adopted. To solve the proposed model, the finite difference method was used (FDM. The resultant system of equations was solved by means of an explicit scheme.

  18. Modification of vacuum plasma sprayed tungsten coating on reduced activation ferritic/martensitic steels by friction stir processing

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Ozawa, Kazumi; Morisada, Yoshiaki; Noh, Sanghoon; Fujii, Hidetoshi

    2015-01-01

    Highlights: • Friction stir processing (FSP) was applied on vacuum plasma spray (VPS) W to improve its low thermal conductivity and weakness due to high porosity. • FSP can achieve significant improvement both in mechanical and thermal properties of VPS-W coating. • It was indicated that the double pass FSP at 600 rpm/50 mm/min/2 ton on VPS-W show the most dense microstructure and hardest mechanical property. • Hardness test over FSPed VPS-W layer revealed that the hardness of W becomes higher than that of bulk W. • The thermal conductivity of double pass FSPed VPS-W was about 80% of bulk W at 200 °C, and it becomes equivalent to that of bulk W over 800 °C. - Abstract: Tungsten (W) is the primary candidate material as a plasma facing material in fusion devices, as for its high melting temperature, good thermal conductivity and low sputtering rate, and vacuum plasma spray (VPS) technique is preferred as it is applicable for large area without brittle interlayer, but the thermal conductivity of W layer is very poor, and easy to detach, mainly caused by its porous structure. W Friction stir processing (FSP) was applied on VPS-W to improve these poor properties, and it was suggested that FSP can contribute to significant improvement in both mechanical and thermal properties of the VPS-W coating.

  19. Friction stir welding of Aluminium matrix composites – A Review

    Directory of Open Access Journals (Sweden)

    Subramanya Prabhu

    2018-01-01

    Full Text Available Friction stir welding (FSW is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs. It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.

  20. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  1. Impacts of friction stir processing on irradiation effects in vacuum-plasma-spray coated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Kazumi, E-mail: ozawa.kazumi@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166 Obuchi-Omotedate, Rokkasho, Aomori 039-3212 (Japan); Tanigawa, Hiroyasu [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166 Obuchi-Omotedate, Rokkasho, Aomori 039-3212 (Japan); Morisada, Yoshiaki; Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-10-15

    In order to examine the impacts of friction stir processing (FSP) on irradiation effects in vacuum-plasma-spray (VPS) coated tungsten (W), nano indentation hardness was evaluated of three kinds of W materials after self-ion-irradiation to 5.0–5.4 dpa at 500 and 800 °C. The VPS-FSP clearly got grains refined and isotropic compared to bulk-W and the as-VPS-W. Nano indentation hardness remains unchanged for the as-VPS-W and VPS-FSP × 2-W irradiated to 5.4 dpa at 500 °C and it decreased from 1 dpa at 800 °C, while typical irradiation induced hardening was observed for the bulk-W irradiated at 500 °C.

  2. Friction behavior of nano-textured polyimide surfaces measured by AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, Chunxia; Che, Hongwei; Hou, Junxian [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); Jia, Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-30

    Highlights: • Flat PI film and nano-textured PI film were prepared by spin-coating process. • The nano-textured PI surface has effectively reduced the adhesion and friction. • Friction increased with the increasing of contact area and adhesion. • The growth rate of friction decreased with the increasing of applied load. - Abstract: Flat polyimide (PI) film and silicon dioxide nanoparticle-textured PI film were prepared by means of the spin-coating technique. The adhesion and friction properties of the flat PI surface and nano-textured PI surface were investigated by a series of Atomic force microscope (AFM) colloidal probes. Experimental results revealed that the nano-textured PI surface can significantly reduce the adhesive force and friction force, compared with the flat PI surface. The main reason is that the nano-textures can reduce the contact area between the sample surface and colloidal probe. The effect of colloidal probe size on the friction behavior of the flat and nano-textured PI surfaces was evaluated. The adhesive force and friction force of nano-textured PI surface were increased with the increasing of the size of interacting pairs (AFM colloidal probe) due to the increased contact area. Moreover, the friction forces of flat and nano-textured PI surfaces were increased with applied load and sliding velocity.

  3. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure

    Science.gov (United States)

    Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng

    2018-02-01

    Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.

  4. Bamboo Fibre-reinforced Semi-Metallic Brake Friction Materials for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Talib R. J.

    2016-01-01

    Full Text Available Three friction material formulations composed of bamboo fiber along with binder, friction modifiers and filler have been prepared through powder metallurgy process. Sample F1 and F2 are composed of 10 wt. % of copper and barium, respectively, while the other ingredients in both formulations have the same wt. %. The wt. % of bamboo fiber in sample F3 is, however, increased by 100%, while the compositions of the other ingredients are proportionally decreased. The samples were examined for their porosity, hardness, and friction and wear properties using hot bath, Rockwell hardness tester, and CHASE friction dynamometer, respectively. The test results are compared with those of a commercial sample as the benchmark. Normal and hot frictions of all the three samples developed comply with the requirements specified by Automotive Manufacturer Equipment Companies Agency (AMECA. However, sample F3 which is composed of 20 wt. % of bamboo fiber does not comply with the minimum requirement of friction coefficient. Whereas, sample F2, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of barium, has lower friction coefficient than the commercial sample, and has a sudden drop in friction coefficient at a temperature of 500°F. Out of three developed samples, sample F1, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of copper, complies with all the requirements and has higher friction coefficient than the commercial sample, and has higher fade resistance. Thus, it could be postulated that bamboo fiber could be used as a reinforcing fiber with composition of 10 wt. %.

  5. Fault Frictional Stability in a Nuclear Waste Repository

    Science.gov (United States)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    friction coefficient decreased from a peak value of μpeak,sat = 0.45 to μss,sat = 0.34. Additionally, it has been observed that the weakening distance Dw is smaller under fluid- saturated conditions (˜4 mm) compared to dry conditions (˜6 mm). Results showed a linear decrease of both peak friction and steady state friction when normal stress increases. When fluid- saturation degree of gouges is reduced, gouge samples underwent a transition from velocity strengthening to velocity weakening behaviour, thus indicating a potentially unstable frictional behaviour of the fault. Furthermore, under both saturated and dry conditions, the frictional healing rate showed a low recovery of the friction coefficient under different holding times. Our experiments indicate that the frictional behaviour of Opalinus Clay is characterized by complex processes depending upon normal stress, sliding velocity, and saturation degree of the samples. This complexity highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.

  6. The effect of friction in coulombian damper

    Science.gov (United States)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  7. Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites

    International Nuclear Information System (INIS)

    Yi Gewen; Yan Fengyuan

    2006-01-01

    Calcined petroleum coke (CPC) and hexagonal boron nitride (h-BN) were used as the friction modifiers to improve the friction and wear properties of phenolic resin-based friction composites. Thus, the composites with different relative amounts of CPC and h-BN as the friction modifiers were prepared by compression molding. The hardness and bending strength of the friction composites were measured. The friction and wear behaviors of the composites sliding against cast iron at various temperatures were evaluated using a pin-on-disc test rig. The worn surfaces and wear debris of the friction composites were analyzed by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. It was found that the hybrid of the two friction modifiers was effective to significantly decrease the wear rate and stabilize the friction coefficient of the friction composites at various temperatures by forming a uniform lubricating and/or transferred film on the rubbing surfaces. The uniform and durable transfer films were also able to effectively diminish the direct contact between the friction composite and the cast iron counterpart and hence prevent severe wear of the latter as well. The effectiveness of the hybrid of CPC and h-BN in improving the friction and wear behavior of the phenolic resin-based friction modifiers could be attributed to the complementary action of the 'low temperature' lubricity of CPC and the 'high temperature' lubricity of h-BN. The optimum ratio of the two friction modifiers CPC and h-BN in the friction composites was suggested to be 1:1, and the corresponding friction composite showed the best friction-reducing and antiwear abilities

  8. The wheel-rail contact friction influence on high speed vehicle model stability

    Directory of Open Access Journals (Sweden)

    Mirosław DUSZA

    2015-09-01

    Full Text Available Right estimating of the coefficient of friction between the wheel and rail is essential in modelling rail vehicle dynamics. Constant value of coefficient of friction is the typical assumption in theoretical studies. But it is obvious that in real circumstances a few factors may have significant influence on the rails surface condition and this way on the coefficient of friction value. For example the weather condition, the railway location etc. Influence of the coefficient of friction changes on high speed rail vehicle model dynamics is presented in this paper. Four axle rail vehicle model were built. The FASTSIM code is employed for calculation of the tangential contact forces between wheel and rail. One coefficient of friction value is adopted in the particular simulation process. To check the vehicle model properties under the influence of wheel-rail coefficient of friction changes, twenty four series of simulations were performed. For three curved tracks of radii R = 3000m, 6000m and  (straight track, the coefficient of friction was changed from 0.1 to 0.8. The results are presented in form of bifurcation diagrams.

  9. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  10. Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process

    International Nuclear Information System (INIS)

    Tohidi, A.A.; Ketabchi, M.; Hasannia, A.

    2013-01-01

    Over the last decade, nanocrystalline and ultra-fine grained (UFG) materials with grain size less than 1 μm have aroused considerable interest due to their superior mechanical properties compared to conventionally grained materials. In this work Ti–Nb microalloy steel was processed by the severe plastic deformation (SPD) technique called Accumulative Roll Bonding (ARB) in order to produce an ultra-fine grained microstructure and improve the mechanical properties. After initial preparation to achieve good sheet bonding, 8 cycles of ARB at 550 °C were successfully performed. Observation of optical microstructure, scanning electron microscopy (SEM) micrographs, and X-Ray Diffraction (XRD) peak broadening analysis were used for the characterization of grain structure of the ARB processed sample. The mechanical attributes after rolling and cooling were examined. It was calculated that metal's yield and tensile strength increased by 334% and 215% respectively, while the ductility dropped from as-received value of 34% to 2.9%. Microhardness of the material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of the ARB process. At the 8th pass, the hardness values increased by 230%. The rolling process was stopped at 8th cycle when cracking of the edge became pronounced

  11. Advances on LuGre friction model

    OpenAIRE

    Fuad, Mohammad; Ikhouane, Fayçal

    2013-01-01

    LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

  12. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  13. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  14. Spine growth mechanisms: friction and seismicity at Mt. Unzen, Japan

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Hirose, Takehiro; Henton De Angelis, Sarah; De Angelis, Silvio; Umakoshi, Kodo; Miwa, Takahiro; Wadsworth, Fabian; Dingwell, Don; Lavallee, Yan

    2014-05-01

    The final episode of dome growth during the 1991-1995 eruption of Mt. Unzen was characterised by spine extrusion accompanied by repetitive seismicity. This type of cyclic activity has been observed at several dome-building volcanoes and recent work suggests a source mechanism of brittle failure of magma in the conduit. Spine growth may proceed by densification and closure of permeable pathways within the uppermost conduit magma, leading to sealing of the dome and inflation of the edifice. Amplified stresses on the wall rock and plug cause brittle failure near the conduit wall once static friction forces are overcome, and during spine growth these fractures may propagate to the dome surface. The preservation of these features is rare, and the conduit is typically inaccessible; therefore spines, the extruded manifestation of upper conduit material, provide the opportunity to study direct evidence of brittle processes in the conduit. At Mt. Unzen the spine retains evidence for brittle deformation and slip, however mechanical constraints on the formation of these features and their potential impact on eruption dynamics have not been well constrained. Here, we conduct an investigation into the process of episodic spine growth using high velocity friction apparatus at variable shear slip rate (0.4-1.5 m.s-1) and normal stress (0.4-3.5 MPa) on dome rock from Mt. Unzen, generating frictional melt at velocity >0.4 m.s-1 and normal stress >0.7 MPa. Our results show that the presence of frictional melt causes a deviation from Byerlee's frictional rule for rock friction. Melt generation is a disequilibrium process: initial amphibole breakdown leads to melt formation, followed by chemical homogenization of the melt layer. Ultimately, the experimentally generated frictional melts have a similar final chemistry, thickness and comminuted clast size distribution, thereby facilitating the extrapolation of a single viscoelastic model to describe melt-lubricated slip events at Mt

  15. The diffusion bonding of advanced material

    International Nuclear Information System (INIS)

    Khan, T.I.

    2001-01-01

    As a joining process diffusion bonding has been used since early periods, and artifacts have been found which date back to 3000 years. However, over the last 20 years this joining process has been rediscovered and research has been carried out to understand the mechanisms of the process, and the application of the technique to advanced materials. This paper will review some of the reasons to why diffusion bonding may be preferred over other more conventional welding processes to join advanced alloy systems. It also describes in brief the different types of bonding processes, namely, solid-state and liquid phase bonding techniques. The paper demonstrates the application of diffusion bonding processes to join a range of dissimilar materials for instance: oxide dispersion strengthened superalloys, titanium to duplex stainless steels and engineering ceramics such as Si/sub 3/N/sub 4/ to metal alloys. The research work highlights the success and limitations of the diffusion bonding process and is based on the experience of the author and his colleagues. (author)

  16. Chirality-dependent friction of bulk molecular solids.

    Science.gov (United States)

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  17. A Simple Device For Measuring Skin Friction

    Directory of Open Access Journals (Sweden)

    Gupta A.B

    1995-01-01

    Full Text Available A simple device for measuring skin friction in vivo is described. The frictional coefficient of normal Indian skin and the effect of hydration and application of talc and glycerol on the frictional coefficient and also the friction of ichthyotic skin have been determined with its help. The average value of friction of friction of normal India skin at forearm is found to be 0.41 +- 0.08, the hydration raises the value to 0.71 +- 0.11 and the effect of glycerol is also to school it up to 0.70+- 0.05, almost equal to that of water. The effect of talc however is opposite and its application lowers the friction to 0.21+-0.07. The mean coeff of friction for ichthyotic skin is found to be 0.21+- 0.0.5, which closely agrees with talc-treated normal skin. A good positive correlation (p<0.01 between friction and sebum level at skin site, with r = 0.64, has been observed.

  18. Toward a physics-based rate and state friction law for earthquake nucleation processes in fault zones with granular gouge

    Science.gov (United States)

    Ferdowsi, B.; Rubin, A. M.

    2017-12-01

    Numerical simulations of earthquake nucleation rely on constitutive rate and state evolution laws to model earthquake initiation and propagation processes. The response of different state evolution laws to large velocity increases is an important feature of these constitutive relations that can significantly change the style of earthquake nucleation in numerical models. However, currently there is not a rigorous understanding of the physical origins of the response of bare rock or gouge-filled fault zones to large velocity increases. This in turn hinders our ability to design physics-based friction laws that can appropriately describe those responses. We here argue that most fault zones form a granular gouge after an initial shearing phase and that it is the behavior of the gouge layer that controls the fault friction. We perform numerical experiments of a confined sheared granular gouge under a range of confining stresses and driving velocities relevant to fault zones and apply 1-3 order of magnitude velocity steps to explore dynamical behavior of the system from grain- to macro-scales. We compare our numerical observations with experimental data from biaxial double-direct-shear fault gouge experiments under equivalent loading and driving conditions. Our intention is to first investigate the degree to which these numerical experiments, with Hertzian normal and Coulomb friction laws at the grain-grain contact scale and without any time-dependent plasticity, can reproduce experimental fault gouge behavior. We next compare the behavior observed in numerical experiments with predictions of the Dieterich (Aging) and Ruina (Slip) friction laws. Finally, the numerical observations at the grain and meso-scales will be used for designing a rate and state evolution law that takes into account recent advances in rheology of granular systems, including local and non-local effects, for a wide range of shear rates and slow and fast deformation regimes of the fault gouge.

  19. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  20. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys

    International Nuclear Information System (INIS)

    Shanmuga Sundaram, N.; Murugan, N.

    2010-01-01

    The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.

  1. Non-uniform Pressure Distribution in Draw-Bend Friction Test and its Influence on Friction Measurement

    International Nuclear Information System (INIS)

    Kim, Young Suk; Jain, Mukesh K.; Metzger, Don R.

    2005-01-01

    From various draw-bend friction tests with sheet metals at lubricated conditions, it has been unanimously reported that the friction coefficient increases as the pin diameter decreases. However, a proper explanation for this phenomenon has not been given yet. In those experiments, tests were performed for different pin diameters while keeping the same average contact pressure by adjusting applied tension forces. In this paper, pressure profiles at pin/strip contacts and the changes in the pressure profiles depending on pin diameters are investigated using finite element simulations. To study the effect of the pressure profile changes on friction measurements, a non-constant friction model (Stribeck friction model), which is more realistic for the lubricated sheet metal contacts, is implemented into the finite element code and applied to the simulations. The study shows that the non-uniformity of the pressure profile increases and the pin/strip contact angle decreases as the pin diameter decreases, and these phenomena increase the friction coefficient, which is calculated from the strip tension forces using a conventional rope-pulley equation

  2. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    Science.gov (United States)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  3. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer

    2016-03-01

    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  4. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  5. Friction and wear methodologies for design and control

    CERN Document Server

    Straffelini, Giovanni

    2015-01-01

    This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professi...

  6. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  7. Relating stick-slip friction experiments to earthquake source parameters

    Science.gov (United States)

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  8. Recent developments in Micro Friction Stir Welding: A review

    International Nuclear Information System (INIS)

    Sithole, Keydon; Rao, Veeredhi Vasudeva

    2016-01-01

    The advent of friction stir welding (FSW) in 1991 has been evolutionary in the joining of metals and related materials. Friction stir welding has enabled the joining of metals that could not be joined by other welding processes. Research has shown that dissimilar materials with very different properties, plastics, composites and even wood can be joined by FSW. Recent activities in the application of FSW has seen the development of micro friction stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new development significant work has been done to date with interesting research findings being reported. This paper aims to review developments in μFSW to date. The focus of the paper will be on problems peculiar to μFSW due to downscaling to the micro scale and other practical considerations. (paper)

  9. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  10. Analytical modeling of mixed-Mode bending behavior of asymmetric adhesively bonded pultruded GFRP joints

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Shahverdi, M.; Hutař, Pavel; Vassilopoulos, Anastasios P.

    2015-01-01

    Roč. 147, OCT (2015), s. 228-242 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Mixed-Mode delamination * Asymmetric joint * Adhesively bonded joint * Failure criterion * Analytical prediction * GFRP Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.024, year: 2015

  11. Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Jun-Gang Ren; Lei Wang; Dao-Kui Xu; Li-Yang Xie; Zhan-Chang Zhang

    2017-01-01

    A friction stir processing-based method was used to repair cracks in the 2024 aluminum alloy plates.The temperature field and plastic material flow pattern were analyzed on the basis of experimental and finite element simulation results.Microstructure and tensile properties of the repaired specimens were studied.The results showed that the entire crack repairing was a solid-phase process and plastic materials tended to flow toward the shoulder center and then resulted in the repairing of cracks.Meanwhile,the coarse grain structures were refined in repaired zone (RZ),while the grains in thermal-mechanically affected zone and heat-affected zone were elongated and driven to grow up.Meanwhile,large phases are crushed into small particles and dispersed inside the RZ.Finally,the strength of the repaired specimens can be restored dramatically and their ductility can be partially restored.After heat treatment,the tensile properties of the repaired specimens can be further enhanced.

  12. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Peter Kelly [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE2Fe14B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 105-106K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH)max for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF3). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the

  13. Fluxless Bonding Processes Using Silver-Indium System for High Temperature Electronics and Silver Flip-Chip Interconnect Technology

    Science.gov (United States)

    Wu, Yuan-Yun

    In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. There are two section are reported. In the first section, the reactions of Ag-In binary system are presented. In the second section, the high melting temperature, thermal and electrical conductivity joint materials bonding by either Ag-In binary system bonding or solid-state bonding processes for different bonded pairs and flip-chip application are designed, developed, and reported. Our group have studied Ag-In system for several years and developed the bonding processes successfully. However, the detailed reactions of Ag and In were seldom studied. To design a proper bonding structure, it is necessary to understand the reaction between Ag and In. The systematic experiments were performed to investigate these reactions. A 40 um Ag layer was electroplated on copper (Cu) substrates, followed by indium layers of 1, 3, 5, 10, and 15 um, respectively. The samples were annealed at 180 °C in 0.1 torr vacuum. For samples with In thickness less than 5 mum, the joint compositions are Ag2In only (1 um) or AgIn2, Ag2In, and Ag solid solution (Ag) after annealing. No indium is identified. For 10 and 15 um thick In samples, In covers almost over the entire sample surface after annealing. Later, an Ag layer was annealed at 450 °C for 3 hours to grow Ag grains, followed by plating 10 um In and annealing at 180 °C. By annealing Ag before plating In, more In is kept in the structure during annealing at 180 °C. Based on above results, for those designs with In thinner than 5 um, the Ag layer needs to be annealed, prior to In plating in order to make a

  14. Effect of the properties of natural resin binder in a high friction composite material

    Directory of Open Access Journals (Sweden)

    S. Stephen Bernard

    2014-01-01

    Full Text Available In this paper, a high-friction composite material based on the combination of binder, friction modifiers, fibers and fillers is investigated. In the binder, up to 20% of phenol are replaced by cardanol with various weight ratios of 100/0, 95/5, 90/10, 85/15, 80/20. Cardanol may react both through the phenolic group and the double bond of the side chain yielding addition, condensation and polymerisation reactions that allow the synthesis of tailor-made products and polymers of high value. In the present work, mechanical, thermal and wear characteristics of cardanol based phenolic resin with organic ingredients were manufactured and tested. An analysis of microstructure characteristics of composites was carried out using scanning electron microscope. The effect of environment on the composite was investigated in water, salty water and oil. The results showed that the addition of cardanol reduces the wear resistance and increases the compressibility which reduces the noise propensity.

  15. On the mechanical friction losses occurring in automotive differential gearboxes.

    Science.gov (United States)

    Antoni, Grégory

    2014-01-01

    In the automobile industry, the mechanical losses resulting from friction are largely responsible for various kinds of surface damage, such as the scuffing occurring in some mechanical assemblies. These scuffing processes seem to be due to a local loss of lubrication between certain mechanical elements of the same assembly, leading to a sharp increase in the friction, which can lead to a surface and volume damage in some of them, and even can cause, in the worst case, the whole destruction of the mechanical system if it has continued to operate. Predicting and checking the occurrence of this kind of undesirable phenomena, especially in some principal systems of the vehicle, represents nowadays, a crucial challenge in terms of automobile reliability and safety. This study focuses on the mechanical friction losses liable to occur in differential automobile gearboxes, which can lead in the long term to the scuffing of these mechanical systems. The friction losses involved were modeled, using a simple analytical approach, which is presented and discussed.

  16. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  17. Amontonian frictional behaviour of nanostructured surfaces.

    Science.gov (United States)

    Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Fuge, Gareth M; Fox, Oliver J L; Ashfold, Michael N R; Leese, Hannah; Mattia, Davide; Briscoe, Wuge H

    2011-05-28

    With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ(0) + μ(g), with the intrinsic friction coefficient μ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient μ(g) for the presence of nanotextures. We have found a possible correlation between μ(g) and the average local slope of the surface nanotextures. This journal is © the Owner Societies 2011

  18. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  19. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  20. Comparisons of friction models in bulk metal forming

    DEFF Research Database (Denmark)

    Tan, Xincai

    2002-01-01

    A friction model is one of the key input boundary conditions in finite element simulations. It is said that the friction model plays an important role in controlling the accuracy of necessary output results predicted. Among the various friction models, which one is of higher accuracy is still...... unknown and controversial. In this paper, finite element analyses applying five different friction models to experiments of upsetting of AA 6082 lubricated with four lubricants are presented. Frictional parameter values are determined by fitness of data of friction area ratio from finite element analysis...... to experimental results. It is found that calibration curves of the friction area ratio for all of the five chosen friction models used in the finite element simulation do fit the experimental results. Usually, calbration curves of the friction area ratio are more sensitive to friction at the tool...