WorldWideScience

Sample records for fretting crack location

  1. Fretting fatigue crack propagation rate under variable loading conditions

    Directory of Open Access Journals (Sweden)

    C. Gandiolle

    2016-01-01

    Full Text Available Fretting fatigue experiments aim to represent industrial problems and most of them endure variable loading. Being able to assess lifetime of assemblies, especially for low propagation rate conditions, is essential as experimental validation is often too expensive. Both experimental and numerical approaches are proposed to follow the crack propagation rate of steel on steel cylinder/plane fretting fatigue contact submitted to variable loading conditions. An original experimental monitoring has been implemented on the fretting-fatigue test device to observe crack propagation using a potential drop technique. A calibration curve relating crack length and electrical potential was established for the studied contact. It allows direct knowledge of the crack length and crack propagation rate. It was applied to mixed load test showing crack arrest for the last loading condition. To explain this behavior, a 2-dimensional FE modeling was implemented to simulate the complexes multi-axial contact stressing. The crack propagation rate was formalized using an effective stress intensity factor amplitude ΔKeff coupled with Paris law of the material. The crack arrest condition for a given loading was related to ΔKeff along the expected crack path crossing the material crack arrest threshold ΔK0. The failure was related to ΔKeff reaching the critical stress intensity factor KIC. A good correlation with experiments was observed allowing to predict the crack arrest condition although the model tends to overestimate the final crack length extension.

  2. Crack path simulation for cylindrical contact under fretting conditions

    Directory of Open Access Journals (Sweden)

    R.A. Cardoso

    2016-02-01

    Full Text Available In this work different strategies to estimate crack path for cylindrical contacts under fretting conditions are carried out. The main goal is to propose and to evaluate methodologies not only to estimate the direction of crack initiation but also the subsequent propagation in its earlier stages, where the stress field is multiaxial, non-proportional and decays very fast due to the proximity with the contact interface. Such complex conditions pose a substantial challenge to the modelling of crack path. The numerical simulations are provided by a 2D Finite Element Analysis taking into account interactions between the crack faces. The results show that, under fretting conditions, models based on the critical plane method are not effective to estimate the crack initiation orientation, while models based on a so called “critical direction” applied along a critical distance provide better results. Regarding the subsequent crack propagation orientation, it was possible to see that stress intensity factor based models where one considers an infinitesimal virtual crack emerging from an original preexistent crack are powerful mechanisms of crack orientation estimation.

  3. Sharp contact corners, fretting and cracks

    Directory of Open Access Journals (Sweden)

    D. A. Hills

    2013-07-01

    Full Text Available Contacts with sharp edges subject to oscillatory loading are likely to nucleate cracks from the corners, if the loading is sufficiently severe. To a first approximation, the corners behave like notches, where the local elastic behaviour is relieved by plasticity, and which in turn causes irreversibilities that give rise to crack nucleation, but also by frictional slip. One question we aim to answer here is; when is the frictional slip enveloped by plastic slip, so that the corner is effectively a notch in a monolithic material? We do this by employing the classical Williams asymptotic solution to model the contact corner, and, in doing so, we render the solution completely general in the sense that it is independent of the overall geometry of the components. We then re-define the independent parameters describing the properties of the Williams solution by using the inherent length scale, a procedure that was described at the first IJFatigue and FFEMS joint workshop [1]. By proceeding in this way, we can provide a self-contained solution that can be ‘pasted in’ to any complete contact problem, and hence the likelihood of crack nucleation, and the circumstances under which it might occur, can be classified. Further, this reformulation of Williams' solution provides a clear means of obtaining the strength (defined by crack nucleation conditions of a material pair with a particular contact angle. This means that the results from a test carried out using a laboratory specimen may easily be carried over to any complicated contact problem found in engineering practice, and a mechanical test of the prototypical geometry, which may often be quite difficult, is avoided.

  4. Analysis of initial crack path in fretting fatigue

    Directory of Open Access Journals (Sweden)

    J. Vázquez

    2016-07-01

    Full Text Available The initial crack path is analysed in a fretting fatigue test with cylindrical contact, where there is a stress gradient and a multiaxial and non-proportional stress state. For this, a cylindrical pad is pressed, with a constant normal load, N, against a dog-bone type fatigue test specimen. Then, the test specimen is subjected to a cyclic axial stress, σ. Due to the cyclical axial stress, the assembly used and the friction between the contact pair, a tangential cyclic load Q is generated. In these tests, both components are made of Al7075-T651 alloy. The crack initiation path along the fracture surface is optically measured using a focus variation technique. The contact stress/strain fields obtained analytically, in junction with the Fatemi-Socie (FS and Smith-Watson- Topper (SWT multiaxial fatigue parameters, allow us to determine the controlling parameters of the crack initiation process observed in the tests and to estimate the crack path during the early stage of the crack growth.

  5. Locating a leaking crack by safe stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Sagat, S. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.); Shek, G.K.; Graham, D.B.; Durand, M.A. (Ontario Hydro, Toronto, ON (Canada))

    1990-01-01

    A few Zr-2.5 Nb alloy pressure tubes in CANDU nuclear reactors have leaked through cracks that have grown by delayed hydride cracking (DHC). In some instances, tubes contained confirmed leaks that were leaking at a rate too low for precise identification of the leaking channel. Controlled stimulation of DHC can be used to help locate these leaks by extending the crack and increasing the leak rate without approaching crack instability. In the event of a leak being detected, a plant operator can gain time for leak location by a heating and unloading manoeuvre that will arrest crack growth and increase the critical crack length. This manoeuvre increases the safety margin against tube rupture. If required, the operator can then stimulate cracking in a controlled manner to aid in leak identification. Sequences of temperature and load manoeuvres for safe crack stimulation have been found by laboratory tests on dry specimens and the efficacy of the process has been demonstrated, partly in a power reactor, and partly in a full-scale simulation of a leaking pressure tube. (author).

  6. Effect of Initial Debond Crack Location on the Face/core Debond Fracture Toughness

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian

    2010-01-01

    This paper studies the effect of initial crack location on the face/core debond fracture toughness under different mixed mode loading conditions. The mixed mode loading at the crack tip is defined in terms of the mode-mixity. In order to achieve the desired initial debond crack location, a pre...... as initial debond crack location. Lower fracture toughness values were measured for specimens with the initial crack location in the face laminate....

  7. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.

    Science.gov (United States)

    Domanov, Yegor A; Molotkovsky, Julian G; Gorbenko, Galyna P

    2005-10-01

    The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.

  8. Fretting of AISI 9310 and selected fretting resistant surface treatments

    Science.gov (United States)

    Bill, R. C.

    1977-01-01

    Fretting wear experiments were conducted with uncoated AISI 9310 mating surfaces, and with combinations incorporating a selected coating to one of the mating surfaces. Wear measurements and SEM observations indicated that surface fatigue, as made evident by spallation and surface crack formation, is an important mechanism in promoting fretting wear to uncoated 9310. Increasing humidity resulted in accelerated fretting, and a very noticeable difference in nature of the fretting debris. Of the coatings evaluated, aluminum bronze with a polyester additive was most effective at reducing wear and minimizing fretting damage to the mating uncoated surface, by means of a selflubricating film that developed on the fretting surfaces. Chromium plate performed as an effective protective coating, itself resisting fretting and not accelerating damage to the uncoated surface.

  9. Fretting fatigue in AISI 1015 steel

    Indian Academy of Sciences (India)

    R Gnanamoorthy; R Rosi Reddy

    2002-04-01

    A small osillatory movement between two contacting surfaces is termed as fretting and on many occasions it acts as the crack initiation site leading to catastrophic failure of the overall structure. The occurrence of fretting is observed in many engineering structures such as shaft flanges, gas turbines, steel ropes etc. An experimental facility, which can simulate the fretting fatigue in many engineering applications, is the primary requirement of the research program. A laboratory fretting fatigue test facility capable of varying many influencing parameters of fretting fatigue such as slip amplitutde, frequency, contact pressure, etc is designed and developed. Preliminary investigations on plain and fretting fatigue behaviour of AISI 1015 structural steel are reported in this paper. A strength reduction factor of about 1.30 was obtained due to fretting for the test material under the present experimental conditions. Influence of contact load on fretting was also studied. Increasing fretting contact load decreased the fatigue life in the range investigated. Failure analysis showed typical stage I oblique crack growth followed by stage II straight crack perpedicular to the fretting zone.

  10. Crack location identification of rotating rotor systems using operating deflection shape data

    Institute of Scientific and Technical Information of China (English)

    ZHANG; ChunLin; LI; Bing; YANG; ZhiBo; XIAO; WenRong; HE; ZhengJia

    2013-01-01

    Crack location identification, as one key destination of structural health monitoring, is still a challenge for operating rotor systems. The operating deflection shape (ODS), which represents a visual description of the structural vibration patterns under operating conditions, has been gaining importance for structure damage detection in recent years. The ODS carries damage information of a structure, however, it is also difficult to detect weak cracks of rotor directly. The approximate waveform capacity dimension (AWCD) method was successfully applied to damage detection of plates and beam-like structures. In this paper,a strategic approach that combines ODS and weighted AWCD is proposed for crack location identification of the rotating rotor.To eliminate the false peaks of AWCD and obtain desirable results, a weight factor and ODS curvature data are introduced to the expression of the weighted AWCD. The effectiveness of the proposed method is validated by numerical simulation and experimental investigation in a cracked rotor system. The results indicate that the proposed approach not only provides good identifying performance for incipient rotor cracks, but also effectively eliminates the fault peaks introduced by the inflexion locations of ODSs. Moreover, the proposed approach proves promising in detecting crack locations of rotating rotor systems.

  11. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2015-12-01

    Full Text Available Fretting is now fully identified as a small amplitude oscilatory motion which induces a harmonic tangential force between two surfaces in contact.It is related to three main loadings, i.e. fretting-wear, fretting-fatigue and fretting corrosion.Fretting regimes were first mapped by Vingsbo. In a similar way, three fretting regimes will be considered: stick regime,slip regime and mixed regime. The mixed regime was made up of initial gross slip followed by partial slip condition after a few hundred cycles. Obviously the partial slip transition develops the highest stress levels which can induce fatigue crack nucleation depending on the fatigue properties of the two contacting first bodies. Therefore prediction of the frontier between partial slip and gross slip is required.

  12. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  13. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    Science.gov (United States)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  14. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  15. Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape

    Science.gov (United States)

    Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2002-01-01

    This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.

  16. IIem-spFRET: improved Iem-spFRET method for robust FRET measurement

    Science.gov (United States)

    Zhang, Jiang; Lin, Fangrui; Chai, Liuying; Wei, Lichun; Chen, Tongsheng

    2016-10-01

    We recently developed a quantitative Förster resonance energy transfer (FRET) measurement method based on emission-spectral unmixing (Iem-spFRET). We here developed an improved Iem-spFRET method (termed as IIem-spFRET) for more robust FRET measurement in living cells. First, two background (BG) spectral fingerprints measured from blank living cells are introduced to remove BG and autofluorescence. Second, we introduce a ρ factor denoting the ratio of two molar extinction coefficient ratios (γ) of acceptor to donor at two excitations into IIem-spFRET for direct measurement of the γ values using a tandem construct with unknown FRET efficiency (E). We performed IIem-spFRET on our microscope-spectrometer platform to measure the γ values of Venus (V) to Cerulean (C) and the E values of C32V, CVC, VCV, and VCVV constructs, respectively, in living Huh7 cells. For the C32V or CVC cells, the Iem-spFRET and IIem-spFRET methods measured consistent E values. However, for the cells especially with low expressing levels of VCV or VCVV, the E values measured by Iem-spFRET showed large deviations and fluctuations, whereas the IIem-spFRET method greatly improved the measured E values. Collectively, IIem-spFRET is a powerful and robust tool for quantitatively measuring FRET signal in living cells.

  17. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    Science.gov (United States)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  18. Ice and debris in the fretted terrain, Mars

    Science.gov (United States)

    Lucchitta, B. K.

    1984-01-01

    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  19. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  20. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-12-01

    Full Text Available An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDX, and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition.

  1. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting fatigue is the phenomenon of crack initiation due to dynamic contact loading, a situation which is commonly encountered in mechanical couplings subjected to vibration. The study of fretting fatigue in high frequency regime has gained importance in recent years. However the stress wave effects at high frequency y loading is scanty in the literature. The objective of present investigation is to study stress wave propagation in cylinders with reference to high frequency fretting. The case of a coated cylinder is considered since coating is often provided to improve tribological properties of the component. Rule of mixtures is proposed to understand the dispersion phenomenon in coated or layered cylinder knowing the dispersion relation for the cases of homogeneous cylinders made of coating and substrate materials separately. The possibility of stress wave propagation at the interface with a particular phase velocity without dispersion is also discussed. Results are given for two different thicknesses of coating.

  2. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Directory of Open Access Journals (Sweden)

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  3. Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)

    Science.gov (United States)

    2016-02-10

    10.1063/1.4940557 14. ABSTRACT (Maximum 200 words) A comprehensive approach is presented to perform model-based inversion of crack characteristics ...thickness crack types, and from both standard eddy current hardware and a prototype BHEC system with z -axis position encoding. Signal processing...algorithms were developed to process and extract features from the 2D data sets, and inversion algorithms using VIC-3D generated surrogate models were used

  4. Location of Acupoints Cracked Memory Method%腧穴定位集中突破记忆法

    Institute of Scientific and Technical Information of China (English)

    孙申田; 于国强

    2011-01-01

    腧穴的记忆是学习针灸学的基础,能否熟练掌握腧穴定位、主治直接影响到学生今后的临床工作,然而腧穴的记忆是痛苦的.腧穴定位集中突破记忆法根据艾宾浩斯遗忘曲线将所需记忆的腧穴以天为单位分成若干单元,然后把每天用来记忆的时间也做出科学合理的分配,短时间内大量、集中、重复复习,经过反复复习后改造出一条新的遗忘曲线,将短期记忆变成长期记忆.令学生高效、直接掌握每个腧穴定位,并不再忘记,突破了传统穴歌记忆模式,对针灸学教学具有一定的辅助作用.%Acupoints memory is the basis for learning acupuncture, it can impact on students'future clinical work directly whether they can master the positioning and indications of aeupoints or not, but the memory of acupoints is painful.Location of Acupoints cracked Memory Method divided the required memory of acupoints in days into several units according to Ebbinghaus Forgetting Curve, then time to remember the daily also made a scientific and rational allocation, a large number of short tine and focused Repeat review, after repeated after the transformation of a review of a new forgetting curve, short -term memory into long -term memory. Students control for each acupoint location efficiently and directly,and not forget, breaking the traditional cave song memory model, and the method has a role in support of teaching.

  5. Effects of temperature, slip amplitude, contact pressure on fretting fatigue behavior of Ti811 alloys at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Xiaohua ZHANG; Daoxin LIU

    2009-01-01

    Effects of the temperature, slip amplitude, and contact pressure on fretting fatigue (FF) behavior of the Ti811 titanium alloy were investigated using a high frequency fatigue machine and a home-made high temperature apparatus. The fretting fatigue failure mechanism was studied by observing the fretting surface morphology features. The results show that the sensitivity to fretting fatigue is high at both 350 and 500 ℃. The higher the temperature, the more sensitive to the fretting fatigue failure is. Creep is an important factor that influences the fretting fatigue failure process at elevated temperatures. The fretting fatigue life of the Ti811 alloy does not change in a monotonic way as the slip amplitude and contact pressure increase. This is owing to the fact that the slip amplitude affects the action of fatigue and wear in the fretting process, and the nominal contact pressure affects the distribution and concentration of the stress and the amplitude of fretting slip at the contact surface, and thus further influences the crack initiation probability and the driving force for propagation.

  6. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  7. Fretting Fatigue Life Prediction and Test Investigation of Bridge-Like Specimens%桥式试件微动疲劳寿命预测与试验研究

    Institute of Scientific and Technical Information of China (English)

    潘容; 崔海涛; 杜文军

    2012-01-01

    The numerical analysis and fretting fatigue tests for titanium alloy bridge-like specimens have been made. A modified Smith-Watson-Topper (MSWT) parameter approach which is used to predict crack initiation location and the fretting fatigue life model are brought up. The test results and fracture observation show that the fatigue crack origin was located in the contact boundary of the fretting specimens, which was identical with the initiation location that was predicted by the MSWT parameter. Relative parameters in the life prediction model were achieved through the data of bridge-like specimen fretting fatigue tests. Experi- mental results of dovetail joint presented in the literature were used to show validity of the proposed model.%对钛合金桥式试件进行数值分析与微动疲劳试验研究,提出了用MSWT参数预测裂纹萌生位置的方法和基于MSWT参数的微动疲劳寿命预测模型。试验结果与断口分析表明:疲劳裂纹出现在微动试件的接触区边缘,与MSWT参数预测的裂纹萌生位置一致。利用桥式试件的微动疲劳试验数据,获得了寿命预测模型中的相关参数,并采用相关文献中燕尾榫连接结构的试验结果对该预测模型进行了验证。

  8. SLIM for multispectral FRET imaging

    Science.gov (United States)

    Rück, A.; Dolp, F.; Steiner, R.; Steinmetz, C.; von Einem, B.; von Arnim, C. A. F.

    2008-02-01

    Spectral fluorescence lifetime imaging (SLIM) is an advanced imaging technique, which combines spectral with time resolved detection. Real spectral information is achieved by using a grating in front of a PML-array, which allows time-correlated single photon counting (TCSPC). Whereas spectrally resolved fluorescence imaging alone has a reasonable sensitivity, the specificity of fluorescence detection can be improved by considering the fluorescence lifetime. The various possibilities which SLIM offers to improve FRET (resonant energy transfer) will be discussed as well as successfully realized applications. These include FRET measurements for protein interactions, related to Alzheimer's disease. Special attention will be focused on molecules involved in the processing and trafficking of the amyloid precursor protein (APP), as trafficking proteins of the GGA family and β-secretase BACE). Taking into account also the lifetime of the acceptor could enhance reliability of the FRET result.

  9. Fluorescence Resonance Energy Transfer (FRET) sensor

    CERN Document Server

    Hussain, Syed Arshad; Chakraborty, Sekhar; Saha, Jaba; Roy, Arpan Datta; Chakraborty, Santanu; Debnath, Pintu; Bhattacharjee, D

    2014-01-01

    The applications of Fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple technique in many biological and biophysical fields. FRET can be used as spectroscopic ruler in various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting, and metallic nanomaterials etc. Based on the mechanism of FRET a variety of novel chemical sensors and Biosensors have been developed. This review highlights the recent applications of sensitive and selective ratiometric FRET based sensors.

  10. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf

    2009-01-01

    distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid stacking of the two base analogs, and consequently excellent control of their exact positions and orientations, results in a high control of the orientation factor and hence very distinct FRET changes...... as the number of bases separating tCO and tC(nitro) is varied. A set of DNA strands containing the FRET-pair at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from orientation-changes using FRET. In combination with the good nucleobase analog properties, this points...... toward detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement of FRET-pair chromophores inside the base stack will be a great advantage in studies where other (biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid...

  11. Axisymmetric fretting analysis in coated cylinder

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting is essentially a contact fatigue phenomenon, although bulk stresses and material properties contribute to final failure. The near surface state of stress developed under oscillatory contact between machine elements plays a major role in deciding the severity of fretting. It is possible to enhance tribological properties by coating the surface. There is rather scanty literature available on fretting analysis of coated components. Presence of such coatings has a large influence on the near surface state of stress. The effect of coatings on the severity of fretting is the focus of this paper. Results obtained for both hard and soft coatings are compared with the results obtained for the homogeneous case. The component geometry and loading are chosen to be cylindrical to enable 3D elastic axisymmetric fretting analysis. The results are compared with 2D models (strip and half-plane) to examine their utility and validity for understanding axisymmetric fretting. Contact pressure and frictional shear loading cases are solved separately and superposed appropriately depending on the coefficient of friction considered. Results for different values of coefficient of friction and elastic mismatch are illustrated through contour plots of stresses and strains. These results are expected to be helpful for identifying fretting failure zones and fracture mechanisms in coated components. Analytical results presented here could serve as useful benchmarks for calibrating numerical codes and experimental techniques.

  12. Understanding and modeling Förster-type resonance energy transfer (FRET) introduction to FRET

    CERN Document Server

    Govorov, Alexander; Demir, Hilmi Volkan

    2016-01-01

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  13. An all-in-one numerical methodology for fretting wear and fatigue life assessment

    Directory of Open Access Journals (Sweden)

    I. Llavori

    2016-07-01

    Full Text Available Many mechanical components such as, bearing housings, flexible couplings and spines or orthopedic devices are simultaneously subjected to a fretting wear and fatigue damage. For this reason, the combined study on a single model of wear, crack initiation and propagation is of great interest. This paper presents an all-in-one 2D cylinder on flat numerical model for life assessment on coupled fretting wear and fatigue phenomena. In the literature, two stages are usually distinguished: crack nucleation and its subsequent growth. The method combines the Archard wear model, a critical-plane implementation of the Smith-Watson- Topper (SWT multiaxial fatigue criterion coupled with the Miner-Palmgren accumulation damage rule for crack initiation prediction. Then, the Linear Elastic Fracture Mechanics (LEFM via eXtended Finite Element Method (X-FEM embedded into the commercial finite element code Abaqus FEA has been employed to determine the crack propagation stage. Therefore, the sum of the two stages gives a total life prediction. Finally, the numerical model was validated with experimental data reported in the literature and a good agreement was obtained.

  14. Action-FRET of a Gaseous Protein

    Science.gov (United States)

    Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-01-01

    Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.

  15. FRET in membrane biophysics: an overview

    Directory of Open Access Journals (Sweden)

    Luis MS Loura

    2011-11-01

    Full Text Available Förster resonance energy transfer (FRET, in most applications used as a spectroscopicruler, allows an easy determination of the donor-acceptor intermolecular distance.However, the situation becomes complex in membranes, since around each donor there isan ensemble of acceptors at non-correlated distances. In this review, state-of-the-artmethodologies for this situation are presented, usually involving time-resolved data andmodel fitting. This powerful approach can be used to study the occurrence of phaseseparation (rafts or other type of domains, allowing their detection as well as sizeevaluation. Formalisms for studying lipid-protein and protein-protein interactionsaccording to specific topologies are also addressed. The advantages and addedcomplexity of a specific type of FRET (energy homo-transfer or energy migration aredescribed, as well as applications of FRET under the microscope.

  16. Single Molecule Sensitive FRET in Attoliter Droplets

    CERN Document Server

    Milas, Peker; Gamari, Ben D; Goldner, Lori S

    2013-01-01

    Single molecular-pair fluorescence resonance energy transfer (spFRET) has become an cross-disciplinary tool for understanding molecular folding and interactions. While providing detailed information about the individual members of a molecular ensemble, this technique is always limited by fluorophore brightness and stability. In the case of diffusing molecules, the experiment is further limited by the number of photons that can be collected during the time it takes for a molecule to diffuse across the detection volume. To maximize the number of photons it is common to either increase the detection volume at the expense of increased background, or increase the diffusion time by adding glycerol or sucrose to increase viscosity. Here we demonstrate that FRET from attoliter volume (100 nm radius) aqueous droplets in perfluorinated oil has significantly higher signal-to-noise and a much wider dynamic range than FRET from molecules diffusing in solution. However, our measurements also reveal a droplet environment th...

  17. Fatigue reliability of cracked engineering structures

    Science.gov (United States)

    Lanning, David Bruce, Jr.

    1997-12-01

    This study investigates the reliability of engineering structures containing fatigue cracks. Stress concentrations and welded joints are probable locations for the initiation and propagation of fatigue cracks. Due to the many unknowns of loading, materials properties, crack sizes and crack shapes present at these locations, a statistics-based reliability analysis is valuable in the careful consideration of these many different random factors involved in a fatigue life analysis, several of which are expanded upon in this study. The basic problem of a crack near a stress concentration is first considered. A formulation for the aspect ratio (a/c) of a propagating semi-elliptical fatigue crack located at the toe of a welded T-joint is developed using Newman and Raju's stress intensity factor for a cracked flat plate with a weld magnification factor and compared to that of a cracked flat plate, and the reliability in terms of fatigue lifetime is calculated with the aid of Paris' crack propagation equation for membrane and bending loadings. Crack closure effects are then introduced in the consideration of short crack effects, where crack growth rates typically may exceed those found using traditional linear elastic fracture mechanics solutions for long cracks. The probability of a very small, microstructurally influenced crack growing to a size influenced by local plastic conditions is calculated utilizing the probability of a crack continuing to grow past an obstacle, such as a grain boundary. The result is then combined with the probability for failure defined using the crack closure-modified Paris equation to find an overall reliability for the structure. Last, the probability of fracture is determined when a crack front encounters regions of non-uniform toughness, such as typical in the heat affected zone of a welded joint. An expression for the effective crack lengths of the dissimilar regions is derived, and used in a weakest-link fracture model in the evaluation

  18. Surface Characterizations of Fretting Fatigue Damage in Aluminum Alloy 7075-T6 Clamped Joints: The Beneficial Role of Ni–P Coatings

    Directory of Open Access Journals (Sweden)

    Reza H. Oskouei

    2016-02-01

    Full Text Available This paper aims to characterize the surface damage as a consequence of fretting fatigue in aluminum alloy 7075-T6 plates in double-lap bolted joints through XRD, surface profilometry, and SEM analyses. The main focus was on the surface roughness and chemical phase composition of the damaged zone along with the identification of fretting fatigue crack initiations over the surface of the material. The surface roughness of the fretted zone was found to increase when the joint was clamped with a higher tightening torque and tested under the same cyclic loading. Additionally, MgZn2 (η/ή precipitates and ZnO phase were found to form onto the surface of uncoated aluminum plate in the fretted and worn zones. The formation of the ZnO phase was understood to be a result of frictional heat induced between the surface of contacting uncoated Al 7075-T6 plates during cyclic loading and exposure to the air. The beneficial role of electroless nickel-phosphorous (Ni–P coatings in minimizing the fretting damage and thus improving the fretting fatigue life of the aluminum plates was also studied. The results showed that the surface roughness decreased by approximately 40% after applying Ni–P coatings to the Al 7075-T6 plates.

  19. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers.

    Science.gov (United States)

    Patowary, Suparna; Pisterzi, Luca F; Biener, Gabriel; Holz, Jessica D; Oliver, Julie A; Wells, James W; Raicu, Valerică

    2015-04-07

    Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.

  20. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities. Equilibr

  1. CTAB enhancement of FRET in DNA structures.

    Science.gov (United States)

    Oh, Taeseok; Takahashi, Tsukasa; Kim, Sejung; Heller, Michael J

    2016-01-01

    The effect of cetyl-trimethylammonium bromide (CTAB) on enhancing the fluorescence resonance energy transfer (FRET) between two dye-conjugated DNA strands was studied using fluorescence emission spectroscopy and dynamic light scattering (DLS). For hybridized DNA where one strand is conjugated with a TAMRA donor and the other with a TexasRed acceptor, increasing the concentration of CTAB changes the fluorescence emission properties and improves the FRET transfer efficiency through changes in the polarity of the solvent, neutralization of the DNA backbone and micelle formation. For the DNA FRET system without CTAB, the DNA hybridization leads to contact quenching between TAMRA donor and TexasRed acceptor producing reduced donor emission and only a small increase in acceptor emission. At 50 µM CTAB, however, the sheathing and neutralization of the dye-conjugated dsDNA structure significantly reduces quenching by DNA bases and dye interactions, producing a large increase in FRET efficiency, which is almost four fold higher than without CTAB.

  2. The effect of plasma nitriding and post oxidation on fretting wear behaviour of a high strength alloy steel

    Science.gov (United States)

    Prakash, N. Arun; Bennett, C. J.

    2017-05-01

    The fretting wear performance of the non-nitrided, nitrided and nitrided-post oxidized high strength alloy steel, W460 were investigated in the gross slip regime at ambient condition. Fretting wear tests were performed with an applied normal load of 250 and 650 N at a displacement amplitude of 100 μm using a cylinder-on-flat configuration. X-ray analysis (XRD) revealed the formation of the iron-nitrided Fe3N and Fe4N during plasma nitriding and iron oxide phases of hematite (Fe2O3) and magnetite (Fe3O4) during post-oxidation of the cylindrical steel samples. The steady state tangential force coefficient decreases when the nitrided and post-oxidized samples were fretted against the non-nitrided steel material when compared to the non-nitrided steel contact pair. The steady state tangential force coefficient decreased with an increase in applied normal load across all of the fretting conditions. The total dissipated energy and the total wear volume increased with an increase in applied normal load with total wear volume of the non-nitrided vs nitrided and non-nitrided vs nitrided post-oxidized sample pairs, showing a reduction in the wear volume of approximately 50% compared to the non-nitrided vs non-nitrided combination under the fretting conditions examined. The worn surface morphology of the fretted samples examined using a scanning electron microscope showed the presence of loose wear debris in the wear track, fragmented wear debris, delamination cracks, delamination with large discontinuities, plate-like wear debris, oxide patches and formation of large cavities.

  3. Knuckle Cracking

    Science.gov (United States)

    ... Ask The Expert Ask a Question Physician Corner Rheumatology Conference Rheumatology Rounds Case Rounds Radiology Rounds Pathophysiology of the ... Appointment Information Contact Us Our Faculty Our Staff Rheumatology Specialty Centers Knuckle Cracking Q & A September 10, ...

  4. Anomalous surplus energy transfer observed with multiple FRET acceptors.

    Directory of Open Access Journals (Sweden)

    Srinagesh V Koushik

    Full Text Available BACKGROUND: Förster resonance energy transfer (FRET is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (k(D-->A can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates. METHODOLOGY/PRINCIPAL FINDINGS: The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean and either two or three FRET acceptors (Venus. FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates. CONCLUSIONS/SIGNIFICANCE: We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is

  5. FRET-based trilateration of probes bound within functional ryanodine receptors.

    Science.gov (United States)

    Svensson, Bengt; Oda, Tetsuro; Nitu, Florentin R; Yang, Yi; Cornea, Iustin; Chen-Izu, Ye; Fessenden, James D; Bers, Donald M; Thomas, David D; Cornea, Razvan L

    2014-11-04

    To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.

  6. Corrosion and Fretting of a Modular Hip System: A Retrieval Analysis of 60 Rejuvenate Stems.

    Science.gov (United States)

    De Martino, Ivan; Assini, Joseph B; Elpers, Marcella E; Wright, Timothy M; Westrich, Geoffrey H

    2015-08-01

    Femoral stems with dual-taper modularity were introduced to allow independent control of length, offset, and version. Corrosion and fretting related to micromotion at the neck-stem junction are thought to stimulate an adverse local tissue reaction (ALTR). Analysis of 60 consecutively retrieved modular-neck stem implants (Rejuvenate, Stryker) revised primarily for ALTR was done to determine the variables influencing corrosion and fretting patterns at the neck-stem interface. Taper damage evaluation was performed with stereomicrocopic analysis with two observers. Evidence of fretting and corrosion was seen at the neck-stem taper in all implants, including three implants revised for periprosthetic fractures within four weeks of the index surgery indicating that this process starts early. Femoral stems paired with the long overall neck lengths had significantly higher corrosion scores. Correlation of the corrosion severity at particular locations with the length of implantation suggests that the neck-stem junction experiences cyclic cantilever bending in vivo. The positive correlation between the length of implantation and fretting/corrosion scores bodes poorly for patients who still have this implant. Scanning electron microscopy on a subset of specimens was also performed to evaluate the black corrosion material. We strongly urge frequent follow-up exams for every patient with this particular modular hip stem. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. RUNNING CONDITION FRETTING MAPS OF POLYMER MATERIALS

    Directory of Open Access Journals (Sweden)

    Szilárd Tamás Vezér

    2009-04-01

    Full Text Available Due to the industrial demand, the determination of the wear behaviour of polymeric materials is an important research task. Rubbers and elastomers are used widely in contacts, where wear is the dominant failure mechanisms. Furthermore, only the material properties under large displacements were investigated in the majority of existing studies. Depending on the input physical parameters of the tribological systems small oscillations are also observed on the measured signals (due to stick-slip like effect in the contact zone of the elastomers. To describe the failure behaviour under this special condition, a novel fretting fatigue test system was developed and built on a electro-dynamical shaker in this study. The contact area were defined with some additional test, like 2D full field strain analysis, compression and creep tests. Based on the methodology developed and applied for steels and polymer composites, Running Condition Fretting Maps for two elastomer grades (HNBR and TPU were determined.

  8. The role of oxidation in the fretting wear process

    Science.gov (United States)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  9. Fretting wear behavior of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN An-hua; HUANG Wei-jiu; LI Zhao-feng

    2006-01-01

    The fretting behaviour of the AZ91D magnesium alloy was investigated. The influence of the number of cycles, normal load (contact pressure) and the amplitude of slip on the fretting behavior of the material were focused. Fretting tests were performed under various running conditions with regard to normal load levels and slip amplitudes. The friction coefficient between the surfaces at the fretting junction was continuously recorded. The fretting damage on the magnesium specimens was studied by SEM. The results show that the wear volume increases with the increase of slip amplitude, and linearly increases with the increase of normal load in the mixed and gross slip regime, but the normal load has no obvious effect on the wear volume in the partial slip regime. The predominant fretting wear mechanism of magnesium alloy in the slip regime is the oxidation wear, delaminated wear and abrasive wear.

  10. FRET and Non-FRET processes in quantum dot - dye nanoassemblies

    Energy Technology Data Exchange (ETDEWEB)

    Kowerko, Danny; Schuster, Joerg; Borczyskowski, Christian von [Center of Nanostructured Materials and Analytics, TU-Chemnitz, 09107 Chemnitz (Germany)

    2009-07-01

    Assemblies of semiconductor quantum dots (QDs - donor) and organic (dye - acceptor) molecules are of increasing interest for numerous applications in science and technology. Recent publications on such systems report on charge and fluorescence resonant energy transfer (FRET), prevalently neglecting an exact quantitative spectroscopic analysis of the acceptor. Recently, calculations of Seifert et al. and Blaudeck and coworkers demonstrated the crucial dependence of trap state emission from the surface coverage. In our contribution we emphasize the role of dye induces surface trap states as one mechanism - besides FRET - for QD quenching. Thus detailed quantitative analysis of titration experiments of differently functionalized perylenebismide molecules and CdSe/ZnS quantum dots will be discussed. By means of single particle spectroscopy we may even compare spectroscopic properties of the free and bound species on one and the same sample under identical conditions. Furthermore, analysis of FRET allows for a distinction between different geometries of the dye-QD assemblies.

  11. On multiple crack detection in beam structures

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2013-01-15

    This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.

  12. Discrimination between FRET and non-FRET quenching in a photochromic CdSe quantum dot/dithienylethene dye system

    Science.gov (United States)

    Dworak, Lars; Reuss, Andreas J.; Zastrow, Marc; Rück-Braun, Karola; Wachtveitl, Josef

    2014-11-01

    A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly.A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly. Electronic supplementary information (ESI) available: QD and DTE synthesis, preparation of the DTE/QD coupled system, TEM image of the nanocrystals and experimental details. See DOI: 10.1039/c4nr05144k

  13. Intracellular localization and interaction of mRNA binding proteins as detected by FRET

    Directory of Open Access Journals (Sweden)

    Port J

    2010-09-01

    Full Text Available Abstract Background A number of RNA binding proteins (BPs bind to A+U rich elements (AREs, commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general, or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as

  14. FRET-Based Localization of Fluorescent Protein Insertions Within the Ryanodine Receptor Type 1

    OpenAIRE

    Raina, Shweta A.; Jeffrey Tsai; Montserrat Samsó; Fessenden, James D.

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) inse...

  15. A computational algorithm for crack determination: The multiple crack case

    Science.gov (United States)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  16. Single molecule FRET data analysis procedures for FRET efficiency determination: probing the conformations of nucleic acid structures.

    Science.gov (United States)

    Krüger, Asger Christian; Birkedal, Victoria

    2013-11-01

    Single molecule FRET microscopy is an attractive technique for studying structural dynamics and conformational diversity of nucleic acid structures. Some of its strengths are that it can follow structural changes on a fast time scale and identify conformation distributions arising from dynamic or static population heterogeneity. Here, we give a description of the experiment and data analysis procedures of this method and detail what parameters are needed for FRET efficiency calculation. Using single molecule FRET data obtained on G-quadruplex DNA structures that exhibit large conformation diversity, we illustrate that the shape of the FRET distribution changes depending on what parameters are included in the data analysis procedure.

  17. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...... for the shear strength of disks with initial cracks and disks suffering from isotropic cracking are presented. Furthermore, in the case of isotropicly cracked disks subjected to arbitrary in-plane loading, a general yield condition is derived....

  18. In silico FRET from simulated dye dynamics

    Science.gov (United States)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language

  19. Fret Replica Inspection Laser Scanner (FRILS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, S.; Hanley, K., E-mail: steve.kretz@opg.com, E-mail: kelly.hanley@opg.com [Ontario Power Generation, Inspection Maintenance and Commercial Services, Pickering, Ontario (Canada)

    2008-07-01

    In the stress analysis of flaws and artifacts found in pressure tubes, it is crucial to have detailed knowledge of the flaw geometry. Fuel channel inspections by ultrasonic or eddy current inspection methods alone cannot provide the complete required geometry information. Replicas, which are a negative impression of surface pressure tube indications, are scanned with a laser system which will provide the additional detail required. FRILS was initially developed in 1993 to establish in-house capability of profiling indications on the inside diameter surface of pressure tubes. The need of this profiling was initially a response to the discovery of fuel bundle bearing pad fretting (FBBPF) caused by flow induced fuel bundle vibration. The benefits of the system were soon realized as a tool for profiling debris type indications. Although the primary use of FRILS is to profile FBBBF and Debris Fretting, since its inception the FRILS inspection system has become an instrumental tool in flaw assessment for: Fuel Bundle Bearing Pad Frets (FBBPF); Debris Frets; Scratches; Crevice Corrosion; Oxide Jacking; Areas of surface roughness; and, Weld Profiling. Replicas are collected via acquisition from tooling on both the Channel and Gauging Apparatus for Reactors (CIGAR) and the Advanced Non-Destructive Examination (ANDE) systems. The ANDE system is a high speed data acquisition system which includes both an ultrasonic inspection tool and a replication tool. Although both of these tools were designed to be delivered with the UDM, the platform for these tools was built with flexibility allowing for adoption to other delivery systems. These tools were based on the experience of the CIGAR inspection system. The CIGAR system has also undergone many system upgrades resulting in reduced inspection times. The FRILS system - Fret Replication Inspection Laser Scanner system was developed and has been upgraded to meet the demands of the improved inspection and replication systems. FRILS

  20. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  1. Influence of Fretting Wear on Lifetime of Tin Plated Connectors

    Science.gov (United States)

    Ikeda, Hirosaka; Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    Due to the recent increase in electronic devices mounted on automobiles, a large number of connectors, especially low-cost tin plated connectors are being used. As a result, their contact reliability has become problematic. Furthermore, for the connectors which are subjected to fretting wear caused by heat cycle and vibrations, the contact resistance increases because of wear of tin and deposition of oxides, which generates problems of poor contact. This study is intended to analyze the change in contact resistance of tin plated connectors from the start of fretting wear to the end of their lifetime from the viewpoint of practical reliability, and to observe the trace and the characteristics of fretting wear microscopically. This study found that wear and oxidation of tin plated connectors start immediately with fretting wear, and thus accumulation of abrasion powder on fretting areas causes connectors to reach to the end of their useful lifetime quickly. Especially, it was demonstrated that amplitude of fretting has a considerable influence on a connector's lifetime. It is made clear that air-tightness, so-called “gas-tight” of tin in a fretting area influences fretting wear considerably.

  2. CONSIDERATIONS REGARDING THE FRETTING PHENOMENON USING LEAF SPRINGS

    Directory of Open Access Journals (Sweden)

    Stefan GHIMIȘI

    2015-05-01

    Full Text Available The fretting phenomenon represents particulary and complex form of wear who is; generaly, and/or weary of fretting who is produced on the load contact in a relative oscialatory movement lay small amplitude.A simultaneoustly applied tangential force and normal into contact appears a adhesion force

  3. BOBA FRET: bootstrap-based analysis of single-molecule FRET data.

    Directory of Open Access Journals (Sweden)

    Sebastian L B König

    Full Text Available Time-binned single-molecule Förster resonance energy transfer (smFRET experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc. are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1/IBS1 is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET, as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/.

  4. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors.

    Directory of Open Access Journals (Sweden)

    Julia Litzlbauer

    Full Text Available Biosensors based on Förster Resonance Energy Transfer (FRET between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors.

  5. Near surface stress analysis strategies for axisymmetric fretting

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting is essentially a surface phenomenon, but bulk stresses and material properties contribute to subsequent failure. This feature of fretting demands a thorough understanding of near surface stresses under the joint action of normal, shear and thermal loading. Axisymmetric fretting is of great concern in piping and coupling design. In this paper, we develop design tools for Near Surface Analysis (NSA) for understanding axisymmetric fretting. Axisymmetric Fretting Analysis (AFA) becomes formidable owing to localised tractions that call for Fourier transform techniques. We develop two different NSA strategies based on two-dimensional plane strain models: 2D strip model (2DS) and half-plane Flamant model (2DF). We compare the results of 2DS and 2DF with the exact results for AFA obtained using Love’s stress function in conjunction with Fourier transform. There is a good correspondence between stress components obtained from 2D-models.

  6. 45号钢微动疲劳门坎值特性研究%Research on 45-carbon steel fretting fatigue damage threshold properties

    Institute of Scientific and Technical Information of China (English)

    邢海军; 赵颖娣; 俞新宇; 苏彬; 孙伟明

    2011-01-01

    The fretting fatigue damage threshold studies were conducted on 45-carbon steel through interrupted fretting fatigue tests, and the relationship between the contact surface crack characteristics and the number of fretting wear cycles was also investigated. There exists a fretting fatigue damage threshold on 45-carbon steel, when the number of fretting wear cycles is over the threshold value cycles, the fatigue life of the specimen will be decreased significantly. The damage levels were calculated as a percentage of the total cycles with fretting for 100% of its life to fracture for the baseline fretting fatigue specimen. The value of the threshold is in the range of 20%~40%. The threshold value remains the unchanged with changing the conditions of the load on specimens. Microscopic observation shows that there were obvious long cracks on the contact surface when the fretting cycles were more than the threshold value.%通过中断性试验研究了45号钢的微动疲劳门坎值,并对不同微动次数下接触面的裂纹特征进行了观察.试验测得45号钢显著存在一个微动疲劳门坎值,微动次数直至超过微动疲劳门坎值时,微动才会使试样疲劳寿命显著下降.以试样上预定的微动循环次数与全微动下试样疲劳基准寿命的比值表示,其微动疲劳门坎值大约在20%~40%范围内.改变载荷条件,该门坎值仍保持在20%~40%范围内;显微观察显示,在微动循环次数超过门坎值之后,在接触磨损面上几乎都能观察到明显的大裂纹.

  7. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Science.gov (United States)

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  8. Understanding FRET as a Research Tool for Cellular Studies

    Directory of Open Access Journals (Sweden)

    Dilip Shrestha

    2015-03-01

    Full Text Available Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET. FRET is effective at a distance of 1–10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types.

  9. Topographical Analysis of Fretted Terrain: Implications for Ancient Martian Super-eruptions

    Science.gov (United States)

    Mason, K. A.; Bleacher, J. E.; Whelley, P.

    2016-12-01

    Recent work has identified Late Noachian to Early Hesperian plains-style caldera complexes on Mars in western Arabia Terra (AT), eruptions from which might have produced widespread volcanic deposits throughout AT and the entire planet. AT is composed of 2 km thick friable and fretted Late Noachian to Early Hesperian material. Although an ash deposit origin has been suggested for the friable material due to its low thermal inertia, layering, thickness, sulfate abundance, zonal indurations and draped morphology, prior to 2013 no volcanic sources with ability to produce such a deposit were known, and therefore the existence of extensive ash deposits on AT was thought unlikely. Due to recent identification of evidence for ancient super-eruptions in AT such as Eden Patera, the geomorphology of the fretted material warrants reexamination. This study involves a quantitative analysis of eroded valleys throughout the fretted terrain visible at Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Model (DEM) resolution (463 m). These erosion features are mapped objectively via the D8 flow direction algorithm, a technique developed for delineating watersheds with DEMs. The features are then partitioned based on depth and location. Valley orientations are measured for each feature segment and plotted on rose diagrams. To study valley formation mechanisms we use the ratio between high and low stream order lengths (bifurcation ratio) as well as the variance between orientation and primary slope direction. On Earth, bifurcation ratios > 3 and 5 indicate other processes principally formed the valleys and are consistent with the deformation of welded and fractured volcanic deposits. Valleys east of Isidis basin (IB) have bifurcation ratios process throughout the study area. We propose that the AT fretted terrain resembles a network of valleys formed by exploiting angular cooling and compaction fractures in a Late Noachian to Early Hesperian volcanic deposit.

  10. Intonation and Compensation of Fretted String Instruments

    CERN Document Server

    Varieschi, Gabriele U

    2009-01-01

    In this paper we present mathematical models and we analyze the physics related to the problem of intonation of musical instruments such as guitars, mandolins and similar, i.e., we study how to produce perfectly in tune notes on these instruments. This analysis begins with the correct fret placement on the instrument fingerboard, following precise mathematical laws, but then it becomes increasingly complicated due to the geometrical deformation of the strings when these instruments are played, and also due to the inharmonic characteristics of the same strings. As a consequence of these factors, perfect intonation of all the notes on the instrument can never be achieved, but complex compensation procedures are introduced and studied to minimize the problem. To test the validity of these compensation procedures, we have performed extensive measurements using standard monochord sonometers and other basic acoustical devices, which confirm the correctness of our theoretical models. In particular, these experimenta...

  11. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...

  12. QD-Based FRET Probes at a Glance

    Directory of Open Access Journals (Sweden)

    Armen Shamirian

    2015-06-01

    Full Text Available The unique optoelectronic properties of quantum dots (QDs give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.

  13. An Experimental Study of Fretting of Gear Teeth

    Science.gov (United States)

    Krantz, Timothy L.

    2008-01-01

    Experiments were conducted to study fretting of gears. The gears were made from case-carburized AISI 9310 alloy to match the material of a flight actuator gearbox of interest. The objective of the testing was to produce damage representative of that observed on flight hardware. The following correlations and observations were noted. The amplitude of dithering motion very strongly influenced the type and magnitude of damage. Sliding amounts on the order of 30% of the width of the line contact were judged to most readily produce fretting damage. There was observed an incubation period on the order of tens-of-thousands of cycles, and the incubation period was influenced by surface roughness, torque, and the motion extent. Fretting damage could be produced for any of the torques tested, and the severity of damage increased slightly with torque. Gear teeth having surface roughness of 0.7-0.8 micrometer were somewhat more resistant to fretting than were smoother surfaces.

  14. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  15. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.T. [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, G.Z., E-mail: gzwang@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xuan, F.Z.; Tu, S.T. [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-08-15

    Highlights: > Ductile crack growth behavior in a dissimilar metal welded joint was simulated. > Interface crack growth tends to deviate into material with lower yield stress. > Crack locations and mismatches affect local stress-strain distribution. > Local stress-strain leads to different crack growth resistances and paths. - Abstract: In this paper, the finite element method (FEM) based on GTN model is used to investigate the ductile crack growth behavior in single edge-notched bend (SENB) specimens of a dissimilar metal welded joint (DMWJ) composed of four materials in the primary systems of nuclear power plants. The J-{Delta}a resistance curves, crack growth paths and local stress-strain distributions in front of crack tips are calculated for eight initial cracks with different locations in the DMWJ and four cracks in the four homogenous materials. The results show that the initial cracks with different locations in the DMWJ have different crack growth resistances and growth paths. When the initial crack lies in the centers of the weld Alloy182 and buttering Alloy82, the crack-tip plastic and damage zones are symmetrical, and the crack grow path is nearly straight along the initial crack plane. But for the interface cracks between materials and near interface cracks, the crack-tip plastic and damage zones are asymmetric, and the crack growth path has significant deviation phenomenon. The crack growth tends to deviate into the material whose yield stress is lower between the two materials on both sides of the interface. The different initial crack locations and mismatches in yield stress and work hardening between different materials in the DMWJ affect the local stress triaxiality and plastic strain distributions in front of crack tips, and lead to different ductile crack growth resistances and growth paths. For the accurate integrity assessment for the DMWJ, the fracture toughness data and resistance curves for the initial cracks with different locations in the

  16. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  17. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Science.gov (United States)

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  18. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Directory of Open Access Journals (Sweden)

    Bernhard Hochreiter

    2015-10-01

    Full Text Available Fluorescence- or Förster resonance energy transfer (FRET is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a cleavage; (b conformational-change; (c mechanical force and (d changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  19. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    Science.gov (United States)

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  20. Indicators based on fluorescence resonance energy transfer (FRET).

    Science.gov (United States)

    Tsien, Roger Y

    2009-07-01

    One of the major new trends in the design of indicators for optically imaging biochemical and physiological functions of living cells has been the exploitation of fluorescence resonance energy transfer (FRET). FRET is a well-known spectroscopic technique for monitoring changes in the proximity and mutual orientation of pairs of chromophores. It has long been used in biochemistry and cell biology to assess distances and orientations between specific labeling sites within a single macromolecule or between two separate molecules. More recently, macromolecules or molecular pairs have been engineered to change their FRET in response to biochemical and physiological signals such as membrane potential, cyclic AMP (cAMP), protease activity, free Ca(2+) and Ca(2+)-calmodulin (CaM) concentrations, protein-protein heterodimerization, phosphorylation, and reporter-gene expression. Because FRET is general, nondestructive, and easily imaged, it has proven to be one of the most versatile spectroscopic readouts available to the designer of new probes. FRET is particularly amenable to emission ratioing, which is more reliably quantifiable than single-wavelength monitoring and better suited than excitation ratioing to high-speed and laser-excited imaging. This article summarizes the photophysical principles of FRET and the types of indicators used.

  1. FRET-based identification of mRNAs undergoing translation.

    Directory of Open Access Journals (Sweden)

    Benjamin Stevens

    Full Text Available We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET. With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.

  2. FRET-based identification of mRNAs undergoing translation.

    Science.gov (United States)

    Stevens, Benjamin; Chen, Chunlai; Farrell, Ian; Zhang, Haibo; Kaur, Jaskiran; Broitman, Steven L; Smilansky, Zeev; Cooperman, Barry S; Goldman, Yale E

    2012-01-01

    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.

  3. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.

    Directory of Open Access Journals (Sweden)

    Bobin George Abraham

    Full Text Available Fluorescence Resonance Energy Transfer (FRET using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM.

  4. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Directory of Open Access Journals (Sweden)

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  5. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Science.gov (United States)

    Raina, Shweta A; Tsai, Jeffrey; Samsó, Montserrat; Fessenden, James D

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  6. Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Khaji, N. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mehrjoo, M. [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-03-15

    In this paper, a crack detection approach is presented for detecting depth and location of cracks in beam-like structures. For this purpose, a new beam element with an arbitrary number of embedded transverse edge cracks, in arbitrary positions of beam element with any depth, is derived. The components of the stiffness matrix for the cracked element are computed using the conjugate beam concept and Betti's theorem, and finally represented in closed-form expressions. The proposed beam element is efficiently employed for solving forward problem (i.e., to gain precise natural frequencies and mode shapes of the beam knowing the cracks' characteristics). To validate the proposed element, results obtained by new element are compared with two-dimensional (2D) finite element results and available experimental measurements. Moreover, by knowing the natural frequencies and mode shapes, an inverse problem is established in which the location and depth of cracks are determined. In the inverse approach, an optimization problem based on the new finite element and genetic algorithms (GAs) is solved to search the solution. It is shown that the present algorithm is able to identify various crack configurations in a cracked beam. The proposed approach is verified through a cracked beam containing various cracks with different depths.

  7. Nonlinear modal method of crack localization

    Science.gov (United States)

    Ostrovsky, Lev; Sutin, Alexander; Lebedev, Andrey

    2004-05-01

    A simple scheme for crack localization is discussed that is relevant to nonlinear modal tomography based on the cross-modulation of two signals at different frequencies. The scheme is illustrated by a theoretical model, in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). The crack is assumed to be small relative to all wavelengths. Nonlinear scattering from the crack is studied using a general matrix approach as well as simplified models allowing one to find the nonlinear part of crack volume variations under the given stress and then the combinational wave components in the tested material. The nonlinear response strongly depends on the crack position with respect to the peaks or nodes of the corresponding interacting signals which can be used for determination of the crack position. Juxtaposing various resonant modes interacting at the crack it is possible to retrieve both crack location and orientation. Some aspects of inverse problem solutions are also discussed, and preliminary experimental results are presented.

  8. Creep crack growth analysis using C{sub t}-parameter for internal circumferential and external axial surface cracks in a pressurized cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Tun, Nwe Ni; Yang, Hee Seung; Yu, Jong Min; Yoon, Kee Bong [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)

    2016-12-15

    Creep crack growth at elevated temperatures is a critical consideration in estimating the remaining life of high temperature structural components and in deciding their inspection interval. In this study, creep crack growth analyses for external radial-axial and internal radial-circumferential surface cracks in a pressurized cylinder were conducted by an analytical method. The effect of crack depth and crack length on the variations in Ct and remaining life predictions were investigated for surface cracks with various initial aspect ratios. It was observed that the remaining life of an internal radial-circumferential surface crack was approximately 53 times longer than that of an external radial-axial surface crack for the same crack size and loading conditions with 316 stainless steel material. It was also observed that the variations in remaining life, crack propagations, and the Ct values were considerably sensitive to the crack location and crack depth. Convergence of crack aspect ratio was not observed when the crack depth ratio was increased. Since the method is independent of material properties and location of the crack geometries, it can be extended to various material properties and various locations of the surface crack geometries.

  9. Gear Crack Propagation Investigation

    Science.gov (United States)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  10. Finite Element Simulation of Bending Fretting and Fatigue Life Prediction for 316L Stainless Steel Component%316L不锈钢构件弯曲微动的有限元模拟及其疲劳寿命预测

    Institute of Scientific and Technical Information of China (English)

    蒋春松; 彭金方; 沈明学; 宋川; 朱一林; 朱旻昊

    2013-01-01

    The bending fretting process of 316L stainless steel component was simulated by ABAQUS finite element software.The Smith-Watson-Topper (SWT) multiaxial fatigue criterion was applied to predicting bending fretting crack initiation locations and component lifetimes.The 3D simulation results show that the contact pressure stress distribution along the flat width direction on the upper surface of the contact center presented the tendency that the edge value was larger and the central value was small,and the maximum was given near the edge but not at the edge.With the increase of bending load the maximum marginal contact pressure stress increased,while the central pressure stress reduced to zero.That means when the bending load increased,the warping phenomenon would be more severe.The fretting fatigue crack initiated from the subsurface,about 93 μm under the contact surface.The fatigue life prediction results of the SWT parameters were in agreement with experimental results.%利用ABAQUS软件对316L不锈钢构件的弯曲微动过程进行了有限元模拟,采用SWT多轴疲劳准则预测了弯曲微动裂纹萌生的位置和构件的疲劳寿命.结果表明:三维模型模拟显示上表面接触中心沿平板宽度方向的接触压应力分布呈边缘大、中间小的趋势,但最大值并未出现在最边缘,而是在非常靠近边缘的地方;随着弯曲载荷的增大,边缘最大接触压应力随之增大,中间压应力则随之降低直至为零,即随着弯曲载荷的增大,翘曲现象更加严重;疲劳裂纹最易萌生于距接触表面约93μm的次表层,构件疲劳寿命的预测值与试验结果吻合较好.

  11. Identification of cracks in thick beams with a cracked beam element model

    Science.gov (United States)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  12. Crack path in aeronautical titanium alloy under ultrasonic torsion loading

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2016-01-01

    Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.

  13. Fretting wear behavior of nitrogen implanted Zircaloy-4 alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zircaloy-4 was implanted with nitrogen at 120keV with various ion doses between 1 × 1013 and 1 × 1014 ions/m2. Fretting wear tests were performed at various cycles and loads under water immersion condition by the fretting simulator, The implanted surfaces were analyzed by Auger electron spectroscopy (AES) and transmission electron microscope(TEM). Micro-hardnees tester measured surface hardness. It is shown that nitrogen imphantation produced Zirconium nitride oxide and high density dislocations in implanted ltyer, surface hardness was enhanced from HK280 for unimplantedspecimen to HK1800 for a total ion dose of 1 × 1014 ions/m2. The nitrogen ion implantation treatment provided significantimprovements in the resistance of fretting damage.

  14. Borromean three-body FRET in frozen Rydberg gases

    Science.gov (United States)

    Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.

    2015-09-01

    Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement.

  15. A portable FRET analyzer for rapid detection of sugar content.

    Science.gov (United States)

    Kim, Haseong; Kim, Hyo Sang; Ha, Jae-Seok; Lee, Seung-Goo

    2015-05-21

    Fluorescence resonance energy transfer (FRET) is widely used as a core process in biometric sensors to detect small molecules such as sugars, calcium ions, or amino acids. However, FRET based biosensors with innate weak signal intensity require the use of expensive, high-sensitive equipment. In the present study, these shortcomings were overcome with the fabrication of a sensitive, inexpensive, and portable analyzer which provides quantitative detection of small molecules in a liquid sample. The usability of the developed analyzer was successfully tested by measuring sucrose and maltose contents in commercially available beverage samples, with better performance than the conventional monochromator-type spectrofluorometer. It is anticipated that miniaturization of the equipment and improving the FRET based biosensors will contribute to the practical use of this hand-held analyzer in conditions where high-end equipment is not available.

  16. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs.

    Science.gov (United States)

    Feige, Jérôme N; Sage, Daniel; Wahli, Walter; Desvergne, Béatrice; Gelman, Laurent

    2005-09-01

    Fluorescence resonance energy transfer (FRET) allows the user to investigate interactions between fluorescent partners. One crucial issue when calculating sensitized emission FRET is the correction for spectral bleed-throughs (SBTs), which requires to calculate the ratios between the intensities in the FRET and in the donor or acceptor settings, when only the donor or acceptor are present. Theoretically, SBT ratios should be constant. However, experimentally, these ratios can vary as a function of fluorophore intensity, and assuming constant values may hinder precise FRET calculation. One possible cause for such a variation is the use of a microscope set-up with different photomultipliers for the donor and FRET channels, a set-up allowing higher speed acquisitions on very dynamic fluorescent molecules in living cells. Herein, we show that the bias introduced by the differential response of the two PMTs can be circumvented by a simple modeling of the SBT ratios as a function of fluorophore intensity. Another important issue when performing FRET is the localization of FRET within the cell or a population of cells. We hence developed a freely available ImageJ plug-in, called PixFRET, that allows a simple and rapid determination of SBT parameters and the display of normalized FRET images. The usefulness of this modeling and of the plug-in are exemplified by the study of FRET in a system where two interacting nuclear receptors labeled with ECFP and EYFP are coexpressed in living cells.

  17. Intravital imaging of fluorescent markers and FRET probes by DNA tattooing

    Directory of Open Access Journals (Sweden)

    Spencer David M

    2007-01-01

    Full Text Available Abstract Background Advances in fluorescence microscopy and mouse transgenesis have made it possible to image molecular events in living animals. However, the generation of transgenic mice is a lengthy process and intravital imaging requires specialized knowledge and equipment. Here, we report a rapid and undemanding intravital imaging method using generally available equipment. Results By DNA tattooing we transfect keratinocytes of living mice with DNA encoding fluorescent biosensors. Subsequently, the behavior of individual cells expressing these biosensors can be visualized within hours and using conventional microscopy equipment. Using this "instant transgenic" model in combination with a corrected coordinate system, we followed the in vivo behavior of individual cells expressing either FRET- or location-based biosensors for several days. The utility of this approach was demonstrated by assessment of in vivo caspase-3 activation upon induction of apoptosis. Conclusion This "instant skin transgenic" model can be used to follow the in vivo behavior of individual cells expressing either FRET- or location-based probes for several days after tattooing and provides a rapid and inexpensive method for intravital imaging in murine skin.

  18. Simultaneous quantitative live cell imaging of multiple FRET-based biosensors.

    Directory of Open Access Journals (Sweden)

    Andrew Woehler

    Full Text Available We have developed a novel method for multi-color spectral FRET analysis which is used to study a system of three independent FRET-based molecular sensors composed of the combinations of only three fluorescent proteins. This method is made possible by a novel routine for computing the 3-D excitation/emission spectral fingerprint of FRET from reference measurements of the donor and acceptor alone. By unmixing the 3D spectrum of the FRET sample, the total relative concentrations of the fluorophores and their scaled FRET efficiencies are directly measured, from which apparent FRET efficiencies can be computed. If the FRET sample is composed of intramolecular FRET sensors it is possible to determine the total relative concentration of the sensors and then estimate absolute FRET efficiency of each sensor. Using multiple tandem constructs with fixed FRET efficiency as well as FRET-based calcium sensors with novel fluorescent protein combinations we demonstrate that the computed FRET efficiencies are accurate and changes in these quantities occur without crosstalk. We provide an example of this method's potential by demonstrating simultaneous imaging of spatially colocalized changes in [Ca(2+], [cAMP], and PKA activity.

  19. Fatigue crack propagation analysis of plaque rupture.

    Science.gov (United States)

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.

  20. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    Directory of Open Access Journals (Sweden)

    Helena Radbruch

    2015-05-01

    Full Text Available The development of intravital Förster Resonance Energy Transfer (FRET is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice.

  1. Crack propagation directions in unfilled resins.

    Science.gov (United States)

    Baran, G; Sadeghipour, K; Jayaraman, S; Silage, D; Paul, D; Boberick, K

    1998-11-01

    Posterior composite restorative materials undergo accelerated wear in the occlusal contact area, primarily through a fatigue mechanism. To facilitate the timely development of new and improved materials, a predictive wear model is desirable. The objective of this study was to develop a finite element model enabling investigators to predict crack propagation directions in resins used as the matrix material in composites, and to verify these predictions by observing cracks formed during the pin-on-disc wear of a 60:40 BISGMA:TEGDMA resin and an EBPADMA resin. Laser confocal scanning microscopy was used to measure crack locations. Finite element studies were done by means of ABAQUS software, modeling a cylinder sliding on a material with pre-existing surface-breaking cracks. Variables included modulus, cylinder/material friction coefficient, crack face friction, and yield behavior. Experimental results were surprising, since most crack directions were opposite previously published observations. The majority of surface cracks, though initially orthogonal to the surface, changed direction to run 20 to 30 degrees from the horizontal in the direction of indenter movement. Finite element modeling established the importance of subsurface shear stresses, since calculations provided evidence that cracks propagate in the direction of maximum K(II)(theta), in the same direction as the motion of the indenter, and at an angle of approximately 20 degrees. These findings provide the foundation for a predictive model of sliding wear in unfilled glassy resins.

  2. Investigation of Cracked Lithium Hydride Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  3. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  4. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  5. Inner Crack Detection Method for Cantilever Beams

    Science.gov (United States)

    Li, Zheng; Zhang, Wei; Li, Yixuan; Su, Xianyue

    2008-02-01

    In this paper, continuous wavelet transform has been performed to extract the inner crack information from the guided waves in cantilever beams, and the location and size of crack can be detected exactly. Considering its best time-frequency property, Gabor continuous wavelet transform is employed to analyze the complicated flexible wave signals in cantilever beam, which is inspirited by an impact on the free end. Otherwise, in order to enhance the sensitivity of detection for some small cracks, an improved method is discussed. Here, both computational and experimental methods are carried out for comparing the influence of different crack location in beam. Therefore, the method proposed can be expected to expand to a powerful damage detection method in a broad engineering application.

  6. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    B B Verma; P K Ray

    2002-08-01

    A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack growth retardation increases with increasing level of overload as well as with increasing spot temperature. It is also observed that modification in crack growth behaviour is a function of location of heating spot and maximum retardation is observed at + 5 position.

  7. Crack growth simulation in heterogeneous material by S-FEM and comparison with experiments

    Directory of Open Access Journals (Sweden)

    Masanori Kikuchi

    2015-10-01

    Full Text Available Fully automatic fatigue crack growth simulation system is developed using S-version FEM (SFEM. This system is extended to fracture in heterogeneous material. In the heterogeneous material, crack tip stress field becomes mixed mode condition, and crack growth path is affected by inhomogeneous materials and mixed mode conditions. Stress Intensity Factors (SIF in mixed mode condition are evaluated using Virtual Crack Closure Method (VCCM. Criteria for crack growth amount and crack growth path are used based on these SIFs, and growing crack configurations are obtained. Three crack growth problems are simulated. One is crack growth in bi-materila made of CFRP plate and Aluminum alloy. Initial crack is located in CFRP plate, and grows toward Aluminum alloy. Crack growing direction changes and results are compared with experimental one. Second problem is crack growth in bimaterial made of PMMA and Aluminum alloy. Initial crack is located in PMMA plate and parallel to phase boundary. By cahnging loading conditions, several cases are simulated and compared with experimental ones. In the experiment, crack grows into pahse boundary and grow along it. This case is simulated precisely, and the effect of pahse boundary is discussed. Last case is Stress Corrosion Cracking (SCC at Hot-Leg Safe-End of Pressurized Water Rreactor. This location is made of many kinds of steels by welding. In some steel, SCC does not occur and in other steel, SCC is accelerated. As a result, small surface crack grows in complicated manner.

  8. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    (displacement) respectively of material considered. The practical applicability of the two models is limited such that predicted strength sigma_CR must be less than sigma_L/3, which corresponds to an assumption that fictitious cracks are much smaller than real crack lengths considered. The reason......A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  9. Hydration Process and Crack Tendency of Concrete Based on Resistivity and Restrained Shrinkage Crack

    Institute of Scientific and Technical Information of China (English)

    MUAZU Bawa Samaila; WEI Xiaosheng; WANG Lei

    2016-01-01

    Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally conifrmed that the crossing point of C30 and C50 corresponds to the ifnal setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classiifed; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete’s crack potential. The highest inlfection time (ti) obtained from resistivity curve and the ifnal setting time (tf) were used with crack time (tc) in coming up with mathematical models for the prediction of concrete’s cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental ifndings in terms of the earliest crack age of C50 and the crack location.

  10. Fretting Fatigue of Gamma TiAl Studied

    Science.gov (United States)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2003-01-01

    Gamma titanium-aluminum alloy (g-TiAl) is an attractive new material for aerospace applications because of its low density and high specific strength in comparison to currently used titanium and nickel-base alloys. Potential applications for this material are compressor and low-pressure turbine blades. These blades are fitted into either the compressor or turbine disks via a dovetail connection. The dovetail region experiences a complex stress state due to the alternating centrifugal force and the natural high-frequency vibration of the blade. Because of the dovetail configuration and the complex stress state, fretting is often a problem in this area. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of the contact is evaluated. Titanium and titanium-based alloys in the clean state exhibit strong adhesive bonds when in contact with themselves and other materials (refs. 1 and 2). This adhesion causes heavy surface damage and high friction in practical cases. Although the wear produced by fretting may be mild, the reduction in fatigue life can be substantial. Thus, there is the potential for fretting problems with these TiAl applications. Since TiAl is an emerging material, there has been limited information about its fretting behavior.

  11. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  12. Application of FRET probes in the analysis of neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Yoshibumi eUeda

    2013-10-01

    Full Text Available Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since GFP was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET, which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  13. Plant-based FRET biosensor discriminates enviornmental zinc levels

    Science.gov (United States)

    Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in r...

  14. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  15. Fretting Fatigue Behavior of Shot-Peened IN 100

    Science.gov (United States)

    2006-03-01

    117 - x - List of Figures Figure Page Figure 1. Blade/ Disc ...Blade/ Disc Dovetail Joint in a Turbine Engine. - 7 - Figure 2. Simplified Fretting Configuration Contact Load (P) Fatigue Specimen (P...steam turbine power plants, medical applications, nuclear power systems, and in the chemical petrochemical industries 28. Nickel superalloys are

  16. Seismic stability analysis of concrete gravity dams with penetrated cracks

    Directory of Open Access Journals (Sweden)

    Shou-yan JIANG

    2012-03-01

    Full Text Available The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM. Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site.

  17. The study of property and damage mechanism about fretting corrosion of aluminum alloy%LY12铝合金微动腐蚀特性及损伤机制研究

    Institute of Scientific and Technical Information of China (English)

    徐丽; 陈跃良; 于向财; 胡建军

    2011-01-01

    微动广泛存在于航空航天等各种机械构件中,加速构件接触表面及表层裂纹的萌生与扩展.由于海军飞机服役环境的复杂性,铝合金构件腐蚀相当严重,因此了解铝合金微动腐蚀规律具有极其重要的作用,有助于减少微动腐蚀,为老龄飞机的维护提供更多技术指导.结合微动损伤理论分析了铝合金在大气和盐水中的微动特性,总结了微动磨损过程主要的损伤机制.%Fretting usually occurs in the mechanical components of aeronautics and astronautics, and also accelerates expansion of cracks about the surface of structures. Because of the complexity of the surrounding of aircrafts, the corrosion of aluminum alloy structures is great serious. Therefore, it is very important to understand the discipline of fretting corrosion about aluminum alloy, which may help to reduce fretting corrosion and offer more technology in helping of maintenance about older airplane. In this paper, we analyze the property of fretting corrosion about aluminum alloy in atmosphere or in saline condition with fretting damage theory, and summarize the main damage mechanism of fretting wear.

  18. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    Science.gov (United States)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  19. Color control through FRET efficiency modulation using CDI (Conference Presentation)

    Science.gov (United States)

    Wolowelsky, Karni; Guyes, Eric; Rubin, Shimon; Suss, Matthew; Bercovici, Moran; Rotschild, Carmel

    2017-02-01

    Although much progress was made in light emitting devices, the ability to electrically control their spectral emission remains limited. We will present a novel approach and experimental results for dynamic color control, by electrically modulating the non-radiative Forster resonance energy transfer (FRET) efficiency between donor and acceptor dyes in a solution. FRET efficiency depends on the 6th power of the distance between donor and acceptor dye molecules, and thus, it is sensitive to variations in acceptor's concentration. Controlled acceptor concentrations could be achieved by attracting or repelling ionic dyes from the electrodes using a capacitive deionization (CDI) cell, with high surface area porous electrodes. This approach to dynamic color control may open new directions in 100% fill-factor displays, and can be expanded to energy saving applications such as controlling building's external wall emissivity. We studied the modulation of a single dye emission using a CDI cell with negatively charged Fluorescein Sodium Salt in aquatic solution. Photoluminescence was measured along few charging-discharging CDI cycles and showed the ability to control extensive optical response through CDI. We experimented with two types of FRET-pair dyes: a) anion-cation, where the acceptor and the donor ions are oppositely charged, and b) zwitterion and ion, where the donor is neutral. We found that electrical control on FRET in aquatic solution is weak, due to hydrophobic attractive interaction between the acceptor and the donor. In order to avoid this effect, we are experimenting FRET control in organic solvents. These results will be presented in the talk.

  20. Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanisms of biomolecular machines

    Science.gov (United States)

    Kahlscheuer, Matthew L.; Widom, Julia; Walter, Nils G.

    2016-01-01

    Spliceosomes are multi-megadalton RNA-protein complexes responsible for the faithful removal of non-coding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition and versatile structural dynamics. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues towards studying the mechanisms of biomolecular machines isolated directly from complex biological specimens such as cell extracts. Here we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy in exemplary single molecule pull-down FRET (SiMPull-FRET) studies of the yeast spliceosome and discuss the broad application potential of this technique. PMID:26068753

  1. Cracks in Utopia

    Science.gov (United States)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock

    Science.gov (United States)

    Modiriasari, Anahita; Bobet, Antonio; Pyrak-Nolte, Laura J.

    2017-09-01

    Active seismic monitoring was used to detect and characterize crack initiation, crack propagation and crack coalescence in pre-cracked rock specimens. Uniaxial compression tests were conducted on Indiana limestone specimens with two parallel pre-existing cracks. During the experiments, the mechanically induced cracks around the flaw tips were monitored by measuring surface displacements using digital image correlation (DIC). Transmitted and reflected compressional and shear waves through the specimens were also recorded during the loading to detect any damage or cracking phenomena. The amplitude of transmitted compressional and shear waves decreased with uniaxial compression. However, the rate of decrease of the amplitude of the transmitted waves intensified well before the initiation of tensile cracks. In addition, a distinct minimum in the amplitude of transmitted waves occurred close to coalescence. The normalized amplitude of waves reflecting from the new cracks increased before new tensile and shear cracks initiated around the flaw tips. In addition, the location of new cracks could be identified using the traveling time of the reflected waves. The experimental results indicate that changes in normalized amplitude of transmitted and reflected signals associated with crack initiation and crack coalescence were detected much earlier than with DIC, at a load of about 80-90% of the load at which the cracks appeared on the surface. The tests show conclusively that active wave monitoring is an effective tool to detect damage and new cracks in rock, as well as to estimate the location of the new cracks.

  3. Cracks Detection Using Active Modal Damping and Piezoelectric Components

    Directory of Open Access Journals (Sweden)

    B. Chomette

    2013-01-01

    Full Text Available The dynamics of a system and its safety can be considerably affected by the presence of cracks. Health monitoring strategies attract so a great deal of interest from industry. Cracks detection methods based on modal parameters variation are particularly efficient in the case of large cracks but are difficult to implement in the case of small cracks due to measurement difficulties in the case of small parameters variation. Therefore the present study proposes a new method to detect small cracks based on active modal damping and piezoelectric components. This method uses the active damping variation identificated with the Rational Fraction Polynomial algorithm as an indicator of cracks detection. The efficiency of the proposed method is demonstrated through numerical simulations corresponding to different crack depth and locations in the case of a finite element model of a clamped-clamped beam including four piezoelectric transducers.

  4. Near tip strain evolution of a growing fatigue crack

    Directory of Open Access Journals (Sweden)

    M.-L. Zhu

    2015-07-01

    Full Text Available Near tip full-field strains in a growing fatigue crack have been studied in situ using the Digital Image Correlation (DIC technique in a compact tension specimen of stainless steel 316L under tension-tension cyclic loading. An error analysis of displacements and strains has been carried out, and the results show that the precision of displacements and strains in the wake of the crack is worse than that in front of the crack. A method for the determination of crack tip location is proposed for the DIC analysis. Strain ratchetting is observed ahead of the growing fatigue crack tip and found to be dependent on the distance to the crack tip; whilst normal strains appear to stabilise behind the crack tip.

  5. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    Science.gov (United States)

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry.

  6. Localization of Dwell Fatigue Cracks in Ti-6242 Alloy Samples

    Science.gov (United States)

    Rokhlin, S. I.; Kim, J.-Y.; Xie, B.; Yakovlev, V. A.; Zoofan, B.

    2003-03-01

    An in-situ ultrasonic guided wave technique is employed for real-time monitoring of crack initiation and evolution during dwell, cyclic fatigue and creep tests of Ti-6242 alloy samples. Ultrasonic signals are acquired continuously during the test at different levels of fatigue load using a high-speed data acquisition system. The initiation time and growth history of primary and multiple secondary cracks are assessed. Localization of the secondary cracks is performed by both the in-situ ultrasonic method and an ultrasonic immersion scanning method which we call "vertical C-scan" (VC scan). The VC scan is developed for imaging small cracks aligned normal to the fatigue sample axis. The fusion of ultrasonic and microradiographic images exhibits good agreement in crack location. Joint use of the three techniques provides location, shape, and size of the secondary cracks.

  7. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    Science.gov (United States)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  8. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging.

    Science.gov (United States)

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen En Henegouwen, Paul M P; Jennings, Travis L; Susumu, Kimihiro; Medintz, Igor L; Hildebrandt, Niko; Miller, Lawrence W

    2016-06-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.

  9. Crack status analysis for concrete dams based on measured entropy

    Institute of Scientific and Technical Information of China (English)

    WU BangBin; WU ZhongRu; CHEN Bo; SU HuaiZhi; BAO TengFei; WANG ShaoWei

    2016-01-01

    The integrity and safety of concrete dams are seriously affected by the existing cracks in dam bodies,and some serious cracks may cause dam failure or disaster.The propagation of cracks in concrete dams is accompanied by changes in energy distribution,which can be represented by changes in the structure's system entropy.Therefore,the entropy theory can be used in analyzing the behavior of dam cracks.Due to the randomness and locality of crack propagation,it is difficult to predict the location of cracks by traditional monitoring methods.To solve this problem,the influence of spatial positions of monitoring points on inspection zones is represented by a weight index,and the weight index is determined by the distance measure method proposed in this paper.Through the weighted linear fusion method,the entropy of multiple monitoring points is obtained for analyzing the behavior of dam cracks in the selected zones.Meanwhile,the catastrophe theory is used as the variation criterion of an entropy sequence in order to predict the instability time of dam cracks.Case studies are put forward on a high arch dam,and the fusion entropy is calculated according to the monitoring data from strain gauges.Results show that the proposed method can effectively predict the occurrence time and location of dam cracks regardless of the layout of monitoring instruments,and it is a new way to analyze the occurrence and propagation of dam cracks.

  10. Crack growth monitoring at CFRP bond lines

    Science.gov (United States)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  11. Three-Dimensional Gear Crack Propagation Studied

    Science.gov (United States)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  12. Fluorescent Molecules as Transceiver Nanoantennas: The First Practical and High-Rate Information Transfer over a Nanoscale Communication Channel based on FRET

    Science.gov (United States)

    Kuscu, Murat; Kiraz, Alper; Akan, Ozgur B.

    2015-01-01

    Nanocommunications via Förster Resonance Energy Transfer (FRET) is a promising means of realising collaboration between photoactive nanomachines to implement advanced nanotechnology applications. The method is based on exchange of energy levels between fluorescent molecules by the FRET phenomenon which intrinsically provides a virtual nanocommunication link. In this work, further to the extensive theoretical studies, we demonstrate the first information transfer through a FRET-based nanocommunication channel. We implement a digital communication system combining macroscale transceiver instruments and a bulk solution of fluorophore nanoantennas. The performance of the FRET-based Multiple-Input and Multiple-Output (MIMO) nanocommunication channel between closely located mobile nanoantennas in the sample solution is evaluated in terms of Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER) obtained for the transmission rates of 50 kbps, 150 kbps and 250 kbps. The results of the performance evaluation are very promising for the development of high-rate and reliable molecular communication networks at nanoscale.

  13. A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells

    Directory of Open Access Journals (Sweden)

    Grazia Tamma

    2013-12-01

    Full Text Available Background: Human pendrin (SLC26A4, PDS is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD. Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Methods: Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET, a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. Results: FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Conclusion: Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable.

  14. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Dossena, Silvia; Di Mise, Annarita; Nofziger, Charity; Svelto, Maria; Paulmichl, Markus; Valenti, Giovanna

    2013-01-01

    Human pendrin (SLC26A4, PDS) is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD). Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET), a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor) located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable. © 2014 S. Karger AG, Basel.

  15. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    Science.gov (United States)

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  16. NIR FRET Fluorophores for Use as an Implantable Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2008-12-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  17. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  18. Effect of interaction of embedded crack and free surface on remaining fatigue life

    Directory of Open Access Journals (Sweden)

    Genshichiro Katsumata

    2016-12-01

    Full Text Available Embedded crack located near free surface of a component interacts with the free surface. When the distance between the free surface and the embedded crack is short, stress at the crack tip ligament is higher than that at the other area of the cracked section. It can be easily expected that fatigue crack growth is fast, when the embedded crack locates near the free surface. To avoid catastrophic failures caused by fast fatigue crack growth at the crack tip ligament, fitness-for-service (FFS codes provide crack-to-surface proximity rules. The proximity rules are used to determine whether the cracks should be treated as embedded cracks as-is, or transformed to surface cracks. Although the concepts of the proximity rules are the same, the specific criteria and the rules to transform embedded cracks into surface cracks differ amongst FFS codes. This paper focuses on the interaction between an embedded crack and a free surface of a component as well as on its effects on the remaining fatigue lives of embedded cracks using the proximity rules provided by the FFS codes. It is shown that the remaining fatigue lives for the embedded cracks strongly depend on the crack aspect ratio and location from the component free surface. In addition, it can be said that the proximity criteria defined by the API and RSE-M codes give overly conservative remaining lives. On the contrary, the WES and AME codes always give long remaining lives and non-conservative estimations. When the crack aspect ratio is small, ASME code gives non-conservative estimation.

  19. Interference Assembly and Fretting Wear Analysis of Hollow Shaft

    OpenAIRE

    Chuanjun Han; Jie Zhang

    2014-01-01

    Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening) and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow d...

  20. Fretting Fatigue Behavior of Nickel Alloy IN-100

    Science.gov (United States)

    2006-03-01

    K., B. F. Dyson, and M. McLean. “Tension-Compression Creep Asym- metry In a Turbine Disc Superalloy : Roles of Internal Stress and Thermal Age- ing...understand the fretting phenomenon and its mechanisms, but only a few have been performed on nickel-based alloys. This superalloy is considered one...excellent magnetic properties, but only at low magnetic induction. Nowadays, the need for the use of high-strength nickel-based superalloys in

  1. Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc

    Science.gov (United States)

    2016-01-01

    Genetically encoded FRET-based sensor proteins have significantly contributed to our current understanding of the intracellular functions of Zn2+. However, the external excitation required for these fluorescent sensors can give rise to photobleaching and phototoxicity during long-term imaging, limits applications that suffer from autofluorescence and light scattering, and is not compatible with light-sensitive cells. For these applications, sensor proteins based on Bioluminescence Resonance Energy Transfer (BRET) would provide an attractive alternative. In this work, we used the bright and stable luciferase NanoLuc to create the first genetically encoded BRET sensors for measuring intracellular Zn2+. Using a new sensor approach, the NanoLuc domain was fused to the Cerulean donor domain of two previously developed FRET sensors, eCALWY and eZinCh-2. In addition to preserving the excellent Zn2+ affinity and specificity of their predecessors, these newly developed sensors enable both BRET- and FRET-based detection. While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1 sensor was limited by the presence of two competing BRET pathways, BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2) yielded robust 25–30% changes in BRET ratio. In addition, introduction of a chromophore-silencing mutation resulted in a BRET-only sensor (BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold increase in Zn2+ affinity. The combination of robust ratiometric response, physiologically relevant Zn2+ affinities, and stable and bright luminescence signal offered by the BLZinCh sensors allowed monitoring of intracellular Zn2+ in plate-based assays as well as intracellular BRET-based imaging in single living cells in real time. PMID:27547982

  2. Fretting corrosion in power contacts: Electrical and thermal analysis

    OpenAIRE

    El Mossouess, S; Benjemâa, N; Carvou, E; El Abdi, R; Benmamas, L; Doublet, L

    2014-01-01

    International audience; -Fretting corrosion phenomenon is known as the main cause of contact resistance increasing in signal contact. But for power connectors this undesirable phenomenon in embarked systems is more complex because high current induces high voltages and subsequent Joule overheating can be expected during vibration. Our study deals with contact similar of power connectors ones submitted to vibration am-plitudes up to 25 micrometres at frequencies of a few 10Hz under a current r...

  3. Distinguishing the cross-beta spine arrangements in amyloid fibrils using FRET analysis.

    Science.gov (United States)

    Deng, Wei; Cao, Aoneng; Lai, Luhua

    2008-06-01

    The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency.

  4. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    Science.gov (United States)

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  5. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  6. Effect of crack propagation on crack tip fields

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2013-07-01

    Full Text Available Crack closure influences fatigue crack growth rate and must be included in the design of components. Plasticity induced crack closure is intimately linked with the crack tip plastic deformation, which becomes residual as the crack propagates. The objective here is to study numerically the effect of crack propagation on crack tip fields. The transient effect observed at the beginning of crack propagation is linked to the hardening behavior of material. The effect of mesh refinement is studied, and a singular behavior is evident, which is explained by the sharp crack associated with mesh topology, composed of a regular pattern of square elements. The plastic zone size measured perpendicularly to crack flank in the residual plastic wake is quantified and compared with literature models. Finally, the removal of material at the first node behind crack tip with load cycling was observed for plane strain state and some hardening models in plane stress state.

  7. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    OpenAIRE

    Murphy, Rebecca R.; Jackson, Sophie E.; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely...

  8. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    Energy Technology Data Exchange (ETDEWEB)

    Michael Pernice

    2012-10-01

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  9. Rise-time of FRET-acceptor fluorescence tracks protein folding

    OpenAIRE

    Simon Lindhoud; Adrie H. Westphal; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Jan Willem Borst

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based F...

  10. Small-crack test methods

    Science.gov (United States)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  11. Effect of crack surface geometry on fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J. [P and L Technologies, Inc., Atlanta, GA (United States); Gokhale, A.M. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Antolovich, S.D. [Washington State Univ., Pullman, WA (United States). School of Mechanical and Materials Engineering

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  12. Fatigue crack detection in a plate girder using Lamb waves

    Science.gov (United States)

    Greve, D. W.; Oppenheim, I. J.; Wu, Wei; Zheng, Peng

    2007-04-01

    We report on the application of wafer-type PZT transducers to the detection of flaws in steel plate girders. In these experiments one transducer is used to emit a pulse and the second receives the pulse and reflections from nearby boundaries, flaws, or discontinuities (pitch-catch mode). In this application there will typically be numerous reflections observed in the undamaged structure. A major challenge is to recognize new reflections caused by fatigue cracks in the presence of these background reflections. A laboratory specimen plate girder was fabricated at approximately half scale, 910 mm deep with an h/t ratio of 280 for the web and a b/t ratio of 16 for the flanges, and with transverse stiffeners fabricated with a web gap at the tension flange. Two wafer-type transducers were mounted on the web approximately 175 mm from the crack location, one on each side of the stiffener. The transducers were operated in pitch-catch mode, excited by a windowed sinusoid to create a narrowband transient excitation. The transducer location relative to the crack corresponded to a total included angle of roughly 30 degrees in the path reflecting from the crack. Cyclic loading was applied to develop a distortion-induced fatigue crack in the web at the web gap location. After appearance of the crack, ultrasonic measurements were performed at a range of center frequencies below the cutoff frequency of the A1 Lamb wave mode. Subsequently the crack was extended mechanically to simulate crack growth under primary longitudinal (bending) stress and the measurements were repeated. Direct differencing of the signals showed arrivals at times corresponding to reflection from the crack location, growing in amplitude as the crack was lengthened mechanically. These results demonstrate the utility of Lamb waves for crack detection even in the presence of numerous background reflections.

  13. Nonlinear modal methods for crack localization

    Science.gov (United States)

    Sutin, Alexander; Ostrovsky, Lev; Lebedev, Andrey

    2003-10-01

    A nonlinear method for locating defects in solid materials is discussed that is relevant to nonlinear modal tomography based on the signal cross-modulation. The scheme is illustrated by a theoretical model in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). A crack is considered as a small contact-type defect which does not perturb the modal structure of sound in linear approximation but creates combinational-frequency components whose amplitudes depend on their closeness to a resonance and crack position. Using different crack models, including the hysteretic ones, the nonlinear part of its volume variations under the given stress and then the combinational wave components in the bar can be determined. Evidently, their amplitude depends strongly on the crack position with respect to the peaks or nodes of the corresponding linear signals which can be used for localization of the crack position. Exciting the sample by sweeping ultrasound frequencies through several resonances (modes) reduces the ambiguity in the localization. Some aspects of inverse problem solution are also discussed, and preliminary experimental results are presented.

  14. Dynamic behaviour of a rotating cracked beam

    Science.gov (United States)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  15. Fretting Wear Behavior of Tin Plated Contacts:. Influence on Contact Resistance

    Science.gov (United States)

    Park, Young Woo; Sankara Narayanan, T. S. N.; Lee, Kang Yong

    The fretting wear behavior of tin plated copper alloy contacts and its influence on the contact resistance are addressed in this paper. Based on the change in the area of contact zone as well as the wear depth as a function of fretting cycles, a model was proposed to explain the observed low and stable contact resistance. The extent of wear of tin coating and the formation of wear debris as a function of fretting cycles were assessed by scanning electron microscopy (SEM). Energy dispersive X-ray line scanning (EDX), X-ray mapping, and EDX spot analysis were employed to characterize the nature of changes that occur at the contact zone. The study reveals that the fretted area increases linearly up to 8000 cycles due to the continuous removal of the tin coating and attains saturation when the fretting path length reaches a maximum. The observed low and stable contact resistance observed up to 8000 cycles is due to the common area of contact which provides an electrically conducting area. Surface analysis by SEM, EDX, and X-ray elemental mapping elucidate the nature of changes that occurred at the contact zone. Based on the change in contact resistance as a function of fretting cycles, the fretting wear and fretting corrosion dominant regimes are proposed. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behavior of tin plated contacts.

  16. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.

    Science.gov (United States)

    Götz, M; Wortmann, P; Schmid, S; Hugel, T

    2016-01-01

    Single-molecule Förster resonance energy transfer (smFRET) is a versatile tool for studying biomolecules in a quantitative manner. Multiple conformations within and interactions between biomolecules can be detected and their kinetics can be determined. Thus, smFRET has become an essential tool in enzymology. Ordinary two-color smFRET experiments can provide only limited insight into the function of biological systems, which commonly consist of more than two components. A complete understanding of complex multicomponent biological systems requires correlated information on conformational rearrangements on the one hand and transient interactions with binding partners on the other. Multicolor smFRET experiments enable the direct observation of such correlated dynamics and interactions. Here we demonstrate the power and limitations of multicolor smFRET experiments including the description of a multicolor smFRET setup and data analysis. A general analytical procedure for multicolor smFRET data is presented and applied to the multicomponent heat shock protein 90 system. This allows us to identify microscopic states in transient complexes. Conformational dynamics and nucleotide binding are simultaneously detected, which is impossible using two-color smFRET. Additionally, their correlation is quantified using 3D ensemble hidden Markov analysis, in and out of equilibrium. This method is perfectly suited for protein systems that are much more sophisticated than previously studied DNA-based systems. By extending the application to biologically relevant systems, multicolor smFRET comes of age and provides a unique mechanistic insight into protein machines.

  17. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  18. Understanding and modeling Förster-type resonance energy transfer (FRET)

    CERN Document Server

    Hernández Martínez, Pedro Ludwig; Demir, Hilmi Volkan

    2017-01-01

    This Brief presents a complete study of the generalized theory of Förster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate’s distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.

  19. Fatigue Crack Initiation Analysis in 1060 Steel

    Directory of Open Access Journals (Sweden)

    L. Gyansah

    2010-07-01

    Full Text Available This study investigates initiation of small cracks on dumble-shaped plate type specimens of 1060steel at the load ratio of R = 0 under varied cyclic stress amplitudes between 0.6 and 1.0 of yield stress usingthe Instron machine (model: 8501. Sinusoidal wave of a frequency of 10 Hz was used in the experiment. Theexperiment was conducted at a room temperature of 23ºC. Each test for different applied stress ranges wascarried out for 2×104 cycles. Microstructure and fractography of the fractured specimen were also analyzed.Nucleations of cracks were observed at Ferrite-Ferrite G rain Boundary (FFGB as well as inside Ferrite GrainBody (FGB, but the FFGB location was preferred. Results show that the average length of FFGB cracks isfound larger than that of the average length of cracks initiated inside FGB at the same cyclic loading conditions.The formation of slip band inside grain body, slip band impingement at grain boundary and elastic-plasticincompatibility synergistically have significant influence on fatigue crack initiation in 1060 steel. Additionally,the formation of irregular voids inside slip bands, initiation and growth of small voids at grain boundary andthe subsequent joining of these with other voids were seen as specific characteristics of 1060 steel. It was alsoestablished that cracks nucleate both at grain boundary and inside grain body in 1060 steel in the investigateddomain of 0.6 to 1.0Fy.It was further established that the orientation of the grain body cracks at low stress levelis greater than 45º and the average angle of orientation of these cracks increases like that of grain boundarycracks with increased magnitude of stress range.

  20. AccPbFRET: An ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images

    Directory of Open Access Journals (Sweden)

    Vereb György

    2008-08-01

    Full Text Available Abstract Background The acceptor photobleaching fluorescence resonance energy transfer (FRET method is widely used for monitoring molecular interactions in cells. This method of FRET, while among those with the simplest mathematics, is robust, self-controlled and independent of fluorophore amounts and ratios. Results AccPbFRET is a user-friendly, efficient ImageJ plugin which allows fully corrected, pixel-wise calculation and detailed, ROI (region of interest-based analysis of FRET efficiencies in microscopic images. Furthermore, automatic registration and semi-automatic analysis of large image sets is provided, which are not available in any existing FRET evaluation software. Conclusion Despite of the widespread applicability of the acceptor photobleaching FRET technique, this is the first paper where all possible sources of major errors of the measurement and analysis are considered, and AccPbFRET is the only program which provides the complete suite of corrections – for registering image pairs, for unwanted photobleaching of the donor, for cross-talk of the acceptor and/or its photoproduct to the donor channel and for partial photobleaching of the acceptor. The program efficiently speeds up the analysis of large image sets even for novice users and is freely available.

  1. Crack Detection with Lamb Wave Wavenumber Analysis

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  2. FRET and colocalization analyzer--a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in.

    Science.gov (United States)

    Hachet-Haas, Muriel; Converset, Noël; Marchal, Olivier; Matthes, Hans; Gioria, Sophie; Galzi, Jean-Luc; Lecat, Sandra

    2006-12-01

    Fluorescence resonance energy transfer (FRET) between an adequate pair of fluorophores is an indication of closer proximity than colocalization and is used by biologists to study fluorescently modified protein interactions inside cells. We present a method for visualization of FRET images acquired by confocal sensitized emission, involving excitation of the donor fluorophore and detection of the energy transfer as an emission from the acceptor fluorophore into the FRET channel. Authentic FRET signal measurements require the correction from the FRET channel of the undesired bleed-through signals (BT) resulting from both the leak-through of the donor emission and the direct acceptor emission. Our method reduces the interference of the user to a minimum by analyzing the entire image, pixel by pixel. It proposes imaging treatments and the display of control images to validate the BT calculation and the image corrections. It displays FRET images as a function of the colocalization of the two fluorescent partners. Finally, it proposes an alternative to normalization of the FRET intensities to compare FRET signal variations between samples. This method called "FRET and Colocalization Analyzer" has been implemented in a Plug-in of the freely available ImageJ software. It is particularly adapted when transient expression of the fluorescent proteins is used thereby giving very variable expression levels or when the colocalization of the two partners is varying in proportion, in amount, and in size, as a function of time. The method and program are validated using the analysis of the spatio-temporal interactions between a G-protein coupled receptor, the tachykinin NK2 receptor, and the beta-arrestin 2 as an example.

  3. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  4. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Directory of Open Access Journals (Sweden)

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  5. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  6. Molecular statics simulation of crack propagation in {alpha}-Fe using EAM potentials

    Energy Technology Data Exchange (ETDEWEB)

    Shastry, V.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1996-12-01

    The behavior of mode 1 cracks in {alpha}-Fe is investigated using molecular statics methods with embedded atom (EAM) potentials. A double ended crack of finite size embedded in a cylindrical simulation cell and fixed boundary conditions are prescribed along the periphery of the cell, whereas periodic boundary conditions are imposed parallel to the crack front. The displacement field of the finite crack is represented by that of an equivalent pileup of opening dislocations distributed in a manner consistent with the anisotropy of the crystal and traction free conditions of the crack faces. The crack lies on the {l_brace}110{r_brace} plane and the crack front is located either along <100>< <110> or <111> directions. The crack tip response is rationalized in terms of the surface energy ({gamma}{sub s}) of the cleavage plane and the unstable stacking energies ({gamma}{sub us}) of the slip planes emanating from the crack front.

  7. Crack detection in offshore platform structure based on structural intensity approach

    Science.gov (United States)

    Tian, Xiaojie; Liu, Guijie; Gao, Zhiming; Chen, Pengfei; Mu, Weilei

    2017-02-01

    Structural intensity approach is introduced to study the crack detection for offshore platform in the paper. The Line Spring Model (LSM) of surface crack is proposed based on plate crack structure, and thus the relationship between the additional angle, displacement and crack relative depth is achieved. Besides, the concept of appended structure-borne sound intensity is introduced. The expression of appended structural intensity for crack damage is derived. By observing the input energy, distribution, transmission and vibration performance of structure intensity, evidence is provided for detection of crack location. Vibration analysis is conducted on the whole platform under multi environment load. Using the structural intensity approach, the crack is detected on the key point easily. Moreover, the K-shape welded pipe point is detected using structural intensity approach, and the crack can be detected accurately. Therefore, development structural intensity approach would be extremely useful to spread out technologies that can be applied for offshore platform crack detection accurately.

  8. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  9. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    Science.gov (United States)

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  10. FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    Science.gov (United States)

    2014-09-01

    Award Number: W81XWH-13-1-0160 TITLE: FRET Imaging Trackable Long-Circulating Biodegradable ...TITLE AND SUBTITLE FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy 5a. CONTRACT NUMBER...strategy, which permits visualizing the biodegradation of copolymer-drug conjugates at the body, tissue and cell levels in real time. The information

  11. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A., E-mail: nelambert@gru.edu

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.

  12. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.

    Science.gov (United States)

    Massey, Melissa; Li, Jia Jun; Algar, W Russ

    2017-01-01

    Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

  13. Engineering of weak helper interactions for high-efficiency FRET probes.

    Science.gov (United States)

    Grünberg, Raik; Burnier, Julia V; Ferrar, Tony; Beltran-Sastre, Violeta; Stricher, François; van der Sloot, Almer M; Garcia-Olivas, Raquel; Mallabiabarrena, Arrate; Sanjuan, Xavier; Zimmermann, Timo; Serrano, Luis

    2013-10-01

    Fluorescence resonance energy transfer (FRET)-based detection of protein interactions is limited by the very narrow range of FRET-permitting distances. We show two different strategies for the rational design of weak helper interactions that co-recruit donor and acceptor fluorophores for a more robust detection of bimolecular FRET: (i) in silico design of electrostatically driven encounter complexes and (ii) fusion of tunable domain-peptide interaction modules based on WW or SH3 domains. We tested each strategy for optimization of FRET between (m)Citrine and mCherry, which do not natively interact. Both approaches yielded comparable and large increases in FRET efficiencies with little or no background. Helper-interaction modules can be fused to any pair of fluorescent proteins and could, we found, enhance FRET between mTFP1 and mCherry as well as between mTurquoise2 and mCitrine. We applied enhanced helper-interaction FRET (hiFRET) probes to study the binding between full-length H-Ras and Raf1 as well as the drug-induced interaction between Raf1 and B-Raf.

  14. A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays.

    Science.gov (United States)

    Li, Yansheng; Du, Hongwu; Wang, Wenqian; Zhang, Peixun; Xu, Liping; Wen, Yongqiang; Zhang, Xueji

    2016-05-27

    DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as inconstant programmable templates for assembly of biosensors. In this paper, a versatile, scalable and multiplex detection system is reported based on an extending fluorescent resonance energy transfer (FRET) cascades on a linear DNA assemblies. Seven combinations of three kinds of targets are successfully detected through the changes of fluorescence spectra because of the three-steps FRET or non-FRET continuity mechanisms. This nano-assembled FRET-based nanowire is extremely significant for the development of rapid, simple and sensitive detection system. The method used here could be extended to a general platform for multiplex detection through more-step FRET process.

  15. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    CERN Document Server

    Murphy, Rebecca R; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely diffusing biomolecules. The package provides methods for the complete analysis of a smFRET dataset, from burst selection and denoising, through data visualisation and model fitting. We provide support for both continuous excitation and alternating laser excitation (ALEX) data analysis. pyFRET is available as a package downloadable from the Python Package Index (PyPI) under the open source three-clause BSD licence, together with links to extensive documentation and tutorials, including example usage and test data. Additio...

  16. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM

    Directory of Open Access Journals (Sweden)

    George Chennell

    2016-08-01

    Full Text Available We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP Activated Protein Kinase (AMPK FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR, for fluorescence lifetime imaging (FLIM readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP, in the original FRET biosensor, AMPK activity reporter (AMPKAR, with mTurquoise2 (mTq2FP, increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation.

  17. Fretting damage behavior and mechanism of tin coated zircaloy-4 tube

    Institute of Scientific and Technical Information of China (English)

    Tae-HyungKim; Ji-HyunSung; Seock-SamKim

    2001-01-01

    The fretting characteristics of TiN coated Zircaloy-4 tube were investigated experimen-tally. The fretting experiment was performed using TIN coated Zircaloy-4 tube as the fuel rod clad-ding material and uncoated Zircaloy-4 tube as one of grids. TIN coating is probably one of the mostfrequently and successfully used PVD coatings for the mitigation of fretting. In this study, TiN coat-ing by PVD was employed for improvement of Zircaloy-4 tube fretting characteristics. The frettingtester was designed and manufactured for this experiment. The number of cycles, slip amplitudeand normal load were selected as main factors of fretting. The results of this research showed thatthe wear volume of TiN coated Zircaloy-4 tube increased as number of cycles, normal load andslip amplitude increase but the quantity of volume was lower than the case of uncoated Zircaloy-4tube pairs.

  18. Interaction of a crack with crystal defects in solids

    Energy Technology Data Exchange (ETDEWEB)

    Narita, N. [Kyushu Inst. of Tech., Kitakyushu (Japan). Dept. of Materials Science and Engineering; Higashida, K.

    1997-06-01

    The modifications of stress states near a crack tip by interstitial impurities and by dislocations are analyzed using 2-D and 3-D potential methods. In the case of interstitial impurities, the local stress intensity k{sub D} due to impurities is much affected by their location and is altered from crack tip shielding to anti-shielding as their location changes from behind a crack tip to the front. If impurities are mobile, their forward redistribution is induced by crack fields to increase k{sub D} values. The tetragonal strain of impurities also enhances the increase of the k{sub D} values. In dislocation-crack systems, two kinds of screw dislocation arrays are observed on each different slip plane ahead of a crack tip in MgO thin crystals and they mainly induce the mode I stress intensity of shielding type as a result of the mutual cancellation of the other modes. The effect of crack tip shielding/anti-shielding on crack extension is discussed in connection with the experimental observation of fracture toughness. (orig.). 7 refs.

  19. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein.

  20. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

    Science.gov (United States)

    Li, Yan; Forbrich, Alex; Wu, Jiahui; Shao, Peng; Campbell, Robert E.; Zemp, Roger

    2016-03-01

    A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02-04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity.

  1. Paths to Förster's resonance energy transfer (FRET) theory

    Science.gov (United States)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  2. Crack Characterisation for In-service Inspection Planning - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Waale, Jan [lnspecta Technology AB, Stockholm (Sweden)

    2006-05-15

    ; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically

  3. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    Science.gov (United States)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in

  4. Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate

    Indian Academy of Sciences (India)

    Sangeeta Saini; Harjinder Singh; Biman Bagchi

    2006-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study equilibrium and dynamical properties of polymers and biopolymers in condensed phases and is now widely used in conjunction with single molecule spectroscopy. In the data analysis, one usually employs the Förster expression which predicts (1/6) distance dependence of the energy transfer rate. However, critical analysis shows that this expression can be of rather limited validity in many cases. We demonstrate this by explicitly considering a donor-acceptor system, polyfluorene (PF6)-tetraphenylporphyrin (TPP), where the size of both donor and acceptor is comparable to the distance separating them. In such cases, one may expect much weaker distance (as 1/2 or even weaker) dependence. We have also considered the case of energy transfer from a dye to a nanoparticle. Here we find 1/4 distance dependence at large separations, completely different from Förster. We also discuss recent application of FRET to study polymer conformational dynamics.

  5. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  6. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    Science.gov (United States)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  7. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  8. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  9. Investigation on the Crack Initiation of V-Shaped Notch Tip in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.

  10. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy.

    Science.gov (United States)

    Kleemola, Maaria; Toivonen, Minna; Mykkänen, Juha; Simell, Olli; Huoponen, Kirsi; Heiskanen, Kaisa M

    2007-10-01

    y(+)LAT-1 and 4F2hc are the subunits of a transporter complex for cationic amino acids, located mainly in the basolateral plasma membrane of epithelial cells in the small intestine and renal tubules. Mutations in y(+)LAT-1 impair the transport function of this complex and cause a selective aminoaciduria, lysinuric protein intolerance (LPI, OMIM #222700), associated with severe, complex clinical symptoms. The subunits of an active transporter co-localize in the plasma membrane, but the exact process of dimerization is unclear since direct evidence for the assembly of this transporter in intact human cells has not been available. In this study, we used fluorescence resonance energy transfer (FRET) microscopy to investigate the interactions of y(+)LAT-1 and 4F2hc in HEK293 cells expressing y(+)LAT-1 and 4F2hc fused with ECFP or EYFP. FRET was quantified by measuring fluorescence intensity changes in the donor fluorophore (ECFP) after the photobleaching of the acceptor (EYFP). Increased donor fluorescence could be detected throughout the cell, from the endoplasmic reticulum and Golgi complex to the plasma membrane. Therefore, our data prove the interaction of y(+)LAT-1 and 4F2hc prior to the plasma membrane and thus provide evidence for 4F2hc functioning as a chaperone in assisting the transport of y(+)LAT-1 to the plasma membrane.

  11. Localization and characterization of fatigue cracks around fastener holes using spherically focused ultrasonic probes

    Science.gov (United States)

    Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David

    2017-02-01

    Results are presented from laboratory experiments and simulations that demonstrate the ability to localize fatigue cracks around fastener holes using spherically focused ultrasonic probes for shear-wave inspections. For the experiments, fatigue cracks were created in aluminum plates in a testing frame under cyclic loading. With the exceptions of one specimen with a mid-bore crack and another with a "through" crack, the remaining specimens contain surface-breaking cracks. All of the specimens were inspected for the cracks intersecting the back wall, and some were flipped over and re-inspected with the crack intersecting the front surface. Parameter and variable sensitivity studies were performed using CIVA Simulation Software. In contrast to C-scans where detection and localization of small cracks can be very difficult, modeling and initial experimental results demonstrate that cracks can be accurately located in "True" B-scans (B-scans projected in the part along the beam path). Initial results show that small-amplitude diffracted/scattered signals from the crack tips and edges are essential in obtaining clear crack traces in the True B-scans. It is important therefore that experimental data be acquired with sufficient gain to capture the diffracted/scattered signals. In all of the cases studied here, saturating the high-amplitude specular reflections from the fastener hole and crack enhanced the crack trace in the True B-scans.

  12. Crack identification for rotating machines based on a nonlinear approach

    Science.gov (United States)

    Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.

    2016-10-01

    In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.

  13. Fretting wear damage of HexTOOL{sup TM} composite depending on the different fibre orientations

    Energy Technology Data Exchange (ETDEWEB)

    Terekhina, S; Salvia, M; Fouvry, S [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS ECL ENISE ENSMSE 5513, Ecole Centrale de Lyon, 69134 Ecully cedex (France); Malysheva, G; Tarasova, T, E-mail: svetlana.terekhina@ec-lyon.fr, E-mail: svetlanaterekhina@yandex.ru [Bauman Moscow State Technical University, 105005 Moscow, 5, 2nd Baumanskaya str (Russian Federation)

    2009-09-15

    The composites have drawn considerable interest in the mould processes. The vibrations and fatigue stresses induced in the moulds made evident to characterize the composite HexTOOL{sup TM} under fretting conditions. Fretting is a small-amplitude oscillatory motion between contacting surfaces. The running conditions fretting maps (RCFM) of composite at ambient conditions were established. The influence of different fiber orientations of HexTOOL{sup TM} composite on the wear kinetics was shown. An energy wear approach was developed. According to results of dynamic mechanical analysis (DMA), the viscoelastic properties of composite material were obtained.

  14. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET.

    Science.gov (United States)

    Kudryashova, Kseniya S; Chertkov, Oleg V; Nikitin, Dmitry V; Pestov, Nikolai A; Kulaeva, Olga I; Efremenko, Anastasija V; Solonin, Alexander S; Kirpichnikov, Mikhail P; Studitsky, Vasily M; Feofanov, Alexey V

    2015-01-01

    Single positioned nucleosomes have been extensively employed as simple model experimental systems for analysis of various intranuclear processes. Here we describe an experimental system containing positioned mononucleosomes allowing transcription by various RNA polymerases. Each DNA template contains a pair of fluorescent labels (Cy3 and Cy5) allowing measuring relative distances between the neighboring coils of nucleosomal DNA using Forster resonance energy transfer (FRET). The single-particle FRET (spFRET) approach for analysis of DNA uncoiling from the histone octamer during transcription through chromatin is described in detail.

  15. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    OpenAIRE

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unrav...

  16. Fretting Fatigue Improvement of Ti6Al4V by Coating and Shot Peening

    Institute of Scientific and Technical Information of China (English)

    Daoxin LIU; Xiaodong ZHU; Bin TANG; Jiawen HE

    2005-01-01

    Ion beam enhanced deposition (IBED) was employed to increase the fretting fatigue resistance of Ti6AI4V. CrN and TiN hard coatings were applied on the base material and shot peening was combined with the hard coatings to study the duplex effect on fretting fatigue resistance, The IBED coatings exhibited a good bonding strength. They did not spall off even after shot peening. However, an optimum composition of CrN showed better fretting fatigue resistance than that of TiN with the same processing parameters.

  17. The Effect of Elevated Temperature on the Fretting Fatigue Behavior of Nickel Alloy IN-100

    Science.gov (United States)

    2008-04-01

    Saladin S-N data points for plain fatigue 86 4.16 Comparison of Ownby and Saladin S-N data points for fretting fatigue 87 4.17 Comparison of Ownby...and Saladin S-N data for all tests 88 4.18 Plot comparing ΔQ vs Nf from Ownby, Saladin & Madhi data points 89 4.19 Plot from Kawagoishi et al. [21...in this study 93 4.3 Madhi fretting and plain fatigue testing data 94 4.4 Saladin fretting and plain fatigue testing data 94 4.5 Comparison of

  18. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins.

    Science.gov (United States)

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells.

  19. Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study

    Science.gov (United States)

    Greife, Annemarie; Felekyan, Suren; Ma, Qijun; Gertzen, Christoph G. W.; Spomer, Lina; Dimura, Mykola; Peulen, Thomas O.; Wöhler, Christina; Häussinger, Dieter; Gohlke, Holger; Keitel, Verena; Seidel, Claus A. M.

    2016-11-01

    TGR5 is the first identified bile acid-sensing G-protein coupled receptor, which has emerged as a potential therapeutic target for metabolic disorders. So far, structural and multimerization properties are largely unknown for TGR5. We used a combined strategy applying cellular biology, Multiparameter Image Fluorescence Spectroscopy (MFIS) for quantitative FRET analysis, and integrative modelling to obtain structural information about dimerization and higher-order oligomerization assemblies of TGR5 wildtype (wt) and Y111 variants fused to fluorescent proteins. Residue 111 is located in transmembrane helix 3 within the highly conserved ERY motif. Co-immunoprecipitation and MFIS-FRET measurements with gradually increasing acceptor to donor concentrations showed that TGR5 wt forms higher-order oligomers, a process disrupted in TGR5 Y111A variants. From the concentration dependence of the MFIS-FRET data we conclude that higher-order oligomers – likely with a tetramer organization - are formed from dimers, the smallest unit suggested for TGR5 Y111A variants. Higher-order oligomers likely have a linear arrangement with interaction sites involving transmembrane helix 1 and helix 8 as well as transmembrane helix 5. The latter interaction is suggested to be disrupted by the Y111A mutation. The proposed model of TGR5 oligomer assembly broadens our view of possible oligomer patterns and affinities of class A GPCRs.

  20. Crack detection of railway turnouts using PZT sensors (presentation video)

    Science.gov (United States)

    Ni, Yiqing; Li, Z. G.; Wu, F.

    2014-05-01

    Railway turnouts (railroad switches) are the weakest components of a rail track system. Cracks may occur in the railway turnouts due to cyclic loadings and impact loadings imposed by passing trains. It is of great significance to continuously monitor the health condition of the railway turnouts and promptly detect crack once it initiates. It is well-known that acoustic emission (AE) signals are generated when a crack initiates and propagates. Detecting the high-frequency AE signals by piezoelectric sensors can help identify the crack and its location. This paper reports the design and implementation of a PZT-based system for crack monitoring of railway turnouts. This online monitoring system is activated for signal collection by a trigger system when a train is arriving to pass through the instrumented railway turnout. It mainly detects the AE signals generated when a crack initiates during the train passage or when the initiated crack expands during the passage of a heavy haul wagon. This system has been installed on a railroad line for over one year and has successfully detected the damage occurring at a railroad switch during its service period. This paper also briefs a guided-wave-based system for monitoring of micro-cracks in rail tracks by integrating FBG and PZT sensors.

  1. Fatigue crack propagation characteristics of ductile cast iron austempered from (. alpha. +. gamma. ) phase region. (. alpha. +. gamma. ) iki kara austemper shorishita kyujo kokuen chutetsu no hiro kiretsu shinten tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Y.; Asami, K.; Kuroiwa, H. (Musashi Institute of Technoloyg, Tokyo (Japan))

    1991-01-15

    In order to enhance the fatigue crack propagation resistance of ductile cast iron, the effect of austempering from a ({alpha} + {gamma}) phase region was studied. As the dual phase matrix microstructure of ferrite and pearlite in as-casted iron was changed into the dual phase one of ferrite and bainite by partial austempering from 800 {degree} C, the fatigue crack propagation resistance was enhanced over the whole range of a {Delta} K region. The enhancement of the fatigue crack propagation resistance was caused by remarkable development of crack closures from higher {Delta} K regions which was induced by fracture contact and fretting because of an increase in fracture roughness and easy formation of oxide deposits. In addition, the static tensile and ductility of ductile cast iron were possibly enhanced simultaneously by partial austempering for changing pearlite into bainite superior in both tensile and ductility. 9 refs., 13 figs., 3 tabs.

  2. Fatigue crack identification method based on strain amplitude changing

    Science.gov (United States)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  3. Natural frequencies of cracked functionally graded material plates by the extended finite element method

    CERN Document Server

    Natarajan, S; Bordas, S; Rabczuk, T; Kerfriden, P

    2011-01-01

    In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.

  4. THREE-DIMENSIONAL INTERACTIONS OF CIRCULAR CRACK IN TRANSVERSELY ISOTROPIC PIEZOELECTRIC SPACE WITH RESULTANT SOURCES

    Institute of Scientific and Technical Information of China (English)

    HOU Peng-fei; DING Hao-jiang; Leung Andraw-YT

    2006-01-01

    Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stress and charge sources: force dipoles, electric dipoles, moments, force dilatation and rotation. The circular crack includes penny-shaped crack and external circular crack and the locations and orientations of these resultant sources with respect to the crack are arbitrary. Such stress and charge sources may model defects like vacancies, foreign particles, and dislocations. Numerical results are presented at last.

  5. CIRCUMFERENTIAL MFL IN-LINE INSPECTION FOR CRACKS IN PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Nestleroth

    2003-06-01

    axially oriented volumetric defects. While successful results are presented in this report, circumferential MFL can only detect larger cracks. Even with the field aligned properly, circumferential MFL technology has difficulty detecting cracks on the outside surface that have the potential to grow to failure. Circumferential MFL can be used to detect many corrosion, mechanical damage, and crack defects. However, the detection capabilities and sizing accuracies may not be sufficient for all pipeline threats. Inspection tools that use more sophisticated technologies for detecting and sizing defects may have better performance capabilities, but will likely be expensive to operate. Circumferential MFL will be useful in identifying locations for detailed testing. While performance enhancements may be limited, circumferential MFL inspections will be part of the inspection process for many decades.

  6. A Study on Crack Detection with Modal Parameters of A Jacket Platform

    Institute of Scientific and Technical Information of China (English)

    张兆德; 王德禹

    2004-01-01

    Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket models are obtained by numerical experiments based on NASTRAN Code. A crack at different locations and of different magnitudes is imposed in the model at the underwater beams. Then, the modal evaluation parameters are calculated numerically, to illustrate the evaluation of modal parameter criteria used in jacket crack detection. The sensitivities of different modal parameters to different cracks are analyzed. A new technique is presented for predicting the approximate location of a breakage in the absence of the data of an intact model. This method can be used to detect a crack in underwater members by use of in complete mode shapes of the top members of the jacket.

  7. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    Science.gov (United States)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  8. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  9. Fretting Behavior of SPR Joining Dissimilar Sheets of Titanium and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Xiaocong He

    2016-12-01

    Full Text Available The fretting performance of self-piercing riveting joining dissimilar sheets in TA1 titanium alloy and H62 copper alloy was studied in this paper. Load-controlled cyclic fatigue tests were carried out using a sine waveform and in tension-tension mode. Scanning electron microscopy and energy-dispersive X-ray techniques were employed to analyze the fretting failure mechanisms of the joints. The experimental results showed that there was extremely severe fretting at the contact interfaces of rivet and sheet materials for the joints at relatively high loads levels. Moreover, the severe fretting in the region on the locked sheet in contact with the rivet was the major cause of the broken locked sheet for the joints at low load level.

  10. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    Science.gov (United States)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  11. Influence of fretting on the fatigue strength at the vise clamp–specimen interface

    Indian Academy of Sciences (India)

    Abdulhaqq A Hamid; Rafi K Yahya

    2003-12-01

    Fretting fatigue is one of the most important phenomena for inducing a significant reduction of fatigue strength and consequently, leading to unexpected failure accidents of the engineering structures even at very low stresses. In the present study, both plain and fretting fatigue tests with zero mean stress were carried out on two different types of steel, low-carbon steel and martensitic stainless steel, by means of a reversed bending fatigue testing machine. The drop in the fatigue strengths through fretting at vise clamp–specimen interface were significant for both tested steels. The fretting processes produced a reduction in fatigue strength of about 27% for low-carbon steel and 16% for martensitic stainless steel.

  12. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  13. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    experimental setup which did not accurately model the turbine engine environment. Kawagoishi et al. [23] studied the nickel-based alloy Inconel 718 ...In their study with Inconel 718 [48, 49], it was found that the beneficial glaze oxide had formed and did affect the fretting fatigue life. Their...Waterhouse [52] investigated the fretting fatigue behaviors of austenitic steel type 321 and nickel-based alloy Inconel 718 at elevated temperatures. He

  14. Quantitative thermoelastic measurement on a helicopter glass fibre component underneath a surface anti-fretting coating.

    Directory of Open Access Journals (Sweden)

    Costa A.

    2010-06-01

    Full Text Available Thermoelastic stress analysis (TSA has been applied to measure the first stress invariant on a composite helicopter component under load. The component comprised inner mono-directional glass fiber layers with an outer central plate in glass fiber cloth, covered by an anti-fretting surface coating. In order to obtain quantitative results, a previous calibration of the thermoelastic constant obtained on a composite sample with a similar anti-fretting coating has been necessary.

  15. EXPERIMENTAL INVESTIGTION OF THE FRETTING PHENOMENON-DEPENDENCE OF NUMBERS CYCLES

    Directory of Open Access Journals (Sweden)

    Ştefan GHIMISI

    2014-12-01

    Full Text Available The present paper argues that adhesion forces and elastic deformation in the contact zone may contribute significantly to the relative displacement during fretting of metals. A simultaneously applied tangential force and normal into contact appears a adhesion force. A tangential force whose magnitude is less equal on greater than the force of limiting friction will not give rise on give rise to a sliding motion.It is determined the energy loss dissipated per fretting cycle.

  16. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...advantage to begin with the end of the fracture, this is especially so in the case of the quantitative evaluation of striations. The overload fracture...Select the Measuring Line for Quantitative Evaluation Actually, the fatigue fracture should be inspected completely from the point of origin to the

  17. Cracking in desiccating soils

    OpenAIRE

    Ledesma Alberto

    2016-01-01

    Soil shrinkage is produced typically under desiccating conditions. Eventually shrinkage may generate cracks in the soil mass, a phenomenon that is being studied by several researchers, because its prediction is far from being a routine in Soil Mechanics. Within this context, Unsaturated Soil Mechanics provides a promising framework to understand the mechanisms involved. In addition to that, physical modelling of desiccating soils constitutes a good tool to explore the nature of this problem. ...

  18. Utopia Cracks and Polygons

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  19. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections.

  20. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank's solution.

    Science.gov (United States)

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-11-04

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank's solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank's solution. Both the friction coefficients and the wear volume of the fretting in Hank's solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank's solution group. Although oxidation occurred during the fretting tests in Hank's solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank's solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.

  1. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors.

    Science.gov (United States)

    Clifton, Ben E; Whitfield, Jason H; Sanchez-Romero, Inmaculada; Herde, Michel K; Henneberger, Christian; Janovjak, Harald; Jackson, Colin J

    2017-01-01

    Small molecule biosensors based on Förster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.

  2. Test Methodology of Reproducing Fuel Rod Failure by Debris Fretting Wear

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Joon; Park, Nam Gyu; Kim, Jae Ik [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    A test was conducted with simple debris to reproduce debris fretting wear. 68% of fuel rod cladding thickness is worn out by Inconel debris in 75 hours. The test result shows that a simple link system is useful to accommodate debris oscillation, and mid grid mixing vanes could be a source of debris forcing. Additional tests will be conducted with various debris such as wire brush, metal chip, etc which are suspected to generate actual debris fretting wear in future works. Debris fretting is one of the most common cause of the nuclear fuel rod failure. Even the most of the nuclear fuels has debris protection system, debris still cause fuel rod failure. From 1994 to 2006, debris fretting failure is around 11% of the total fuel failure. In 2006-2010, the portion of debris rises to over 13%. The total number of fuel rods failure is decreasing, but the portion of the debris fretting wear is growing with time. Therefore reproducing and identifying the mechanism of fuel rod failure by debris fretting wear is needed to improve reliability of the nuclear fuel.

  3. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  4. In-service fatigue cracking of the propeller shafts joined by a spline-pinned construction to the engines of AN-24, AN-26, and IL-18 aircrafts

    Directory of Open Access Journals (Sweden)

    A. Shanyavskiy

    2014-10-01

    Full Text Available The paper delivers a critical review of the research data on the crack initiation and crack growth patterns characteristic of the components of the spline-bolted joints between the propeller shaft and reducer shaft at An-24, An-26, and Il-18 aircrafts. Cracks in the shafts nucleated because of reduced bolt-fastening force. Actually, the bolt (bolts failed first (also by fatigue and then fatigue cracks nucleated and grew in the shafts, the spline surface fretting zones and/or sharp edges of the attachment (bolt-conducting holes making the crack origin sites. The crack growth history shows itself through the regular Macro-Beach Marks, each mark sequentially pointing to the next loading event of the propeller shaft, i.e., to each next flight. The cracks cease growing for some while in the airscrews and their shafts just replaced to another aircraft. For the airscrew shafts, the critically assessed data show the crack growth period Np ranging as five to ten percent of a total running period Nf . We recommend performing nondestructive inspection of the airscrew shafts on every 250- hour running period to ensure the safety flights.

  5. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion.

    Science.gov (United States)

    Gilbert, Jeremy L; Mali, Sachin; Urban, Robert M; Silverton, Craig D; Jacobs, Joshua J

    2012-02-01

    In vivo modular taper corrosion in orthopedic total joint replacements has been documented to occur for head-neck tapers, modular-body tapers, and neck-stem tapers. While the fretting corrosion mechanism by which this corrosion occurs has been described in the literature, this report shows new and as yet unreported mechanisms at play. A retrieved Ti-6Al-4V/Ti-6Al-4V neck-stem taper interface, implanted for 6 years is subjected to failure analysis to document taper corrosion processes that lead to oxide driven crack formation on the medial side of the taper. Metallurgical sectioning techniques and scanning electron microscopy analysis are used to document the taper corrosion processes. The results show large penetrating pitting attack of both sides of the taper interface where corrosion selectively attacks the beta phase of the microstructure and eventually consumes the alpha phase. The pitting attack evolves into plunging pits that ultimately develop into cracks where the crack propagation process is one of corrosion resulting in oxide formation and subsequent reorganization. This process drives open the crack and advances the front by a combination of oxide-driven crack opening stresses and corrosion attack at the tip. The oxide that forms has a complex evolving structure including a network of transport channels that provide access of fluid to the crack tip. This emergent behavior does not appear to require continued fretting corrosion to propagate the pitting and cracking. This new mechanism is similar to stress corrosion cracking where the crack tip stresses arise from the oxide formation in the crack and not externally applied tensile stresses.

  6. Location Privacy

    Science.gov (United States)

    Meng, Xiaofeng; Chen, Jidong

    With rapid development of sensor and wireless mobile devices, it is easy to access mobile users' location information anytime and anywhere. On one hand, LBS is becoming more and more valuable and important. On the other hand, location privacy issues raised by such applications have also gained more attention. However, due to the specificity of location information, traditional privacy-preserving techniques in data publishing cannot be used. In this chapter, we will introduce location privacy, and analyze the challenges of location privacy-preserving, and give a survey of existing work including the system architecture, location anonymity and query processing.

  7. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  8. Stress intensity factors of eccentric cracks in bi-materials plate under mode I loading

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A. E. [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2015-05-15

    Bi-material plates were generally used to joint electronic devices or mechanical components requiring dissimilar materials to be attached. During services, mechanical failure can be occurred due to the formation of cracks at the interfacial joint or away from the centre. Generally, linear elastic fracture mechanics approach is used to characterize these cracks based on stress intensity factors (SIF). Based on the literature survey, the SIFs for the central cracks were easily available. However, the SIFs for eccentric cracks were difficult to obtain. Therefore, this paper presented the SIFs for eccentric cracks subjected to mode I tension loading. Three important parameters were used such as relative crack depth, a/L, relative offset distance, b/L and elastic mismatch, E{sub 1}/E{sub 2} or α. It was found that such parameters significantly affected the characteristic of SIFs and it was depend on the location of cracks.

  9. An analytical investigation on singularity of current distribution around a crack in a long cylindrical superconductor

    Science.gov (United States)

    Xue, Feng; Zhou, You-He

    2010-06-01

    This paper presents an analytical investigation to display the distribution of critical current flow and trapped magnetic field around a through crack centrally located in a long cylindrical superconductor on the basis of the Bean model and the Kim model. After a simple conformal mapping is employed to the case of that the superconductor is fully penetrated, the current streamlines, the current density, and the trapped field around the crack in the superconductor without deformation are obtained. It is shown that the crack results in a long-range disturbance of J(r ) on the scale much larger than the crack length 2a and a large stagnation region of magnetic flux near the crack except for the singularity of the critical current at the crack tip. Meanwhile, it is also found that the singularity feature is different from the conventional stress one at the crack tip in a deformable body.

  10. Image-based detection and analysis of crack propagation in cementitious composites

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    after the cracking process has occurred. The alternative nondestructive methods are often either not precise enough or experimentally too demanding. In this study, the use of an image analysis procedure to capture the crack initiation and propagation process is described, which utilizes digital images......The initiation and propagation of cracking in concrete and other cementitious materials is a governing mechanism for many physical and mechanical material properties. The observation of these cracking processes in concrete is typically taking place at discrete locations using destructive methods...... of the concrete while undergoing the cracking process. The results obtained with this method have shown that it is possible to monitor relatively small displacements on the specimen surface independently of the scale of the representative area of interest. The formed cracks are visible at relatively small crack...

  11. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  12. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling.

    Science.gov (United States)

    Rezvani-Sharif, Alireza; Tafazzoli-Shadpour, Mohammad; Kazemi-Saleh, Davood; Sotoudeh-Anvari, Maryam

    2016-12-09

    Traditionally, the degree of luminal obstruction has been used to assess the vulnerability of atherosclerotic plaques. However, recent studies have revealed that other factors such as plaque morphology, material properties of lesion components and blood pressure may contribute to the fracture of atherosclerotic plaques. The aim of this study was to investigate the mechanism of fracture of atherosclerotic plaques based on the mechanical stress distribution and fatigue analysis by means of numerical simulation. Realistic models of type V plaques were reconstructed based on histological images. Finite element method was used to determine mechanical stress distribution within the plaque. Assuming that crack propagation initiated at the sites of stress concentration, crack propagation due to pulsatile blood pressure was modeled. Results showed that crack propagation considerably changed the stress field within the plaque and in some cases led to initiation of secondary cracks. The lipid pool stiffness affected the location of crack formation and the rate and direction of crack propagation. Moreover, increasing the mean or pulse pressure decreased the number of cycles to rupture. It is suggested that crack propagation analysis can lead to a better recognition of factors involved in plaque rupture and more accurate determination of vulnerable plaques.

  13. Smart sensing skin for detection and localization of fatigue cracks

    Science.gov (United States)

    Kharroub, Sari; Laflamme, Simon; Song, Chunhui; Qiao, Daji; Phares, Brent; Li, Jian

    2015-06-01

    Fatigue cracks on steel components may have strong consequences on the structure’s serviceability and strength. Their detection and localization is a difficult task. Existing technologies enabling structural health monitoring have a complex link signal-to-damage or have economic barriers impeding large-scale deployment. A solution is to develop sensing methods that are inexpensive, scalable, with signals that can directly relate to damage. The authors have recently proposed a smart sensing skin for structural health monitoring applications to mesosystems. The sensor is a thin film soft elastomeric capacitor (SEC) that transduces strain into a measurable change in capacitance. Arranged in a network configuration, the SEC would have the capacity to detect and localize damage by detecting local deformation over a global surface, analogous to biological skin. In this paper, the performance of the SEC at detecting and localizing fatigue cracks in steel structures is investigated. Fatigue cracks are induced in steel specimens equipped with SECs, and data measured continuously. Test results show that the fatigue crack can be detected at an early stage. The smallest detectable crack length and width are 27.2 and 0.254 mm, respectively, and the average detectable crack length and width are 29.8 and 0.432 mm, respectively. Results also show that, when used in a network configuration, only the sensor located over the formed fatigue crack detect the damage, thus validating the capacity of the SEC at damage localization.

  14. Analysis of Fatigue Crack Growth in Ship Structural Details

    Directory of Open Access Journals (Sweden)

    Leheta Heba W.

    2016-04-01

    Full Text Available Fatigue failure avoidance is a goal that can be achieved only if the fatigue design is an integral part of the original design program. The purpose of fatigue design is to ensure that the structure has adequate fatigue life. Calculated fatigue life can form the basis for meaningful and efficient inspection programs during fabrication and throughout the life of the ship. The main objective of this paper is to develop an add-on program for the analysis of fatigue crack growth in ship structural details. The developed program will be an add-on script in a pre-existing package. A crack propagation in a tanker side connection is analyzed by using the developed program based on linear elastic fracture mechanics (LEFM and finite element method (FEM. The basic idea of the developed application is that a finite element model of this side connection will be first analyzed by using ABAQUS and from the results of this analysis the location of the highest stresses will be revealed. At this location, an initial crack will be introduced to the finite element model and from the results of the new crack model the direction of the crack propagation and the values of the stress intensity factors, will be known. By using the calculated direction of propagation a new segment will be added to the crack and then the model is analyzed again. The last step will be repeated until the calculated stress intensity factors reach the critical value.

  15. On crack initiation in notched, cross-plied polymer matrix composites

    Science.gov (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  16. Spectral Ratios for Crack Detection Using P and Rayleigh Waves

    Directory of Open Access Journals (Sweden)

    Enrique Olivera-Villaseñor

    2012-01-01

    Full Text Available We obtain numerical results to help the detection and characterization of subsurface cracks in solids by the application of P and Rayleigh elastic waves. The response is obtained from boundary integral equations, which belongs to the field of elastodynamics. Once the implementation of the boundary conditions has been done, a system of Fredholm integral equations of the second kind and order zero is found. This system is solved using the method of Gaussian elimination. Resonance peaks in the frequency domain allow us to infer the presence of cracks using spectral ratios. Several models of cracked media were analyzed, where effects due to different crack orientations and locations were observed. The results obtained are in good agreement with those published in the references.

  17. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  18. Interference Assembly and Fretting Wear Analysis of Hollow Shaft

    Directory of Open Access Journals (Sweden)

    Chuanjun Han

    2014-01-01

    Full Text Available Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow degrees, friction coefficient, and wear quantity. Judgment formula of contact state was fixed by introducing the corrected coefficient k. The computation results showed that the “edge effect” appears in the contact surface after interference fit. The size of slip zone is unchanged along with the increase of bending load. The greater the interference value, the bigger the wear range. The hollow degree does not influence the size of stick zone but controls the position of the junction point of slip-open. Tangential contact stress increases with the friction coefficient, which has a little effect on normal contact stress. The relationship between open size and wear capacity is approximately linear.

  19. Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Suxia; XIE Jilong

    2009-01-01

    Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters:the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crack propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research.

  20. Single color FRET based measurements of conformational changes of proteins resulting from translocation inside cells.

    Science.gov (United States)

    Gahl, Robert F; Tekle, Ephrem; Tjandra, Nico

    2014-03-15

    Translocation of proteins to different parts of the cell is necessary for many cellular mechanisms as a means for regulation and a variety of other functions. Identifying how these proteins undergo conformational changes or interact with various partners during these events is critical to understanding how these mechanisms are executed. A protocol is presented that identifies conformational changes in a protein that occur during translocation while overcoming challenges in extracting distance information in very different environments of a living cell. Only two samples are required to be prepared and are observed with one optical setup. Live-cell FRET imaging has been applied to identify conformational changes between two native cysteines in Bax, a member of the Bcl-2 family of proteins that regulates apoptosis. Bax exists in the cytosol and translocates to the mitochondria outer membrane upon apoptosis induction. The distance, r, between the two native cysteines in the cytosolic structure of Bax necessitates the use of a FRET donor-accepter pair with R0~r as the most sensitive probe for identifying structural changes at these positions. Alexa Fluor 546 and Dabcyl, a dark acceptor, were used as FRET pairs - resulting in single color intensity variations of Alexa-546 as a measure of FRET efficiency. An internal reference, conjugated to Bax, was employed to normalize changes in fluorescence intensity of Alexa Fluor 546 due to inherent inhomogeneities in the living cell. This correction allowed the true FRET effects to be measured with increased precision during translocation. Normalization of intensities to the internal reference identified a FRET efficiency of 0.45±0.14 in the cytosol and 0.11±0.20 in the mitochondria. The procedure for the conjugation of the internal reference and FRET probes as well as the data analysis is presented. Published by Elsevier Inc.

  1. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. Copyright

  2. CONSIDERATION OF ANISOTROPY AND CONTACT OF CRACKS EDGE AT STRESS CALCULATIONS OF ROLLING BEARINGS

    OpenAIRE

    2014-01-01

    Investigation of influence of anisotropy on stress-deformed state of base (roller bearings track) considering the appearance of cracks with contacting edges in it is done in the work. The boundary integral equation method is used to determine the stresses. Solution of the Integral equation is done numerically by the mechanical quadrature method. At the task solution it is considered that cracks can be located in the compressive stresses areas, wherefore the cracks edges can contact. The unkno...

  3. FINITE ELEMENT ANALYSIS OF CENTRIFUGAL PUMP CASINGS TO DETECT THE CRACK AT THE TONGUE REGION.

    OpenAIRE

    2011-01-01

    The objective of this paper is to identify one of the reasons for the crack to initiate at the tongue region. The design of the tongue region of the centrifugal pump casing plays an important role in influencing the pump performance and cavitation. Tongue region should have enough strength to withstand against repeated loads imparted by the impeller. Crack at the tongue region is examined under hydrostatic pressure conditions .Practically, at the site location it was observed that the crack w...

  4. Comparative Analysis of Three Fretting Fatigue Fixtures (Preprint)

    Science.gov (United States)

    2006-02-01

    involving thresholds for long lives or crack growth rate calculations for shorter lives. Knockdown factors must be determined empirically , and are...specimen. It can be machined out of an unfailed side of the specimen or from both sides of an interrupted or runout specimen. The trailing edge of...work have been previously documented [4,6,9]. Conditions (shown in Table 1) were selected from available data to facilitate comparison of the

  5. Dynamics of crack penetration vs. branching at a weak interface: An experimental study

    Science.gov (United States)

    Sundaram, Balamurugan M.; Tippur, Hareesh V.

    2016-11-01

    In this paper, the dynamic crack-interface interactions and the related mechanics of crack penetration vs. branching at a weak interface are studied experimentally. The interface is oriented perpendicular to the incoming mode-I crack in an otherwise homogeneous bilayer. The focus of this investigation is on the effect of interface location and the associated crack-tip parameters within the bilayer on the mechanics of the ensuing fracture behavior based on the optical methodologies laid down in Ref. Sundaram and Tippur (2016). Time-resolved optical measurement of crack-tip deformations, velocity and stress intensity factor histories in different bilayer configurations is performed using Digital Gradient Sensing (DGS) technique in conjunction with high-speed photography. The results show that the crack path selection at the interface and subsequently the second layer are greatly affected by the location of the interface within the geometry. Using optically measured fracture parameters, the mechanics of crack penetration and branching are explained. Counter to the intuition, a dynamically growing mode-I approaching a weak interface at a lower velocity and stress intensity factor penetrates the interface whereas a higher velocity and stress intensity factor counterpart gets trapped by the interface producing branched daughter cracks until they kink out into the next layer. An interesting empirical observation based on measured crack-tip parameters for crack penetration and branching is also made.

  6. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    Full Text Available BACKGROUND: Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported. METHODOLOGY: Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species. CONCLUSIONS: All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes

  7. Time domain analysis of nonlinear frequency mixing in a slender beam for localizing a breathing crack

    Science.gov (United States)

    Joglekar, D. M.; Mitra, Mira

    2017-02-01

    The nonlinear interaction of a dual frequency flexural wave with a breathing crack generates a peculiar frequency mixing phenomena, which is manifested in form of the side bands or peaks at combinations frequencies in frequency spectrum of the response. Although these peaks have been proven useful in ascertaining the presence of crack, they barely carry any information about the crack location. In this regards, the present article analyzes the time domain representation of the response obtained by employing a wavelet spectral finite element method. The study reveals that the combination tones generated at the crack location travel with dissimilar speeds along the waveguide, owing to its dispersive nature. The separation between the lobes corresponding to these combination tones therefore, depends on the distance that they have travelled. This observation is then used to formulate a method to predict the crack location with respect to the sensor. A brief parametric study shows marginal errors in predicting the crack location, which ascertains the validity of the method. This article also studies the frequency spectrum of the response. The peaks at combination tones are quantified in terms of a modulate parameter which depends on the severity of the crack. The inferences drawn from the time and the frequency domain study can be instrumental in designing a robust strategy for detecting location and severity of the crack.

  8. Understanding the edge crack phenomenon in ceramic laminates

    Directory of Open Access Journals (Sweden)

    O. Ševeček

    2015-10-01

    Full Text Available Layered ceramic materials (also referred to as “ceramic laminates” are becoming one of the most promising areas of materials technology aiming to improve the brittle behavior of bulk ceramics. The utilization of tailored compressive residual stresses acting as physical barriers to crack propagation has already succeeded in many ceramic systems. Relatively thick compressive layers located below the surface have proven very effective to enhance the fracture resistance and provide a minimum strength for the material. However, internal compressive stresses result in out-of plane stresses at the free surfaces, what can cause cracking of the compressive layer, forming the so-called edge cracks. Experimental observations have shown that edge cracking may be associated with the magnitude of the compressive stresses and with the thickness of the compressive layer. However, an understanding of the parameters related to the onset and extension of such edge cracks in the compressive layers is still lacking. In this work, a 2D parametric finite element model has been developed to predict the onset and propagation of an edge crack in ceramic laminates using a coupled stress-energy criterion. This approach states that a crack is originated when both stress and energy criteria are fulfilled simultaneously. Several designs with different residual stresses and a given thickness in the compressive layers have been computed. The results predict the existence of a lower bound, below no edge crack will be observed, and an upper bound, beyond which the onset of an edge crack would lead to the complete fracture of the layer

  9. Multiaxial mixed-mode cracking - small crack initiation and propagation

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, M. de; Reis, L.; Li Bin [Lisbon Univ. (Portugal). ICEMS - Inst. of Material and Surface Science and Engineering

    2006-07-01

    Both the fatigue crack path and fatigue life of CK45 steel and 42CrMo4 steel under various multiaxial loading paths are studied in this paper. The replica method was applied to monitor the crack initiation and small crack growth, the fractographic analyses were carried out on the fracture surface and the crack initiation angle was measured. The effects of non-proportional loading on both the crack path and fatigue life were studied, and the flattening of asperities on the crack surface due to compressive normal stress was also observed. An improved model is proposed based on correcting the strain range parameter of the ASME code approach, taking into account the additional hardening caused by the non-proportional loading path, which can improve the predictions of the fatigue lives for various non-proportional loading paths and provide an easy way to overcome the drawbacks of the current ASME code approach for non-proportional fatigue. Based on these corrected strain range parameters, a strain intensity factor range is used to correlate with the experimental results of small crack growth rates. It is concluded that the orientation of the early crack growth can be predicted well by the critical damage plane, but the fatigue life can not be predicted accurately using only the parameters on the critical plane, since the damage on all the planes contributes to fatigue damage as stated by the integral approaches. (orig.)

  10. Crack identification and evolution law in the vibration failure process of loaded coal

    Science.gov (United States)

    Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing

    2017-08-01

    To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.

  11. Public crack cocaine smoking and willingness to use a supervised inhalation facility: implications for street disorder

    Directory of Open Access Journals (Sweden)

    Qi Jiezhi

    2011-02-01

    Full Text Available Abstract Background The health risks of crack cocaine smoking in public settings have not been well described. We sought to identify factors associated with public crack smoking, and assess the potential for a supervised inhalation facility to reduce engagement in this behavior, in a setting planning to evaluate a medically supervised crack cocaine smoking facility. Methods Data for this study were derived from a Canadian prospective cohort of injection drug users. Using multivariate logistic regression we identified factors associated with smoking crack cocaine in public areas. Among public crack smokers we then identified factors associated with willingness to use a supervised inhalation facility. Results Among our sample of 623 people who reported crack smoking, 61% reported recently using in public locations. In multivariate analysis, factors independently associated with public crack smoking included: daily crack cocaine smoking; daily heroin injection; having encounters with police; and engaging in drug dealing. In sub analysis, 71% of public crack smokers reported willingness to use a supervised inhalation facility. Factors independently associated with willingness include: female gender, engaging in risky pipe sharing; and having encounters with police. Conclusion We found a high prevalence of public crack smoking locally, and this behavior was independently associated with encounters with police. However, a majority of public crack smokers reported being willing to use a supervised inhalation facility, and individuals who had recent encounters with police were more likely to report willingness. These findings suggest that supervised inhalation facilities offer potential to reduce street-disorder and reduce encounters with police.

  12. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  13. Library Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Carnegie Library of Pittsburgh locations including address, coordinates, phone number, square footage, and standard operating hours.

  14. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.

    Directory of Open Access Journals (Sweden)

    Joachim Goedhart

    Full Text Available BACKGROUND: Fluorescence Resonance Energy Transfer (FRET between the green fluorescent protein (GFP variants CFP and YFP is widely used for the detection of protein-protein interactions. Nowadays, several monomeric red-shifted fluorescent proteins are available that potentially improve the efficiency of FRET. METHODOLOGY/PRINCIPAL FINDINGS: To allow side-by-side comparison of several fluorescent protein combinations for detection of FRET, yellow or orange fluorescent proteins were directly fused to red fluorescent proteins. FRET from yellow fluorescent proteins to red fluorescent proteins was detected by both FLIM and donor dequenching upon acceptor photobleaching, showing that mCherry and mStrawberry were more efficient acceptors than mRFP1. Circular permutated yellow fluorescent protein variants revealed that in the tandem constructs the orientation of the transition dipole moment influences the FRET efficiency. In addition, it was demonstrated that the orange fluorescent proteins mKO and mOrange are both suitable as donor for FRET studies. The most favorable orange-red FRET pair was mKO-mCherry, which was used to detect homodimerization of the NF-kappaB subunit p65 in single living cells, with a threefold higher lifetime contrast and a twofold higher FRET efficiency than for CFP-YFP. CONCLUSIONS/SIGNIFICANCE: The observed high FRET efficiency of red-shifted couples is in accordance with increased Förster radii of up to 64 A, being significantly higher than the Förster radius of the commonly used CFP-YFP pair. Thus, red-shifted FRET pairs are preferable for detecting protein-protein interactions by donor-based FRET methods in single living cells.

  15. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    Science.gov (United States)

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  16. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.

    Science.gov (United States)

    Ahmad, Mohammad; Ameen, Seema; Siddiqi, Tariq Omar; Khan, Parvez; Ahmad, Altaf

    2016-12-15

    Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells.

  17. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins.

    Science.gov (United States)

    Betolngar, Dahdjim-Benoît; Erard, Marie; Pasquier, Hélène; Bousmah, Yasmina; Diop-Sy, Awa; Guiot, Elvire; Vincent, Pierre; Mérola, Fabienne

    2015-05-01

    It is generally acknowledged that the popular cyan and yellow fluorescent proteins carried by genetically encoded reporters suffer from strong pH sensitivities close to the physiological pH range. We studied the consequences of these pH responses on the intracellular signals of model Förster resonant energy transfer (FRET) tandems and FRET-based reporters of cAMP-dependent protein kinase activity (AKAR) expressed in the cytosol of living BHK cells, while changing the intracellular pH by means of the nigericin ionophore. Although the simultaneous pH sensitivities of the donor and the acceptor may mask each other in some cases, the magnitude of the perturbations can be very significant, as compared to the functional response of the AKAR biosensor. Replacing the CFP donor by the spectrally identical, but pH-insensitive Aquamarine variant (pK1/2 = 3.3) drastically modifies the biosensor pH response and gives access to the acid transition of the yellow acceptor. We developed a simple model of pH-dependent FRET and used it to describe the expected pH-induced changes in fluorescence lifetime and ratiometric signals. This model qualitatively accounts for most of the observations, but reveals a complex behavior of the cytosolic AKAR biosensor at acid pHs, associated to additional FRET contributions. This study underlines the major and complex impact of pH changes on the signal of FRET reporters in the living cell.

  18. Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen

    Directory of Open Access Journals (Sweden)

    Shashi Bhuckory

    2016-02-01

    Full Text Available The integration of semiconductor quantum dots (QDs into homogeneous Förster resonance energy transfer (FRET immunoassay kits for clinical diagnostics can provide significant advantages concerning multiplexing and sensitivity. Here we present a facile and functional QD-antibody conjugation method using three commercially available QDs with different photoluminescence (PL maxima (605 nm, 655 nm, and 705 nm. The QD-antibody conjugates were successfully applied for FRET immunoassays against prostate specific antigen (PSA in 50 µL serum samples using Lumi4-Tb (Tb antibody conjugates as FRET donors and time-gated PL detection on a KRYPTOR clinical plate reader. Förster distance and Tb donor background PL were directly related to the analytical sensitivity for PSA, ...which resulted in the lowest limits of detection for Tb-QD705 (2 ng/mL, followed by Tb-QD655 (4 ng/mL, and Tb-QD605 (23 ng/mL. Duplexed PSA detection using the Tb-QD655 and Tb-QD705 FRET-pairs demonstrated the multiplexing ability of our immunoassays. Our results show that FRET based on QD acceptors is suitable for multiplexed and sensitive biomarker detection in clinical diagnostics.

  19. Significant FRET between SWNT/DNA and rare earth ions: a signature of their spatial correlations.

    Science.gov (United States)

    Ignatova, Tetyana; Najafov, Hikmat; Ryasnyanskiy, Aleksandr; Biaggio, Ivan; Zheng, Ming; Rotkin, Slava V

    2011-07-26

    Significant acceleration of the photoluminescence (PL) decay rate was observed in water solutions of two rare earth ions (REIs), Tb and Eu. We propose that the time-resolved PL spectroscopy data are explained by a fluorescence resonance energy transfer (FRET) between the REIs. FRET was directly confirmed by detecting the induced PL of the energy acceptor, Eu ion, under the PL excitation of the donor ion, Tb, with FRET efficiency reaching 7% in the most saturated solution, where the distance between the unlike REIs is the shortest. Using this as a calibration experiment, a comparable FRET was measured in the mixed solution of REIs with single-wall nanotubes (SWNTs) wrapped with DNA. From the FRET efficiency of 10% and 7% for Tb and Eu, respectively, the characteristic distance between the REI and SWNT/DNA was obtained as 15.9 ± 1.3 Å, suggesting that the complexes are formed because of Coulomb attraction between the REI and the ionized phosphate groups of the DNA.

  20. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  1. Experiences on IGSCC crack manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Veron, P. [Equipos Nucleares, S.A., Maliano (Spain)

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  2. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  3. Fretting Damage of ACSR Conductor Enwrapped with Aluminium Armour Tape%铝包带包裹高压输电线路导线的微动损伤

    Institute of Scientific and Technical Information of China (English)

    陈国宏; 王煦; 王家庆; 刘俊建; 张涛; 汤文明

    2012-01-01

    Abstract : Fretting experirr, ent of the aluminum conductor steel reinforced (ACSR) conductor enwrapped with aluminium armour tape was carried out using a conductor fretting testing equipment made by the authors. After fretting for 2.0X 10r cycles at an amplitude of 1.0 ram, fretting damage of the external and internal A] strands and steel core strands of the conductor was investigated, and the tensile strengths of them were also measured. Moreover, the fretting damage mechanism of the enwrapped conductor was discussed. The results showed that the external A] strands were injured by the scratch of the aluminium armour tape and the abrasive wear. The wear marks of the internal A1 strands were all elliptical, partially, there were fatigue cracks under them. The steel core strands were slightly damaged, only adhesion wear and piece deprivation of the galvanized zinc layer took place. The aluminium armour tape could effectively protect the ACSR conductor, so that the internal and external A1 strands of the enwrapped conductor had higher tensile strengths than those of the unenwrapped conductor.%在自制的微动试验装置上对铝包带包裹钢芯铝绞导线(ACSR)进行微动试验研究。振幅1.0mm,2.0×107次微动循环后,研究内、外层铝股线及钢芯线的磨损状况,测定其抗拉强度,探讨铝包带包裹导线的微动损伤机制。结果表明:外层铝股线表面经受铝包带的刮擦以及磨粒磨损;内层铝股线微动磨损斑呈椭圆形,部分磨损斑下有疲劳裂纹;而钢芯线的损伤微弱,仅发生镀锌层的磨损、脱落。铝包带对导线有较好的保护作用,内外层铝股线的抗拉强度均高于未包裹导线的抗拉强度。

  4. Effect of Contact Load on the Fretting Fatigue of Steel Wire under Alkaline Corrosive Environment%碱性腐蚀环境下接触载荷对钢丝微动疲劳行为的影响

    Institute of Scientific and Technical Information of China (English)

    赵维建; 张德坤; 张泽锋; 王崧全; 王世博

    2012-01-01

    The fretting fatigue tests of the mine steel wires under alkaline corrosive environment are performded on a self - made fretting fatigue test machine. The fretting fatigue behaviors of steel wires with a strain ration of 0.8 are studied under different contact loads. The damage mechanisms of steel wires are analyzed by the optical microscopy and scanning electron microscopy. The results indicate that the evolution of friction coefficients of steel wires can be divided into four stages, i.e. , running- in period, ascending period, declining period and stable period. The fretting regime of steel wires is gross slip regime under the four different contact loads. Corrosive wear, abrasive wear, fatigue wear and plastic deformation are the main wear mechanisms. The fatigue lifetime of the fretted steel wires is inversely proportional to the wear depth. Fatigue fracture surface can be divided into three regions, i.e. ,fatigue source region, crack propagation region and transient break regions.%以矿用钢丝为研究对象,在自制的钢丝微动疲劳试验机上开展钢丝在碱性腐蚀环境下的微动疲劳试验,考察钢丝在应变比为0.8时不同接触载荷下钢丝的微动运行特性,并用光学显微镜和扫描电子显微镜观察钢丝的磨痕和断口形貌,分析其微动磨损和疲劳断裂机理.结果表明:不同接触载荷下钢丝的摩擦系数具有相同的变化趋势,均可以分为4个阶段:跑合期、上升期、下降期和稳定期;4种不同接触载荷下钢丝摩擦副均运行于滑移状态,磨损机制以腐蚀磨损、磨粒磨损、疲劳磨损和塑性变形为主;钢丝疲劳寿命与磨损量成反比,疲劳断口可分为3个区:疲劳源区、扩展区和瞬断区.

  5. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer's solution for bio-implant application

    Science.gov (United States)

    Sivakumar, Bose; Pathak, Lokesh Chandra; Singh, Raghuvir

    2017-04-01

    Influence of roughness (ra) from 43 to 474 nm on corrosion and fretting corrosion of commercially pure titanium (CpTi) was studied in the Ringer's solution. The anodic polarization and electrochemical impedance spectroscopy (EIS) revealed the highest corrosion resistance of CpTi with ra 43 nm and correlated well with the surface energy (SE). The highest potential drop associated with the fretting corrosion is observed for CpTi with ra 43 nm followed by 474 nm; this is found to correspond with the worn out area. The fretting current density (ifretting) is several order higher than obtained during the potentiodynamic polarization (without fretting) study. Fretting corrosion manifested by the drop in electrochemical potential is simulated with high accuracy using fretting current density and an initial contact area. Fretting corrosion at an applied potential (+250 mV(SCE)) is produced much larger fretting corrosion current density than during the open circuit potential (OCP).

  6. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-01-01

    A method for detecting micro cracks in solar cell using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical microcracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we sh...

  7. Effect of a cracked surface of porous silicon on the behaviour of the acoustic signature

    Directory of Open Access Journals (Sweden)

    Bouhedja Samia

    2014-06-01

    Full Text Available We study in this work the effect of a crack, located on the porous silicon, Psi, surface on the propagation of Rayleigh waves. We simulate and analyse the acoustic signature V(z according porosity at 142 MHz, to study the microstructure of PSi around the crack.

  8. A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery

    Science.gov (United States)

    Stoisser, C. M.; Audebert, S.

    2008-05-01

    In order to describe the state-of-the-art on cracked rotor related problems, the current work presents the comprehensive theoretical, numerical and experimental approach adopted by EDF for crack detection in power plant rotating machinery. The work mainly focuses on the theoretical cracked beam model developed in the past years by S. Andrieux and C. Varé and associates both numerical and experimental aspects related to the crack detection problem in either turboset or turbo pump units. The theoretical part consists of the derivation of a lumped cracked beam model from the three-dimensional formulation of the general problem of elasticity with unilateral contact conditions on the crack lips, valid for any shape and number of cracks in the beam section and extended to cracks not located in a cross-section. This leads to the assessment of the cracked beam rigidity as a function of the rotation angle, in case of pure bending load or bending plus shear load. In this way the function can be implemented in a 1D rotordynamics code. An extension of the cracked beam model taking into account the torsion behaviour is also proposed. It is based on the assumption of full adherence between crack lips, when the crack closes, and on an incremental formulation of deformation energy. An experimental validation has been carried out using different cracked samples, both in static and dynamic configurations, considering one or three elliptic cracks in the same cross-section and helix-shaped cracks. Concerning the static configuration, a good agreement between numerical and experimental results is found. It is shown to be equal to 1% maximal gap of the beam deflection. Concerning the dynamical analysis, the main well-known indicator 2× rev. bending vibration component at half critical speed is approximated at maximum by 18% near the crack position. Our experiments also allowed for the observation of the bending and torsion resonance frequency shifts determined by the extra

  9. Branched DNA nanostructures efficiently stabilised and monitored by novel pyrene-perylene 2'-α-l-amino-LNA FRET pairs

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Santhosh Kumar, T; Campbell, Meghan A;

    2013-01-01

    Novel pyrene-perylene α-l-LNA FRET pairs described herein effectively detect assembly of 2- and 3-way branched DNA nanostructures prepared by postsynthetic microwave-assisted CuAAC click chemistry. The fluorescent signalling of assembly by internally positioned FRET pairs is achieved with low to ...

  10. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    Directory of Open Access Journals (Sweden)

    Norio Maruyama, Sachiko Hiromoto, Eiji Akiyama and Morihiko Nakamura

    2013-01-01

    Full Text Available Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-. For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR both in air and in PBS(-. A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR. The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  11. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2016-09-01

    Full Text Available This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel. Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

  12. Phanta: a non-fluorescent photochromic acceptor for pcFRET.

    Directory of Open Access Journals (Sweden)

    Craig Don Paul

    Full Text Available We have developed an orange non-fluorescent photochromic protein (quantum yield, 0.003 we call Phanta that is useful as an acceptor in pcFRET applications. Phanta can be repeatedly inter-converted between the two absorbing states by alternate exposure to cyan and violet light. The absorption spectra of Phanta in one absorbing state shows excellent overlap with the emission spectra of a number of donor green fluorescent proteins including the commonly used EGFP. We show that the Phanta-EGFP FRET pair is suitable for monitoring the activation of caspase 3 in live cells using readily available instrumentation and a simple protocol that requires the acquisition of two donor emission images corresponding to Phanta in each of its photoswitched states. This the first report of a genetically encoded non-fluorescent acceptor for pcFRET.

  13. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Science.gov (United States)

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  14. On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies.

    Science.gov (United States)

    Tahtaoui, Chouaib; Guillier, Fabrice; Klotz, Philippe; Galzi, Jean-Luc; Hibert, Marcel; Ilien, Brigitte

    2005-12-01

    The efficiency of fluorescence resonance energy transfer (FRET) is dependent upon donor-acceptor proximity and spectral overlap, whether the acceptor partner is fluorescent or not. We report here on the design, synthesis, and characterization of two novel pirenzepine derivatives that were coupled to patent blue VF and pinacyanol dyes. These nonfluorescent compounds, when added to cells stably expressing enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors, promote EGFP fluorescence extinction in a time-, concentration-, and atropine-dependent manner. They display nanomolar affinity for the muscarinic receptor, determined using either FRET or classical radioligand binding conditions. We provide evidence that these compounds behave as potent acceptors of energy from excited EGFP with quenching efficiencies comparable to those of analogous fluorescent bodipy or rhodamine red pirenzepine derivatives. The advantages they offer over fluorescent ligands are illustrated and discussed in terms of reliability, sensitivity, and wider applicability of FRET-based receptor binding assays.

  15. Analysis of Fretting Fatigue Strength of Integral Shroud Blade for Steam Turbine

    Science.gov (United States)

    Kaneko, Yasutomo; Tomii, Masayuki; Ohyama, Hiroharu; Kurimura, Takayuki

    To improve the reliability and the thermal efficiency of LP (Low Pressure) end blades of steam turbine, new standard series of LP end blades have been developed. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. One of the probable failure modes of the ISB structure seems to be fretting fatigue, because the ISB utilizes friction damping between adjacent shrouds and stubs. Therefore, in order to design a blade with high reliability, the design procedure for evaluating the fretting fatigue strength was established by the model test and the nonlinear contact analysis. This paper presents the practical design method for predicting the fretting fatigue strength of the ISB structure, and the some applications are explained.

  16. Low-Frequency Reciprocating Fretting Wear Testing System Design and Experiment Research

    Institute of Scientific and Technical Information of China (English)

    Zhongnan Wang∗,Wuyi Wang; Guangyu Zhang

    2015-01-01

    The fretting wear is resulted from different or same sample’ s surfaces by the small variationand leads to mechanism failures. The main factors consist of the variation of normal load and oscillation frequencies, among which surface topography of different materials are the main factors to the problems of the fretting wear. Therefore, a novel low⁃frequency reciprocating fretting wear test system is designed upon the principle of Friction coefficient measurement. Four metal and non⁃metallic samples are measured under various normal load and oscillation frequencies to obtain the instantaneous friction coefficient in the repeat experiments. In fact, the experimental results show that CoF curves of different samples with the increase of the normal load are the similar exponential decay or parabolic shapes, which are consistent with the literatures to verify the rational design and reliable⁃operation of the system under the conditions of different frequencies.

  17. Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms.

    Science.gov (United States)

    Bryant, Michael; Neville, Anne

    2017-02-01

    Fretting corrosion of medical devices is of growing concern, yet, the interactions between tribological and electrochemical parameters are not fully understood. Fretting corrosion of CoCr alloy was simulated, and the components of damage were monitored as a function of displacement and contact pressure. Free corrosion potential (Ecorr), intermittent linear polarisation resistance and cathodic potentiostatic methods were used to characterise the system. Interferometry was used to estimate material loss post rubbing. The fretting regime influenced the total material lost and the dominant degradation mechanism. At high contact pressures and low displacements, pure corrosion was dominant with wear and its synergies becoming more important as the contact pressure and displacement decreased and increased, respectively. In some cases, an antagonistic effect from the corrosion-enhanced wear contributor was observed suggesting that film formation and removal may be present. The relationship between slip mechanism and the contributors to tribocorrosion degradation is presented.

  18. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...... was used to solve the non-linear equations. The performance of the element is illustrated by modelling fracture mechanical benchmark tests. Investigations were carried out on the performance of the element for different crack lengths within one element. The results are compared with previously obtained...

  19. Determination of stress intensity factors in half-plane containing several moving cracks

    Institute of Scientific and Technical Information of China (English)

    K. MALEKZADEH FARD; M. M. MONFARED; K. NOROUZIPOUR

    2013-01-01

    The dynamic stress intensity factors in a half-plane weakened by several finite moving cracks are investigated by employing the Fourier complex transformation. Stress analysis is performed in a half-plane containing a single dislocation and without dislocation. An exact solution in a closed form to the stress fields and displacement is ob-tained. The Galilean transformation is used to transform between coordinates connected to the cracks. The stress components are of the Cauchy singular kind at the location of dislocation and the point of application of the force. Numerical examples demonstrate the influence of crack length and crack running velocity on the stress intensity factor.

  20. Monitoring of fatigue crack growth using guided ultrasonic waves

    Science.gov (United States)

    Masserey, B.; Kostson, E.; Fromme, P.

    2010-04-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi layer components are connected, possibly leading to the development of fatigue cracks. Guided ultrasonic waves propagating along a structure allow in principle for the efficient non-destructive testing of large plate-like structures, such as aircraft wings. This contribution presents a study of the detection and monitoring of fatigue crack growth using both low frequency and higher frequency guided ultrasonic wave modes. Two types of structures were used, single layer aluminum tensile specimens, and multi layer structures consisting of two adhesively bonded aluminum plate-strips. Fatigue experiments were carried out and it was shown that fatigue crack detection and growth monitoring at a fastener hole during cyclic loading using both guided wave types is possible. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack detection at critical and difficult to access fastener locations. Good agreement was observed between the experimental results and predictions from full three-dimensional numerical simulations of the scattering of the low frequency guided ultrasonic wave at the fastener hole and crack. The robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth is discussed.

  1. GPR application to investigate soil crack persistence in Cianjur landslide

    Science.gov (United States)

    Irawan, S.; Aly, R. R.; Syahputra, R.; Kristyanto, T. H. W.; Tempesy, A. S.

    2017-07-01

    Cianjur region, located in West Java, is one of regions in Indonesia with high intensity of rain, where medium land movement may be inevitable. The presence of joints on sandstone outcrops conducts as water access and accelerates weathering process. The survey aims to study the continuity of the soil cracks that develop in the body of slope its density. This survey used Ground Penetrating Radar method to study landslides in both favorable and unfavorable light. Ground Penetrating Radar, GPR, is the method that adopts electromagnetic wave propagation to map subsurface properties. GPR is one of the effective methods to delineate subsurface with the highest resolution in the shallow depth, even it has highly variation results corresponded to complex of geological features and clay-rich materials. The result section showed soil crack continuation into deeper part of the layer with GPR's frequency 40MHz, most of section then showed the crack occurrence is dominated in the upper 200 ns. Crack density could be affected by mineral composition and other factors. This study resulted two lines GPR data which has different altitude. Line A which is lower than Line B has loose crack density rather than B, about approximately 40%. The area was approximately affected by landslides that usually exhibited dramatic spatial and temporal variations of lithological and hydrogeological conditions. It will need further survey to know the effect of soil crack toward the sliding surface of the landslide from other surveys.

  2. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.

    Science.gov (United States)

    Lugo, Miguel R; Ho, Derek; Merrill, A Rod

    2016-10-15

    Current evidence suggests that the closed-state membrane model for the channel-forming domain of colicin E1 involves eight amphipathic α-helices (helices I-VII and X) that adopt a two-dimensional arrangement on the membrane surface. Two central hydrophobic α-helices in colicin E1 (VIII and IX) adopt a transmembrane location-the umbrella model. Helices I and II have been shown to participate in the channel by forming a transmembrane segment (TM1) in the voltage-induced open channel state. Consequently, it is paramount to determine the relative location and orientation of helix I in the two-dimensional arrangement of the membrane. A new, low-resolution, three-dimensional model of the closed state of the colicin E1 channel was constructed based on FRET measurements between three naturally occurring Trp residues and three sites in helix I, in addition to previously reported FRET distances for the channel domain. Furthermore, a new mechanism for the channel integration process involving the transition of the soluble to membrane-bound form is presented based on a plethora of kinetic data for this process.

  3. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells.

    Science.gov (United States)

    Biener, Eva; Charlier, Madia; Ramanujan, V Krishnan; Daniel, Nathalie; Eisenberg, Avital; Bjørbaek, Christian; Herman, Brian; Gertler, Arieh; Djiane, Jean

    2005-12-01

    Leptin, an adipocyte-secreted hormone, signals through activation of its membrane-embedded receptor (LEPR). To study the leptin-induced events occurring in short (LEPRa) and long (LEPRb) LEPRs in the cell membrane, by FRET (fluorescence resonance energy transfer) methodology, the respective receptors, tagged at their C-terminal with CFP (cyan fluorescent protein) or YFP (yellow fluorescent protein), were prepared. The constructs encoding mLEPRa (mouse LEPRa)-YFP and mLEPRa-CFP, mLEPRb-YFP and mLEPRb-CFP were tested for biological activity in transiently transfected CHO cells (Chinese-hamster ovary cells) and HEK-293T cells (human embryonic kidney 293 T cells) for activation of STAT3 (signal transduction and activators of transcription 3)-mediated LUC (luciferase) activity and binding of radiolabelled leptin. All four constructs were biologically active and were as potent as their untagged counterparts. The localization pattern of the fused protein appeared to be confined almost entirely to the cell membrane. The leptin-dependent interaction between various types of receptors in fixed cells were studied by measuring FRET, using fluorescence lifetime imaging microscopy and acceptor photobleaching methods. Both methods yielded similar results, indicating that (1) leptin receptors expressed in the cell membrane exist mostly as preformed LEPRa/LEPRa or LEPRb/LEPRb homo-oligomers but not as LEPRb/LEPRa hetero-oligomers; (2) the appearance of transient leptin-induced FRET in cells transfected with LEPRb/LEPRb reflects both a conformational change that leads to closer interaction in the cytosolic part and a higher FRET signal, as well as de novo homo-oligomerization; (3) in LEPRa/LEPRa, exposure to leptin does not lead to any increase in FRET signalling as the proximity of CFP and YFP fluorophores in space already gives maximal FRET efficiency of the preoligomerized receptors.

  4. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.

    Science.gov (United States)

    Ingargiola, Antonino; Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to

  5. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  6. Study on stress intensity factors for crack on involute spur gear tooth

    Directory of Open Access Journals (Sweden)

    Jian Cai

    2015-03-01

    Full Text Available Investigating the stress intensity factors has a great importance to predict the fatigue damage for the involute spur gears. The aim of this article is to reveal the variation laws of stress intensity factors for crack on the involute spur gear tooth. For this purpose, a three-dimensional finite element model for calculating the stress intensity factors of the involute spur gear containing a surface crack is established using the finite element code ABAQUS. Based on the established three-dimensional finite element model, the influences of several parameters, such as torque, friction coefficient, crack depth, crack initial location, and crack size, on mode I, mode II, and mode III stress intensity factors are investigated numerically. The results of the study provide valuable guidelines for enhanced understanding of stress intensity factors for the crack on the involute spur gear tooth.

  7. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    Science.gov (United States)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  8. Application of digital image correlation method for analysing crack variation of reinforced concrete beams

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2013-08-01

    The Digital Image Correlation (DIC) method is a fast-growing emerging technology that provides a low-cost method for measuring the strain of an object. In this study, the feasibility of using this method to observe cracks developed in reinforced concrete beams will be explored so that a practical application can be proposed. The DIC method has been applied for analysing the field of surface displacement and strain; it is not applicable for measuring non-continuous field of displacement. However, if a singular point (i.e., crack points) can be considered as the area of concentrated strain by imitating the treatment of micro-cracks using the finite element method, the region of concentrated strain field based on analyses of digital images can be applied for determining the locations of cracks. Laboratory results show that cracks developed in reinforced cement beams can be observed with a good precision using the von Mises strain field, and that smaller grids lead to clearer crack images. In addition to identifying visible cracks, the DIC image analysis will enable researchers to identify minute cracks that are not visible to naked eyes. Additionally, the DIC method has more accuracy and precision than visual observation for analysing crack loadings so that earlier warnings can be realized before cracks develop in the specimen.

  9. Control of relaxation cracking in austenitic high temperature components

    NARCIS (Netherlands)

    Wortel, J.C. van

    2007-01-01

    The degradation mechanism "relaxation cracking" is acting in austenitic components operating between 550°C (1020°F) and 750°C (1380°F). The brittle failures are always located in cold formed areas or in welded joints and are mostly addressed within 1 year service. More than 10 different names can be

  10. Control of relaxation cracking in austenitic high temperature components

    NARCIS (Netherlands)

    Wortel, J.C. van

    2007-01-01

    The degradation mechanism "relaxation cracking" is acting in austenitic components operating between 550°C (1020°F) and 750°C (1380°F). The brittle failures are always located in cold formed areas or in welded joints and are mostly addressed within 1 year service. More than 10 different names can be

  11. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    Science.gov (United States)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  12. Probabilistic Analysis of Crack Width

    Directory of Open Access Journals (Sweden)

    J. Marková

    2000-01-01

    Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.

  13. Analysis of Crack Arrest Toughness.

    Science.gov (United States)

    1988-01-15

    vload(m) vp tn(m) Vertical Source Load (kN) on wedge HY80 Finite Element 0.0122 0.0099 3.81x10 -4 144 Steel Calculations Experiment 0.0122 --- 3.74x10-4...curve, are bona fide measures of the fracture arrest capability of tough ductile steels . The second is that the J-values represent the crack driving...fibrous mode of crack extension. (b) A new test method for studying fast fracture and arrest in tough steels . (c) Measurements of fast fracture and crack

  14. Crack identification through scan-tuning of vibration characteristics using piezoelectric materials

    Science.gov (United States)

    Zhao, Shengjie; Wu, Nan; Wang, Quan

    2017-02-01

    This research develops a frequency-based methodology with a scan vibration tuning process for crack identification in beam-type structures coupled with piezoelectric materials. Piezoelectric sensor and actuator patches are mounted on the surface of the host beam synchronously to generate feedback excitations for a tuning process by applying a feedback voltage output from the piezoelectric sensors. The feedback excitations can adjust the stiffness at local section of the beam covered by piezoelectric patches so as to tune its natural vibration mode shapes to amplify the natural frequency change due to the existence of the crack. Piezoelectric patches located at different positions of the beam are activated one by one to realize the scan-tuning process. The crack is identified since the natural frequency change is magnified by the piezoelectric sensor and actuator located at the crack position. Theoretical and finite element models of the scan-tuned beam structures coupled with piezoelectric materials are established. From simulation results, the crack existence and location can be effectively detected through the scan-tuning process with 25% natural frequency change due to a crack located at the middle of the beam. Further parameter studies are conducted to study the effects of the crack location and size on the detection sensitivity.

  15. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  16. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  17. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, .M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  18. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical fiber sensors are used for sensing micro-cracking in composite and metal materials in aerospace applications. The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  19. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging

    NARCIS (Netherlands)

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen En Henegouwen, Paul M P; Jennings, Travis L; Susumu, Kimihiro; Medintz, Igor L; Hildebrandt, Niko; Miller, Lawrence W

    2016-01-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress samp

  20. Imaging real-time HIV-1 virion fusion with FRET-based biosensors

    Science.gov (United States)

    Jones, Daniel M.; Padilla-Parra, Sergi

    2015-01-01

    We have produced a novel, simple and rapid method utilising genetically encodable FRET-based biosensors to permit the detection of HIV-1 virion fusion in living cells. These biosensors show high sensitivity both spatially and temporally, and allow the real-time recovery of HIV-1 fusion kinetics in both single cells and cell populations simultaneously. PMID:26300212

  1. Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements

    Directory of Open Access Journals (Sweden)

    Pauline Vandame

    2014-01-01

    Full Text Available Among biosensors, genetically-encoded FRET-based biosensors are widely used to localize and measure enzymatic activities. Kinases activities are of particular interest as their spatiotemporal regulation has become crucial for the deep understanding of cell fate decisions. This is especially the case for ERK, whose activity is a key node in signal transduction pathways and can direct the cell into various processes. There is a constant need for better tools to analyze kinases in vivo, and to detect even the slightest variations of their activities. Here we report the optimization of the previous ERK activity reporters, EKAR and EKAREV. Those tools are constituted by two fluorophores adapted for FRET experiments, which are flanking a specific substrate of ERK, and a domain able to recognize and bind this substrate when phosphorylated. The latter phosphorylation allows a conformational change of the biosensor and thus a FRET signal. We improved those biosensors with modifications of: (i fluorophores and (ii linkers between substrate and binding domain, resulting in new versions that exhibit broader dynamic ranges upon EGF stimulation when FRET experiments are carried out by fluorescence lifetime and ratiometric measurements. Herein, we characterize those new biosensors and discuss their observed differences that depend on their fluorescence properties.

  2. Single-Molecule FRET Measurements in Additive-Enriched Aqueous Solutions.

    Science.gov (United States)

    Kempe, Daryan; Cerminara, Michele; Poblete, Simón; Schöne, Antonie; Gabba, Matteo; Fitter, Jörg

    2017-01-03

    The addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data. First, we present a confocal based method for the determination of fluorescence quantum yields to facilitate a fast characterization of smFRET-samples at sub-nM-concentrations. As a case study, we analyze smFRET data of structurally rigid, double-stranded DNA-oligonucleotides in aqueous buffer and in buffers with specific amounts of glycerol, guanidine hydrochloride (GdnHCl), and sodium chloride (NaCl) added. We show that the calculation of interdye distances, without taking into account solvent-induced spectral and photophysical changes of the labels, leads to deviations of up to 4 Å from the real interdye distances. Additionally, we demonstrate that electrostatic dye-dye repulsions are negligible for the interdye distance regime considered here (>50 Å). Finally, we use our approach to validate the further compaction of the already unfolded state of phosphoglycerate kinase (PGK) with decreasing denaturant concentrations, a mechanism known as coil-globule transition.

  3. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.

    Science.gov (United States)

    Chaudhuri, Bhavna; Hörmann, Friederike; Frommer, Wolf B

    2011-04-01

    Quantitative and dynamic analysis of metabolites and signalling molecules is limited by technical challenges in obtaining temporally resolved information at the cellular and compartmental level. Real-time information on signalling and metabolite levels with subcellular granularity can be obtained with the help of genetically encoded FRET (Förster resonance energy transfer) nanosensors. FRET nanosensors represent powerful tools for gene discovery, and analysis of regulatory networks, for example by screening mutants. However, RNA silencing has impaired our ability to express FRET nanosensors functionally in Arabidopsis plants. This drawback was overcome here by expressing the nanosensors in RNA silencing mutants. However, the use of silencing mutants requires the generation of homozygous lines deficient in RNA silencing as well as the mutation of interest and co-expression of the nanosensor. Here it is shown that dynamic changes in cytosolic glucose levels can readily be quantified in wild-type Arabidopsis plants at early stages of development (7-15 d) before silencing had a major effect on fluorescence intensity. A detailed protocol for screening 10-20 mutant seedlings per day is provided. The detailed imaging protocol provided here is suitable for analysing sugar flux in young wild-type plants as well as mutants affected in sugar signalling, metabolism, or transport using a wide spectrum of FRET nanosensors.

  4. Rise-time of FRET-acceptor fluorescence tracks protein folding

    NARCIS (Netherlands)

    Lindhoud, S.; Westphal, A.H.; Van Mierlo, C.P.M.; Visser, A.J.W.G.; Borst, J.W.

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no correspon

  5. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    Science.gov (United States)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  6. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine.

    Science.gov (United States)

    Lee, Min Hee; Kim, Hyun Jung; Yoon, Sangwoon; Park, Noejung; Kim, Jong Seung

    2008-01-17

    A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.

  7. Spectral Unmixing Plate Reader: High-Throughput, High-Precision FRET Assays in Living Cells.

    Science.gov (United States)

    Schaaf, Tory M; Peterson, Kurt C; Grant, Benjamin D; Thomas, David D; Gillispie, Gregory D

    2017-03-01

    We have developed a microplate reader that records a complete high-quality fluorescence emission spectrum on a well-by-well basis under true high-throughput screening (HTS) conditions. The read time for an entire 384-well plate is less than 3 min. This instrument is particularly well suited for assays based on fluorescence resonance energy transfer (FRET). Intramolecular protein biosensors with genetically encoded green fluorescent protein (GFP) donor and red fluorescent protein (RFP) acceptor tags at positions sensitive to structural changes were stably expressed and studied in living HEK cells. Accurate quantitation of FRET was achieved by decomposing each observed spectrum into a linear combination of four component (basis) spectra (GFP emission, RFP emission, water Raman, and cell autofluorescence). Excitation and detection are both conducted from the top, allowing for thermoelectric control of the sample temperature from below. This spectral unmixing plate reader (SUPR) delivers an unprecedented combination of speed, precision, and accuracy for studying ensemble-averaged FRET in living cells. It complements our previously reported fluorescence lifetime plate reader, which offers the feature of resolving multiple FRET populations within the ensemble. The combination of these two direct waveform-recording technologies greatly enhances the precision and information content for HTS in drug discovery.

  8. An FITC-BODIPY FRET couple: application to selective, ratiometric detection and bioimaging of cysteine.

    Science.gov (United States)

    Ma, Dong Hee; Kim, Dokyoung; Akisawa, Takuya; Lee, Kyung-Ha; Kim, Kyong-Tai; Ahn, Kyo Han

    2015-04-01

    A novel FRET couple of fluorescein is disclosed, and it was readily constructed by conjugating an amino-BODIPY dye, a new FRET donor, with fluorescein isocyanate. Its potential was demonstrated by a fluorescence sensing system for cysteine, which was prepared by introducing acryloyl groups to the fluorescein moiety. The FRET probe exhibited promising ratiometric response to cysteine with high selectivity and sensitivity in a buffer solution containing acetonitrile at a physiological pH of 7.4, but showed slow reactivity. This slow response was solved by addition of a surfactant, thus allowing ratiometric imaging and determination of the endogenous level of cysteine in cells in HEPES buffer, by confocal fluorescence microscopy. Imaging experiments toward various cells suggested that such aryl acrylate type probes are vulnerable to the ubiquitous esterase activity. For the selected C6 cell line, in which the esterase activity was minimal, the ratiometric quantification of cysteine level was demonstrated. The FRET probe was also applied to determine the level of cysteine in human blood plasma.

  9. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators.

    Science.gov (United States)

    Kotera, Ippei; Iwasaki, Takuya; Imamura, Hiromi; Noji, Hiroyuki; Nagai, Takeharu

    2010-02-19

    Fluorescent protein (FP)-based Forster resonance energy transfer (FRET) technology is useful for development of functional indicators to visualize second messenger molecules and activation of signaling components in living cells. However, the design and construction of the functional indicators require careful optimization of their structure at the atomic level. Therefore, routine procedures for constructing FRET-based indicators currently include the adjustment of the linker length between the FPs and the sensor domain and relative dipole orientation of the FP chromophore. Here we report that, in addition to these techniques, optimization of the dimerization interface of Aequorea FPs is essential to achieve the highest possible dynamic range of signal change by FRET-based indicators. We performed spectroscopic analyses of various indicators (cameleon, TN-XL, and ATeam) and their variants. We chose variants containing mutant FPs with different dimerization properties, i.e., no, weak, or enhanced dimerization of the donor or acceptor FP. Our findings revealed that the FPs that dimerized weakly yielded high-performance FRET-based indicators with the greatest dynamic range.

  10. Titanium carbide nanoparticles reinforcing nickel matrix for improving nanohardness and fretting wear properties in wet conditions

    Science.gov (United States)

    Dănăilă, Eliza; Benea, Lidia; Caron, Nadège; Raquet, Olivier

    2016-09-01

    In this study Ni/nano-TiC functional composite coatings were produced by electro-codeposition of TiC nanoparticles (50 nm mean diameter) with nickel on 304L stainless steel support. Coatings were obtained from a Watts classical solution in which TiC nanoparticles were added. The surface morphology, chemical composition, structure, roughness and thickness, were evaluated in relation to the effect of TiC nanoparticles incorporation into Ni matrix. It was found that incorporation of TiC nanoparticles into the nickel matrix produces morphological changes in the deposit and increases the roughness. The fretting wear behavior in wet conditions of the obtained coatings was evaluated on a ball-on-plate configuration. To evaluate the wet fretting wear (tribocorrosion) behavior the open circuit potential was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors. The results show that Ni/nano-TiC composite coatings exhibited a low friction coefficient, high nanohardness and fretting wear resistance in wet conditions compared with pure Ni coatings.

  11. Structural Changes of Yellow Cameleon Domains Observed by Quantitative FRET Analysis and Polarized Fluorescence Correlation Spectroscopy

    NARCIS (Netherlands)

    Borst, J.W.; Laptenok, S.; Westphal, A.H.; Kühnemuth, R.; Hornen, H.; Visser, N.V.; Kalinin, S.; Aker, J.C.M.; Hoek, van A.; Seidel, C.A.M.; Visser, A.J.W.G.

    2008-01-01

    Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of

  12. Homo-FRET Imaging Enables Quantification of Protein Cluster Sizes with Subcellular Resolution

    NARCIS (Netherlands)

    Bader, A.N.; Hofman, E.G.; Voortman, J.; Henegouwen, P.; Gerritsen, H.C.

    2009-01-01

    Fluorescence-anisotropy-based homo-FRET detection methods can be employed to study clustering of identical proteins in cells. Here, the potential of fluorescence anisotropy microscopy for the quantitative imaging of protein clusters with subcellular resolution is investigated. Steady-state and

  13. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimod...

  14. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  15. FRET-based modified graphene quantum dots for direct trypsin quantification in urine

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Chung-Yan; Li, Qinghua [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Zhang, Jiali; Li, Zhongping [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong, Chuan [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Lee, Albert Wai-Ming; Chan, Wing-Hong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Li, Hung-Wing, E-mail: hwli@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-04-21

    A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening. - Highlights: • A FRET-based biosensor was developed for direct quantification of trypsin. • Fast and sensitive screening of pancreatic disease was facilitated. • The direct quantification of trypsin in urine samples was demonstrated.

  16. Effect of crack on natural frequency for beam type of structures

    Science.gov (United States)

    Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.

    2017-07-01

    Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.

  17. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.

    Science.gov (United States)

    Ivanusic, Daniel; Denner, Joachim; Bannert, Norbert

    2016-08-01

    This unit provides a guide and detailed protocol for studying membrane protein-protein interactions (PPI) using the acceptor-sensitized Förster resonance electron transfer (FRET) method in combination with the proximity ligation assay (PLA). The protocol in this unit is focused on the preparation of FRET-PLA samples and the detection of correlative FRET/PLA signals as well as on the analysis of FRET-PLA data and interpretation of correlative results when using cyan fluorescent protein (CFP) as a FRET donor and yellow fluorescent protein (YFP) as a FRET acceptor. The correlative application of FRET and PLA combines two powerful tools for monitoring PPI, yielding results that are more reliable than with either technique alone. © 2016 by John Wiley & Sons, Inc.

  18. Influence of oil and water media on fretting behaviour of AISI 52100 steel rubbing against AISI 1045 steel

    Institute of Scientific and Technical Information of China (English)

    REN Ping-di; CHEN Guang-xiong; ZHU Min-hao; ZHOU Zhong-rong

    2004-01-01

    A series of fretting test were carried out using a DELTA PLINT testing system to study the influence of hydraulic oil and water on fretting behaviour of AISI 52100 steel rubbing against AISI 1045 steel. The test result shows that media hydraulic oil and water have a distinct influence on fretting behaviour of the tested materials. Medium water can lead to shifting of the partial slip regime in the fretting map from a larger displacement amplitude toward a smaller one and enlargement of the mixed slip regime, in comparison with that in ambient atmosphere. While medium hydraulic oil can result in shifting of the partial slip regime from a smaller displacement amplitude toward a larger one. In the gross slip regime, hydraulic oil and water play a positive role as lubrication media. They can clearly decrease the fretting friction coefficient between AISI 52100 and AISI 1045. The test result also demonstrates that this lubrication effect will get better with increasing displacement amplitude and that hydraulic oil is better than water for lubrication. SEM observation of the wear scars displays that the fretting wear mainly results from abrasive wear and delamination of the fretted materials when using these two kinds of substances as lubrication media.

  19. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.

    Science.gov (United States)

    Omer, Travis; Intes, Xavier; Hahn, Juergen

    2015-01-01

    Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.

  20. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK

    Institute of Scientific and Technical Information of China (English)

    FANG Qi-hong; LIU You-wen

    2006-01-01

    The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.

  1. Investigation of the nonlinear dynamics of a partially cracked plate

    Energy Technology Data Exchange (ETDEWEB)

    Israr, A [School of Engineering and Physical Sciences, Heriot Watt University - Dubai Campus, Block 2, Dubai International Academic City, P O Box 294345, Dubai (United Arab Emirates); Atepor, L, E-mail: a.israr@hw.ac.u, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ Scotland (United Kingdom)

    2009-08-01

    In this paper the nonlinear vibration of an aircraft panel structure modelled as an isotropic cracked plate and subjected to transverse harmonic excitation is considered for studying the dynamic response, both analytically and experimentally. A crack is arbitrarily located at the centre of the plate, consisting of a continuous line. This mathematical model is in the form of Duffing equation with a cubic nonlinear term. The perturbation method of multiple scales is used to solve the algebraic equation, and then investigated with the results of the direct integration within Mathematica{sup TM} and finite element analysis in ABAQUS for the first mode only. In addition, experimental measurements are also carried out to verify the dependence of the cracked plate's fundamental mode shape and resonance frequency on the vibration displacement amplitude. An extermely close agreement between these results is observed.

  2. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  3. A fiber optic sensor for detecting and monitoring cracks in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.

  4. K{sub I}-T estimation for embedded flaws in pipes - Part II: Circumferentially oriented cracks

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xudong, E-mail: cveqx@nus.edu.s [Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2010-04-15

    This paper, in parallel to the investigation on axially embedded cracks reported in the companion paper, presents a numerical study on the linear-elastic K{sub I} and T-stress values over the front of elliptical cracks circumferentially embedded in the wall of a pipe/cylindrical structure, under a uniform pressure applied on the inner surface of the pipe. The numerical procedure employs the interaction-integral approach to compute the linear-elastic stress-intensity factor (SIF) K{sub I} and T-stress values for embedded cracks with practical sizes at different locations in the wall of the pipe. The parametric study covers a wide range of geometric parameters for embedded cracks in the pipe, including: the wall thickness to the inner radius ratio (t/R{sub i}), the crack depth over the wall thickness ratio (a/t), the crack aspect ratio (a/c) and the ratio of the distance from the centerline of the crack to the outer surface of the pipe over the pipe wall thickness (e{sub M}/t). The parametric investigation identifies a significant effect of the remaining ligament length on both the T-stress and K{sub I} values at the crack-front location (denoted by point O) nearest to the outer surface of the pipe and at the crack-front location (denoted by point I) nearest to the inner surface of the pipe. The numerical investigation establishes the database to derive approximate functions from a nonlinear curve-fitting procedure to predict the T-stress and K{sub I} values at three critical front locations of the circumferentially embedded crack in a pipe: points O, I and M. The proposed T-stress and K{sub I} functions utilize a combined second-order polynomial and a power-law expression, which presents a close agreement with the T-stress and K{sub I} values computed from the very detailed finite element models. The comparison between the circumferentially embedded crack and the axially embedded crack indicates that both the T-stress and K{sub I} values at crack-front points O and

  5. Crack initiation ahead of piled—up of dislocations emitted from a mode Ⅱ blunt crack

    Institute of Scientific and Technical Information of China (English)

    CaifuQian; WuyangChu; 等

    2002-01-01

    In situ tensile tests in a transmission electron microscope(TEM) show that dislocations emitted from a mode Ⅱ crack tip will form a inverse piled-up group after equilibrium or a double piled-up group when they meet a obstruction,e.g.,grain boundary or second phase.A microcrack can initiates in front of the piled-up group of dislocations.Micromechanics analysis shows that dislocations emitted from a mode -Ⅱ blunt crack tip can form a inverse piled-up or double piled-up group,depending upon the applied stress intensity factor KⅡa,lattice friction stress τf and the distance of the obstruction from the crack tip L.The maximum normal stress in front of the double piled-up group which is located at the direction of α=-64° increases with the increase in the stress intensity KⅡa and the obstruction site L,and the decrease in the friction stress τf.When it increases to equate the cohesive strength,a microcrack will initiate in front of the pild-up group.

  6. Crack initiation ahead of piled-up of dislocations emitted from a mode Ⅱ blunt crack

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In situ tensile tests in a transmission electron microscope (TEM) show that dislocations emitted from a mode II crack tip will form a inverse piled-up group after equilibrium or a double piled-up group when they meet a obstruction, e.g., grain boundary or second phase. A microcrack can initiates in front of the piled-up group of dislocations. Micromechanics analysis shows that dislocations emitted from a mode II blunt crack tip can form a inverse piled-up or double piled-up group, depending upon the applied stress intensity factor KIIa, latticefriction stress and the distance of the obstruction from the crack tip L. The maximum normal stress in front of the double piled-up group which is located at the direction of €? Increases with the increase in the stress intensity KIIa and the obstruction site L, and the decrease in the friction stress . When it increases to equate the cohesive strength, a microcrack will initiate in front of the piled-up group.

  7. Acoustic Emission Monitoring and Microscopic Investigation of Cracks in ERCuNi Cladding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corrosion resistant CuNi cladding was deposited on SM45C (equivalent to AI5I1045) substrate by DC inverse arcwelding. During the welding process, a three channel acoustic emission (AE) monitoring system was applied to detectthe crack signals generating from both the cladding process and after cladding. Characteristics of the welding cracksignal and noise signal had been analyzed systematically. Based on the record time of the signal, the solidificationcrack and delayed crack were distinguished. By two-dimensional AE source location, the crack position was located,and then investigated by scanning electron microscopy (SEM). Results showed that the AE system could detect thewelding crack with high sensitivity and the two-dimensional source location could accurately determine the crackposition. Microstructures of the cladding and heat affected zone (HAZ) were examined. Dendrites in the claddingand coarse grains in the HAZ were found.

  8. SHORT FATIGUE CRACK PARAMETER BASED ON THE TOTAL CRACK AREA

    Institute of Scientific and Technical Information of China (English)

    Z.X.Wu; X.C.Wu

    2001-01-01

    The progressive fatigue damage of a material is closely related to the whole populationof cracks on the surface of an un-notched specimen.In order to understand whichparameter is a more useful indicator of fatigue damage,rotatory bending fatigue testswere carried out using smooth specimens of medium-carbon steel.The behavior ofshort crack propagation during fatigue was examined and a new parameter "totalcrack area" was suggested.The aim of this paper is to extend the research on fatiguedamage in the already studied steel and to study how these damage parameters arecorrelated with the process of fatigue damage in order to evaluate the effectiveness ofdamage detection methods.

  9. Effect of closure of collinear cracks on the stress-strain state and the limiting equilibrium of bent shallow shells

    Science.gov (United States)

    Shatskii, I. P.; Makoviichuk, N. V.

    2011-05-01

    The problem of closure of collinear cracks during bending of a shallow shell is considered within the framework of the Kirchhoff theory. Crack closure is described using the model of contact along a line on one of the shell faces. Strain and moment intensity factors and fracture load are studied as functions of shell curvature and defect location, and the distribution of contact forces along the cracks is investigated.

  10. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    Science.gov (United States)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  11. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    Science.gov (United States)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR

  12. Damage Detection of Closed Crack in a Metallic Plate Using Nonlinear Ultrasonic Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    2013-01-01

    Full Text Available Initial cracks in metallic structures incline to be closed at rest. Such incipient damage generally fails to be detected and located with traditional linear ultrasonic techniques because ultrasonic waves penetrate the contact area of the closed crack. In this paper, an imaging algorithm based on nonlinear ultrasonic time reversal method is proposed to detect closed cracks in aluminum plates. Two surface-bonded piezoelectric transducer arrays are used to generate, receive, and reemit ultrasonic wave signals. The closed crack is simulated by tightening a bolt on the aluminum plate. By applying large amplitude excitation voltage on the PZT transducers, the closed crack could be opened and closed. The transmitted waves recorded by PZT array contain nonlinear components, the signals are time reversed and emitted back, and the tone burst reconstructions are achieved. The linear reciprocity and the time reversibility break down due to the presence of the nonlinear components. The correlation coefficient between the original excitation signal and the reconstructed signal is calculated to define the damage index for individual sensing path and is used to develop an imaging algorithm to locate the closed crack on the plate. The experimental results demonstrate that incident wave signals and their reconstructed signals can be used to accurately detect and locate closed cracks.

  13. Crack detection of beam-type structures following the bayesian system identification framework

    Energy Technology Data Exchange (ETDEWEB)

    Lam, H F; Leung, A Y T [Department of Building and Construction, City University of Hong Kong, Hong Kong (China)

    2008-07-15

    This paper puts forward a method for the detection of crack locations and extents on a structural member utilizing measured dynamic responses following the Bayesian probabilistic framework. In the proposed crack detection method a beam with different number of cracks is modelled using different classes of models. The Bayesian model class selection method is then applied to select the 'most plausible' class of models in order to identify the number of cracks on the structural member. The objective of the proposed method is not to pinpoint the crack locations and extents but to calculate the posterior (updated) probability density function (PDF) of crack parameters (i.e., crack locations and extents). The method explicitly handles the uncertainties introduced by measurement noise and modelling error. This paper presents not only the theoretical development of the proposed method but also the numerical and experimental verifications. In the numerical case studies, noisy data generated by a Bernoulli-Euler beam with semi-rigid connections is used to demonstrate the procedures of the proposed method. The method is finally verified by measured dynamic responses of a cantilever beam utilizing laser Doppler vibrometer.

  14. IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏

    2002-01-01

    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  15. Review of Environmentally Assisted Cracking

    Science.gov (United States)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or

  16. Crack growth sparse pursuit for wind turbine blade

    Science.gov (United States)

    Li, Xiang; Yang, Zhibo; Zhang, Han; Du, Zhaohui; Chen, Xuefeng

    2015-01-01

    One critical challenge to achieving reliable wind turbine blade structural health monitoring (SHM) is mainly caused by composite laminates with an anisotropy nature and a hard-to-access property. The typical pitch-catch PZTs approach generally detects structural damage with both measured and baseline signals. However, the accuracy of imaging or tomography by delay-and-sum approaches based on these signals requires improvement in practice. Via the model of Lamb wave propagation and the establishment of a dictionary that corresponds to scatters, a robust sparse reconstruction approach for structural health monitoring comes into view for its promising performance. This paper proposes a neighbor dictionary that identifies the first crack location through sparse reconstruction and then presents a growth sparse pursuit algorithm that can precisely pursue the extension of the crack. An experiment with the goal of diagnosing a composite wind turbine blade with an artificial crack is performed, and it validates the proposed approach. The results give competitively accurate crack detection with the correct locations and extension length.

  17. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    Science.gov (United States)

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  18. Study of fretting wear in titanium, Monel-400, and cobalt-25 percent molybdenum using scanning electron microscopy.

    Science.gov (United States)

    Bill, R. C.

    1973-01-01

    Damage scar volume measurements taken from like metal fretting pairs, combined with scanning electron microscopy observations, showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt-25% molybdenum. Initially, adhesion and plastic deformation on the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism, producing spall-like pits in the damage scar. Finally, an oxidation-related mechanism became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  19. Study of fretting wear in titanium, Monel-400, and cobalt-25 percent molybdenum using scanning electron microscopy.

    Science.gov (United States)

    Bill, R. C.

    1973-01-01

    Damage scar volume measurements taken from like metal fretting pairs, combined with scanning electron microscopy observations, showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt-25% molybdenum. Initially, adhesion and plastic deformation on the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism, producing spall-like pits in the damage scar. Finally, an oxidation-related mechanism became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  20. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    Science.gov (United States)

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C3N4) and transition metal dichalcogenides (e.g. MoS2, MnO2, and WS2). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring.

  1. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws.

    Science.gov (United States)

    Lukina, Elena; Kollerov, Mikhail; Meswania, Jay; Khon, Alla; Panin, Pavel; Blunn, Gordon W

    2017-03-01

    Untypical corrosion damage including erosions combined with the build-up of titanium oxide as a corrosion product on the surface of explanted Nitinol spinal rods in the areas where it was in contact with titanium pedicle screw head is reported. It was suggested that Nitinol rods might have inferior fretting corrosion resistance compared with that made of titanium or CoCr. Fretting corrosion of Nitinol spinal rods with titanium (Ti6Al4V) pedicle screws were tested in-vitro by conducting a series of potentiostatic measurements of the peak-to-peak values of fretting corrosion current under bending in a 10% solution of calf serum in PBS. The test included Nitinol rods locked in titanium pedicle screws of different designs. Performance of commercially available titanium (Ti6Al4V) and CoCr spinal rods was also investigated for a comparison. Corrosion damage observed after the in-vitro tests was studied using SEM and EDAX analysis and was compared with patterns on Nitinol rods retrieved 12months after initial surgery. Metal ions level was measured in the test media after in-vitro experiments and in the blood and tissues of the patients who had the rods explanted. The results of this study revealed that Nitinol spinal rods locked in Ti pedicle screws are susceptible to fretting corrosion demonstrating higher fretting corrosion current compared with commercially used Ti6Al4V and CoCr rods. On the surface of Nitinol rods after in-vitro tests and on those retrieved from the patients similar corrosion patterns were observed. Improved resistance to fretting corrosion was observed with Nitinol rods in the in-vitro tests where pedicle screws were used with a stiffer locking mechanism. Since the development of the localized corrosion damage might increase the risk of premature fatigue failure of the rods and result in leaching of Ni ions, it is concluded that Nitinol rods should not be used in conjunction with Ti pedicle screws without special protection especially where the

  2. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  3. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    are assumed to be self created by local materials flow. The strength sigma_CR predictid by the Dugdale model is sigma_CR =(E Gamma_CR/phi1)^½ where E and 1 are Young’s modulus and crack half-length respectively of the material considered. The so-called critical strain energy rate is Gamma_CR = sigma......_Ldelta_CR where sigma_L is strength, and at the same time constant flow stress, of the uncracked material while delta_CR is flow limit (displacement).Obviously predictions by the Dugdale model are most reliable for materials with stress-strain relations where flow can actually be described (or well approximated......) by a constant flow stress (sigma_L). A number of materials, however, do not at all exhibit this kind of flow. Such materials are considered in this paper by Modified Dugdale crack models which apply for any cohesive stress distribution in crack front areas. Formally modified Dugdale crack models exhibit...

  4. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    Science.gov (United States)

    Zhou, Changjiang

    monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.

  5. The Effects of Crack on the Transmission Matrix of Rotor Systems

    Directory of Open Access Journals (Sweden)

    Z.K. Peng

    2011-01-01

    Full Text Available The dynamic behavior of rotor containing crack is a subject of particular interest and has been extensively investigated by researchers. The effects of crack on the natural frequencies and modal shapes and motion orbits of rotor systems have already been well explored by researchers. In the present study, the infl uence of crack on the transmission matrices of the rotor systems is investigated by using the FEM (finite element method analysis and the HBM (harmonic balance method technique. It is for the first time revealed that there are differences between the transmission matrices for the fundamental frequency components and the transmission matrices for the super-harmonic components, and the differences are mainly determined by the crack location. The results are validated by numerical experiments where the system responses of a rotor system are obtained using Runge-Kutta method. The results are of significance for the development of effective crack detection methods in practice.

  6. Homotopy Iteration Algorithm for Crack Parameters Identification with Composite Element Method

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2013-01-01

    Full Text Available An approach based on homotopy iteration algorithm is proposed to identify the crack parameters in beam structures. In the forward problem, a fully open crack model with the composite element method is employed for the vibration analysis. The dynamic responses of the cracked beam in time domain are obtained from the Newmark direct integration method. In the inverse analysis, an identification approach based on homotopy iteration algorithm is studied to identify the location and the depth of a cracked beam. The identification equation is derived by minimizing the error between the calculated acceleration response and the simulated measured one. Newton iterative method with the homotopy equation is employed to track the correct path and improve the convergence of the crack parameters. Two numerical examples are conducted to illustrate the correctness and efficiency of the proposed method. And the effects of the influencing parameters, such as measurement time duration, measurement points, division of the homotopy parameter and measurement noise, are studied.

  7. Multi-crack imaging using nonclassical nonlinear acoustic method

    Science.gov (United States)

    Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2014-10-01

    Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

  8. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.

    Science.gov (United States)

    Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

  9. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2011-10-01

    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  10. Evaluation of quantum dot-based concentric FRET configurations with a fluorescent dye and dark quencher for multiplexed bioanalyses

    Science.gov (United States)

    Conroy, Erin M.; Algar, W. Russ

    2014-03-01

    Semiconductor quantum dots (QDs) continue to emerge as a highly advantageous platform for bioanalysis. Their unique physical and optical properties are especially well suited for Förster resonance energy transfer (FRET)-based bioprobes. Concentric FRET configurations are a recent development in this area of research and are best described as QD bioconjugates where multiple energy transfer pathways have been assembled around the central QD. Concentric FRET configurations permit multiplexed bioanalysis using one type of QD vector, but require more sophisticated analyses than conventional FRET pairs. In this paper, we describe the design and characterization of a new concentric FRET configuration that assembles both a fluorescent dye, Alexa Fluor 555 or Alexa Fluor 647, and a dark quencher, QSY9, at different ratios around a central CdSeS/ZnS QD. It was found that the magnitudes of the total photoluminescence (PL) intensity and either the A555/QD or A647/QD PL ratio can be related to the number of QSY9 and A555 or A647 per QD. The trends in these parameters with changes in the number of each dye molecule per QD have both similarities and differences between configurations with A555 and A647. In each case, a system of equations can be defined to permit calculation of the number of each dye molecule per QD from PL measurements. Both of these dark quencher-based concentric FRET configurations are therefore good candidates for quantitative, multiplexed bioanalysis.

  11. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution

    Science.gov (United States)

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-11-01

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.

  12. FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanoscale communication based on Förster Resonance Energy Transfer (FRET) enables nanoscale single molecular devices to communicate with each other utilizing excitons generated on fluorescent molecules as information carriers. Based on the point-to-point single-exciton FRET-based nanocommunication model, we investigate the multiple-exciton case for point-to-point and broadcast communications following an information theoretical approach and conducting simulations through Monte Carlo approach. We demonstrate that the multi-exciton transmission significantly improves the channel reliability and the range of the communication up to tens of nanometers for immobile nanonodes providing high data transmission rates. Furthermore, our analyses indicate that multi-exciton transmission enables broadcasting of information from a transmitter nanonode to many receiver nanonodes pointing out the potential of FRET-based communication to extend over nanonetworks. In this study, we also propose electrically and chemically controllable routing mechanisms exploiting the strong dependence of FRET rate on spectral and spatial characteristics of fluorescent molecules. We show that the proposed routing mechanisms enable the remote control of information flow in FRET-based nanonetworks. The high transmission rates obtained by multi-exciton scheme for point-to-point and broadcast communications, as well as the routing opportunities make FRET-based communication promising for future molecular computers.

  13. FRACTAL KINEMATICS OF CRACK PROPAGATION IN GEOMATERIALS

    Institute of Scientific and Technical Information of China (English)

    谢和平

    1995-01-01

    Experimental results indicate that propagation paths of cracks in geomaterials are often irregular, producing rough fracture surfaces which are fractal. A formula is derived for the fractal kinematics of crack propagation in geomaterials. The formula correlates the dynamic and static fracture toughnesses with crack velocity, crack length and a microstructural parameter, and allows the fractal dimension to be obtained. From the equations for estimating crack velocity and fractal dimension it can be shown that the measured crack velocity, Vo , should be much smaller than the fractal crack velocity, V. It can also be shown that the fractal dimension of the crack propagation path can be calculated directly from Vo and from the fracture toughness.

  14. Interacting Cracks in an Environmentally Assisted Fracture

    Science.gov (United States)

    Levandovsky, Artem; Balazs, Anna

    2006-03-01

    We perform the study of environmentally assisted fracture within the framework of a lattice model. Formation of an ensemble of environmentally assisted microcracks, their coalescence and formation of crack ``avalanches'' lead to a very rich dynamical picture. Under specific condition crack healing can occur due to cohesive forces, which hold material together and tend to pull atoms together even if they are separated by a crack over several lattice units. We investigate the dynamical interplay between crack formation, arrest, healing and re-cracking. The goal here is to provide an understanding of the conditions leading to the phenomena of crack healing that happens along with the crack formation. We study the morphology of crack patterns with the intentions to establish a way to enhance the healing property of a material sample.

  15. Cold-Sprayed Cu-MoS2 and Its Fretting Wear Behavior

    Science.gov (United States)

    Zhang, Yinyin; Descartes, Sylvie; Vo, Phuong; Chromik, Richard R.

    2016-02-01

    Cu and Cu-MoS2 coatings were fabricated by cold spray, and the fretting wear performance of the two coatings was compared. A mixture (95 wt.% Cu + 5 wt.% MoS2) was used as feedstock for the composite coating. Coatings were sprayed with identical gas flow conditions on the substrates pre-heated to approximately 170 °C. The morphology of coating top surface and polished cross sections was analyzed by scanning electron microscopy (SEM) and light optical microscopy (LOM). The influence of MoS2 on Cu deposition was examined. The local MoS2 concentration within the coating was found to affect the hardness. Fretting tests were carried out at two different normal loads, and the influence of MoS2 on friction and wear was studied. The morphology and elemental compositions of the wear scars and wear debris were observed by SEM and energy dispersive x-ray spectroscopy (EDS), respectively.

  16. Ratiometric FRET-based detection of DNA and micro-RNA in solution

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, Evgenia G., E-mail: ematveev@hsc.unt.ed [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States); Stewart, Donald R. [Omm Scientific, Inc., 2600 N. Stemmons Freeway, Suite 129, Dallas, TX 75207 (United States); Gryczynski, Ignacy [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States)

    2009-11-15

    A ratiometric method for detecting DNA oligomers in bulk solution based on Foerster resonance energy transfer (FRET) is described. The two fluorescence signals (green and red), originating from Cy3 (donor, green) and Cy5 (acceptor, red) labels, are simultaneously detected from the pre-hybridized Cy3oligomerY:Cy5oligomerX system. The ratio of red to green intensities is sensitive to the presence of the single-stranded complimentary oligomer, which replaces single-stranded Cy3oligomerY in the donor:acceptor complex and perturbs the FRET. The detection scheme is generally applicable to the detection of DNA and RNA, and particularly micro-RNA. The proposed method is applicable to various double-stranded various lengths targets (manipulation of the sample preparation conditions, such as temperature, incubation time, denaturizing agent, may be needed).

  17. Kinetic Studies of Lysine Riboswitch Folding Using Single-Molecule FRET

    Science.gov (United States)

    Fiegland, Larry; Garst, Andrew; Fiore, J.; Batey, Robert; Nesbitt, David

    2010-03-01

    Riboswitches regulate gene expression through conformational changes induced by metabolite binding. This regulation of gene expression depends on the kinetics of metabolite binding and structural changes. Therefore, an understanding of these dynamics is crucial to developing a compete knowledge of riboswitch functionality. To probe the binding of a metabolite and subsequent folding, a metabolite-binding domain of the Bacillus subtilis lysine riboswitch was transcribed and hybridized to a fluorescent-labeled RNA strand, which allows FRET monitoring of ligand-induced conformational changes. The RNA construct was studied using single-molecule FRET methods that allowed for characterization of the folding dynamics. In the presence of lysine, we observed two states, of which the relative populations are perturbed by lysine concentration. We measured the folding and unfolding rates of the inter-conversion between these states. We also observe that [Mg^2+] affects the lysine-free conformation and the lysine sensitivity of the riboswitch.

  18. High-efficiency FRET-enhanced photoacoustic probes for in vivo tumor imaging

    Science.gov (United States)

    Qin, Huan; Liu, Liming

    2017-01-01

    Photoacoustic imaging can provide high-resolution and high-contrast image under unprecedented depth compared with pure optical imaging techniques by making use of laser-induced ultrasound waves. Although a series of absorption-enhanced optical contrast agents for photoacoustic imaging were developed, the probe with fully conversion from absorbed light energy to acoustic energy has not been achieved so far. Here we develop a high-efficiency photoacoustic probes with fluorescence resonance energy transfer (FRET) effect for enhancement of nonradiative energy. Graphene oxide (GO) binding optical dyes (GO-dyes) were achieved to show highly fluorescence quenching and violently increased photoacoustic signal intensity. GO-dyes were constructed and testified for multi-spectral photoacoustic imaging. As a representative probe, GO-Cy7 nanoparticles were used to validate the feasibility of photoacoustic tumor molecular imaging in vivo. Our work demonstrated a new approach to construct high-efficiency FRET-enhanced multi-spectrum probes for photoacoustic molecular imaging.

  19. Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells.

    Science.gov (United States)

    Bio, Moses; Rajaputra, Pallavi; You, Youngjae

    2016-01-01

    Longer wavelength light (650-800nm) is desired to treat large tumors in photodynamic therapy (PDT). However, shorter wavelength light is needed in PDT for thin tumors, not to cause undesirable local side effects. We proposed a strategy for stepwise optical imaging and PDT using a bioorthogonal click chemistry and fluorescence resonance energy transfer (FRET). We prepared azidyl rhodamine (Rh-N3, clickable FD) and cyclooctynyl phthalocyanine [Pc-(DIBAC), clickable PS], with which, here, we demonstrate that the non-catalytic click chemistry is rapid and efficient in cancer cells and FRET from a fluorescence dye (FD) to a photosensitizer (PS) is sufficient to generate enough singlet oxygen killing cancer cells by using shorter wavelength light. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Crack and flip phacoemulsification technique.

    Science.gov (United States)

    Fine, I H; Maloney, W F; Dillman, D M

    1993-11-01

    The crack and flip phacoemulsification technique combines the advantages of circumferential division of the nucleus and nucleofactis techniques. As such, it adds safety and control to the procedure. We describe each of the surgical maneuvers, including machine settings, and explain the rationale for maneuvers and machine settings.

  1. China Cracks Down Internet Piracy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      National Copyright Administration of China carried out a special operation to crack down on behaviors involving network infringement and piracy from September to December in 2005 ,according to the speech of Yan Xiaohong,Deputy Commissioner of National Copyright Administration on the Press Conference of the State Council.Now the relevant conditions are as follows:……

  2. China Cracks Down Internet Piracy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ National Copyright Administration of China carried out a special operation to crack down on behaviors involving network infringement and piracy from September to December in 2005 ,according to the speech of Yan Xiaohong,Deputy Commissioner of National Copyright Administration on the Press Conference of the State Council.Now the relevant conditions are as follows:

  3. HYDROTHERMAL CRACKING OF RESIDUAL OILS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrothermal cracking of heavy oils, such as Canadian oil sand bitumen and Arabian heavy vacuum residue, as well as their model compound were performed over sulfided Ni/Al2O3 and NiMo/Al2O3 catalysts under 663~703 K and 6.0~8.0 MPa of hydrogen pressure in a batch autoclave reactor. According to the reaction mechanism of hydrothermal cracking, a small amount of free redical initiators, such as di-tert-peroxide, sulfur, etc., was added into the feed to generate free redicals at lower temperature, and obviously showed promotional effect on the conversion of hydrocarbons. The reaction mechanisms of hydrothermal cracking as well as the enhancing effect of initiators were studied by a probe reaction with 1-phenyldodecane as a model compound. The hydrothermal cracking of hydrocarbon proceeded via free redical mechanism and hydrogenating quench. The initiators might easily generate free redicals under reaction temperature, these redicals might abstract H from hydrocarbon molecule and reasonably initiate the chain reactions, therefore, promote the conversion of hydrocarbon even at lower reaction temperature.

  4. Confining crack propagation in defective graphene.

    Science.gov (United States)

    López-Polín, Guillermo; Gómez-Herrero, Julio; Gómez-Navarro, Cristina

    2015-03-11

    Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.

  5. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    DEFF Research Database (Denmark)

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction i...

  6. Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading is one of the basic mechanisms for fatigue crack growth in ductile metals. Based on an elastic–perfectly plastic material model, crack growth computations have been continued up to 700 full cycles by using...

  7. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  8. Handheld Fluorescence Resonance Energy Transfer (FRET)-Aptamer Sensor for Bone Markers

    Science.gov (United States)

    Bruno, John G.

    2015-01-01

    Astronauts lose significant bone mass during lengthy space flights. NASA wishes to monitor this bone loss in order to develop nutritional and exercise countermeasures. Operational Technologies Corporation (OpTech) has developed a handheld device that quantifies bone loss in a spacecraft environment. The innovation works by adding fluorescent dyes and quenchers to aptamers to enable pushbutton, one-step bind-and-detect FRET assays that can be freeze-dried, rehydrated with body fluids, and used to quantify bone loss.

  9. Twisting cracks in Bouligand structures.

    Science.gov (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-06-10

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. a Feasibility Study on Use of Generic Mobile Laser Scanning System for Detecting Asphalt Pavement Cracks

    Science.gov (United States)

    Chen, Xinqu; Li, Jonathan

    2016-06-01

    This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS) system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM) of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm) within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  11. Simulating the effect of slab features on vapor intrusion of crack entry.

    Science.gov (United States)

    Yao, Yijun; Pennell, Kelly G; Suuberg, Eric M

    2013-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this.

  12. A FEASIBILITY STUDY ON USE OF GENERIC MOBILE LASER SCANNING SYSTEM FOR DETECTING ASPHALT PAVEMENT CRACKS

    Directory of Open Access Journals (Sweden)

    X. Chen

    2016-06-01

    Full Text Available This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  13. Acoustic harmonic generation measurement applications: Detection of tight cracks in powder metallurgy compacts

    Science.gov (United States)

    Barnard, D. J.; Foley, J. C.

    2000-05-01

    Standard linear ultrasonic testing techniques have long been employed for locating and characterizing relatively open cracks in a wide variety of materials, from metallic alloys and ceramics to composites. In all these materials, the detection of open cracks easily accomplished because the void between the two crack surfaces provides sufficient acoustic impedance mismatch to reflect the incident energy. Closed or partially closed cracks, however, may often go undetected because contacting interfaces allow transmission of ultrasound. In the green (unsintered) state, powder metallurgy compacts typically contain high residual stresses that have the ability to close cracks formed during the compaction process, a result of oxide films, improper powder lubricant, mold design, etc. After sintering, the reduction of residual stresses may no longer be sufficient to close the crack. Although the crack may be more easily detected, it is obvious most desirable to discover defects prior to sintering. It has been shown that the displacements of an interface may be highly nonlinear if a stress wave of sufficient intensity propagates across it, a result of the stress wave either opening or closing the interface. Current efforts involve the application of nonlinear acoustic techniques, in particular acoustic harmonic generation measurements, for the detection and characterization of tightly closed cracks in powder metallurgy parts. A description of the equipment and the measurement technique will be discussed and initial experimental results on sintered and green compacts will be presented.—This work was performed at the Ames Laboratory, Iowa State University under USDOE Contract No. W-7405-ENG-82.

  14. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

    Institute of Scientific and Technical Information of China (English)

    Himanshu PATHAK[1; Akhilendra SINGH[2; I.V. SINGH[3; S. K. YADAV[3

    2015-01-01

    This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

  15. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Jingang Tang

    2016-03-01

    Full Text Available A metallurgical zirconium nitride (ZrN layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW and fretting fatigue (FF behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  16. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    Science.gov (United States)

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  17. Time-dependent FRET with single enzymes: domain motions and catalysis in H(+)-ATP synthases.

    Science.gov (United States)

    Bienert, Roland; Zimmermann, Boris; Rombach-Riegraf, Verena; Gräber, Peter

    2011-02-25

    H(+)-ATP synthases are molecular machines which couple transmembrane proton transport with ATP synthesis from ADP and inorganic phosphate by a rotational mechanism. Single-pair fluorescence resonance energy transfer (spFRET) in single molecules is a powerful tool to analyse conformational changes. It is used to investigate subunit movements in H(+)-ATP synthases from E. coli (EF(0)F(1)) and from spinach chloroplasts (CF(0)F(1)) during catalysis. The enzymes are incorporated into liposome membranes, and this allows the generation of a transmembrane pH difference, which is necessary for ATP synthesis. After labelling of appropriate sites on different subunits with fluorescence donor and acceptor, the kinetics of spFRET are measured. Analysis of the E(FRET) traces reveals rotational movement of the ε and γ subunits in 120° steps with opposite directions during ATP synthesis and ATP hydrolysis. The stepped movement is characterized by a 120° step faster than 1 ms followed by a rest period with an average dwell time of 15 ms, which is in accordance with the turnover time of the enzyme. In addition to the three conformational states during catalysis, also an inactive conformation is found, which is observed after catalysis.

  18. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors.

    Science.gov (United States)

    Kamioka, Yuji; Sumiyama, Kenta; Mizuno, Rei; Sakai, Yoshiharu; Hirata, Eishu; Kiyokawa, Etsuko; Matsuda, Michiyuki

    2012-01-01

    Genetically-encoded biosensors based on the principle of Förster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to particular difficulties in the development of transgenic mice that express FRET biosensors. In this study, we report the efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were created by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harbouring Tol2 recombination sites. High expression of the biosensors in a wide range of cell types allowed us to screen newborn mice simply by inspection. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.

  19. Single-molecule FRET reveals hidden complexity in a protein energy landscape.

    Science.gov (United States)

    Tsytlonok, Maksym; Ibrahim, Shehu M; Rowling, Pamela J E; Xu, Wenshu; Ruedas-Rama, Maria J; Orte, Angel; Klenerman, David; Itzhaki, Laura S

    2015-01-06

    Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured "safety pin" or "staple" from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated.

  20. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaohua; LIU Daoxin

    2009-01-01

    An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350~C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350℃. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening.

  1. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy.

    Science.gov (United States)

    Day, Richard N; Tao, Wen; Dunn, Kenneth W

    2016-11-01

    Genetically encoded fluorescent protein (FP)-based biosensor probes are useful tools for monitoring cellular events in living cells and tissues. Because these probes were developed for one-photon excitation approaches, their broad two-photon excitation (2PE) and poorly understood photobleaching characteristics have made their implementation in studies using two-photon laser-scanning microscopy (TPLSM) challenging. Here we describe a protocol that simplifies the use of Förster resonance energy transfer (FRET)-based biosensors in TPLSM. First, the TPLSM system is evaluated and optimized using FRET standards expressed in living cells, which enables the determination of spectral bleed-through (SBT) and the confirmation of FRET measurements from the known standards. Next, we describe how to apply the approach experimentally using a modified version of the A kinase activity reporter (AKAR) protein kinase A (PKA) biosensor as an example-first in cells in culture and then in hepatocytes in the liver of living mice. The microscopic imaging can be accomplished in a day in laboratories that routinely use TPLSM.

  2. FRET Fluctuation Spectroscopy of Diffusing Biopolymers: Contributions of Conformational Dynamics and Translational Diffusion

    Science.gov (United States)

    Gurunathan, Kaushik; Levitus, Marcia

    2009-01-01

    The use of Fluorescence Correlation Spectroscopy (FCS) to study conformational dynamics in diffusing biopolymers requires that the contributions to the signal due to translational diffusion are separated from those due to conformational dynamics. A simple approach that has been proposed to achieve this goal involves the analysis of fluctuations in Fluorescence Resonance Energy Transfer (FRET) efficiency. In this work, we investigate the applicability of this methodology by combining Monte Carlo simulations and experiments. Results show that diffusion does not contribute to the measured fluctuations in FRET efficiency in conditions where the relaxation time of the kinetic process is much shorter than the mean transit time of the molecules in the optical observation volume. However, in contrast to what has been suggested in previous work, the contributions of diffusion are otherwise significant. Neglecting the contributions of diffusion can potentially lead to an erroneous interpretation of the kinetic mechanisms. As an example, we demonstrate that the analysis of FRET fluctuations in terms of a purely kinetic model would generally lead to the conclusion that the system presents complex kinetic behavior even for an idealized two-state system PMID:20030305

  3. FRET based biosensor for detection of active NF-kB

    Science.gov (United States)

    Baldini, Francesco; Citti, Lorenzo; Domenici, Claudio; Giannetti, Ambra; Tedeschi, Lorena; Vo-Dinh, Tuan; Wabuyele, Musundi B.

    2005-05-01

    The Nuclear Factor kB is a transcription factor, ubiquitously expressed, involved in the regulation of a large number of genes and in a variety of human disease including inflammation, asthma, atherosclerosis, AIDS, septic shock, arthritis and cancer. The critical need for a simple and direct method to evaluate the quantity of active NF-kB in a biological sample can be addressed using a suitable and reusable biosensor. For this purpose, a novel method, using fluorescence resonance energy transfer (FRET), to detect the active form of NF-kB binding a specific DNA sequence has been developed. A single-stranded DNA (ssDNA) with auto-complementary sequence has been properly designed and synthesized. In order to evaluate FRET due to the DNA/protein binding interaction taking place between double-stranded DNA (dsDNA) immobilized in a capillary wall and NF-kB proteins, a highly sensitive FRET-based biosensor system developed in our laboratory was used. Preliminary results show that our system was capable of detecting the active form of NF-kB protein with a detection efficiency of about 90% and that the system has a good regenerability.

  4. Monitoring Integrated Activity of Individual Neurons Using FRET-Based Voltage-Sensitive Dyes.

    Science.gov (United States)

    Briggman, Kevin L; Kristan, William B; González, Jesús E; Kleinfeld, David; Tsien, Roger Y

    2015-01-01

    Pairs of membrane-associated molecules exhibiting fluorescence resonance energy transfer (FRET) provide a sensitive technique to measure changes in a cell's membrane potential. One of the FRET pair binds to one surface of the membrane and the other is a mobile ion that dissolves in the lipid bilayer. The voltage-related signal can be measured as a change in the fluorescence of either the donor or acceptor molecules, but measuring their ratio provides the largest and most noise-free signal. This technology has been used in a variety of ways; three are documented in this chapter: (1) high throughput drug screening, (2) monitoring the activity of many neurons simultaneously during a behavior, and (3) finding synaptic targets of a stimulated neuron. In addition, we provide protocols for using the dyes on both cultured neurons and leech ganglia. We also give an updated description of the mathematical basis for measuring the coherence between electrical and optical signals. Future improvements of this technique include faster and more sensitive dyes that bleach more slowly, and the expression of one of the FRET pair genetically.

  5. DNA quantification based on FRET realized by combination with surfactant CPB.

    Science.gov (United States)

    Liu, Chunxia; Wang, Lei; Jiang, Wei

    2010-04-15

    In this work, we developed a novel DNA quantitative analysis based on fluorescence resonance energy transfer (FRET) realized by combination with a surfactant CPB. The approach was capable of detecting long-stranded DNA in a separation-free format. A sandwich-type FAM-c-DNA-t-DNA-r-DNA-TAMRA conjugate was first formed by the capture probe tagged with FAM, the reporter probe tagged with TAMRA and the target DNA through hybridization. The donor (FAM) and the acceptor (TAMRA) were bridged to afford a FRET system. Subsequently, an addition of the cationic surfactant CPB to the system resulted in a substantial change of the microenvironment and an effective condensation of DNA strands. Consequently, without altering the component of the double strands, an enhanced acceptor fluorescence signal from FRET was achieved and a quantification of the target DNA containing 30 bases was enabled. Under the optimal experimental conditions, an excellent linear relationship between the increase of acceptor fluorescent peak area and the target DNA concentration was obtained over the range from 1.0 x 10(-7) to 3.0 x 10(-9) mol L(-1). The proposed approach offered adequate sensitivity for the detection of the target DNA at 1.0 x 10(-9) mol L(-1).

  6. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning.

    Science.gov (United States)

    Qiu, Xue; Guo, Jiajia; Jin, Zongwen; Petreto, Alexandra; Medintz, Igor L; Hildebrandt, Niko

    2017-07-01

    Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Here, it is shown that time-gated (TG) detection of a single terbium-donor-based Förster resonance energy transfer (FRET) pair can be used to selectively quantify low nanomolar concentrations of multiple DNAs or microRNAs in a single sample. This study demonstrates the applicability of single-TG-FRET-pair multiplexing for molecular (Tb-to-dye) and nanoparticle (Tb-to-quantum-dot) biosensing. Both systems use acceptor-sensitization and donor-quenching for quantifying biomolecular recognition and modification of the donor-acceptor distance for tuning the PL decays. TG intensity detection provides extremely low background noise and a quick and simple one-step assay format. Single-TG-FRET-pair multiplexing can be combined with spectral and spatial resolution, paving the way for biosensing with unprecedented high-order multiplexing capabilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A surface crack in shells under mixed-mode loading conditions

    Science.gov (United States)

    Joseph, P. F.; Erdogan, F.

    1988-01-01

    The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.

  8. Photoelastic studies of crack propagation and crack arrest. [Homalite 100

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.; Etheridge, J.M.

    1977-09-01

    This report describes the third year effort on research programs dealing with the characterization of dynamic aspects of fracture. The results included in this report are (1) verification of the BCL one-dimensional computer code; (2) determination of a-dot--K relationship from modified compact-tension specimen of Homalite 100; (3) verification of the MRL procedure for K/sub Ia/ measurement with machine-loaded C-DCB specimen of Homalite 100; (4) influence of adhesive toughness, adhesive thickness, and toughness of the arrest section on crack behavior in duplex specimens of both the M-CT and R-DCB types; (5) crack propagation in a thermally stressed ring specimen; and (6) development of a two-dimensional finite-difference code to predict fracture behavior in specimens of rectangular geometry under various a-dot vs K relationships. 118 figures, 53 tables.

  9. Effect of Hot Deformation on Formation and Growth of Thermal Fatigue Crack in Chromium Wear Resistant Cast Iron

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; LIU Jian-hua

    2006-01-01

    The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron microscope and high frequency induction thermal fatigue tester. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, hot deformation can improve the eutectic carbide′s morphology and distribution, inhibit the generation and propagation of thermal fatigue cracks. In the experiment, the propagation rate of thermal fatigue crack reduces with the quantity of hot deformation increasing, which was analyzed in the point view of the activation energy of crack propagation.

  10. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  11. Contraction stresses in dental composites adjacent to and at the bonded interface as measured by crack analysis.

    Science.gov (United States)

    Yamamoto, Takatsugu; Nishide, Akihito; Swain, Michael V; Ferracane, Jack L; Sakaguchi, Ronald L; Momoi, Yasuko

    2011-01-01

    The objective of this study was to calculate stresses produced by polymerization contraction in regions surrounding a dental resin composite restoration. Initial cracks were made with a Vickers indenter at various distances from the edge of a cylindrical hole in a soda-lime glass disk. Indentation crack lengths were measured parallel to tangents to the hole edge. Resin composites (three brands) were placed in the hole and polymerized (two light irradiation protocols) at equal radiation exposures. The crack lengths were re-measured at 2 and 10 min after irradiation. Radial tensile stresses due to polymerization contraction at the location of the cracks (σ(crack)) were calculated from the incremental crack lengths and the fracture toughness K(c) of the glass. Contraction stresses at the composite-glass bonded interface (σ(interface)) were calculated from σ(crack) on the basis of the simple mechanics of an internally pressurized thick-walled cylinder. The greater the distance or the shorter the time following polymerization, the smaller was σ(crack). Distance, material, irradiation protocol and time significantly affected σ(crack). Two-step irradiation resulted in a significant reduction in the magnitude of σ(interface) for all resin composites. The contraction stress in soda-lime glass propagated indentation cracks at various distances from the cavity, enabling calculation of the contraction stresses.

  12. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    Science.gov (United States)

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  13. Coalescence judgment criteria for the interaction between two close surface cracks by WES2805 and its safety margin for brittle fracture assessment

    Directory of Open Access Journals (Sweden)

    Tomoya Kawabata

    2016-11-01

    Full Text Available It is important to consider the interaction between multiple cracks in evaluating the reliability of a structure. In this study, the stress intensity factor (K value is evaluated using the finite element method for interacting surface cracks. Although there are an infinite number of possible conditions of the locations and sizes of two close cracks, the cracks shall be located parallel to each other and have the same dimensions for simplification in this study. The K values on the crack front are calculated under various aspect ratios and relative locations. When there is a strong interaction (ΔKmax ≥ 10%, fracture analysis is generally performed after the coalescence of the two cracks by the FFS standard. As a result of the investigation of the critical condition of the positional parameters for coalescence, judgement criteria were introduced in WES2805 with some simplification. It was revealed that the coalescence process in WES2805 provides a safety margin.

  14. Inhibiting Corrosion Cracking: Crack Tip Chemistry and Physics.

    Science.gov (United States)

    1986-03-14

    5 5. Swuzary 113 Rferences 114 wl NO 4L iv . List of Figuring 1. Microipette pulling machine . 29 2. Anodic polarization of 7075-T6 Al alloy in dilute...environment has a strong effect on microplastic behavior at the tip of a fatigue crack. Stolz and Pelloux suggest that nitrate ion competes with chloride...Crystalline Na2 N 20 29H20 precipitates when the filtrate is placed in a vacunm desiccator over sulfuric acid. The filtered precipitate is washed

  15. Crack branching in carbon steel. Fracture mechanisms

    Science.gov (United States)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  16. CRACK REASON ANALYSIS OF DAMAGED CARBONITRIDED PART

    Directory of Open Access Journals (Sweden)

    Karin Kocúrová

    2010-03-01

    Full Text Available The article deals with the analysis of a damaged part, which was designed for use in a mechanical clutch of a car. The crack in the part was found during the production inspection. The aim of metallographic and fractography analyses of the fracture surfaces was to discover the reasons for the crack. The reason for creating the crack was the formation of smaller cracks in the production during pressing process of the semiproduct. These cracks even grew after the following thermochemical treatment. The fracture was initiated during the straightening process of quenched part.

  17. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    Science.gov (United States)

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  18. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  19. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Science.gov (United States)

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  20. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  1. FRET-Based Detection of M1 Muscarinic Acetylcholine Receptor Activation by Orthosteric and Allosteric Agonists

    Science.gov (United States)

    Markovic, Danijela; Holdich, Jonathan; Al-Sabah, Suleiman; Mistry, Rajendra; Krasel, Cornelius; Mahaut-Smith, Martyn P.; Challiss, R. A. John

    2012-01-01

    Background and Objective Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET). Methods Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells. Results The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gαq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. Conclusion The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for

  2. FRET-based detection of M1 muscarinic acetylcholine receptor activation by orthosteric and allosteric agonists.

    Directory of Open Access Journals (Sweden)

    Danijela Markovic

    Full Text Available BACKGROUND AND OBJECTIVE: Muscarinic acetylcholine receptors (mAChRs are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M(1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET. METHODS: Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M(1 mAChR, respectively. The optimized FRET receptor construct (M(1-cam5 was expressed stably in HEK293 cells. RESULTS: The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gα(q/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M(1 FRET (F(EYFP/F(ECFP that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. CONCLUSION: The M(1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a

  3. Alternating grain orientation and weld solidification cracking

    Science.gov (United States)

    Kou, S.; Le, Y.

    1985-10-01

    A new mechanism for reducing weld solidification cracking was proposed, based on the concept of the crack path and resistance to crack propagation, and its effectiveness was verified in magnetically oscillated GTA welds of a rather crack susceptible material 2014 aluminum alloy. This mechanism, i.e., alternating grain orientation, was most pronounced in welds made with transverse arc oscillation of low frequency and high amplitude, and solidification cracking was dramatically reduced in these welds. The effect of the arc oscillation pattern, amplitude, and frequency on the formation of alternating columnar grains and the reduction of solidification cracking in GTA welds of 2014 aluminum alloy was examined and explained. The present study demonstrated for the first time that columnar grains can, in fact, be very effective in reducing solidification cracking, provided that they are oriented favorably.

  4. Resolution of Two Sub-Populations of Conformers and Their Individual Dynamics by Time Resolved Ensemble Level FRET Measurements.

    Directory of Open Access Journals (Sweden)

    Gil Rahamim

    Full Text Available Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET measurements. Major advances in such measurements were achieved by single molecule FRET measurements. Here, we show that by global analysis of the decay of the emission of both the donor and the acceptor it is also possible to resolve two sub-populations in a mixture of two ensembles of biopolymers by time resolved FRET (trFRET measurements at the ensemble level. We show that two individual intramolecular distance distributions can be determined and characterized in terms of their individual means, full width at half maximum (FWHM, and two corresponding diffusion coefficients which reflect the rates of fast ns fluctuations within each sub-population. An important advantage of the ensemble level trFRET measurements is the ability to use low molecular weight small-sized probes and to determine nanosecond fluctuations of the distance between the probes. The limits of the possible resolution were first tested by simulation and then by preparation of mixtures of two model peptides. The first labeled polypeptide was a relatively rigid Pro7 and the second polypeptide was a flexible molecule consisting of (Gly-Ser7 repeats. The end to end distance distributions and the diffusion coefficients of each peptide were determined. Global analysis of trFRET measurements of a series of mixtures of polypeptides recovered two end-to-end distance distributions and associated intramolecular diffusion coefficients, which were very close to those determined from each of the pure samples. This study is a proof of concept study demonstrating the power of ensemble level trFRET based methods in resolution of subpopulations in ensembles of flexible macromolecules.

  5. ETP-0474: Evaluation of Electroless Nickel Coatings to Achieve Interference Fit in the RSRM Without Fretting

    Science.gov (United States)

    Schaffnit, William O.

    1997-01-01

    Part of the redesign of the SRMs for the Space Shuttle involved the substitution of three new capture cylinders for three of the previously used cylinders. These new cylinders mate with the old standard case segments in each of the three field joints. The new capture cylinders contain an integral capture latch on the tang end which mates with a case clevis during stackup at KSC. The capture cylinders also contain a groove in the capture latch to provide for a third 0-ring in the joint and are designed to achieve a metal-to- metal interference fit between the capture latch and the mating clevis. An unexpected fretting problem has occurred on the tang capture feature and the inner clevis leg interference fit surfaces on flight hardware since STS-26. Varying degrees of fretting damage have been found on the case segments from different flight motors. Fretting is a wear phenomena that occurs when two tightly fitting metal surfaces are subject to cyclic relative motion of extremely small amplitudes (generally less than 0.010-inch) in the absence of adequate lubrication. It is adhesive ("cold" - welding) in nature and vibration is its essential causative factor. This problem has manifested itself on the flight motors as a series of pits and axial gouges on the inside diameter (ID) surfaces of the inner clevis legs and the outside diameter (OD) surfaces of the tang capture features. The problem occurs in varying degrees of severity in all of the field joints. It is not believed that fretting is a flight safety issue. However, it could become a reusability issue if left unattended. Fretting has been encountered in other industries for many years and measures that will prevent or reduce it have been devised. These include: elimination or reduction of vibration (amplitudes and/or frequencies), elimination of slip, improved lubrication between parts, increased surface separation, increased interference, inducing residual compressive stresses in the surfaces of the mating

  6. Biaxial Fatigue Cracking from Notch

    Science.gov (United States)

    2013-03-04

    Leevers (reference 11) noticed that the variation in  from 0 to 2 has little effect on the da/dN in PVC ( polyvinyl - chloride ), but reduces the da/dN...under biaxial rotating and bending. Ahmad (reference 2) formulated a model for the biaxial fatigue crack growth in aggressive environment, outlined by...1962, Vol. 90, pp. 238-239. 20. ASM Handbook , Vol. 12 Fractography: 1992, p. 430, 438. 21. Metals Handbook , Vol. 9 Fractography and Atlas of

  7. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    Science.gov (United States)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  8. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients.

    Science.gov (United States)

    Dumbryte, Irma; Linkeviciene, Laura; Malinauskas, Mangirdas; Linkevicius, Tomas; Peciuliene, Vytaute; Tikuisis, Kristupas

    2013-06-01

    The purpose of this study was to evaluate and compare enamel micro-crack characteristics of adult patients before and after removal of metal brackets. After the examination with scanning electron microscopy (SEM), 45 extracted human teeth were divided into three groups of equal size: group 1, the teeth having enamel micro-cracks, group 2, the teeth without initial enamel micro-cracks, and group 3, control group to study the effect of dehydration on existing micro-cracks or formation of new ones. For all the teeth in groups 1 and 2, the same bonding and debonding procedures of metal brackets were conducted. The length and width of the longest enamel micro-crack were measured for all the teeth before and after removal of metal brackets. The changes in the location of the micro-cracks were also evaluated. In group 3, teeth were subjected to the same analysis but not bonded. The mean overall width of micro-cracks after removal of metal brackets was 3.82 μm greater than before bonding procedure (P micro-cracks in first zone (cervical third) and third zone (occlusal third) after debonding procedure (P micro-cracks were found in 6 of 15 (40 per cent) examined teeth. Greatest changes in the width of enamel micro-cracks after debonding procedure appear in the cervical third of the tooth. On the basis of this result, the dentist must pay extra care and attention to this specific area of enamel during removal of metal brackets in adult patients.

  9. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Science.gov (United States)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  10. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Kruml, T., E-mail: kruml@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ 61662 Brno (Czech Republic); Hutar, P.; Nahlik, L.; Seitl, S.; Polak, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ 61662 Brno (Czech Republic)

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 {mu}m was followed in symmetrical cycling with constant strain amplitude (R{sub {epsilon}} = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  11. Different treatment protocols for different pulpal and periapical diagnoses of 72 cracked teeth.

    Science.gov (United States)

    Kim, Sin-Young; Kim, Su-Hyun; Cho, Soo-Bin; Lee, Gyung-Ok; Yang, Sung-Eun

    2013-04-01

    The treatment plan for cracked teeth depends on the extent of the crack. A tooth with an extensive crack of long duration may be more likely to require root canal treatment. The purpose of this study was to analyze the characteristics of cracked teeth and to assess the outcome of different treatment protocols depending on the pulpal and periapical diagnoses. Seventy-two of 476 crown-restored teeth were diagnosed as cracked teeth. The location of the cracked teeth, age and sex of the patients, restoration materials, a diagnosis of pulp and apex, and the periodontal probing depth were analyzed. Cracked teeth were treated by different treatment protocols depending on the pulpal and periapical diagnoses. Mandibular first molars (27.8%) were the most frequently involved teeth followed by maxillary first molars (25%), maxillary second molars (22.2%), and mandibular second molars (19.4%). The most frequently involved ages were 40-49 and 50-59 years. Cracks occurred mainly in nonbonded restorations such as gold (26.4%) and amalgam (12.5%), and 48.6% of cracks were found in intact teeth. In this study, 60 teeth (83.3%) were treated with root canal treatment before being restored with a permanent crown, and only 12 teeth (16.7%) remained vital and were restored with a permanent crown without root canal treatment. The proportion of teeth treated with root canal treatment increased along with a deep periodontal probing depth corresponding to the crack. The prognosis was less favorable in cracked teeth with a deep probing depth. In this study, the proportion of root canal treatment in the cracked teeth was higher than other studies. Many patients are referred to an endodontist in a university hospital after a long time has passed since the symptom started. Early recognition can help to avoid the propagation of a crack into the pulp chamber or subgingival level. Furthermore, it is important to investigate factors related to cracked teeth and develop different treatment protocols

  12. Proposal of a New Method for Measuring Förster Resonance Energy Transfer (FRET Rapidly, Quantitatively and Non-Destructively

    Directory of Open Access Journals (Sweden)

    Paul Johannes Helm

    2012-09-01

    Full Text Available The process of radiationless energy transfer from a chromophore in an excited electronic state (the “donor” to another chromophore (an “acceptor”, in which the energy released by the donor effects an electronic transition, is known as “Förster Resonance Energy Transfer” (FRET. The rate of energy transfer is dependent on the sixth power of the distance between donor and acceptor. Determining FRET efficiencies is tantamount to measuring distances between molecules. A new method is proposed for determining FRET efficiencies rapidly, quantitatively, and non-destructively on ensembles containing donor acceptor pairs: at wavelengths suitable for mutually exclusive excitations of donors and acceptors, two laser beams are intensity-modulated in rectangular patterns at duty cycle ½ and frequencies ƒ1 and ƒ2 by electro-optic modulators. In an ensemble exposed to these laser beams, the donor excitation is modulated at ƒ1, and the acceptor excitation, and therefore the degree of saturation of the excited electronic state of the acceptors, is modulated at ƒ2. Since the ensemble contains donor acceptor pairs engaged in FRET, the released donor fluorescence is modulated not only at ƒ1 but also at the beat frequency Δƒ: = |ƒ1 − ƒ2|. The depth of the latter modulation, detectable via a lock-in amplifier, quantitatively indicates the FRET efficiency.

  13. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery.

    Science.gov (United States)

    Chen, Hui; Wang, Zhuyuan; Zong, Shenfei; Chen, Peng; Zhu, Dan; Wu, Lei; Cui, Yiping

    2015-10-07

    A graphene quantum dot-based FRET system is demonstrated for nuclear-targeted drug delivery, which allows for real-time monitoring of the drug release process through FRET signals. In such a system, graphene quantum dots (GQDs) simultaneously serve as the carriers of drugs and donors of FRET pairs. Additionally, a peptide TAT as the nuclear localization signal is conjugated to GQDs, which facilitates the transportation of the delivery system to the nucleus. We have demonstrated that: (a) both the conjugated TAT and small size of GQDs contribute to targeting the nucleus, which results in a significantly enhanced intranuclear accumulation of drugs; (b) FRET signals being extremely sensitive to the distance between donors and acceptors are capable of real-time monitoring of the separation process of drugs and GQDs, which is more versatile in tracking the drug release dynamics. Our strategy for the assembly of a FRET-based drug delivery system may be unique and universal for monitoring the dynamic release process. This study may give more exciting new opportunities for improving the therapeutic efficacy and tracking precision.

  14. Development of a Fluorescence Resonance Energy Transfer (FRET-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    Directory of Open Access Journals (Sweden)

    Noremylia Mohd Bakhori

    2013-12-01

    Full Text Available An optical DNA biosensor based on fluorescence resonance energy transfer (FRET utilizing synthesized quantum dot (QD has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  15. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair.

    Science.gov (United States)

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L Marcus

    2016-06-20

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins.

  16. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  17. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-01

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  18. Subsidence crack closure: rate, magnitude and sequence

    Energy Technology Data Exchange (ETDEWEB)

    De Graff, J.V.; Romesburg, H.C.

    1981-06-01

    Tension cracks are a major surface disturbance resulting from subsidence and differential settlement above underground coal mines. Recent engineering studies of subsidence indicate that cracks may close where tensile stresses causing the cracks are reduced or relaxed. This stress reduction occurs as mining in the area is completed. Crack closure was confirmed by a study in the Wasatch Plateau coal field of central Utah. Cracks occurred in both exposed bedrock and regolith in an area with maximum subsidence of 3 m. Mean closure rate was 0.3 cm per week with individual crack closure rates between 0.2 cm and 1.0 cm per week. The mean crack closure magnitude was 80% with closure magnitudes varying between 31% and 100%. Actual magnitude values ranged from 0.6 cm to 6.5 cm with a mean value of 3.8 cm. Statistical analysis compared width change status among cracks over time. It was found that: 1) a 41% probability existed that a crack would exhibit decreasing width per weekly measurement, 2) closure state sequences seem random over time, and 3) real differences in closure state sequence existed among different cracks. (6 refs.) (In English)

  19. Crack propagation in fracture mechanical graded structures

    Directory of Open Access Journals (Sweden)

    B. Schramm

    2015-10-01

    Full Text Available The focus of manufacturing is more and more on innovative and application-oriented products considering lightweight construction. Hence, especially functional graded materials come to the fore. Due to the application-matched functional material gradation different local demands such as absorbability, abrasion and fatigue of structures are met. However, the material gradation can also have a remarkable influence on the crack propagation behavior. Therefore, this paper examines how the crack propagation behavior changes when a crack grows through regions which are characterized by different fracture mechanical material properties (e.g. different threshold values KI,th, different fracture toughness KIC. In particular, the emphasis of this paper is on the beginning of stable crack propagation, the crack velocity, the crack propagation direction as well as on the occurrence of unstable crack growth under static as well as cyclic loading. In this context, the developed TSSR-concept is presented which allows the prediction of crack propagation in fracture mechanical graded structures considering the loading situation (Mode I, Mode II and plane Mixed Mode and the material gradation. In addition, results of experimental investigations for a mode I loading situation and numerical simulations of crack growth in such graded structures confirm the theoretical findings and clarify the influence of the material gradation on the crack propagation behavior.

  20. Investigation of endoglin wild-type and missense mutant protein heterodimerisation using fluorescence microscopy based IF, BiFC and FRET analyses.

    Directory of Open Access Journals (Sweden)

    Tassilo Förg

    Full Text Available The homodimeric transmembrane receptor endoglin (CD105 plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells. Nevertheless, other functions of endoglin have been revealed to be involved in different cellular functions and in other cell types than endothelial cells. Compared to the exploration of its natural function, little experimental data have been gathered about the mode of action of endoglin HHT mutations at the cellular level, especially missense mutations, and to what degree these might interfere with normal endoglin function. In this paper, we have used fluorescence-based microscopic techniques, such as bimolecular fluorescence complementation (BiFC, immunofluorescence staining with the endoglin specific monoclonal antibody SN6, and protein interaction studies by Förster Resonance Energy Transfer (FRET to investigate the formation and cellular localisation of possible homo- and heterodimers composed of endoglin wild-type and endoglin missense mutant proteins. The results show that all of the investigated missense mutants dimerise with themselves, as well as with wild-type endoglin, and localise, depending on the position of the affected amino acid, either in the rough endoplasmic reticulum (rER or in the plasma membrane of the cells. We show that the rER retained mutants reduce the amount of endogenous wild-type endoglin on the plasma membrane through interception in the rER when transiently or stably expressed in HMEC-1 endothelial cells. As a result of this, endoglin modulated TGF-β1 signal transduction is also abrogated, which is not due to TGF-β receptor ER trafficking interference. Protein interaction analyses by FRET show that rER located endoglin missense mutants do not perturb protein processing

  1. Investigation of endoglin wild-type and missense mutant protein heterodimerisation using fluorescence microscopy based IF, BiFC and FRET analyses.

    Science.gov (United States)

    Förg, Tassilo; Hafner, Mathias; Lux, Andreas

    2014-01-01

    The homodimeric transmembrane receptor endoglin (CD105) plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells. Nevertheless, other functions of endoglin have been revealed to be involved in different cellular functions and in other cell types than endothelial cells. Compared to the exploration of its natural function, little experimental data have been gathered about the mode of action of endoglin HHT mutations at the cellular level, especially missense mutations, and to what degree these might interfere with normal endoglin function. In this paper, we have used fluorescence-based microscopic techniques, such as bimolecular fluorescence complementation (BiFC), immunofluorescence staining with the endoglin specific monoclonal antibody SN6, and protein interaction studies by Förster Resonance Energy Transfer (FRET) to investigate the formation and cellular localisation of possible homo- and heterodimers composed of endoglin wild-type and endoglin missense mutant proteins. The results show that all of the investigated missense mutants dimerise with themselves, as well as with wild-type endoglin, and localise, depending on the position of the affected amino acid, either in the rough endoplasmic reticulum (rER) or in the plasma membrane of the cells. We show that the rER retained mutants reduce the amount of endogenous wild-type endoglin on the plasma membrane through interception in the rER when transiently or stably expressed in HMEC-1 endothelial cells. As a result of this, endoglin modulated TGF-β1 signal transduction is also abrogated, which is not due to TGF-β receptor ER trafficking interference. Protein interaction analyses by FRET show that rER located endoglin missense mutants do not perturb protein processing of other

  2. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  3. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    Science.gov (United States)

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.

  4. Open crack depth sizing by multi-speed continuous laser stimulated lock-in thermography

    Science.gov (United States)

    Boué, C.; Holé, S.

    2017-06-01

    A crack located in the thermal diffusion zone of a heat source behaves like a thermal barrier modifying the heat diffusion. For a moving continuous source, the sample surface is heated on a little area near the crack for a duration which depends on the speed of the thermal source. A lock-in process synchronized by the displacement of the continuous heat source along the crack is studied. The thermal signature of the crack is extracted via a space operator applied to the amplitude and the phase of surface temperature images for various speeds of the thermal source. With the technical solution presented in this article, the thermal signature images are analysed according to a length representative of the thermal diffusion length to give a local evaluation of the crack depth (around 3 mm at the maximum) for crack lengths of about few centimetres long. The multi-speed lock-in thermography approach is initially studied with finite element method simulations. Experimental tests using an infra-red camera validate the method in a second part. The results do not depend on the heating source if its power is sufficient to produce a temperature rise detectable by an infra-red camera. The depth estimations are obtained independently of the crack width and heat source trajectory. The multi-speed lock-in thermography is a method without contact, without sample preparation, non-polluting, non-destructive and with simple optical adjustments.

  5. Guided wave-based identification of multiple cracks in beams using a Bayesian approach

    Science.gov (United States)

    He, Shuai; Ng, Ching-Tai

    2017-02-01

    A guided wave damage identification method using a model-based approach is proposed to identify multiple cracks in beam-like structures. The guided wave propagation is simulated using spectral finite element method and a crack element is proposed to take into account the mode conversion effect. The Bayesian model class selection algorithm is employed to determine the crack number and then the Bayesian statistical framework is used to identify the crack parameters and the associated uncertainties. In order to improve the efficiency and ensure the reliability of identification, the Transitional Markov Chain Monte Carlo (TMCMC) method is implemented in the Bayesian approach. A series of numerical case studies are carried out to assess the performance of the proposed method, in which the sensitivity of different guided wave modes and effect of different levels of measurement noise in identifying different numbers of cracks is studied in detail. The proposed method is also experimentally verified using guided wave data obtained from laser vibrometer. The results show that the proposed method is able to accurately identify the number, locations and sizes of the cracks, and also quantify the associated uncertainties. In addition the proposed method is robust under measurement noise and different situations of the cracks.

  6. Controlling fatigue crack paths for crack surface marking and growth investigations

    Directory of Open Access Journals (Sweden)

    S. Barter

    2016-01-01

    Full Text Available While it is well known that fatigue crack growth in metals that display confined slip, such as high strength aluminium alloys, develop crack paths that are responsive to the loading direction and the local microstructural orientation, it is less well known that such paths are also responsive to the loading history. In these materials, certain loading sequences can produce highly directional slip bands ahead of the crack tip and by adjusting the sequence of loads, distinct fracture surface features or progression marks, even at very small crack depths can result. Investigating the path a crack selects in fatigue testing when particular combinations of constant and variable amplitude load sequences are applied is providing insight into crack growth. Further, it is possible to design load sequences that allow very small amounts of crack growth to be measured, at very small crack sizes, well below the conventional crack growth threshold in the aluminium alloy discussed here. This paper reports on observations of the crack path phenomenon and a novel test loading method for measuring crack growth rates for very small crack depths in aluminium alloy 7050-T7451 (an important aircraft primary structural material. The aim of this work was to firstly generate short- crack constant amplitude growth data and secondly, through the careful manipulation of the applied loading, to achieve a greater understanding of the mechanisms of fatigue crack growth in the material being investigated. A particular focus of this work is the identification of the possible sources of crack growth retardation and closure in these small cracks. Interpreting these results suggests a possible mechanism for why small fatigue crack growth through this material under variable amplitude loading is faster than predicted from models based on constant amplitude data alone.

  7. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  8. Air flow through smooth and rough cracks

    Energy Technology Data Exchange (ETDEWEB)

    Kula, H.-G.; Sharples, S. [Sheffield Univ. (United Kingdom). Dept. of Building Science

    1994-12-31

    A series of laboratory experiments are described which investigated the effect of surface roughness on the air flow characteristics of simple, straight-through, no-bend cracks with smooth and rough internal surfaces. The crack thicknesses used in the study were 1.0, 1.5 and 2.0mm. The crack lengths, in the direction of flow, were 50.8mm and 76.2mm. For the rough cracks the roughness was simulated with two different grades of commercially available energy-cloth (grade 60 and 100). The experimental results were satisfactorily fitted to a quadratic relationship between {Delta}p and Q of the form {Delta}p = AQ + BQ{sup 2} for both the smooth and rough crack data. The effect of roughness on the reduction of air flowing through a crack is also discussed. (author)

  9. Crack problem in a long cylindrical superconductor

    Science.gov (United States)

    Yong, Hua-Dong; Zhou, You-He; Zeng, Jun

    2008-12-01

    In this work, the general problem of a center crack in a long cylindrical superconductor is studied. The dependence of the stress intensity factor on the parameters, including the crack length and the applied field, is investigated. We presented a simple model in which the effect of the crack on the critical current is taken into account. It is assumed that the crack forms a perfect barrier to the flow of current. The Bean model and the Kim model are considered for the critical state. Based on the complex potential and boundary collocation methods, the stress intensity factor under the magnetic field is obtained for a long cylindrical superconductor containing a central crack. The results show that the crack length and the applied field have significant effects on the fracture behavior of the superconductor.

  10. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...... is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...

  11. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    Science.gov (United States)

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P material loss and the maximum linear depth for the total population were -0.23 mm(3) and 5.84 μm, respectively. CoCr components in mixed metal junctions had higher maximum linear depth (P = .007) than corresponding Ti components. Fretting scores of Ti6Al4V alloy components in mixed metal junctions were statistically higher than the remaining groups. Taper angle did not correlate with material loss. Results suggest that CoCr components in mixed metal junctions are more vulnerable to corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET.

    Science.gov (United States)

    Timor, Reut; Weitman, Hana; Waiskopf, Nir; Banin, Uri; Ehrenberg, Benjamin

    2015-09-30

    Singlet oxygen ((1)O2) generated upon photostimulation of photosensitizer molecules is a highly reactive specie which is utilized in photodynamic therapy. Recent studies have shown that semiconductor nanoparticles can be used as donors in fluorescence resonance energy transfer (FRET) process to excite attached photosensitizer molecules. In these studies, their unique properties, such as low nanoscale size, long-term photostability, wide broad absorbance band, large absorption cross section, and narrow and tunable emission bands were used to provide advantages over the traditional methods to produce singlet oxygen. Previous studies that achieved this goal, however, showed some limitations, such as low FRET efficiency, poor colloidal stability, nonspecific interactions, and/or complex preparation procedure. In this work, we developed and characterized a novel system of semiconductor quantum rods (QRs) and the photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC), as a model system that produces singlet oxygen without these limitations. A simple two-step preparation method is shown; Hydrophobic CdSe/CdS QRs are solubilized in aqueous solutions by encapsulation with lecithin and PEGylated phospholipid (PEG-PL) of two lipid lengths: PEG350 or PEG2000. Then, the hydrophobic photosensitizer mTHPC, was intercalated into the new amphiphilic PEG-PL coating of the QR, providing a strong attachment to the nanoparticle without covalent linkage. These PEGylated QR (eQR)-mTHPC nanocomposites show efficient FRET processes upon light stimulation of the QR component which results in efficient production of singlet oxygen. The results demonstrate the potential for future use of this concept in photodynamic therapy schemes.

  13. Study of a flight monitor for jet engine disk cracks using the critical length criterion of fracture mechanics

    Science.gov (United States)

    Barranger, J. P.

    1974-01-01

    A disk crack detector is discussed which is intended to operate while in flight. The crack detector monitors the disk rim for radial surface cracks emanating from the blade root interface. An eddy current type sensor with a remotely located capacitance-resistance bridge and signal analyzer is able to detect reliably a simulated crack 1/8 in. long. The sensor was tested at rim velocities of 600 fps and at 1000 F. Fracture mechanics is used to calculate the critical crack length. Knowledge of the crack growth rate permits the calculation of the number of stress cycles remaining for the detected crack to grow to critical size. A plot is presented of the remaining life as a function of the critical crack length and the operating stress. It is shown that for a disk of Inconel 718 a through-the-thickness crack operating under a rim stress of 50 kpsi has a critical length of 0.7-in. and a remaining life of 130 flights.

  14. Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

    Science.gov (United States)

    Pourseifi, M.; Faal, R. T.; Asadi, E.

    2017-06-01

    This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dislocation technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the ensuing stress intensity factors of the cracks and the interaction between the cracks.

  15. AN IMPEDANCE ANALYSIS FOR CRACK DETECTION IN THE TIMOSHENKO BEAM BASED ON THE ANTI-RESONANCE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper. Unlike the natural frequency, the anti-resonant frequency is a local parameter rather than a global parameter of structures, thus the proposed technique can be used to locate the structural defects. An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated. In order to characterize the local discontinuity due to cracks, a rotational spring model based on fracture mechanics is proposed to model the crack. Subsequently, the proposed method is verified by a numerical example of a simply-supported beam with a crack. The effect of the crack size on the anti-resonant frequency is investigated. The position of the crack of the simply-supported beam is also determined by the anti-resonance technique. The proposed technique is further applied to the "contaminated" anti-resonant frequency to detect crack damage, which is obtained by adding 1-3% noise to the calculated data. It is found that the proposed technique is effective and free from the environment noise. Finally, an experimental study is performed, which further verifies the validity of the proposed crack identification technique.

  16. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network

    Science.gov (United States)

    Zhou, Chao; Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li

    2013-01-01

    There has been increasing interest in using the nonlinear features of acousto-ultrasonic (AU) waves to detect damage onset (e.g., micro-fatigue cracks) due to their high sensitivity to damage with small dimensions. However, most existing approaches are able to infer the existence of fatigue damage qualitatively, but fail to further ascertain its location and severity. A damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, was established, capable of evaluating fatigue cracks in a quantitative manner (including the co-presence of multiple fatigue cracks, and their individual locations and severities). Fundamental investigations, using both experiment and enhanced finite element analysis dedicated to the simulation of nonlinear AU waves, were carried out to link the accumulation of nonlinearities extracted from high-order AU waves to the characteristic parameters of a fatigue crack. A probability-based diagnostic imaging algorithm was developed, facilitating an intuitive presentation of identification results in images. The approach was verified experimentally by evaluating multi-fatigue cracks near rivet holes of a fatigued aluminum plate, showing satisfactory precision in characterizing real, barely visible fatigue cracks. Compared with existing methods, this approach innovatively (i) uses permanently integrated active sensor networks, conducive to automatic and online health monitoring; (ii) characterizes fatigue cracks at a quantitative level; (iii) allows detection of multiple fatigue cracks; and (iv) visualizes identification results in intuitive images.

  17. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    Science.gov (United States)

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  18. Closing crack earthquakes within the Krafla caldera, North Iceland

    Science.gov (United States)

    Mildon, Zoë K.; Pugh, David J.; Tarasewicz, Jon; White, Robert S.; Brandsdóttir, Bryndís

    2016-11-01

    Moment tensor analysis with a Bayesian approach was used to analyse a non-double-couple (non-DC) earthquake (Mw ˜ 1) with a high isotropic (implosive) component within the Krafla caldera, Iceland. We deduce that the earthquake was generated by a closing crack at depth. The event is well located, with high signal-to-noise ratio and shows dilatational P-wave first arrivals at all stations where the first arrival can be picked with confidence. Coverage of the focal sphere is comprehensive and the source mechanism stable across the full range of uncertainties. The non-DC event lies within a cluster of microseismic activity including many DC events. Hence, we conclude that it is a true non-DC closing crack earthquake as a result of geothermal utilization and observed magma chamber deflation in the region at present.

  19. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  20. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane.

    Science.gov (United States)

    Gordon, Sharona E; Senning, Eric N; Aman, Teresa K; Zagotta, William N

    2016-02-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane.

  1. Evaluation of fretting failures on PWR fuel by post-irradiation examinations and modeling in the DEGRAD-1 code

    Energy Technology Data Exchange (ETDEWEB)

    Castanheira, Myrthes; Silva, Jose Eduardo Rosa da; Lucki, Georgi; Terremoto, Luis A.A.; Silva, Antonio Teixeira e; Teodoro, Celso A.; Damy, Margaret de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: myrthes@ipen.br

    2007-07-01

    One of the major recognized causes of fuel rod failures is fretting of the clad due to the entrapment of debris in a fuel rod spacer. Such debris, inadvertently dropped into the primary system during maintenance operations, includes various sizes of particles. Intermediate size particles, such as metal cuttings, electrical connectors, metal fittings, pieces of wire, and small nuts and bolts can become trapped between fuel rods in a spacer where hydraulically induced vibrations can cause fretting failure of the fuel rod. An evaluation of debris fretting failure on PWR fuel is presented. The inquiries on fuel rods failures are based on results of analysis using post-irradiation non-destructive examination. The complementary analysis includes a modeling approach by code DEGRAD-1 to characterize the degradation phenomenon after primary failure integrated in the reactor operational history. (author)

  2. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-09-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  3. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-11-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  4. [The ritual of crack consumption: socio-anthropological aspects and impacts on the health of users].

    Science.gov (United States)

    Jorge, Maria Salete Bessa; Quinderé, Paulo Henrique Dias; Yasui, Silvio; Albuquerque, Renata Alves

    2013-10-01

    The use of crack cocaine has given rise to an intense discussion in society. Research has contributed to the characterization of users and the negative consequences of its use. However, few studies have conducted in-depth study of the social and cultural contexts in which crack cocaine is used. Thus, this study seeks to discuss the ritual of crack cocaine use and its social and health consequences for the user. It is a qualitative study developed in the Psychosocial Care Centers for Alcohol and Drugs (Portuguese acronym: Caps-ad). The individuals were selected in two groups of key-informants: crack cocaine users undergoing treatment and health professionals. Data was obtained by means of semi-structured interviews. The results revealed that the use of crack cocaine is not dissociated with the current organizational structure of society. There is a link between the use of this substance and the social organization for its use. By using crack cocaine, the individuals try to be part of a consumer market, actively participating in what society perceives as new. The forms and locations of use are directly related to users' health, making it necessary for healthcare services to detect, approach and make health interventions in these locations of use.

  5. Finite element analysis of vessels to study changes in natural frequencies due to cracks

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, A. [ITMME Centre, Indian Institute of Technology, Hauz Khas, New Delhi 110 016 (India); Sehgal, D.K. [ITMME Centre, Indian Institute of Technology, Hauz Khas, New Delhi 110 016 (India); Tandon, N. [ITMME Centre, Indian Institute of Technology, Hauz Khas, New Delhi 110 016 (India)]. E-mail: ntandon@itmmec.iitd.ernet.in

    2006-03-15

    When significant damage occurs in structures, there is a change in stiffness, which in turn affects the natural frequency. To study this, a study was conducted to analyse the effect of cracks on natural frequencies in two vessel structures. Finite element analysis has been used to obtain the dynamic characteristics of intact and damaged vessels for the first eight modes of these structures. Two kinds of vessel, boilers and storage tanks, were chosen and through-thickness cracks were analysed. Different cases were examined by changing the size and locations of cracks with the help of a FEM (Finite element model). Natural frequencies and mode shapes were analysed. The natural frequencies for different modes have been used as input pattern of ANN (artificial neural network) model. The output of the ANN model is a crack size for a particular location. It was found that as the crack size increased, natural frequency changed to a large extent, but the frequency was not reduced in the same manner for every position of damage for the same size of crack. It was also found that the reduction in natural frequencies depends upon the mode shapes of the structures.

  6. TECHNIQUE OF TESTING ON FRETTING AT THE SPHERE-TO-PLANE CONTACT

    Directory of Open Access Journals (Sweden)

    А. Khimko

    2012-12-01

    Full Text Available  The methodology of conducting tests on fretting at the sphere-to-plane contact was developed for the wing mechanization unit, namely for screw-nut pair with intermediate balls. Wearability tests were conducted on a modified installation МФК-1, the feature of which is the designed holder that allows testing with real balls. It was found that at the dry contact of ШХ-15 and 30Х2НВФA materials, surface microcracks are formed due to welding of microasperities areas and their rupture under the influence of vibration.

  7. Protein-protein interactions in the plant Golgi apparatus, studied with FRET acceptor photobleaching technique

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter

    to the plant Golgi apparatus and involved mainly in arabinogalactan protein (AGP) biosynthesis. Co-expression analysis identified 4 GTs and 4 NSTs possibly involved in AGP biosynthesis. As part of the method development, the cytoskeleton-acting agent Cytochalasin D was tested as an inhibitor...... of the actinomyosin based movement of Golgi vesicles, and was proved to be superior to commonly used fixatives such as the cross-linking agent paraformaldehyde which causes quenching of the fluorophores. According to FRET analysis, the results showed association between two galactosyltransferases, AtGALT29A and At...

  8. Multiphoton STED and FRET in human skin: Resolving the skin barrier

    DEFF Research Database (Denmark)

    Antonescu, Irina; Dreier, Jes; Brewer, Jonathan R.

    Understanding the penetration properties of substances across biological bar- riers and membranes is vital for many areas of research. In the case of human skin, the barrier is primarily found in the stratum corneum and consists of protein-enriched cells surrounded by a lipid membrane -enriched...... excited STED and Forster Resonance Energy Transfer (FRET) microscopy to probe the structure of human skin. Super resolution optical microscopy enables resolving structures in the skin below to 60 nm allowing visualization of the stratum corneum intercellular lipid matrix and individual proteins...

  9. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    . Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay......In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data...

  10. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren;

    2015-01-01

    polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm......The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...

  11. Analysis of temporal and spatial contact voltage fluctuation during fretting in automotive connectors

    OpenAIRE

    El Mossouess, Sofiane; Benjemâa, N; Carvou, E; El Abdi, R; Obame, H; Doublet, L; Rodari, T

    2014-01-01

    International audience; Our study is focused on contact voltage fluctuations during fretting with small amplitudes of a few tens microns which generate damage of the contact of connectors. A contact composed by a pin and a curve female part are submitted to vibration cyclic of 25µm at 100Hz and supplied with current ramp from 0.1mA to 3A in two directions. With the help of fast devices, the voltage and position data acquisition are conjointly made with the common DC contact voltage dur-ing fr...

  12. DBEM crack propagation for nonlinear fracture problems

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2015-10-01

    Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.

  13. Transition from Multiple Macro-Cracking to Multiple Micro-Cracking in Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; LENG Bing

    2008-01-01

    This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites.Conventional polyvinyl alcohol fiber reinforced cementitious composites normally exhibit macroscopic strain-hardening and multiple cracking after the first cracks appear.However,the individual crack width at the saturated stage is normally 60 to 80 μm.In the current study,the effect of fine aggregate size on the cracking performance,especially the individual crack width in the strain-hardening stage was studied by bending tests.The results show that the individual crack widths can be reduced from 60-80 μm to 10-30 μm by modifying the particle size of the fine aggregates used in the composites.

  14. Fatigue Crack Closure Analysis Using Digital Image Correlation

    Science.gov (United States)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  15. Crack

    Science.gov (United States)

    ... rate, breathing rate, blood pressure , and body temperature decreased appetite and less need for sleep feelings of restlessness, ... effects include: gangrene in the bowels resulting from decreased blood ... chest pain reduced appetite, plus health problems associated with not eating a ...

  16. High frequency guided waves for hidden fatigue crack growth monitoring in multi-layer aerospace structures

    Science.gov (United States)

    Chan, Henry; Fromme, Paul

    2015-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, possibly leading to the development of fatigue cracks. High frequency guided waves propagating along the structure allow for the non-destructive testing of such components, e.g., aircraft wings. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminium plate-strips. Fatigue experiments were carried out. The sensitivity of the high frequency guided wave modes to monitor fatigue crack growth at a fastener hole during cyclic loading was investigated, using both standard pulse-echo equipment and laser interferometry. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance.

  17. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  18. Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties

    Directory of Open Access Journals (Sweden)

    A. Tzamtzis

    2016-02-01

    Full Text Available An analytical model is developed to predict fatigue crack propagation rate under mode I loading in 2024 aluminum alloy with FSW HAZ material characteristics. Simulation of the HAZ local properties in parent 2024 AA was performed with overaging using specific heat treatment conditions. The model considers local cyclic hardening behavior in the HAZ to analyze crack growth. For the evaluation of the model, the analytical results have been compared with experimental fatigue crack growth on overaged 2024 alloy simulating material behavior at different positions within the HAZ. The analytical results showed that cyclic hardening at the crack tip can be used successfully with the model to predict FCG in a material at overaged condition associated with a location in the FSW HAZ.

  19. Generation of higher harmonics in longitudinal vibration of beams with breathing cracks

    Science.gov (United States)

    Broda, D.; Pieczonka, L.; Hiwarkar, V.; Staszewski, W. J.; Silberschmidt, V. V.

    2016-10-01

    Classical nonlinear vibration methods used for structural damage detection are often based on higher- and sub-harmonic generation. However, nonlinearities arising from sources other than damage - e.g. boundary conditions or a measurement chain - are a primary concern in these methods. This paper focuses on localisation of damage-related nonlinearities based on higher harmonic generation. Numerical and experimental investigations in longitudinal vibration of beams with breathing cracks are presented. Numerical modelling is performed using a two-dimensional finite element approach. Different crack depths, locations and boundary conditions are investigated. The results demonstrate that nonlinearities in cracked beams are particularly strong in the vicinity of damage, allowing not only for damage localisation but also for separation of crack induced nonlinearity from other sources of nonlinearities.

  20. SPIRALING CRACKS IN THIN SHEETS

    OpenAIRE

    2010-01-01

    En este trabajo de tesis presentamos dos experimentos en que trayectorias de fracturas sumamente reproducibles son obtenidas en láminas delgadas frágiles. En ambos casos, a partir de configuraciones iniciales sumamente simples y pequeñas, las trayectorias obtenidas son espirales logarítmicas de gran tamao. Nuestro primer experimento consiste en un crack que se inicia desde un corte recto hecho en una lámina delgada y que es forzado a propagarse por medio de empujar con un objeto sólido....

  1. Fatigue Crack Closure - A Review

    Science.gov (United States)

    1990-09-01

    gauge along the crack line. They used CCT speci- mens of high tensile strength steel ( HY80 ). The measured value of U was found to be a minimum at the...ultrasonic surface wave technique on 12.5mm thick specimens of 2024-T851, 2024-T351, Al 2219, Ti-6AI-4V and 17-4 PH steel . Most of the results were...medium and high strength steels . Exami- nation of the fracture surfaces suggested that raising the mean stress in low fracture toughness steels could

  2. Expansive Soil Crack Depth under Cumulative Damage

    Directory of Open Access Journals (Sweden)

    Bei-xiao Shi

    2014-01-01

    Full Text Available The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil.

  3. Wettability Induced Crack Dynamics and Morphology

    CERN Document Server

    Ghosh, Udita Uday; Bhandari, Aditya Bikram; Chakraborty, Suman; DasGupta, Sunando

    2014-01-01

    Substrate wettability alteration induced control over crack formation process in thin colloidal films has been addressed in the present study. Colloidal nanosuspension (53nm, mean particle diameter) droplets have been subjected to natural drying to outline the effects of substrate surface energies over the dry-out characteristics with emphasis on crack dynamics, crack morphology and underlying particle arrangements. Experimental findings indicate that number of cracks formed decreases with increase in substrate hydrophobicity. These physical phenomena have been explained based on the magnitude of stress dissipation incurred by the substrate. DLVO predictions are also found to be in tune with the reported experimental investigations.

  4. Crack depth determination with inductive thermography

    Science.gov (United States)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  5. Fatigue crack growth detect, assess, avoid

    CERN Document Server

    Richard, Hans Albert

    2016-01-01

    This book offers a concise introduction to fatigue crack growth, based on practical examples. It discusses the essential concepts of fracture mechanics, fatigue crack growth under constant and variable amplitude loading and the determination of the fracture-mechanical material parameters. The book also introduces the analytical and numerical simulation of fatigue crack growth as well as crack initiation. It concludes with a detailed description of several practical case studies and some exercises. The target group includes graduate students, researchers at universities and practicing engineers.

  6. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  7. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  8. Development of an AP-FRET based analysis for characterizing RNA-protein interactions in myotonic dystrophy (DM1.

    Directory of Open Access Journals (Sweden)

    Shagufta Rehman

    Full Text Available Förster Resonance Energy Transfer (FRET microscopy is a powerful tool used to identify molecular interactions in live or fixed cells using a non-radiative transfer of energy from a donor fluorophore in the excited state to an acceptor fluorophore in close proximity. FRET can be a very sensitive tool to study protein-protein and/or protein-nucleic acids interactions. RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy. Myotonic dystrophy (DM1 is caused by a (CTGn repeat expansion in the 3' UTR of the DMPK gene which results in nuclear retention of mutant DMPK transcripts in RNA foci. This results in toxic gain-of-function effects mediated through altered functions of RNA-binding proteins (e.g. MBNL1, hnRNPH, CUGBP1. In this study we demonstrate the potential of a new acceptor photobleaching assay to measure FRET (AP-FRET between RNA and protein. We chose to focus on the interaction between MBNL1 and mutant DMPK mRNA in cells from DM1 patients due to the strong microscopic evidence of their co-localization. Using this technique we have direct evidence of intracellular interaction between MBNL1 and the DMPK RNA. Furthermore using the AP-FRET assay and MBNL1 mutants, we show that all four zinc-finger motifs in MBNL1 are crucial for MBNL1-RNA foci interactions. The data derived using this new assay provides compelling evidence for the interaction between RNA binding proteins and RNA foci, and mechanistic insights into MBNL1-RNA foci interaction demonstrating the power of AP-FRET in examining RNA-Protein interactions in DM1.

  9. Imaging of caspase-3 activation by a novel FRET probe composed of CFP and DsRed

    Science.gov (United States)

    Lin, Juquiang; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Caspases-3 is a kind of cysteine proteases and plays an important role in cell apoptosis. It has been reported that caspase-3 activation can be real-time detected in living cells by fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein and enhanced yellow fluorescent protein. However, the large spectral overlap between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) emission and the highly sensitivity to pH of YFP restricted their detecting sensitivity and reliability. CFP and red fluorescent protein (DsRed) possess superb wavelength separation of donor and acceptor emission spectra and DsRed was insensitive to pH, so the FRET probe composed of CFP and DsRed would be more suitable for imaging caspase-3 activation than the FRET probe composed of CFP and YFP. We constructed a vector that encoded CRS (caspase-3 recognition site) fused with CFP and DsRed (CFP-CRS-DsRed). In CFP-CRS-DsRed expressing tumor cells, FRET from CFP to DsRed could be detected. In the Clinical applications of cancer chemotherapy, cisplatin is one of the most broadly used drugs. It was already confirmed that caspase-3 was activated in HeLa cell treated by cisplatin. When the cells were stimulated with cisplatin, we found that the FRET efficient was remarkably decreased and then disappeared. It indicated that actived caspase-3 cleaved the CFP-CRS-DsRed fusion protein at CRS site. Thus, the FRET probe of CFP-CRS-DsRed could sensitively and reliably monitor caspase-3 activation in living cell. This probe will be highly useful for rapid-screening potential drugs that may target the apoptotic process and for imaging tumors in vivo.

  10. Single-molecule FRET reveals the native-state dynamics of the IκBα ankyrin repeat domain.

    Science.gov (United States)

    Lamboy, Jorge A; Kim, Hajin; Dembinski, Holly; Ha, Taekjip; Komives, Elizabeth A

    2013-07-24

    Previous single-molecule fluorescence resonance energy transfer (smFRET) studies in which the second and sixth ankyrin repeats (ARs) of IκBα were labeled with FRET pairs showed slow fluctuations as if the IκBα AR domain was unfolding in its native state. To systematically probe where these slow dynamic fluctuations occur, we now present data from smFRET studies wherein FRET labels were placed at ARs 1 and 4 (mutant named AR 1-4), at ARs 2 and 5 (AR 2-5), and at ARs 3 and 6 (AR 3-6). The results presented here reveal that AR 6 most readily detaches/unfolds from the AR domain, undergoing substantial fluctuations at room temperature. AR 6 has fewer stabilizing consensus residues than the other IκBα ARs, probably contributing to the ease with which AR 6 "loses grip". AR 5 shows almost no fluctuations at room temperature, but a significant fraction of molecules shows fluctuations at 37 °C. Introduction of stabilizing mutations that are known to fold AR 6 dampen the fluctuations of AR 5, indicating that the AR 5 fluctuations are likely due to weakened inter-repeat stabilization from AR 6. AR 1 also fluctuates somewhat at room temperature, suggesting that fluctuations are a general behavior of ARs at ends of AR domains. Remarkably, AR 1 still fluctuates in the bound state, but mainly between 0.6 and 0.9 FRET efficiency, whereas in the free IκBα, the fluctuations extend to <0.5 FRET efficiency. Overall, our results provide a more complete picture of the energy landscape of the native state dynamics of an AR domain.

  11. Crack spacing of unsaturated soils in the critical state

    Institute of Scientific and Technical Information of China (English)

    SUN JiChao; WANG GuangQian; SUN QiCheng

    2009-01-01

    The cracking mechanism of unsaturated soils due to evaporation is poorly understood, and the magnitude of crack spacing is usually hard to estimate. In this work, cracks were postulated to occur suc-cedently rather than simultaneously, that is, secondary cracks appear after primary cracks as evaporation continues. Formulae of the secondary crack spacing and secondary trend crack spacing were then derived after stress analysis. The calculated spacing values were consistent with the published experimental data. Meanwhile, the effect of the Poisson ratio on the crack spacing was analyzed, which showed that the magnitude of crack spacing was proportional to the Poisson ratio in the range of [0.30,0.35].

  12. On the application of cohesive crack modeling in cementitious materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe;

    2007-01-01

    Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used....... Further, a quantitative condition is established indicating when a bridged crack model can be approximated with a cohesive crack model with smooth crack closure in terms of the ratio between the energy dissipation associated with the crack tip and the process zone....

  13. Effect of Crack Closure on Ultrasonic Detection of Fatigue Cracks at Fastener Holes

    Science.gov (United States)

    Bowles, S. J.; Harding, C. A.; Hugo, G. R.

    2009-03-01

    The ultrasonic response from closed fatigue cracks grown in aluminium alloy specimens using a representative aircraft spectrum loading has been characterised as a function of tensile applied load using pulse-echo 45° shear-wave ultrasonic C-scans with focused immersion transducers. Observed trends with crack size and applied load are described and compared to results for artificial machined defects. The results demonstrate that crack closure significantly reduces the ultrasonic response compared to open cracks or machined defects.

  14. Mode Ⅰ Plane Crack Interacting with an Interfacial Crack Along a Circular Inhomogeneity

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; MA Jian-jun; LIU Zheng-guang

    2006-01-01

    The elastic interaction of the mode Ⅰ plane crack with an interfacial crack along a circular inhomogeneity is dealt with. The dislocation density and the stress intensity factors (SIFs) of the mode I plane crack are obtained numerically. A new kind of dislocation equilibrium equation about the plane crack is applied. The influence of some material parameters on the dislocation density and SIFs are analyzed.

  15. Extended propagation model for interfacial crack in composite material structure

    Institute of Scientific and Technical Information of China (English)

    闫相桥; 冯希金

    2002-01-01

    An interfacial crack is a common damage in a composite material structure . An extended propaga-tion model has been established for an interfacial crack to study the dependence of crack growth on the relativesizes of energy release rates at left and right crack tips and the properties of interfacial material characterize thegrowth of interfacial crack better.

  16. The stress–strain state of the cracked welded joint between the header and the shell of PGV-1000M steam generator

    Directory of Open Access Journals (Sweden)

    S. M. Ban’ko

    2014-10-01

    Full Text Available The three-dimensional elastoplastic stress–strain state of the cracked welded joint between the “hot” header and the shell of PGV-1000M steam generator is numerically analyzed. The crack is located on the inside surface of the connector pipe, near the fillet. The effect of the loading history on the crack-tip stress-intensity factor is assessed.

  17. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    Science.gov (United States)

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  18. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  19. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    Science.gov (United States)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  20. Water and sediment dynamics in a small Mediterranean cultivated catchment under cracking soils

    Science.gov (United States)

    Inoubli, Nesrine; Raclot, Damien; Moussa, Roger; Habaieb, Hamadi; Le Bissonnais, Yves

    2016-04-01

    Shrink-swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses due to the changing soil water storage conditions. Only a limited number of long-term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005-2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation.

  1. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  2. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  3. A Creaking and Cracking Comet

    Science.gov (United States)

    Faurschou Hviid, Stubbe; Hüttig, Christian; Groussin, Olivier; Mottola, Stefano; Keller, Horst Uwe; OSIRIS Team

    2016-10-01

    Since the middle of 2014 the OSIRIS cameras on the ESA Rosetta mission have been monitoring the evolution of the comet 67P/Churyumov-Gerasimenko as it passed through perihelion. During the perihelion passage several change events have been observed on the nucleus surface. For example existing large scale cracks have expanded and new large scale cracks have been created. Also several large scale "wave pattern" like change events have been observed in the Imhotep and Hapi regions. These are events not directly correlated with any normal visible cometary activity. One interpretation is that these are events likely caused by "seismic" activity. The seismic activity is created by the self-gravity stress of the non-spherical comet nucleus and stress created by the non-gravitational forces acting on the comet. The non-gravitational forces are changing the rotation period of the comet (~20min/perihelion passage) which induces a changing mechanical stress pattern through the perihelion passage. Also the diurnal cycle with its changing activity pattern is causing a periodic wobble in the stress pattern that can act as a trigger for a comet quake. The stress pattern has been modeled using a finite element model that includes self-gravity, the comet spin and the non-gravitational forces based on a cometary activity model. This paper will discuss what can be learned about the comet nucleus structure and about the cometary material properties from these events and from the FEM model.

  4. What can cracked polymer do

    Science.gov (United States)

    Jiao, Kexin; Zhou, Chuanhong; Kohli, Punit; Poudel, Anish; Chu, Tsuchin

    2015-03-01

    Buckling, delamination, and cracking are very well known phenomenon observed in most thin films. They were theoretically explained by the existence of mechanical instability due to the residue stress generated when a thin film is deposited on substrates or undergoing environmental stimulus. Buckled structures at micro- or nano-scale have been of great interests and have been used extensively in many applications including particles self-assembling, surface wettability modification, and micro-electronic device fabrication. However, peeling of a layer from a substrate due to delamination or fractures on a thin film due to cracking is mostly taken as an undesirable result. Therefore, strategies are inspired for preventing or removing these often undesired structures. We found that after being heated above its decomposition temperature and then cooled to room temperature, a PDMS thin film showed micro-fibers of 100 μm width and up to 1.5 cm in length. By studying the formation mechanism, control of the dimensions and of the growth pattern on a substrate for PDMS micro-fibers were realized. Giving credit to their high flexibility and optical transparency, a PDMS micro-fiber were utilized in high resolution near field imaging achieved by attaching a micro-lens on the fiber. Interestingly, a surface covered by PDMS micro-fibers will turn from superhydrophobic into superhydrophilic by further heating providing potential applications in surface wettability modification. In future, we will investigate and simulate the growth of PDMS micro-fiber and look for more possible applications.

  5. Influences of gaseous environment on low growth-rate fatigue crack propagation in steels. Annual report No. 1, January 1980. Report No. FPL/R/80/1030

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, R.O.; Suresh, S.; Toplosky, J.

    1980-01-01

    The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.

  6. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  7. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.

    Science.gov (United States)

    Lanquar, Viviane; Grossmann, Guido; Vinkenborg, Jan L; Merkx, Maarten; Thomine, Sébastien; Frommer, Wolf B

    2014-04-01

    Zinc plays a central role in all living cells as a cofactor for enzymes and as a structural element enabling the adequate folding of proteins. In eukaryotic cells, metals are highly compartmentalized and chelated. Although essential to characterize the mechanisms of Zn(2+) homeostasis, the measurement of free metal concentrations in living cells has proved challenging and the dynamics are difficult to determine. Our work combines the use of genetically encoded Förster resonance energy transfer (FRET) sensors and a novel microfluidic technology, the RootChip, to monitor the dynamics of cytosolic Zn(2+) concentrations in Arabidopsis root cells. Our experiments provide estimates of cytosolic free Zn(2+) concentrations in Arabidopsis root cells grown under sufficient (0.4 nM) and excess (2 nM) Zn(2+) supply. In addition, monitoring the dynamics of cytosolic [Zn(2+) ] in response to external supply suggests the involvement of high- and low-affinity uptake systems as well as release from internal stores. In this study, we demonstrate that the combination of genetically encoded FRET sensors and microfluidics provides an attractive tool to monitor the dynamics of cellular metal ion concentrations over a wide concentration range in root cells. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. FRET-Based Nanobiosensors for Imaging Intracellular Ca2+ and H+ Microdomains

    Directory of Open Access Journals (Sweden)

    Alsu I. Zamaleeva

    2015-09-01

    Full Text Available Semiconductor nanocrystals (NCs or quantum dots (QDs are luminous point emitters increasingly being used to tag and track biomolecules in biological/biomedical imaging. However, their intracellular use as highlighters of single-molecule localization and nanobiosensors reporting ion microdomains changes has remained a major challenge. Here, we report the design, generation and validation of FRET-based nanobiosensors for detection of intracellular Ca2+ and H+ transients. Our sensors combine a commercially available CANdot®565QD as an energy donor with, as an acceptor, our custom-synthesized red-emitting Ca2+ or H+ probes. These ‘Rubies’ are based on an extended rhodamine as a fluorophore and a phenol or BAPTA (1,2-bis(o-aminophenoxyethane-N,N,N′,N′-tetra-acetic acid for H+ or Ca2+ sensing, respectively, and additionally bear a linker arm for conjugation. QDs were stably functionalized using the same SH/maleimide crosslink chemistry for all desired reactants. Mixing ion sensor and cell-penetrating peptides (that facilitate cytoplasmic delivery at the desired stoichiometric ratio produced controlled multi-conjugated assemblies. Multiple acceptors on the same central donor allow up-concentrating the ion sensor on the QD surface to concentrations higher than those that could be achieved in free solution, increasing FRET efficiency and improving the signal. We validate these nanosensors for the detection of intracellular Ca2+ and pH transients using live-cell fluorescence imaging.

  9. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter

    Science.gov (United States)

    Billesbølle, Christian B.; Mortensen, Jonas S.; Sohail, Azmat; Schmidt, Solveig G.; Shi, Lei; Sitte, Harald H.; Gether, Ulrik; Loland, Claus J.

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na+-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K+ inhibits Na+-dependent binding of substrate to LeuT, promotes an outward-closed/inward-facing conformation of the transporter and increases uptake. To assess K+-induced conformational dynamics we measured fluorescence resonance energy transfer (FRET) between fluorescein site-specifically attached to inserted cysteines and Ni2+ bound to engineered di-histidine motifs (transition metal ion FRET). The measurements supported K+-induced closure of the transporter to the outside, which was counteracted by Na+ and substrate. Promoting an outward-open conformation of LeuT by mutation abolished the K+-effect. The K+-effect depended on an intact Na1 site and mutating the Na2 site potentiated K+ binding by facilitating transition to the inward-facing state. The data reveal an unrecognized ability of K+ to regulate the LeuT transport cycle. PMID:27678200

  10. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter.

    Science.gov (United States)

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat; Schmidt, Solveig G; Shi, Lei; Sitte, Harald H; Gether, Ulrik; Loland, Claus J

    2016-09-28

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K(+) inhibits Na(+)-dependent binding of substrate to LeuT, promotes an outward-closed/inward-facing conformation of the transporter and increases uptake. To assess K(+)-induced conformational dynamics we measured fluorescence resonance energy transfer (FRET) between fluorescein site-specifically attached to inserted cysteines and Ni(2+) bound to engineered di-histidine motifs (transition metal ion FRET). The measurements supported K(+)-induced closure of the transporter to the outside, which was counteracted by Na(+) and substrate. Promoting an outward-open conformation of LeuT by mutation abolished the K(+)-effect. The K(+)-effect depended on an intact Na1 site and mutating the Na2 site potentiated K(+) binding by facilitating transition to the inward-facing state. The data reveal an unrecognized ability of K(+) to regulate the LeuT transport cycle.

  11. Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection.

    Science.gov (United States)

    Benz, Christian; Retzbach, Heiko; Nagl, Stefan; Belder, Detlev

    2013-07-21

    Herein, we demonstrate the feasibility of a protein-protein interaction analysis and reaction progress monitoring in microfluidic droplets using FRET and microscopic fluorescence lifetime measurements. The fabrication of microdroplet chips using soft- and photolithographic techniques is demonstrated and the resulting chips reliably generate microdroplets of 630 pL and 6.71 nL at frequencies of 7.9 and 0.75 Hz, respectively. They were used for detection of protein-protein interactions in microdroplets using a model system of Alexa Fluor 488 labelled biotinylated BSA, Alexa Fluor 594 labelled streptavidin and unlabelled chicken egg white avidin. These microchips could be used for quantitative detection of avidin and streptavidin in microdroplets in direct and competitive assay formats with nanomolar detection limits, corresponding to attomole protein amounts. Four droplets were found to be sufficient for analytical determination. Fluorescence intensity ratio and fluorescence lifetime measurements were performed and compared for microdroplet FRET determination. A competitive on-chip binding assay for determination of unlabelled avidin using fluorescence lifetime detection could be performed within 135 s only.

  12. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  13. Nanoblinker: Brownian Motion Powered Bio-Nanomachine for FRET Detection of Phagocytic Phase of Apoptosis

    Science.gov (United States)

    Minchew, Candace L.; Didenko, Vladimir V.

    2014-01-01

    We describe a new type of bio-nanomachine which runs on thermal noise. The machine is solely powered by the random motion of water molecules in its environment and does not ever require re-fuelling. The construct, which is made of DNA and vaccinia virus topoisomerase protein, can detect DNA damage by employing fluorescence. It uses Brownian motion as a cyclic motor to continually separate and bring together two types of fluorescent hairpins participating in FRET. This bio-molecular oscillator is a fast and specific sensor of 5′OH double-strand DNA breaks present in phagocytic phase of apoptosis. The detection takes 30 s in solution and 3 min in cell suspensions. The phagocytic phase is critical for the effective execution of apoptosis as it ensures complete degradation of the dying cells’ DNA, preventing release of pathological, viral and tumor DNA and self-immunization. The construct can be used as a smart FRET probe in studies of cell death and phagocytosis. PMID:25268504

  14. Maximum likelihood-based analysis of photon arrival trajectories in single-molecule FRET

    Energy Technology Data Exchange (ETDEWEB)

    Waligorska, Marta [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Molski, Andrzej, E-mail: amolski@amu.edu.pl [Adam Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer We study model selection and parameter recovery from single-molecule FRET experiments. Black-Right-Pointing-Pointer We examine the maximum likelihood-based analysis of two-color photon trajectories. Black-Right-Pointing-Pointer The number of observed photons determines the performance of the method. Black-Right-Pointing-Pointer For long trajectories, one can extract mean dwell times that are comparable to inter-photon times. -- Abstract: When two fluorophores (donor and acceptor) are attached to an immobilized biomolecule, anti-correlated fluctuations of the donor and acceptor fluorescence caused by Foerster resonance energy transfer (FRET) report on the conformational kinetics of the molecule. Here we assess the maximum likelihood-based analysis of donor and acceptor photon arrival trajectories as a method for extracting the conformational kinetics. Using computer generated data we quantify the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in selecting the true kinetic model. We find that the number of observed photons is the key parameter determining parameter estimation and model selection. For long trajectories, one can extract mean dwell times that are comparable to inter-photon times.

  15. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    Science.gov (United States)

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  16. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  17. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    Science.gov (United States)

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-07

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity.

  18. The Detection of Vertical Cracks in Asphalt Using Seismic Surface Wave Methods

    Science.gov (United States)

    Iodice, M.; Muggleton, J.; Rustighi, E.

    2016-09-01

    Assessment of the location and of the extension of cracking in road surfaces is important for determining the potential level of deterioration in the road overall and the infrastructure buried beneath it. Damage in a pavement structure is usually initiated in the tarmac layers, making the Rayleigh wave ideally suited for the detection of shallow surface defects. This paper presents an investigation of two surface wave methods to detect and locate top-down cracks in asphalt layers. The aim of the study is to compare the results from the well- established Multichannel Analysis of Surface Waves (MASW) and the more recent Multiple Impact of Surface Waves (MISW) in the presence of a discontinuity and to suggest the best surface wave technique for evaluating the presence and the extension of vertical cracks in roads. The study is conducted through numerical simulations alongside experimental investigations and it considers the cases for which the cracking is internal and external to the deployment of sensors. MISW is found to enhance the visibility of the reflected waves in the frequency wavenumber (f-k) spectrum, helping with the detection of the discontinuity. In some cases, by looking at the f-k spectrum obtained with MISW it is possible to extract information regarding the location and the depth of the cracking.

  19. Development of crack shape: LBB methodology for cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)

    1997-04-01

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  20. The influences of precrack orientations in welded joint of Ti-6Al-4V on fatigue crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xuedong, E-mail: wxue2004@yeah.net [Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shi Qingyu; Wang Xin; Zhang Zenglei [Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    Ti-6Al-4V lamella microstructure obtained by {beta} annealing, which had slow fatigue crack propagation rate and high propagation resistance, was used as base metal and welded by tungsten-inert-gas welding (TIG). Three kinds of orientations were designed to study the influences of precrack orientations and locations on fatigue crack growth rate in as-weld welded joints. In comparison, the classical total-life fatigue performances of the joints were also studied. The results showed that, no matter the precrack was initiated in the center of the weld, near the fusion-line or in HAZ, the fatigue crack propagation rates in the initial stage were all slower than that of the base metal. The fatigue crack in the central region of the weld seam propagated by striation mechanism in the initial propagation stage, and the weld metal exhibited lower fatigue crack propagation rate and higher threshold stress intensity than the base metal and the other joint specimens.